1 /* $NetBSD: kern_sig.c,v 1.364 2019/06/21 04:28:12 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.364 2019/06/21 04:28:12 kamil Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_dtrace.h" 77 #include "opt_compat_sunos.h" 78 #include "opt_compat_netbsd.h" 79 #include "opt_compat_netbsd32.h" 80 #include "opt_pax.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/ptrace.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 #include <sys/ktrace.h> 90 #include <sys/syslog.h> 91 #include <sys/filedesc.h> 92 #include <sys/file.h> 93 #include <sys/pool.h> 94 #include <sys/ucontext.h> 95 #include <sys/exec.h> 96 #include <sys/kauth.h> 97 #include <sys/acct.h> 98 #include <sys/callout.h> 99 #include <sys/atomic.h> 100 #include <sys/cpu.h> 101 #include <sys/module.h> 102 #include <sys/sdt.h> 103 104 #ifdef PAX_SEGVGUARD 105 #include <sys/pax.h> 106 #endif /* PAX_SEGVGUARD */ 107 108 #include <uvm/uvm_extern.h> 109 110 #define SIGQUEUE_MAX 32 111 static pool_cache_t sigacts_cache __read_mostly; 112 static pool_cache_t ksiginfo_cache __read_mostly; 113 static callout_t proc_stop_ch __cacheline_aligned; 114 115 sigset_t contsigmask __cacheline_aligned; 116 sigset_t stopsigmask __cacheline_aligned; 117 static sigset_t vforksigmask __cacheline_aligned; 118 sigset_t sigcantmask __cacheline_aligned; 119 120 static void ksiginfo_exechook(struct proc *, void *); 121 static void proc_stop(struct proc *, int); 122 static void proc_stop_done(struct proc *, int); 123 static void proc_stop_callout(void *); 124 static int sigchecktrace(void); 125 static int sigpost(struct lwp *, sig_t, int, int); 126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *); 127 static int sigunwait(struct proc *, const ksiginfo_t *); 128 129 static void sigacts_poolpage_free(struct pool *, void *); 130 static void *sigacts_poolpage_alloc(struct pool *, int); 131 132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 133 int (*coredump_vec)(struct lwp *, const char *) = 134 (int (*)(struct lwp *, const char *))enosys; 135 136 /* 137 * DTrace SDT provider definitions 138 */ 139 SDT_PROVIDER_DECLARE(proc); 140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, 141 "struct lwp *", /* target thread */ 142 "struct proc *", /* target process */ 143 "int"); /* signal */ 144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard, 145 "struct lwp *", /* target thread */ 146 "struct proc *", /* target process */ 147 "int"); /* signal */ 148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle, 149 "int", /* signal */ 150 "ksiginfo_t *", /* signal info */ 151 "void (*)(void)"); /* handler address */ 152 153 154 static struct pool_allocator sigactspool_allocator = { 155 .pa_alloc = sigacts_poolpage_alloc, 156 .pa_free = sigacts_poolpage_free 157 }; 158 159 #ifdef DEBUG 160 int kern_logsigexit = 1; 161 #else 162 int kern_logsigexit = 0; 163 #endif 164 165 static const char logcoredump[] = 166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 167 static const char lognocoredump[] = 168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 169 170 static kauth_listener_t signal_listener; 171 172 static int 173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 174 void *arg0, void *arg1, void *arg2, void *arg3) 175 { 176 struct proc *p; 177 int result, signum; 178 179 result = KAUTH_RESULT_DEFER; 180 p = arg0; 181 signum = (int)(unsigned long)arg1; 182 183 if (action != KAUTH_PROCESS_SIGNAL) 184 return result; 185 186 if (kauth_cred_uidmatch(cred, p->p_cred) || 187 (signum == SIGCONT && (curproc->p_session == p->p_session))) 188 result = KAUTH_RESULT_ALLOW; 189 190 return result; 191 } 192 193 static int 194 sigacts_ctor(void *arg __unused, void *obj, int flags __unused) 195 { 196 memset(obj, 0, sizeof(struct sigacts)); 197 return 0; 198 } 199 200 /* 201 * signal_init: 202 * 203 * Initialize global signal-related data structures. 204 */ 205 void 206 signal_init(void) 207 { 208 209 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 210 211 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 212 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 213 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL); 214 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 215 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 216 217 exechook_establish(ksiginfo_exechook, NULL); 218 219 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 220 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 221 222 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 223 signal_listener_cb, NULL); 224 } 225 226 /* 227 * sigacts_poolpage_alloc: 228 * 229 * Allocate a page for the sigacts memory pool. 230 */ 231 static void * 232 sigacts_poolpage_alloc(struct pool *pp, int flags) 233 { 234 235 return (void *)uvm_km_alloc(kernel_map, 236 PAGE_SIZE * 2, PAGE_SIZE * 2, 237 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 238 | UVM_KMF_WIRED); 239 } 240 241 /* 242 * sigacts_poolpage_free: 243 * 244 * Free a page on behalf of the sigacts memory pool. 245 */ 246 static void 247 sigacts_poolpage_free(struct pool *pp, void *v) 248 { 249 250 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 251 } 252 253 /* 254 * sigactsinit: 255 * 256 * Create an initial sigacts structure, using the same signal state 257 * as of specified process. If 'share' is set, share the sigacts by 258 * holding a reference, otherwise just copy it from parent. 259 */ 260 struct sigacts * 261 sigactsinit(struct proc *pp, int share) 262 { 263 struct sigacts *ps = pp->p_sigacts, *ps2; 264 265 if (__predict_false(share)) { 266 atomic_inc_uint(&ps->sa_refcnt); 267 return ps; 268 } 269 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 270 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 271 ps2->sa_refcnt = 1; 272 273 mutex_enter(&ps->sa_mutex); 274 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 275 mutex_exit(&ps->sa_mutex); 276 return ps2; 277 } 278 279 /* 280 * sigactsunshare: 281 * 282 * Make this process not share its sigacts, maintaining all signal state. 283 */ 284 void 285 sigactsunshare(struct proc *p) 286 { 287 struct sigacts *ps, *oldps = p->p_sigacts; 288 289 if (__predict_true(oldps->sa_refcnt == 1)) 290 return; 291 292 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 293 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 294 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 295 ps->sa_refcnt = 1; 296 297 p->p_sigacts = ps; 298 sigactsfree(oldps); 299 } 300 301 /* 302 * sigactsfree; 303 * 304 * Release a sigacts structure. 305 */ 306 void 307 sigactsfree(struct sigacts *ps) 308 { 309 310 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 311 mutex_destroy(&ps->sa_mutex); 312 pool_cache_put(sigacts_cache, ps); 313 } 314 } 315 316 /* 317 * siginit: 318 * 319 * Initialize signal state for process 0; set to ignore signals that 320 * are ignored by default and disable the signal stack. Locking not 321 * required as the system is still cold. 322 */ 323 void 324 siginit(struct proc *p) 325 { 326 struct lwp *l; 327 struct sigacts *ps; 328 int signo, prop; 329 330 ps = p->p_sigacts; 331 sigemptyset(&contsigmask); 332 sigemptyset(&stopsigmask); 333 sigemptyset(&vforksigmask); 334 sigemptyset(&sigcantmask); 335 for (signo = 1; signo < NSIG; signo++) { 336 prop = sigprop[signo]; 337 if (prop & SA_CONT) 338 sigaddset(&contsigmask, signo); 339 if (prop & SA_STOP) 340 sigaddset(&stopsigmask, signo); 341 if (prop & SA_STOP && signo != SIGSTOP) 342 sigaddset(&vforksigmask, signo); 343 if (prop & SA_CANTMASK) 344 sigaddset(&sigcantmask, signo); 345 if (prop & SA_IGNORE && signo != SIGCONT) 346 sigaddset(&p->p_sigctx.ps_sigignore, signo); 347 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 348 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 349 } 350 sigemptyset(&p->p_sigctx.ps_sigcatch); 351 p->p_sflag &= ~PS_NOCLDSTOP; 352 353 ksiginfo_queue_init(&p->p_sigpend.sp_info); 354 sigemptyset(&p->p_sigpend.sp_set); 355 356 /* 357 * Reset per LWP state. 