xref: /netbsd-src/sys/kern/kern_sig.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: kern_sig.c,v 1.230 2006/10/12 01:32:17 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.230 2006/10/12 01:32:17 christos Exp $");
41 
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49 
50 #define	SIGPROP		/* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 
79 #include <sys/mount.h>
80 #include <sys/syscallargs.h>
81 
82 #include <machine/cpu.h>
83 
84 #include <sys/user.h>		/* for coredump */
85 
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_extern.h>
88 
89 #ifdef COREDUMP
90 static int	build_corename(struct proc *, char *, const char *, size_t);
91 #endif
92 static void	ksiginfo_exithook(struct proc *, void *);
93 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
94 static ksiginfo_t *ksiginfo_get(struct proc *, int);
95 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
96 
97 sigset_t	contsigmask, stopsigmask, sigcantmask;
98 
99 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
100 
101 /*
102  * struct sigacts memory pool allocator.
103  */
104 
105 static void *
106 sigacts_poolpage_alloc(struct pool *pp __unused, int flags)
107 {
108 
109 	return (void *)uvm_km_alloc(kernel_map,
110 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
111 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
112 	    | UVM_KMF_WIRED);
113 }
114 
115 static void
116 sigacts_poolpage_free(struct pool *pp __unused, void *v)
117 {
118         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
119 }
120 
121 static struct pool_allocator sigactspool_allocator = {
122         .pa_alloc = sigacts_poolpage_alloc,
123 	.pa_free = sigacts_poolpage_free,
124 };
125 
126 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
127     &pool_allocator_nointr);
128 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
129 
130 /*
131  * Remove and return the first ksiginfo element that matches our requested
132  * signal, or return NULL if one not found.
133  */
134 static ksiginfo_t *
135 ksiginfo_get(struct proc *p, int signo)
136 {
137 	ksiginfo_t *ksi;
138 	int s;
139 
140 	s = splsoftclock();
141 	simple_lock(&p->p_sigctx.ps_silock);
142 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
143 		if (ksi->ksi_signo == signo) {
144 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
145 			goto out;
146 		}
147 	}
148 	ksi = NULL;
149 out:
150 	simple_unlock(&p->p_sigctx.ps_silock);
151 	splx(s);
152 	return ksi;
153 }
154 
155 /*
156  * Append a new ksiginfo element to the list of pending ksiginfo's, if
157  * we need to (SA_SIGINFO was requested). We replace non RT signals if
158  * they already existed in the queue and we add new entries for RT signals,
159  * or for non RT signals with non-existing entries.
160  */
161 static void
162 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
163 {
164 	ksiginfo_t *kp;
165 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
166 	int s;
167 
168 	if ((sa->sa_flags & SA_SIGINFO) == 0)
169 		return;
170 	/*
171 	 * If there's no info, don't save it.
172 	 */
173 	if (KSI_EMPTY_P(ksi))
174 		return;
175 
176 	s = splsoftclock();
177 	simple_lock(&p->p_sigctx.ps_silock);
178 #ifdef notyet	/* XXX: QUEUING */
179 	if (ksi->ksi_signo < SIGRTMIN)
180 #endif
181 	{
182 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
183 			if (kp->ksi_signo == ksi->ksi_signo) {
184 				KSI_COPY(ksi, kp);
185 				goto out;
186 			}
187 		}
188 	}
189 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
190 	if (kp == NULL) {
191 #ifdef DIAGNOSTIC
192 		printf("Out of memory allocating siginfo for pid %d\n",
193 		    p->p_pid);
194 #endif
195 		goto out;
196 	}
197 	*kp = *ksi;
198 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
199 out:
200 	simple_unlock(&p->p_sigctx.ps_silock);
201 	splx(s);
202 }
203 
204 /*
205  * free all pending ksiginfo on exit
206  */
207 static void
208 ksiginfo_exithook(struct proc *p, void *v __unused)
209 {
210 	int s;
211 
212 	s = splsoftclock();
213 	simple_lock(&p->p_sigctx.ps_silock);
214 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
215 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
216 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
217 		pool_put(&ksiginfo_pool, ksi);
218 	}
219 	simple_unlock(&p->p_sigctx.ps_silock);
220 	splx(s);
221 }
222 
223 /*
224  * Initialize signal-related data structures.
225  */
226 void
227 signal_init(void)
228 {
229 
230 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
231 
232 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
233 	    sizeof(struct sigacts) > PAGE_SIZE ?
234 	    &sigactspool_allocator : &pool_allocator_nointr);
235 
236 	exithook_establish(ksiginfo_exithook, NULL);
237 	exechook_establish(ksiginfo_exithook, NULL);
238 }
239 
240 /*
241  * Create an initial sigctx structure, using the same signal state
242  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
243  * copy it from parent.
244  */
245 void
246 sigactsinit(struct proc *np, struct proc *pp, int share)
247 {
248 	struct sigacts *ps;
249 
250 	if (share) {
251 		np->p_sigacts = pp->p_sigacts;
252 		pp->p_sigacts->sa_refcnt++;
253 	} else {
254 		ps = pool_get(&sigacts_pool, PR_WAITOK);
255 		if (pp)
256 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
257 		else
258 			memset(ps, '\0', sizeof(struct sigacts));
259 		ps->sa_refcnt = 1;
260 		np->p_sigacts = ps;
261 	}
262 }
263 
264 /*
265  * Make this process not share its sigctx, maintaining all
266  * signal state.
267  */
268 void
269 sigactsunshare(struct proc *p)
270 {
271 	struct sigacts *oldps;
272 
273 	if (p->p_sigacts->sa_refcnt == 1)
274 		return;
275 
276 	oldps = p->p_sigacts;
277 	sigactsinit(p, NULL, 0);
278 
279 	if (--oldps->sa_refcnt == 0)
280 		pool_put(&sigacts_pool, oldps);
281 }
282 
283 /*
284  * Release a sigctx structure.
285  */
286 void
287 sigactsfree(struct sigacts *ps)
288 {
289 
290 	if (--ps->sa_refcnt > 0)
291 		return;
292 
293 	pool_put(&sigacts_pool, ps);
294 }
295 
296 int
297 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
298 	struct sigaction *osa, const void *tramp, int vers)
299 {
300 	struct sigacts	*ps;
301 	int		prop;
302 
303 	ps = p->p_sigacts;
304 	if (signum <= 0 || signum >= NSIG)
305 		return (EINVAL);
306 
307 	/*
308 	 * Trampoline ABI version 0 is reserved for the legacy
309 	 * kernel-provided on-stack trampoline.  Conversely, if we are
310 	 * using a non-0 ABI version, we must have a trampoline.  Only
311 	 * validate the vers if a new sigaction was supplied. Emulations
312 	 * use legacy kernel trampolines with version 0, alternatively
313 	 * check for that too.
314 	 */
315 	if ((vers != 0 && tramp == NULL) ||
316 #ifdef SIGTRAMP_VALID
317 	    (nsa != NULL &&
318 	    ((vers == 0) ?
319 		(p->p_emul->e_sigcode == NULL) :
320 		!SIGTRAMP_VALID(vers))) ||
321 #endif
322 	    (vers == 0 && tramp != NULL))
323 		return (EINVAL);
324 
325 	if (osa)
326 		*osa = SIGACTION_PS(ps, signum);
327 
328 	if (nsa) {
329 		if (nsa->sa_flags & ~SA_ALLBITS)
330 			return (EINVAL);
331 
332 		prop = sigprop[signum];
333 		if (prop & SA_CANTMASK)
334 			return (EINVAL);
335 
336 		(void) splsched();	/* XXXSMP */
337 		SIGACTION_PS(ps, signum) = *nsa;
338 		ps->sa_sigdesc[signum].sd_tramp = tramp;
339 		ps->sa_sigdesc[signum].sd_vers = vers;
340 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
341 		if ((prop & SA_NORESET) != 0)
342 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
343 		if (signum == SIGCHLD) {
344 			if (nsa->sa_flags & SA_NOCLDSTOP)
345 				p->p_flag |= P_NOCLDSTOP;
346 			else
347 				p->p_flag &= ~P_NOCLDSTOP;
348 			if (nsa->sa_flags & SA_NOCLDWAIT) {
349 				/*
350 				 * Paranoia: since SA_NOCLDWAIT is implemented
351 				 * by reparenting the dying child to PID 1 (and
352 				 * trust it to reap the zombie), PID 1 itself
353 				 * is forbidden to set SA_NOCLDWAIT.