358 */ 359 l = LIST_FIRST(&p->p_lwps); 360 l->l_sigwaited = NULL; 361 l->l_sigstk = SS_INIT; 362 ksiginfo_queue_init(&l->l_sigpend.sp_info); 363 sigemptyset(&l->l_sigpend.sp_set); 364 365 /* One reference. */ 366 ps->sa_refcnt = 1; 367 } 368 369 /* 370 * execsigs: 371 * 372 * Reset signals for an exec of the specified process. 373 */ 374 void 375 execsigs(struct proc *p) 376 { 377 struct sigacts *ps; 378 struct lwp *l; 379 int signo, prop; 380 sigset_t tset; 381 ksiginfoq_t kq; 382 383 KASSERT(p->p_nlwps == 1); 384 385 sigactsunshare(p); 386 ps = p->p_sigacts; 387 388 /* 389 * Reset caught signals. Held signals remain held through 390 * l->l_sigmask (unless they were caught, and are now ignored 391 * by default). 392 * 393 * No need to lock yet, the process has only one LWP and 394 * at this point the sigacts are private to the process. 395 */ 396 sigemptyset(&tset); 397 for (signo = 1; signo < NSIG; signo++) { 398 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 399 prop = sigprop[signo]; 400 if (prop & SA_IGNORE) { 401 if ((prop & SA_CONT) == 0) 402 sigaddset(&p->p_sigctx.ps_sigignore, 403 signo); 404 sigaddset(&tset, signo); 405 } 406 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 407 } 408 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 409 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 410 } 411 ksiginfo_queue_init(&kq); 412 413 mutex_enter(p->p_lock); 414 sigclearall(p, &tset, &kq); 415 sigemptyset(&p->p_sigctx.ps_sigcatch); 416 417 /* 418 * Reset no zombies if child dies flag as Solaris does. 419 */ 420 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 421 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 422 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 423 424 /* 425 * Reset per-LWP state. 426 */ 427 l = LIST_FIRST(&p->p_lwps); 428 l->l_sigwaited = NULL; 429 l->l_sigstk = SS_INIT; 430 ksiginfo_queue_init(&l->l_sigpend.sp_info); 431 sigemptyset(&l->l_sigpend.sp_set); 432 mutex_exit(p->p_lock); 433 434 ksiginfo_queue_drain(&kq); 435 } 436 437 /* 438 * ksiginfo_exechook: 439 * 440 * Free all pending ksiginfo entries from a process on exec. 441 * Additionally, drain any unused ksiginfo structures in the 442 * system back to the pool. 443 * 444 * XXX This should not be a hook, every process has signals. 445 */ 446 static void 447 ksiginfo_exechook(struct proc *p, void *v) 448 { 449 ksiginfoq_t kq; 450 451 ksiginfo_queue_init(&kq); 452 453 mutex_enter(p->p_lock); 454 sigclearall(p, NULL, &kq); 455 mutex_exit(p->p_lock); 456 457 ksiginfo_queue_drain(&kq); 458 } 459 460 /* 461 * ksiginfo_alloc: 462 * 463 * Allocate a new ksiginfo structure from the pool, and optionally copy 464 * an existing one. If the existing ksiginfo_t is from the pool, and 465 * has not been queued somewhere, then just return it. Additionally, 466 * if the existing ksiginfo_t does not contain any information beyond 467 * the signal number, then just return it. 468 */ 469 ksiginfo_t * 470 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 471 { 472 ksiginfo_t *kp; 473 474 if (ok != NULL) { 475 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 476 KSI_FROMPOOL) 477 return ok; 478 if (KSI_EMPTY_P(ok)) 479 return ok; 480 } 481 482 kp = pool_cache_get(ksiginfo_cache, flags); 483 if (kp == NULL) { 484 #ifdef DIAGNOSTIC 485 printf("Out of memory allocating ksiginfo for pid %d\n", 486 p->p_pid); 487 #endif 488 return NULL; 489 } 490 491 if (ok != NULL) { 492 memcpy(kp, ok, sizeof(*kp)); 493 kp->ksi_flags &= ~KSI_QUEUED; 494 } else 495 KSI_INIT_EMPTY(kp); 496 497 kp->ksi_flags |= KSI_FROMPOOL; 498 499 return kp; 500 } 501 502 /* 503 * ksiginfo_free: 504 * 505 * If the given ksiginfo_t is from the pool and has not been queued, 506 * then free it. 507 */ 508 void 509 ksiginfo_free(ksiginfo_t *kp) 510 { 511 512 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 513 return; 514 pool_cache_put(ksiginfo_cache, kp); 515 } 516 517 /* 518 * ksiginfo_queue_drain: 519 * 520 * Drain a non-empty ksiginfo_t queue. 521 */ 522 void 523 ksiginfo_queue_drain0(ksiginfoq_t *kq) 524 { 525 ksiginfo_t *ksi; 526 527 KASSERT(!TAILQ_EMPTY(kq)); 528 529 while (!TAILQ_EMPTY(kq)) { 530 ksi = TAILQ_FIRST(kq); 531 TAILQ_REMOVE(kq, ksi, ksi_list); 532 pool_cache_put(ksiginfo_cache, ksi); 533 } 534 } 535 536 static int 537 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 538 { 539 ksiginfo_t *ksi, *nksi; 540 541 if (sp == NULL) 542 goto out; 543 544 /* Find siginfo and copy it out. */ 545 int count = 0; 546 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) { 547 if (ksi->ksi_signo != signo) 548 continue; 549 if (count++ > 0) /* Only remove the first, count all of them */ 550 continue; 551 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 552 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 553 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 554 ksi->ksi_flags &= ~KSI_QUEUED; 555 if (out != NULL) { 556 memcpy(out, ksi, sizeof(*out)); 557 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 558 } 559 ksiginfo_free(ksi); 560 } 561 if (count) 562 return count; 563 564 out: 565 /* If there is no siginfo, then manufacture it. */ 566 if (out != NULL) { 567 KSI_INIT(out); 568 out->ksi_info._signo = signo; 569 out->ksi_info._code = SI_NOINFO; 570 } 571 return 0; 572 } 573 574 /* 575 * sigget: 576 * 577 * Fetch the first pending signal from a set. Optionally, also fetch 578 * or manufacture a ksiginfo element. Returns the number of the first 579 * pending signal, or zero. 580 */ 581 int 582 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 583 { 584 sigset_t tset; 585 int count; 586 587 /* If there's no pending set, the signal is from the debugger. */ 588 if (sp == NULL) 589 goto out; 590 591 /* Construct mask from signo, and 'mask'. */ 592 if (signo == 0) { 593 if (mask != NULL) { 594 tset = *mask; 595 __sigandset(&sp->sp_set, &tset); 596 } else 597 tset = sp->sp_set; 598 599 /* If there are no signals pending - return. */ 600 if ((signo = firstsig(&tset)) == 0) 601 goto out; 602 } else { 603 KASSERT(sigismember(&sp->sp_set, signo)); 604 } 605 606 sigdelset(&sp->sp_set, signo); 607 out: 608 count = siggetinfo(sp, out, signo); 609 if (count > 1) 610 sigaddset(&sp->sp_set, signo); 611 return signo; 612 } 613 614 /* 615 * sigput: 616 * 617 * Append a new ksiginfo element to the list of pending ksiginfo's. 618 */ 619 static int 620 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 621 { 622 ksiginfo_t *kp; 623 624 KASSERT(mutex_owned(p->p_lock)); 625 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 626 627 sigaddset(&sp->sp_set, ksi->ksi_signo); 628 629 /* 630 * If there is no siginfo, we are done. 631 */ 632 if (KSI_EMPTY_P(ksi)) 633 return 0; 634 635 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 636 637 size_t count = 0; 638 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 639 count++; 640 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX) 641 continue; 642 if (kp->ksi_signo == ksi->ksi_signo) { 643 KSI_COPY(ksi, kp); 644 kp->ksi_flags |= KSI_QUEUED; 645 return 0; 646 } 647 } 648 649 if (count >= SIGQUEUE_MAX) { 650 #ifdef DIAGNOSTIC 651 printf("%s(%d): Signal queue is full signal=%d\n", 652 p->p_comm, p->p_pid, ksi->ksi_signo); 653 #endif 654 return EAGAIN; 655 } 656 ksi->ksi_flags |= KSI_QUEUED; 657 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 658 659 return 0; 660 } 661 662 /* 663 * sigclear: 664 * 665 * Clear all pending signals in the specified set. 666 */ 667 void 668 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 669 { 670 ksiginfo_t *ksi, *next; 671 672 if (mask == NULL) 673 sigemptyset(&sp->sp_set); 674 else 675 sigminusset(mask, &sp->sp_set); 676 677 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 678 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 679 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 680 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 681 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 682 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 683 } 684 } 685 } 686 687 /* 688 * sigclearall: 689 * 690 * Clear all pending signals in the specified set from a process and 691 * its LWPs. 692 */ 693 void 694 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 695 { 696 struct lwp *l; 697 698 KASSERT(mutex_owned(p->p_lock)); 699 700 sigclear(&p->p_sigpend, mask, kq); 701 702 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 703 sigclear(&l->l_sigpend, mask, kq); 704 } 705 } 706 707 /* 708 * sigispending: 709 * 710 * Return the first signal number if there are pending signals for the 711 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 712 * and that the signal has been posted to the appopriate queue before 713 * LW_PENDSIG is set. 714 */ 715 int 716 sigispending(struct lwp *l, int signo) 717 { 718 struct proc *p = l->l_proc; 719 sigset_t tset; 720 721 membar_consumer(); 722 723 tset = l->l_sigpend.sp_set; 724 sigplusset(&p->p_sigpend.sp_set, &tset); 725 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 726 sigminusset(&l->l_sigmask, &tset); 727 728 if (signo == 0) { 729 return firstsig(&tset); 730 } 731 return sigismember(&tset, signo) ? signo : 0; 732 } 733 734 void 735 getucontext(struct lwp *l, ucontext_t *ucp) 736 { 737 struct proc *p = l->l_proc; 738 739 KASSERT(mutex_owned(p->p_lock)); 740 741 ucp->uc_flags = 0; 742 ucp->uc_link = l->l_ctxlink; 743 ucp->uc_sigmask = l->l_sigmask; 744 ucp->uc_flags |= _UC_SIGMASK; 745 746 /* 747 * The (unsupplied) definition of the `current execution stack' 748 * in the System V Interface Definition appears to allow returning 749 * the main context stack. 750 */ 751 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 752 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 753 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 754 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 755 } else { 756 /* Simply copy alternate signal execution stack. */ 757 ucp->uc_stack = l->l_sigstk; 758 } 759 ucp->uc_flags |= _UC_STACK; 760 mutex_exit(p->p_lock); 761 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 762 mutex_enter(p->p_lock); 763 } 764 765 int 766 setucontext(struct lwp *l, const ucontext_t *ucp) 767 { 768 struct proc *p = l->l_proc; 769 int error; 770 771 KASSERT(mutex_owned(p->p_lock)); 772 773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 775 if (error != 0) 776 return error; 777 } 778 779 mutex_exit(p->p_lock); 780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 781 mutex_enter(p->p_lock); 782 if (error != 0) 783 return (error); 784 785 l->l_ctxlink = ucp->uc_link; 786 787 /* 788 * If there was stack information, update whether or not we are 789 * still running on an alternate signal stack. 790 */ 791 if ((ucp->uc_flags & _UC_STACK) != 0) { 792 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 793 l->l_sigstk.ss_flags |= SS_ONSTACK; 794 else 795 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 796 } 797 798 return 0; 799 } 800 801 /* 802 * killpg1: common code for kill process group/broadcast kill. 803 */ 804 int 805 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 806 { 807 struct proc *p, *cp; 808 kauth_cred_t pc; 809 struct pgrp *pgrp; 810 int nfound; 811 int signo = ksi->ksi_signo; 812 813 cp = l->l_proc; 814 pc = l->l_cred; 815 nfound = 0; 816 817 mutex_enter(proc_lock); 818 if (all) { 819 /* 820 * Broadcast. 821 */ 822 PROCLIST_FOREACH(p, &allproc) { 823 if (p->p_pid <= 1 || p == cp || 824 (p->p_flag & PK_SYSTEM) != 0) 825 continue; 826 mutex_enter(p->p_lock); 827 if (kauth_authorize_process(pc, 828 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 829 NULL) == 0) { 830 nfound++; 831 if (signo) 832 kpsignal2(p, ksi); 833 } 834 mutex_exit(p->p_lock); 835 } 836 } else { 837 if (pgid == 0) 838 /* Zero pgid means send to my process group. */ 839 pgrp = cp->p_pgrp; 840 else { 841 pgrp = pgrp_find(pgid); 842 if (pgrp == NULL) 843 goto out; 844 } 845 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 846 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 847 continue; 848 mutex_enter(p->p_lock); 849 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 850 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 851 nfound++; 852 if (signo && P_ZOMBIE(p) == 0) 853 kpsignal2(p, ksi); 854 } 855 mutex_exit(p->p_lock); 856 } 857 } 858 out: 859 mutex_exit(proc_lock); 860 return nfound ? 0 : ESRCH; 861 } 862 863 /* 864 * Send a signal to a process group. If checktty is set, limit to members 865 * which have a controlling terminal. 866 */ 867 void 868 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 869 { 870 ksiginfo_t ksi; 871 872 KASSERT(!cpu_intr_p()); 873 KASSERT(mutex_owned(proc_lock)); 874 875 KSI_INIT_EMPTY(&ksi); 876 ksi.ksi_signo = sig; 877 kpgsignal(pgrp, &ksi, NULL, checkctty); 878 } 879 880 void 881 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 882 { 883 struct proc *p; 884 885 KASSERT(!cpu_intr_p()); 886 KASSERT(mutex_owned(proc_lock)); 887 KASSERT(pgrp != NULL); 888 889 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 890 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 891 kpsignal(p, ksi, data); 892 } 893 894 /* 895 * Send a signal caused by a trap to the current LWP. If it will be caught 896 * immediately, deliver it with correct code. Otherwise, post it normally. 897 */ 898 void 899 trapsignal(struct lwp *l, ksiginfo_t *ksi) 900 { 901 struct proc *p; 902 struct sigacts *ps; 903 int signo = ksi->ksi_signo; 904 sigset_t *mask; 905 sig_t action; 906 907 KASSERT(KSI_TRAP_P(ksi)); 908 909 ksi->ksi_lid = l->l_lid; 910 p = l->l_proc; 911 912 KASSERT(!cpu_intr_p()); 913 mutex_enter(proc_lock); 914 mutex_enter(p->p_lock); 915 916 /* 917 * If we are exiting, demise now. 918 * 919 * This avoids notifying tracer and deadlocking. 920 */ 921 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 922 mutex_exit(p->p_lock); 923 mutex_exit(proc_lock); 924 lwp_exit(l); 925 panic("trapsignal"); 926 /* NOTREACHED */ 927 } 928 929 mask = &l->l_sigmask; 930 ps = p->p_sigacts; 931 action = SIGACTION_PS(ps, signo).sa_handler; 932 933 if (ISSET(p->p_slflag, PSL_TRACED) && 934 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) && 935 p->p_xsig != SIGKILL && 936 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 937 p->p_xsig = signo; 938 p->p_sigctx.ps_faked = true; 939 p->p_sigctx.ps_lwp = ksi->ksi_lid; 940 p->p_sigctx.ps_info = ksi->ksi_info; 941 sigswitch(0, signo, false); 942 943 if (ktrpoint(KTR_PSIG)) { 944 if (p->p_emul->e_ktrpsig) 945 p->p_emul->e_ktrpsig(signo, action, mask, ksi); 946 else 947 ktrpsig(signo, action, mask, ksi); 948 } 949 return; 950 } 951 952 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo); 953 const bool masked = sigismember(mask, signo); 954 if (caught && !masked) { 955 mutex_exit(proc_lock); 956 l->l_ru.ru_nsignals++; 957 kpsendsig(l, ksi, mask); 958 mutex_exit(p->p_lock); 959 960 if (ktrpoint(KTR_PSIG)) { 961 if (p->p_emul->e_ktrpsig) 962 p->p_emul->e_ktrpsig(signo, action, mask, ksi); 963 else 964 ktrpsig(signo, action, mask, ksi); 965 } 966 return; 967 } 968 969 /* 970 * If the signal is masked or ignored, then unmask it and 971 * reset it to the default action so that the process or 972 * its tracer will be notified. 973 */ 974 const bool ignored = action == SIG_IGN; 975 if (masked || ignored) { 976 mutex_enter(&ps->sa_mutex); 977 sigdelset(mask, signo); 978 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 979 sigdelset(&p->p_sigctx.ps_sigignore, signo); 980 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo); 981 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 982 mutex_exit(&ps->sa_mutex); 983 } 984 985 kpsignal2(p, ksi); 986 mutex_exit(p->p_lock); 987 mutex_exit(proc_lock); 988 } 989 990 /* 991 * Fill in signal information and signal the parent for a child status change. 