354 				 */
355 				if (p->p_pid == 1)
356 					p->p_flag &= ~P_NOCLDWAIT;
357 				else
358 					p->p_flag |= P_NOCLDWAIT;
359 			} else
360 				p->p_flag &= ~P_NOCLDWAIT;
361 
362 			if (nsa->sa_handler == SIG_IGN) {
363 				/*
364 				 * Paranoia: same as above.
365 				 */
366 				if (p->p_pid == 1)
367 					p->p_flag &= ~P_CLDSIGIGN;
368 				else
369 					p->p_flag |= P_CLDSIGIGN;
370 			} else
371 				p->p_flag &= ~P_CLDSIGIGN;
372 
373 		}
374 		if ((nsa->sa_flags & SA_NODEFER) == 0)
375 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
376 		else
377 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
378 		/*
379 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
380 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
381 		 * to ignore. However, don't put SIGCONT in
382 		 * p_sigctx.ps_sigignore, as we have to restart the process.
383 	 	 */
384 		if (nsa->sa_handler == SIG_IGN ||
385 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
386 						/* never to be seen again */
387 			sigdelset(&p->p_sigctx.ps_siglist, signum);
388 			if (signum != SIGCONT) {
389 						/* easier in psignal */
390 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
391 			}
392 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
393 		} else {
394 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
395 			if (nsa->sa_handler == SIG_DFL)
396 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 			else
398 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
399 		}
400 		(void) spl0();
401 	}
402 
403 	return (0);
404 }
405 
406 #ifdef COMPAT_16
407 /* ARGSUSED */
408 int
409 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval __unused)
410 {
411 	struct compat_16_sys___sigaction14_args /* {
412 		syscallarg(int)				signum;
413 		syscallarg(const struct sigaction *)	nsa;
414 		syscallarg(struct sigaction *)		osa;
415 	} */ *uap = v;
416 	struct proc		*p;
417 	struct sigaction	nsa, osa;
418 	int			error;
419 
420 	if (SCARG(uap, nsa)) {
421 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
422 		if (error)
423 			return (error);
424 	}
425 	p = l->l_proc;
426 	error = sigaction1(p, SCARG(uap, signum),
427 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
428 	    NULL, 0);
429 	if (error)
430 		return (error);
431 	if (SCARG(uap, osa)) {
432 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
433 		if (error)
434 			return (error);
435 	}
436 	return (0);
437 }
438 #endif
439 
440 /* ARGSUSED */
441 int
442 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval __unused)
443 {
444 	struct sys___sigaction_sigtramp_args /* {
445 		syscallarg(int)				signum;
446 		syscallarg(const struct sigaction *)	nsa;
447 		syscallarg(struct sigaction *)		osa;
448 		syscallarg(void *)			tramp;
449 		syscallarg(int)				vers;
450 	} */ *uap = v;
451 	struct proc *p = l->l_proc;
452 	struct sigaction nsa, osa;
453 	int error;
454 
455 	if (SCARG(uap, nsa)) {
456 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
457 		if (error)
458 			return (error);
459 	}
460 	error = sigaction1(p, SCARG(uap, signum),
461 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
462 	    SCARG(uap, tramp), SCARG(uap, vers));
463 	if (error)
464 		return (error);
465 	if (SCARG(uap, osa)) {
466 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
467 		if (error)
468 			return (error);
469 	}
470 	return (0);
471 }
472 
473 /*
474  * Initialize signal state for process 0;
475  * set to ignore signals that are ignored by default and disable the signal
476  * stack.
477  */
478 void
479 siginit(struct proc *p)
480 {
481 	struct sigacts	*ps;
482 	int		signum, prop;
483 
484 	ps = p->p_sigacts;
485 	sigemptyset(&contsigmask);
486 	sigemptyset(&stopsigmask);
487 	sigemptyset(&sigcantmask);
488 	for (signum = 1; signum < NSIG; signum++) {
489 		prop = sigprop[signum];
490 		if (prop & SA_CONT)
491 			sigaddset(&contsigmask, signum);
492 		if (prop & SA_STOP)
493 			sigaddset(&stopsigmask, signum);
494 		if (prop & SA_CANTMASK)
495 			sigaddset(&sigcantmask, signum);
496 		if (prop & SA_IGNORE && signum != SIGCONT)
497 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
498 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
499 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
500 	}
501 	sigemptyset(&p->p_sigctx.ps_sigcatch);
502 	p->p_sigctx.ps_sigwaited = NULL;
503 	p->p_flag &= ~P_NOCLDSTOP;
504 
505 	/*
506 	 * Reset stack state to the user stack.