992 */ 993 void 994 child_psignal(struct proc *p, int mask) 995 { 996 ksiginfo_t ksi; 997 struct proc *q; 998 int xsig; 999 1000 KASSERT(mutex_owned(proc_lock)); 1001 KASSERT(mutex_owned(p->p_lock)); 1002 1003 xsig = p->p_xsig; 1004 1005 KSI_INIT(&ksi); 1006 ksi.ksi_signo = SIGCHLD; 1007 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 1008 ksi.ksi_pid = p->p_pid; 1009 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 1010 ksi.ksi_status = xsig; 1011 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 1012 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 1013 1014 q = p->p_pptr; 1015 1016 mutex_exit(p->p_lock); 1017 mutex_enter(q->p_lock); 1018 1019 if ((q->p_sflag & mask) == 0) 1020 kpsignal2(q, &ksi); 1021 1022 mutex_exit(q->p_lock); 1023 mutex_enter(p->p_lock); 1024 } 1025 1026 void 1027 psignal(struct proc *p, int signo) 1028 { 1029 ksiginfo_t ksi; 1030 1031 KASSERT(!cpu_intr_p()); 1032 KASSERT(mutex_owned(proc_lock)); 1033 1034 KSI_INIT_EMPTY(&ksi); 1035 ksi.ksi_signo = signo; 1036 mutex_enter(p->p_lock); 1037 kpsignal2(p, &ksi); 1038 mutex_exit(p->p_lock); 1039 } 1040 1041 void 1042 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1043 { 1044 fdfile_t *ff; 1045 file_t *fp; 1046 fdtab_t *dt; 1047 1048 KASSERT(!cpu_intr_p()); 1049 KASSERT(mutex_owned(proc_lock)); 1050 1051 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1052 size_t fd; 1053 filedesc_t *fdp = p->p_fd; 1054 1055 /* XXXSMP locking */ 1056 ksi->ksi_fd = -1; 1057 dt = fdp->fd_dt; 1058 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1059 if ((ff = dt->dt_ff[fd]) == NULL) 1060 continue; 1061 if ((fp = ff->ff_file) == NULL) 1062 continue; 1063 if (fp->f_data == data) { 1064 ksi->ksi_fd = fd; 1065 break; 1066 } 1067 } 1068 } 1069 mutex_enter(p->p_lock); 1070 kpsignal2(p, ksi); 1071 mutex_exit(p->p_lock); 1072 } 1073 1074 /* 1075 * sigismasked: 1076 * 1077 * Returns true if signal is ignored or masked for the specified LWP. 1078 */ 1079 int 1080 sigismasked(struct lwp *l, int sig) 1081 { 1082 struct proc *p = l->l_proc; 1083 1084 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1085 sigismember(&l->l_sigmask, sig); 1086 } 1087 1088 /* 1089 * sigpost: 1090 * 1091 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1092 * be able to take the signal. 1093 */ 1094 static int 1095 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1096 { 1097 int rv, masked; 1098 struct proc *p = l->l_proc; 1099 1100 KASSERT(mutex_owned(p->p_lock)); 1101 1102 /* 1103 * If the LWP is on the way out, sigclear() will be busy draining all 1104 * pending signals. Don't give it more. 1105 */ 1106 if (l->l_refcnt == 0) 1107 return 0; 1108 1109 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0); 1110 1111 /* 1112 * Have the LWP check for signals. This ensures that even if no LWP 1113 * is found to take the signal immediately, it should be taken soon. 1114 */ 1115 lwp_lock(l); 1116 l->l_flag |= LW_PENDSIG; 1117 1118 /* 1119 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1120 * Note: SIGKILL and SIGSTOP cannot be masked. 1121 */ 1122 masked = sigismember(&l->l_sigmask, sig); 1123 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1124 lwp_unlock(l); 1125 return 0; 1126 } 1127 1128 /* 1129 * If killing the process, make it run fast. 1130 */ 1131 if (__predict_false((prop & SA_KILL) != 0) && 1132 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1133 KASSERT(l->l_class == SCHED_OTHER); 1134 lwp_changepri(l, MAXPRI_USER); 1135 } 1136 1137 /* 1138 * If the LWP is running or on a run queue, then we win. If it's 1139 * sleeping interruptably, wake it and make it take the signal. If 1140 * the sleep isn't interruptable, then the chances are it will get 1141 * to see the signal soon anyhow. If suspended, it can't take the 1142 * signal right now. If it's LWP private or for all LWPs, save it 1143 * for later; otherwise punt. 1144 */ 1145 rv = 0; 1146 1147 switch (l->l_stat) { 1148 case LSRUN: 1149 case LSONPROC: 1150 lwp_need_userret(l); 1151 rv = 1; 1152 break; 1153 1154 case LSSLEEP: 1155 if ((l->l_flag & LW_SINTR) != 0) { 1156 /* setrunnable() will release the lock. */ 1157 setrunnable(l); 1158 return 1; 1159 } 1160 break; 1161 1162 case LSSUSPENDED: 1163 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1164 /* lwp_continue() will release the lock. */ 1165 lwp_continue(l); 1166 return 1; 1167 } 1168 break; 1169 1170 case LSSTOP: 1171 if ((prop & SA_STOP) != 0) 1172 break; 1173 1174 /* 1175 * If the LWP is stopped and we are sending a continue 1176 * signal, then start it again. 1177 */ 1178 if ((prop & SA_CONT) != 0) { 1179 if (l->l_wchan != NULL) { 1180 l->l_stat = LSSLEEP; 1181 p->p_nrlwps++; 1182 rv = 1; 1183 break; 1184 } 1185 /* setrunnable() will release the lock. */ 1186 setrunnable(l); 1187 return 1; 1188 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1189 /* setrunnable() will release the lock. */ 1190 setrunnable(l); 1191 return 1; 1192 } 1193 break; 1194 1195 default: 1196 break; 1197 } 1198 1199 lwp_unlock(l); 1200 return rv; 1201 } 1202 1203 /* 1204 * Notify an LWP that it has a pending signal. 1205 */ 1206 void 1207 signotify(struct lwp *l) 1208 { 1209 KASSERT(lwp_locked(l, NULL)); 1210 1211 l->l_flag |= LW_PENDSIG; 1212 lwp_need_userret(l); 1213 } 1214 1215 /* 1216 * Find an LWP within process p that is waiting on signal ksi, and hand 1217 * it on. 1218 */ 1219 static int 1220 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1221 { 1222 struct lwp *l; 1223 int signo; 1224 1225 KASSERT(mutex_owned(p->p_lock)); 1226 1227 signo = ksi->ksi_signo; 1228 1229 if (ksi->ksi_lid != 0) { 1230 /* 1231 * Signal came via _lwp_kill(). Find the LWP and see if 1232 * it's interested. 1233 */ 1234 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1235 return 0; 1236 if (l->l_sigwaited == NULL || 1237 !sigismember(&l->l_sigwaitset, signo)) 1238 return 0; 1239 } else { 1240 /* 1241 * Look for any LWP that may be interested. 1242 */ 1243 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1244 KASSERT(l->l_sigwaited != NULL); 1245 if (sigismember(&l->l_sigwaitset, signo)) 1246 break; 1247 } 1248 } 1249 1250 if (l != NULL) { 1251 l->l_sigwaited->ksi_info = ksi->ksi_info; 1252 l->l_sigwaited = NULL; 1253 LIST_REMOVE(l, l_sigwaiter); 1254 cv_signal(&l->l_sigcv); 1255 return 1; 1256 } 1257 1258 return 0; 1259 } 1260 1261 /* 1262 * Send the signal to the process. If the signal has an action, the action 1263 * is usually performed by the target process rather than the caller; we add 1264 * the signal to the set of pending signals for the process. 1265 * 1266 * Exceptions: 1267 * o When a stop signal is sent to a sleeping process that takes the 1268 * default action, the process is stopped without awakening it. 1269 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1270 * regardless of the signal action (eg, blocked or ignored). 1271 * 1272 * Other ignored signals are discarded immediately. 1273 */ 1274 int 1275 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1276 { 1277 int prop, signo = ksi->ksi_signo; 1278 struct lwp *l = NULL; 1279 ksiginfo_t *kp; 1280 lwpid_t lid; 1281 sig_t action; 1282 bool toall; 1283 int error = 0; 1284 1285 KASSERT(!cpu_intr_p()); 1286 KASSERT(mutex_owned(proc_lock)); 1287 KASSERT(mutex_owned(p->p_lock)); 1288 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1289 KASSERT(signo > 0 && signo < NSIG); 1290 1291 /* 1292 * If the process is being created by fork, is a zombie or is 1293 * exiting, then just drop the signal here and bail out. 1294 */ 1295 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1296 return 0; 1297 1298 /* XXX for core dump/debugger */ 1299 p->p_sigctx.ps_lwp = ksi->ksi_lid; 1300 p->p_sigctx.ps_info = ksi->ksi_info; 1301 1302 /* 1303 * Notify any interested parties of the signal. 1304 */ 1305 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1306 1307 /* 1308 * Some signals including SIGKILL must act on the entire process. 1309 */ 1310 kp = NULL; 1311 prop = sigprop[signo]; 1312 toall = ((prop & SA_TOALL) != 0); 1313 lid = toall ? 0 : ksi->ksi_lid; 1314 1315 /* 1316 * If proc is traced, always give parent a chance. 1317 */ 1318 if (p->p_slflag & PSL_TRACED) { 1319 action = SIG_DFL; 1320 1321 if (lid == 0) { 1322 /* 1323 * If the process is being traced and the signal 1324 * is being caught, make sure to save any ksiginfo. 1325 */ 1326 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1327 goto discard; 1328 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1329 goto out; 1330 } 1331 } else { 1332 1333 /* 1334 * If the signal is being ignored, then drop it. Note: we 1335 * don't set SIGCONT in ps_sigignore, and if it is set to 1336 * SIG_IGN, action will be SIG_DFL here. 1337 */ 1338 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1339 goto discard; 1340 1341 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1342 action = SIG_CATCH; 1343 else { 1344 action = SIG_DFL; 1345 1346 /* 1347 * If sending a tty stop signal to a member of an 1348 * orphaned process group, discard the signal here if 1349 * the action is default; don't stop the process below 1350 * if sleeping, and don't clear any pending SIGCONT. 1351 */ 1352 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1353 goto discard; 1354 1355 if (prop & SA_KILL && p->p_nice > NZERO) 1356 p->p_nice = NZERO; 1357 } 1358 } 1359 1360 /* 1361 * If stopping or continuing a process, discard any pending 1362 * signals that would do the inverse. 1363 */ 1364 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1365 ksiginfoq_t kq; 1366 1367 ksiginfo_queue_init(&kq); 1368 if ((prop & SA_CONT) != 0) 1369 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1370 if ((prop & SA_STOP) != 0) 1371 sigclear(&p->p_sigpend, &contsigmask, &kq); 1372 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1373 } 1374 1375 /* 1376 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1377 * please!), check if any LWPs are waiting on it. If yes, pass on 1378 * the signal info. The signal won't be processed further here. 1379 */ 1380 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1381 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1382 sigunwait(p, ksi)) 1383 goto discard; 1384 1385 /* 1386 * XXXSMP Should be allocated by the caller, we're holding locks 1387 * here. 1388 */ 1389 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1390 goto discard; 1391 1392 /* 1393 * LWP private signals are easy - just find the LWP and post 1394 * the signal to it. 1395 */ 1396 if (lid != 0) { 1397 l = lwp_find(p, lid); 1398 if (l != NULL) { 1399 if ((error = sigput(&l->l_sigpend, p, kp)) != 0) 1400 goto out; 1401 membar_producer(); 1402 if (sigpost(l, action, prop, kp->ksi_signo) != 0) 1403 signo = -1; 1404 } 1405 goto out; 1406 } 1407 1408 /* 1409 * Some signals go to all LWPs, even if posted with _lwp_kill() 1410 * or for an SA process. 1411 */ 1412 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1413 if ((p->p_slflag & PSL_TRACED) != 0) 1414 goto deliver; 1415 1416 /* 1417 * If SIGCONT is default (or ignored) and process is 1418 * asleep, we are finished; the process should not 1419 * be awakened. 1420 */ 1421 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1422 goto out; 1423 } else { 1424 /* 1425 * Process is stopped or stopping. 1426 * - If traced, then no action is needed, unless killing. 1427 * - Run the process only if sending SIGCONT or SIGKILL. 1428 */ 1429 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1430 goto out; 1431 } 1432 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1433 /* 1434 * Re-adjust p_nstopchild if the process was 1435 * stopped but not yet collected by its parent. 1436 */ 1437 if (p->p_stat == SSTOP && !p->p_waited) 1438 p->p_pptr->p_nstopchild--; 1439 p->p_stat = SACTIVE; 1440 p->p_sflag &= ~PS_STOPPING; 1441 if (p->p_slflag & PSL_TRACED) { 1442 KASSERT(signo == SIGKILL); 1443 goto deliver; 1444 } 1445 /* 1446 * Do not make signal pending if SIGCONT is default. 1447 * 1448 * If the process catches SIGCONT, let it handle the 1449 * signal itself (if waiting on event - process runs, 1450 * otherwise continues sleeping). 1451 */ 1452 if ((prop & SA_CONT) != 0) { 1453 p->p_xsig = SIGCONT; 1454 p->p_sflag |= PS_CONTINUED; 1455 child_psignal(p, 0); 1456 if (action == SIG_DFL) { 1457 KASSERT(signo != SIGKILL); 1458 goto deliver; 1459 } 1460 } 1461 } else if ((prop & SA_STOP) != 0) { 1462 /* 1463 * Already stopped, don't need to stop again. 1464 * (If we did the shell could get confused.) 1465 */ 1466 goto out; 1467 } 1468 } 1469 /* 1470 * Make signal pending. 1471 */ 1472 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1473 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1474 goto out; 1475 deliver: 1476 /* 1477 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1478 * visible on the per process list (for sigispending()). This 1479 * is unlikely to be needed in practice, but... 1480 */ 1481 membar_producer(); 1482 1483 /* 1484 * Try to find an LWP that can take the signal. 1485 */ 1486 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1487 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1488 break; 1489 } 1490 signo = -1; 1491 out: 1492 /* 1493 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1494 * with locks held. The caller should take care of this. 1495 */ 1496 ksiginfo_free(kp); 1497 if (signo == -1) 1498 return error; 1499 discard: 1500 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0); 1501 return error; 1502 } 1503 1504 void 1505 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1506 { 1507 struct proc *p = l->l_proc; 1508 1509 KASSERT(mutex_owned(p->p_lock)); 1510 (*p->p_emul->e_sendsig)(ksi, mask); 1511 } 1512 1513 /* 1514 * Stop any LWPs sleeping interruptably. 1515 */ 1516 static void 1517 proc_stop_lwps(struct proc *p) 1518 { 1519 struct lwp *l; 1520 1521 KASSERT(mutex_owned(p->p_lock)); 1522 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1523 1524 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1525 lwp_lock(l); 1526 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1527 l->l_stat = LSSTOP; 1528 p->p_nrlwps--; 1529 } 1530 lwp_unlock(l); 1531 } 1532 } 1533 1534 /* 1535 * Finish stopping of a process. Mark it stopped and notify the parent. 1536 * 1537 * Drop p_lock briefly if ppsig is true. 1538 */ 1539 static void 1540 proc_stop_done(struct proc *p, int ppmask) 1541 { 1542 1543 KASSERT(mutex_owned(proc_lock)); 1544 KASSERT(mutex_owned(p->p_lock)); 1545 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1546 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1547 1548 p->p_sflag &= ~PS_STOPPING; 1549 p->p_stat = SSTOP; 1550 p->p_waited = 0; 1551 p->p_pptr->p_nstopchild++; 1552 1553 /* child_psignal drops p_lock briefly. */ 1554 child_psignal(p, ppmask); 1555 cv_broadcast(&p->p_pptr->p_waitcv); 1556 } 1557 1558 /* 1559 * Stop the current process and switch away to the debugger notifying 1560 * an event specific to a traced process only. 1561 */ 1562 void 1563 eventswitch(int code) 1564 { 1565 struct lwp *l = curlwp; 1566 struct proc *p = l->l_proc; 1567 struct sigacts *ps; 1568 sigset_t *mask; 1569 sig_t action; 1570 ksiginfo_t ksi; 1571 const int signo = SIGTRAP; 1572 1573 KASSERT(mutex_owned(proc_lock)); 1574 KASSERT(mutex_owned(p->p_lock)); 1575 KASSERT(p->p_pptr != initproc); 1576 KASSERT(l->l_stat == LSONPROC); 1577 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 1578 KASSERT(!ISSET(l->l_flag, LW_SYSTEM)); 1579 KASSERT(p->p_nrlwps > 0); 1580 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) || 1581 (code == TRAP_EXEC)); 1582 1583 /* 1584 * If we are exiting, demise now. 1585 * 1586 * This avoids notifying tracer and deadlocking. 1587 */ 1588 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 1589 mutex_exit(p->p_lock); 1590 mutex_exit(proc_lock); 1591 lwp_exit(l); 1592 panic("eventswitch"); 1593 /* NOTREACHED */ 1594 } 1595 1596 /* 1597 * If there's a pending SIGKILL process it immediately. 