507 	 */
508 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
509 	p->p_sigctx.ps_sigstk.ss_size = 0;
510 	p->p_sigctx.ps_sigstk.ss_sp = 0;
511 
512 	/* One reference. */
513 	ps->sa_refcnt = 1;
514 }
515 
516 /*
517  * Reset signals for an exec of the specified process.
518  */
519 void
520 execsigs(struct proc *p)
521 {
522 	struct sigacts	*ps;
523 	int		signum, prop;
524 
525 	sigactsunshare(p);
526 
527 	ps = p->p_sigacts;
528 
529 	/*
530 	 * Reset caught signals.  Held signals remain held
531 	 * through p_sigctx.ps_sigmask (unless they were caught,
532 	 * and are now ignored by default).
533 	 */
534 	for (signum = 1; signum < NSIG; signum++) {
535 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
536 			prop = sigprop[signum];
537 			if (prop & SA_IGNORE) {
538 				if ((prop & SA_CONT) == 0)
539 					sigaddset(&p->p_sigctx.ps_sigignore,
540 					    signum);
541 				sigdelset(&p->p_sigctx.ps_siglist, signum);
542 			}
543 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
544 		}
545 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
546 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
547 	}
548 	sigemptyset(&p->p_sigctx.ps_sigcatch);
549 	p->p_sigctx.ps_sigwaited = NULL;
550 
551 	/*
552 	 * Reset no zombies if child dies flag as Solaris does.
553 	 */
554 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
555 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
556 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
557 
558 	/*
559 	 * Reset stack state to the user stack.
560 	 */
561 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
562 	p->p_sigctx.ps_sigstk.ss_size = 0;
563 	p->p_sigctx.ps_sigstk.ss_sp = 0;
564 }
565 
566 int
567 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
568 {
569 
570 	if (oss)
571 		*oss = p->p_sigctx.ps_sigmask;
572 
573 	if (nss) {
574 		(void)splsched();	/* XXXSMP */
575 		switch (how) {
576 		case SIG_BLOCK:
577 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
578 			break;
579 		case SIG_UNBLOCK:
580 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
581 			CHECKSIGS(p);
582 			break;
583 		case SIG_SETMASK:
584 			p->p_sigctx.ps_sigmask = *nss;
585 			CHECKSIGS(p);
586 			break;
587 		default:
588 			(void)spl0();	/* XXXSMP */
589 			return (EINVAL);
590 		}
591 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
592 		(void)spl0();		/* XXXSMP */
593 	}
594 
595 	return (0);
596 }
597 
598 /*
599  * Manipulate signal mask.
600  * Note that we receive new mask, not pointer,
601  * and return old mask as return value;
602  * the library stub does the rest.
603  */
604 int
605 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval __unused)
606 {
607 	struct sys___sigprocmask14_args /* {
608 		syscallarg(int)			how;
609 		syscallarg(const sigset_t *)	set;
610 		syscallarg(sigset_t *)		oset;
611 	} */ *uap = v;
612 	struct proc	*p;
613 	sigset_t	nss, oss;
614 	int		error;
615 
616 	if (SCARG(uap, set)) {
617 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
618 		if (error)
619 			return (error);
620 	}
621 	p = l->l_proc;
622 	error = sigprocmask1(p, SCARG(uap, how),
623 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
624 	if (error)
625 		return (error);
626 	if (SCARG(uap, oset)) {
627 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
628 		if (error)
629 			return (error);
630 	}
631 	return (0);
632 }
633 
634 void
635 sigpending1(struct proc *p, sigset_t *ss)
636 {
637 
638 	*ss = p->p_sigctx.ps_siglist;
639 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
640 }
641 
642 /* ARGSUSED */
643 int
644 sys___sigpending14(struct lwp *l, void *v, register_t *retval __unused)
645 {
646 	struct sys___sigpending14_args /* {
647 		syscallarg(sigset_t *)	set;
648 	} */ *uap = v;
649 	struct proc	*p;
650 	sigset_t	ss;
651 
652 	p = l->l_proc;
653 	sigpending1(p, &ss);
654 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
655 }
656 
657 int
658 sigsuspend1(struct proc *p, const sigset_t *ss)
659 {
660 	struct sigacts *ps;
661 
662 	ps = p->p_sigacts;
663 	if (ss) {
664 		/*
665 		 * When returning from sigpause, we want
666 		 * the old mask to be restored after the
667 		 * signal handler has finished.  Thus, we
668 		 * save it here and mark the sigctx structure
669 		 * to indicate this.