1598 */ 1599 if (p->p_xsig == SIGKILL || 1600 sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 1601 mutex_exit(p->p_lock); 1602 mutex_exit(proc_lock); 1603 return; 1604 } 1605 1606 KSI_INIT_TRAP(&ksi); 1607 ksi.ksi_lid = l->l_lid; 1608 ksi.ksi_info._signo = signo; 1609 ksi.ksi_info._code = code; 1610 1611 /* Needed for ktrace */ 1612 ps = p->p_sigacts; 1613 action = SIGACTION_PS(ps, signo).sa_handler; 1614 mask = &l->l_sigmask; 1615 1616 p->p_xsig = signo; 1617 p->p_sigctx.ps_faked = true; 1618 p->p_sigctx.ps_lwp = ksi.ksi_lid; 1619 p->p_sigctx.ps_info = ksi.ksi_info; 1620 1621 sigswitch(0, signo, false); 1622 1623 if (code == TRAP_CHLD) { 1624 mutex_enter(proc_lock); 1625 while (l->l_vforkwaiting) 1626 cv_wait(&l->l_waitcv, proc_lock); 1627 mutex_exit(proc_lock); 1628 } 1629 1630 if (ktrpoint(KTR_PSIG)) { 1631 if (p->p_emul->e_ktrpsig) 1632 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 1633 else 1634 ktrpsig(signo, action, mask, &ksi); 1635 } 1636 } 1637 1638 /* 1639 * Stop the current process and switch away when being stopped or traced. 1640 */ 1641 void 1642 sigswitch(int ppmask, int signo, bool relock) 1643 { 1644 struct lwp *l = curlwp; 1645 struct proc *p = l->l_proc; 1646 int biglocks; 1647 1648 KASSERT(mutex_owned(p->p_lock)); 1649 KASSERT(l->l_stat == LSONPROC); 1650 KASSERT(p->p_nrlwps > 0); 1651 1652 /* 1653 * If we are exiting, demise now. 1654 * 1655 * This avoids notifying tracer and deadlocking. 1656 */ 1657 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 1658 mutex_exit(p->p_lock); 1659 if (!relock) { 1660 mutex_exit(proc_lock); 1661 } 1662 lwp_exit(l); 1663 panic("sigswitch"); 1664 /* NOTREACHED */ 1665 } 1666 1667 /* 1668 * On entry we know that the process needs to stop. If it's 1669 * the result of a 'sideways' stop signal that has been sourced 1670 * through issignal(), then stop other LWPs in the process too. 1671 */ 1672 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1673 KASSERT(signo != 0); 1674 proc_stop(p, signo); 1675 KASSERT(p->p_nrlwps > 0); 1676 } 1677 1678 /* 1679 * If we are the last live LWP, and the stop was a result of 1680 * a new signal, then signal the parent. 1681 */ 1682 if ((p->p_sflag & PS_STOPPING) != 0) { 1683 if (relock && !mutex_tryenter(proc_lock)) { 1684 mutex_exit(p->p_lock); 1685 mutex_enter(proc_lock); 1686 mutex_enter(p->p_lock); 1687 } 1688 1689 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1690 /* 1691 * Note that proc_stop_done() can drop 1692 * p->p_lock briefly. 1693 */ 1694 proc_stop_done(p, ppmask); 1695 } 1696 1697 mutex_exit(proc_lock); 1698 } 1699 1700 /* 1701 * Unlock and switch away. 1702 */ 1703 KERNEL_UNLOCK_ALL(l, &biglocks); 1704 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1705 p->p_nrlwps--; 1706 lwp_lock(l); 1707 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1708 l->l_stat = LSSTOP; 1709 lwp_unlock(l); 1710 } 1711 1712 mutex_exit(p->p_lock); 1713 lwp_lock(l); 1714 mi_switch(l); 1715 KERNEL_LOCK(biglocks, l); 1716 } 1717 1718 /* 1719 * Check for a signal from the debugger. 1720 */ 1721 static int 1722 sigchecktrace(void) 1723 { 1724 struct lwp *l = curlwp; 1725 struct proc *p = l->l_proc; 1726 int signo; 1727 1728 KASSERT(mutex_owned(p->p_lock)); 1729 1730 /* If there's a pending SIGKILL, process it immediately. */ 1731 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1732 return 0; 1733 1734 /* 1735 * If we are no longer being traced, or the parent didn't 1736 * give us a signal, or we're stopping, look for more signals. 1737 */ 1738 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 || 1739 (p->p_sflag & PS_STOPPING) != 0) 1740 return 0; 1741 1742 /* 1743 * If the new signal is being masked, look for other signals. 1744 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1745 */ 1746 signo = p->p_xsig; 1747 p->p_xsig = 0; 1748 if (sigismember(&l->l_sigmask, signo)) { 1749 signo = 0; 1750 } 1751 return signo; 1752 } 1753 1754 /* 1755 * If the current process has received a signal (should be caught or cause 1756 * termination, should interrupt current syscall), return the signal number. 1757 * 1758 * Stop signals with default action are processed immediately, then cleared; 1759 * they aren't returned. This is checked after each entry to the system for 1760 * a syscall or trap. 1761 * 1762 * We will also return -1 if the process is exiting and the current LWP must 1763 * follow suit. 1764 */ 1765 int 1766 issignal(struct lwp *l) 1767 { 1768 struct proc *p; 1769 int signo, prop; 1770 sigpend_t *sp; 1771 sigset_t ss; 1772 1773 p = l->l_proc; 1774 sp = NULL; 1775 signo = 0; 1776 1777 KASSERT(p == curproc); 1778 KASSERT(mutex_owned(p->p_lock)); 1779 1780 for (;;) { 1781 /* Discard any signals that we have decided not to take. */ 1782 if (signo != 0) { 1783 (void)sigget(sp, NULL, signo, NULL); 1784 } 1785 1786 /* 1787 * If the process is stopped/stopping, then stop ourselves 1788 * now that we're on the kernel/userspace boundary. When 1789 * we awaken, check for a signal from the debugger. 1790 */ 1791 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1792 sigswitch(PS_NOCLDSTOP, 0, true); 1793 mutex_enter(p->p_lock); 1794 signo = sigchecktrace(); 1795 } else if (p->p_stat == SACTIVE) 1796 signo = sigchecktrace(); 1797 else 1798 signo = 0; 1799 1800 /* Signals from the debugger are "out of band". */ 1801 sp = NULL; 1802 1803 /* 1804 * If the debugger didn't provide a signal, find a pending 1805 * signal from our set. Check per-LWP signals first, and 1806 * then per-process. 1807 */ 1808 if (signo == 0) { 1809 sp = &l->l_sigpend; 1810 ss = sp->sp_set; 1811 if ((p->p_lflag & PL_PPWAIT) != 0) 1812 sigminusset(&vforksigmask, &ss); 1813 sigminusset(&l->l_sigmask, &ss); 1814 1815 if ((signo = firstsig(&ss)) == 0) { 1816 sp = &p->p_sigpend; 1817 ss = sp->sp_set; 1818 if ((p->p_lflag & PL_PPWAIT) != 0) 1819 sigminusset(&vforksigmask, &ss); 1820 sigminusset(&l->l_sigmask, &ss); 1821 1822 if ((signo = firstsig(&ss)) == 0) { 1823 /* 1824 * No signal pending - clear the 1825 * indicator and bail out. 1826 */ 1827 lwp_lock(l); 1828 l->l_flag &= ~LW_PENDSIG; 1829 lwp_unlock(l); 1830 sp = NULL; 1831 break; 1832 } 1833 } 1834 } 1835 1836 /* 1837 * We should see pending but ignored signals only if 1838 * we are being traced. 1839 */ 1840 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1841 (p->p_slflag & PSL_TRACED) == 0) { 1842 /* Discard the signal. */ 1843 continue; 1844 } 1845 1846 /* 1847 * If traced, always stop, and stay stopped until released 1848 * by the debugger. If the our parent is our debugger waiting 1849 * for us and we vforked, don't hang as we could deadlock. 1850 */ 1851 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL && 1852 !(ISSET(p->p_lflag, PL_PPWAIT) && 1853 (p->p_pptr == p->p_opptr))) { 1854 /* 1855 * Take the signal, but don't remove it from the 1856 * siginfo queue, because the debugger can send 1857 * it later. 1858 */ 1859 if (sp) 1860 sigdelset(&sp->sp_set, signo); 1861 p->p_xsig = signo; 1862 1863 /* Handling of signal trace */ 1864 sigswitch(0, signo, true); 1865 mutex_enter(p->p_lock); 1866 1867 /* Check for a signal from the debugger. */ 1868 if ((signo = sigchecktrace()) == 0) 1869 continue; 1870 1871 /* Signals from the debugger are "out of band". */ 1872 sp = NULL; 1873 } 1874 1875 prop = sigprop[signo]; 1876 1877 /* 1878 * Decide whether the signal should be returned. 1879 */ 1880 switch ((long)SIGACTION(p, signo).sa_handler) { 1881 case (long)SIG_DFL: 1882 /* 1883 * Don't take default actions on system processes. 1884 */ 1885 if (p->p_pid <= 1) { 1886 #ifdef DIAGNOSTIC 1887 /* 1888 * Are you sure you want to ignore SIGSEGV 1889 * in init? XXX 1890 */ 1891 printf_nolog("Process (pid %d) got sig %d\n", 1892 p->p_pid, signo); 1893 #endif 1894 continue; 1895 } 1896 1897 /* 1898 * If there is a pending stop signal to process with 1899 * default action, stop here, then clear the signal. 1900 * However, if process is member of an orphaned 1901 * process group, ignore tty stop signals. 1902 */ 1903 if (prop & SA_STOP) { 1904 /* 1905 * XXX Don't hold proc_lock for p_lflag, 1906 * but it's not a big deal. 1907 */ 1908 if ((ISSET(p->p_slflag, PSL_TRACED) && 1909 !