670 		 */
671 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
672 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
673 		(void) splsched();	/* XXXSMP */
674 		p->p_sigctx.ps_sigmask = *ss;
675 		CHECKSIGS(p);
676 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
677 		(void) spl0();		/* XXXSMP */
678 	}
679 
680 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
681 		/* void */;
682 
683 	/* always return EINTR rather than ERESTART... */
684 	return (EINTR);
685 }
686 
687 /*
688  * Suspend process until signal, providing mask to be set
689  * in the meantime.  Note nonstandard calling convention:
690  * libc stub passes mask, not pointer, to save a copyin.
691  */
692 /* ARGSUSED */
693 int
694 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval __unused)
695 {
696 	struct sys___sigsuspend14_args /* {
697 		syscallarg(const sigset_t *)	set;
698 	} */ *uap = v;
699 	struct proc	*p;
700 	sigset_t	ss;
701 	int		error;
702 
703 	if (SCARG(uap, set)) {
704 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
705 		if (error)
706 			return (error);
707 	}
708 
709 	p = l->l_proc;
710 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
711 }
712 
713 int
714 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
715 	struct sigaltstack *oss)
716 {
717 
718 	if (oss)
719 		*oss = p->p_sigctx.ps_sigstk;
720 
721 	if (nss) {
722 		if (nss->ss_flags & ~SS_ALLBITS)
723 			return (EINVAL);
724 
725 		if (nss->ss_flags & SS_DISABLE) {
726 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
727 				return (EINVAL);
728 		} else {
729 			if (nss->ss_size < MINSIGSTKSZ)
730 				return (ENOMEM);
731 		}
732 		p->p_sigctx.ps_sigstk = *nss;
733 	}
734 
735 	return (0);
736 }
737 
738 /* ARGSUSED */
739 int
740 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval __unused)
741 {
742 	struct sys___sigaltstack14_args /* {
743 		syscallarg(const struct sigaltstack *)	nss;
744 		syscallarg(struct sigaltstack *)	oss;
745 	} */ *uap = v;
746 	struct proc		*p;
747 	struct sigaltstack	nss, oss;
748 	int			error;
749 
750 	if (SCARG(uap, nss)) {
751 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
752 		if (error)
753 			return (error);
754 	}
755 	p = l->l_proc;
756 	error = sigaltstack1(p,
757 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
758 	if (error)
759 		return (error);
760 	if (SCARG(uap, oss)) {
761 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
762 		if (error)
763 			return (error);
764 	}
765 	return (0);
766 }
767 
768 /* ARGSUSED */
769 int
770 sys_kill(struct lwp *l, void *v, register_t *retval __unused)
771 {
772 	struct sys_kill_args /* {
773 		syscallarg(int)	pid;
774 		syscallarg(int)	signum;
775 	} */ *uap = v;
776 	struct proc	*p;
777 	ksiginfo_t	ksi;
778 	int signum = SCARG(uap, signum);
779 	int error;
780 
781 	if ((u_int)signum >= NSIG)
782 		return (EINVAL);
783 	KSI_INIT(&ksi);
784 	ksi.ksi_signo = signum;
785 	ksi.ksi_code = SI_USER;
786 	ksi.ksi_pid = l->l_proc->p_pid;
787 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
788 	if (SCARG(uap, pid) > 0) {
789 		/* kill single process */
790 		if ((p = pfind(SCARG(uap, pid))) == NULL)
791 			return (ESRCH);
792 		error = kauth_authorize_process(l->l_cred,
793 		    KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
794 		    NULL, NULL);
795 		if (error)
796 			return error;
797 		if (signum)
798 			kpsignal2(p, &ksi, 1);
799 		return (0);
800 	}
801 	switch (SCARG(uap, pid)) {
802 	case -1:		/* broadcast signal */
803 		return (killpg1(l, &ksi, 0, 1));
804 	case 0:			/* signal own process group */
805 		return (killpg1(l, &ksi, 0, 0));
806 	default:		/* negative explicit process group */
807 		return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
808 	}
809 	/* NOTREACHED */
810 }
811 
812 /*
813  * Common code for kill process group/broadcast kill.