(ISSET(p->p_lflag, PL_PPWAIT) && 1910 (p->p_pptr == p->p_opptr))) || 1911 ((p->p_lflag & PL_ORPHANPG) != 0 && 1912 prop & SA_TTYSTOP)) { 1913 /* Ignore the signal. */ 1914 continue; 1915 } 1916 /* Take the signal. */ 1917 (void)sigget(sp, NULL, signo, NULL); 1918 p->p_xsig = signo; 1919 p->p_sflag &= ~PS_CONTINUED; 1920 signo = 0; 1921 sigswitch(PS_NOCLDSTOP, p->p_xsig, true); 1922 mutex_enter(p->p_lock); 1923 } else if (prop & SA_IGNORE) { 1924 /* 1925 * Except for SIGCONT, shouldn't get here. 1926 * Default action is to ignore; drop it. 1927 */ 1928 continue; 1929 } 1930 break; 1931 1932 case (long)SIG_IGN: 1933 #ifdef DEBUG_ISSIGNAL 1934 /* 1935 * Masking above should prevent us ever trying 1936 * to take action on an ignored signal other 1937 * than SIGCONT, unless process is traced. 1938 */ 1939 if ((prop & SA_CONT) == 0 && 1940 (p->p_slflag & PSL_TRACED) == 0) 1941 printf_nolog("issignal\n"); 1942 #endif 1943 continue; 1944 1945 default: 1946 /* 1947 * This signal has an action, let postsig() process 1948 * it. 1949 */ 1950 break; 1951 } 1952 1953 break; 1954 } 1955 1956 l->l_sigpendset = sp; 1957 return signo; 1958 } 1959 1960 /* 1961 * Take the action for the specified signal 1962 * from the current set of pending signals. 1963 */ 1964 void 1965 postsig(int signo) 1966 { 1967 struct lwp *l; 1968 struct proc *p; 1969 struct sigacts *ps; 1970 sig_t action; 1971 sigset_t *returnmask; 1972 ksiginfo_t ksi; 1973 1974 l = curlwp; 1975 p = l->l_proc; 1976 ps = p->p_sigacts; 1977 1978 KASSERT(mutex_owned(p->p_lock)); 1979 KASSERT(signo > 0); 1980 1981 /* 1982 * Set the new mask value and also defer further occurrences of this 1983 * signal. 1984 * 1985 * Special case: user has done a sigsuspend. Here the current mask is 1986 * not of interest, but rather the mask from before the sigsuspend is 1987 * what we want restored after the signal processing is completed. 1988 */ 1989 if (l->l_sigrestore) { 1990 returnmask = &l->l_sigoldmask; 1991 l->l_sigrestore = 0; 1992 } else 1993 returnmask = &l->l_sigmask; 1994 1995 /* 1996 * Commit to taking the signal before releasing the mutex. 1997 */ 1998 action = SIGACTION_PS(ps, signo).sa_handler; 1999 l->l_ru.ru_nsignals++; 2000 if (l->l_sigpendset == NULL) { 2001 /* From the debugger */ 2002 if (p->p_sigctx.ps_faked && 2003 signo == p->p_sigctx.ps_info._signo) { 2004 KSI_INIT(&ksi); 2005 ksi.ksi_info = p->p_sigctx.ps_info; 2006 ksi.ksi_lid = p->p_sigctx.ps_lwp; 2007 p->p_sigctx.ps_faked = false; 2008 } else { 2009 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 2010 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 2011 } 2012 } else 2013 sigget(l->l_sigpendset, &ksi, signo, NULL); 2014 2015 if (ktrpoint(KTR_PSIG)) { 2016 mutex_exit(p->p_lock); 2017 if (p->p_emul->e_ktrpsig) 2018 p->p_emul->e_ktrpsig(signo, action, 2019 returnmask, &ksi); 2020 else 2021 ktrpsig(signo, action, returnmask, &ksi); 2022 mutex_enter(p->p_lock); 2023 } 2024 2025 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0); 2026 2027 if (action == SIG_DFL) { 2028 /* 2029 * Default action, where the default is to kill 2030 * the process. (Other cases were ignored above.) 2031 */ 2032 sigexit(l, signo); 2033 return; 2034 } 2035 2036 /* 2037 * If we get here, the signal must be caught. 2038 */ 2039 #ifdef DIAGNOSTIC 2040 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2041 panic("postsig action"); 2042 #endif 2043 2044 kpsendsig(l, &ksi, returnmask); 2045 } 2046 2047 /* 2048 * sendsig: 2049 * 2050 * Default signal delivery method for NetBSD. 2051 */ 2052 void 2053 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2054 { 2055 struct sigacts *sa; 2056 int sig; 2057 2058 sig = ksi->ksi_signo; 2059 sa = curproc->p_sigacts; 2060 2061 switch (sa->sa_sigdesc[sig].sd_vers) { 2062 case 0: 2063 case 1: 2064 /* Compat for 1.6 and earlier. */ 2065 if (sendsig_sigcontext_vec == NULL) { 2066 break; 2067 } 2068 (*sendsig_sigcontext_vec)(ksi, mask); 2069 return; 2070 case 2: 2071 case 3: 2072 sendsig_siginfo(ksi, mask); 2073 return; 2074 default: 2075 break; 2076 } 2077 2078 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2079 sigexit(curlwp, SIGILL); 2080 } 2081 2082 /* 2083 * sendsig_reset: 2084 * 2085 * Reset the signal action. Called from emulation specific sendsig() 2086 * before unlocking to deliver the signal. 2087 */ 2088 void 2089 sendsig_reset(struct lwp *l, int signo) 2090 { 2091 struct proc *p = l->l_proc; 2092 struct sigacts *ps = p->p_sigacts; 2093 2094 KASSERT(mutex_owned(p->p_lock)); 2095 2096 p->p_sigctx.ps_lwp = 0; 2097 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2098 2099 mutex_enter(&ps->sa_mutex); 2100 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 2101 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2102 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2103 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2104 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2105 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2106 } 2107 mutex_exit(&ps->sa_mutex); 2108 } 2109 2110 /* 2111 * Kill the current process for stated reason. 2112 */ 2113 void 2114 killproc(struct proc *p, const char *why) 2115 { 2116 2117 KASSERT(mutex_owned(proc_lock)); 2118 2119 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2120 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2121 psignal(p, SIGKILL); 2122 } 2123 2124 /* 2125 * Force the current process to exit with the specified signal, dumping core 2126 * if appropriate. We bypass the normal tests for masked and caught 2127 * signals, allowing unrecoverable failures to terminate the process without 2128 * changing signal state. Mark the accounting record with the signal 2129 * termination. If dumping core, save the signal number for the debugger. 2130 * Calls exit and does not return. 2131 */ 2132 void 2133 sigexit(struct lwp *l, int signo) 2134 { 2135 int exitsig, error, docore; 2136 struct proc *p; 2137 struct lwp *t; 2138 2139 p = l->l_proc; 2140 2141 KASSERT(mutex_owned(p->p_lock)); 2142 KERNEL_UNLOCK_ALL(l, NULL); 2143 2144 /* 2145 * Don't permit coredump() multiple times in the same process. 2146 * Call back into sigexit, where we will be suspended until 2147 * the deed is done. Note that this is a recursive call, but 2148 * LW_WCORE will prevent us from coming back this way. 2149 */ 2150 if ((p->p_sflag & PS_WCORE) != 0) { 2151 lwp_lock(l); 2152 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2153 lwp_unlock(l); 2154 mutex_exit(p->p_lock); 2155 lwp_userret(l); 2156 panic("sigexit 1"); 2157 /* NOTREACHED */ 2158 } 2159 2160 /* If process is already on the way out, then bail now. */ 2161 if ((p->p_sflag & PS_WEXIT) != 0) { 2162 mutex_exit(p->p_lock); 2163 lwp_exit(l); 2164 panic("sigexit 2"); 2165 /* NOTREACHED */ 2166 } 2167 2168 /* 2169 * Prepare all other LWPs for exit. If dumping core, suspend them 2170 * so that their registers are available long enough to be dumped. 2171 */ 2172 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2173 p->p_sflag |= PS_WCORE; 2174 for (;;) { 2175 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2176 lwp_lock(t); 2177 if (t == l) { 2178 t->l_flag &= ~LW_WSUSPEND; 2179 lwp_unlock(t); 2180 continue; 2181 } 2182 t->l_flag |= (LW_WCORE | LW_WEXIT); 2183 lwp_suspend(l, t); 2184 } 2185 2186 if (p->p_nrlwps == 1) 2187 break; 2188 2189 /* 2190 * Kick any LWPs sitting in lwp_wait1(), and wait 2191 * for everyone else to stop before proceeding. 2192 */ 2193 p->p_nlwpwait++; 2194 cv_broadcast(&p->p_lwpcv); 2195 cv_wait(&p->p_lwpcv, p->p_lock); 2196 p->p_nlwpwait--; 2197 } 2198 } 2199 2200 exitsig = signo; 2201 p->p_acflag |= AXSIG; 2202 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2203 p->p_sigctx.ps_info._signo = signo; 2204 p->p_sigctx.ps_info._code = SI_NOINFO; 2205 2206 if (docore) { 2207 mutex_exit(p->p_lock); 2208 error = (*coredump_vec)(l, NULL); 2209 2210 if (kern_logsigexit) { 2211 int uid = l->l_cred ? 2212 (int)kauth_cred_geteuid(l->l_cred) : -1; 2213 2214 if (error) 2215 log(LOG_INFO, lognocoredump, p->p_pid, 2216 p->p_comm, uid, signo, error); 2217 else 2218 log(LOG_INFO, logcoredump, p->p_pid, 2219 p->p_comm, uid, signo); 2220 } 2221 2222 #ifdef PAX_SEGVGUARD 2223 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2224 #endif /* PAX_SEGVGUARD */ 2225 /* Acquire the sched state mutex. exit1() will release it. */ 2226 mutex_enter(p->p_lock); 2227 if (error == 0) 2228 p->p_sflag |= PS_COREDUMP; 2229 } 2230 2231 /* No longer dumping core. */ 2232 p->p_sflag &= ~PS_WCORE; 2233 2234 exit1(l, 0, exitsig); 2235 /* NOTREACHED */ 2236 } 2237 2238 /* 2239 * Put process 'p' into the stopped state and optionally, notify the parent. 2240 */ 2241 void 2242 proc_stop(struct proc *p, int signo) 2243 { 2244 struct lwp *l; 2245 2246 KASSERT(mutex_owned(p->p_lock)); 2247 2248 /* 2249 * First off, set the stopping indicator and bring all sleeping 2250 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2251 * unlock between here and the p->p_nrlwps check below. 2252 */ 2253 p->p_sflag |= PS_STOPPING; 2254 membar_producer(); 2255 2256 proc_stop_lwps(p); 2257 2258 /* 2259 * If there are no LWPs available to take the signal, then we 2260 * signal the parent process immediately. Otherwise, the last 2261 * LWP to stop will take care of it. 2262 */ 2263 2264 if (p->p_nrlwps == 0) { 2265 proc_stop_done(p, PS_NOCLDSTOP); 2266 } else { 2267 /* 2268 * Have the remaining LWPs come to a halt, and trigger 2269 * proc_stop_callout() to ensure that they do. 2270 */ 2271 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2272 sigpost(l, SIG_DFL, SA_STOP, signo); 2273 } 2274 callout_schedule(&proc_stop_ch, 1); 2275 } 2276 } 2277 2278 /* 2279 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2280 * but wait for them to come to a halt at the kernel-user boundary. This is 2281 * to allow LWPs to release any locks that they may hold before stopping. 2282 * 2283 * Non-interruptable sleeps can be long, and there is the potential for an 2284 * LWP to begin sleeping interruptably soon after the process has been set 2285 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2286 * stopping, and so complete halt of the process and the return of status 2287 * information to the parent could be delayed indefinitely. 2288 * 2289 * To handle this race, proc_stop_callout() runs once per tick while there 2290 * are stopping processes in the system. It sets LWPs that are sleeping 2291 * interruptably into the LSSTOP state. 2292 * 2293 * Note that we are not concerned about keeping all LWPs stopped while the 2294 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2295 * What we do need to ensure is that all LWPs in a stopping process have 2296 * stopped at least once, so that notification can be sent to the parent 2297 * process. 2298 */ 2299 static void 2300 proc_stop_callout(void *cookie) 2301 { 2302 bool more, restart; 2303 struct proc *p; 2304 2305 (void)cookie; 2306 2307 do { 2308 restart = false; 2309 more = false; 2310 2311 mutex_enter(proc_lock); 2312 PROCLIST_FOREACH(p, &allproc) { 2313 mutex_enter(p->p_lock); 2314 2315 if ((p->p_sflag & PS_STOPPING) == 0) { 2316 mutex_exit(p->p_lock); 2317 continue; 2318 } 2319 2320 /* Stop any LWPs sleeping interruptably. */ 2321 proc_stop_lwps(p); 2322 if (p->p_nrlwps == 0) { 2323 /* 2324 * We brought the process to a halt. 2325 * Mark it as stopped and notify the 2326 * parent. 2327 * 2328 * Note that proc_stop_done() will 2329 * drop p->p_lock briefly. 2330 * Arrange to restart and check 2331 * all processes again. 2332 */ 2333 restart = true; 2334 proc_stop_done(p, PS_NOCLDSTOP); 2335 } else 2336 more = true; 2337 2338 mutex_exit(p->p_lock); 2339 if (restart) 2340 break; 2341 } 2342 mutex_exit(proc_lock); 2343 } while (restart); 2344 2345 /* 2346 * If we noted processes that are stopping but still have 2347 * running LWPs, then arrange to check again in 1 tick. 2348 */ 2349 if (more) 2350 callout_schedule(&proc_stop_ch, 1); 2351 } 2352 2353 /* 2354 * Given a process in state SSTOP, set the state back to SACTIVE and 2355 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2356 */ 2357 void 2358 proc_unstop(struct proc *p) 2359 { 2360 struct lwp *l; 2361 int sig; 2362 2363 KASSERT(mutex_owned(proc_lock)); 2364 KASSERT(mutex_owned(p->p_lock)); 2365 2366 p->p_stat = SACTIVE; 2367 p->p_sflag &= ~PS_STOPPING; 2368 sig = p->p_xsig; 2369 2370 if (!p->p_waited) 2371 p->p_pptr->p_nstopchild--; 2372 2373 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2374 lwp_lock(l); 2375 if (l->l_stat != LSSTOP) { 2376 lwp_unlock(l); 2377 continue; 2378 } 2379 if (l->l_wchan == NULL) { 2380 setrunnable(l); 2381 continue; 2382 } 2383 if (sig && (l->l_flag & LW_SINTR) != 0) { 2384 setrunnable(l); 2385 sig = 0; 2386 } else { 2387 l->l_stat = LSSLEEP; 2388 p->p_nrlwps++; 2389 lwp_unlock(l); 2390 } 2391 } 2392 } 2393 2394 void 2395 proc_stoptrace(int trapno, int sysnum, const register_t args[], 2396 const register_t *ret, int error) 2397 { 2398 struct lwp *l = curlwp; 2399 struct proc *p = l->l_proc; 2400 struct sigacts *ps; 2401 sigset_t *mask; 2402 sig_t action; 2403 ksiginfo_t ksi; 2404 size_t i, sy_narg; 2405 const int signo = SIGTRAP; 2406 2407 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX)); 2408 KASSERT(p->p_pptr != initproc); 2409 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 2410 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL)); 2411 2412 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg; 2413 2414 KSI_INIT_TRAP(&ksi); 2415 ksi.ksi_lid = l->l_lid; 2416 ksi.ksi_signo = signo; 2417 ksi.ksi_code = trapno; 2418 2419 ksi.ksi_sysnum = sysnum; 2420 if (trapno == TRAP_SCE) { 2421 ksi.ksi_retval[0] = 0; 2422 ksi.ksi_retval[1] = 0; 2423 ksi.ksi_error = 0; 2424 } else { 2425 ksi.ksi_retval[0] = ret[0]; 2426 ksi.ksi_retval[1] = ret[1]; 2427 ksi.ksi_error = error; 2428 } 2429 2430 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args)); 2431 2432 for (i = 0; i < sy_narg; i++) 2433 ksi.ksi_args[i] = args[i]; 2434 2435 mutex_enter(p->p_lock); 2436 2437 /* 2438 * If we are exiting, demise now. 2439 * 2440 * This avoids notifying tracer and deadlocking. 2441 */ 2442 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 2443 mutex_exit(p->p_lock); 2444 lwp_exit(l); 2445 panic("proc_stoptrace"); 2446 /* NOTREACHED */ 2447 } 2448 2449 /* 2450 * If there's a pending SIGKILL process it immediately. 2451 */ 2452 if (p->p_xsig == SIGKILL || 2453 sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 2454 mutex_exit(p->p_lock); 2455 return; 2456 } 2457 2458 /* Needed for ktrace */ 2459 ps = p->p_sigacts; 2460 action = SIGACTION_PS(ps, signo).sa_handler; 2461 mask = &l->l_sigmask; 2462 2463 p->p_xsig = signo; 2464 p->p_sigctx.ps_lwp = ksi.ksi_lid; 2465 p->p_sigctx.ps_info = ksi.ksi_info; 2466 sigswitch(0, signo, true); 2467 2468 if (ktrpoint(KTR_PSIG)) { 2469 if (p->p_emul->e_ktrpsig) 2470 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 2471 else 2472 ktrpsig(signo, action, mask, &ksi); 2473 } 2474 } 2475 2476 static int 2477 filt_sigattach(struct knote *kn) 2478 { 2479 struct proc *p = curproc; 2480 2481 kn->kn_obj = p; 2482 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2483 2484 mutex_enter(p->p_lock); 2485 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2486 mutex_exit(p->p_lock); 2487 2488 return 0; 2489 } 2490 2491 static void 2492 filt_sigdetach(struct knote *kn) 2493 { 2494 struct proc *p = kn->kn_obj; 2495 2496 mutex_enter(p->p_lock); 2497 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2498 mutex_exit(p->p_lock); 2499 } 2500 2501 /* 2502 * Signal knotes are shared with proc knotes, so we apply a mask to 2503 * the hint in order to differentiate them from process hints. This 2504 * could be avoided by using a signal-specific knote list, but probably 2505 * isn't worth the trouble. 2506 */ 2507 static int 2508 filt_signal(struct knote *kn, long hint) 2509 { 2510 2511 if (hint & NOTE_SIGNAL) { 2512 hint &= ~NOTE_SIGNAL; 2513 2514 if (kn->kn_id == hint) 2515 kn->kn_data++; 2516 } 2517 return (kn->kn_data != 0); 2518 } 2519 2520 const struct filterops sig_filtops = { 2521 .f_isfd = 0, 2522 .f_attach = filt_sigattach, 2523 .f_detach = filt_sigdetach, 2524 .f_event = filt_signal, 2525 }; 2526