814  * cp is calling process.
815  */
816 int
817 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
818 {
819 	struct proc	*p, *cp;
820 	kauth_cred_t	pc;
821 	struct pgrp	*pgrp;
822 	int		nfound;
823 	int		signum = ksi->ksi_signo;
824 
825 	cp = l->l_proc;
826 	pc = l->l_cred;
827 	nfound = 0;
828 	if (all) {
829 		/*
830 		 * broadcast
831 		 */
832 		proclist_lock_read();
833 		PROCLIST_FOREACH(p, &allproc) {
834 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
835 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
836 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
837 				continue;
838 			nfound++;
839 			if (signum)
840 				kpsignal2(p, ksi, 1);
841 		}
842 		proclist_unlock_read();
843 	} else {
844 		if (pgid == 0)
845 			/*
846 			 * zero pgid means send to my process group.
847 			 */
848 			pgrp = cp->p_pgrp;
849 		else {
850 			pgrp = pgfind(pgid);
851 			if (pgrp == NULL)
852 				return (ESRCH);
853 		}
854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
857 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
858 				continue;
859 			nfound++;
860 			if (signum && P_ZOMBIE(p) == 0)
861 				kpsignal2(p, ksi, 1);
862 		}
863 	}
864 	return (nfound ? 0 : ESRCH);
865 }
866 
867 /*
868  * Send a signal to a process group.
869  */
870 void
871 gsignal(int pgid, int signum)
872 {
873 	ksiginfo_t ksi;
874 	KSI_INIT_EMPTY(&ksi);
875 	ksi.ksi_signo = signum;
876 	kgsignal(pgid, &ksi, NULL);
877 }
878 
879 void
880 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
881 {
882 	struct pgrp *pgrp;
883 
884 	if (pgid && (pgrp = pgfind(pgid)))
885 		kpgsignal(pgrp, ksi, data, 0);
886 }
887 
888 /*
889  * Send a signal to a process group. If checktty is 1,
890  * limit to members which have a controlling terminal.
891  */
892 void
893 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
894 {
895 	ksiginfo_t ksi;
896 	KSI_INIT_EMPTY(&ksi);
897 	ksi.ksi_signo = sig;
898 	kpgsignal(pgrp, &ksi, NULL, checkctty);
899 }
900 
901 void
902 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
903 {
904 	struct proc *p;
905 
906 	if (pgrp)
907 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
908 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
909 				kpsignal(p, ksi, data);
910 }
911 
912 /*
913  * Send a signal caused by a trap to the current process.
914  * If it will be caught immediately, deliver it with correct code.
915  * Otherwise, post it normally.
916  */
917 void
918 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
919 {
920 	struct proc	*p;
921 	struct sigacts	*ps;
922 	int signum = ksi->ksi_signo;
923 
924 	KASSERT(KSI_TRAP_P(ksi));
925 
926 	p = l->l_proc;
927 	ps = p->p_sigacts;
928 	if ((p->p_flag & P_TRACED) == 0 &&
929 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
930 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
931 		p->p_stats->p_ru.ru_nsignals++;
932 #ifdef KTRACE
933 		if (KTRPOINT(p, KTR_PSIG))
934 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
935 			    &p->p_sigctx.ps_sigmask, ksi);
936 #endif
937 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
938 		(void) splsched();	/* XXXSMP */
939 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
940 		    &p->p_sigctx.ps_sigmask);
941 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
942 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
943 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
944 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
945 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
946 		}
947 		(void) spl0();		/* XXXSMP */
948 	} else {
949 		p->p_sigctx.ps_lwp = l->l_lid;
950 		/* XXX for core dump/debugger */
951 		p->p_sigctx.ps_signo = ksi->ksi_signo;
952 		p->p_sigctx.ps_code = ksi->ksi_trap;
953 		kpsignal2(p, ksi, 1);
954 	}
955 }
956 
957 /*
958  * Fill in signal information and signal the parent for a child status change.
959  */
960 void
961 child_psignal(struct proc *p, int dolock)
962 {
963 	ksiginfo_t ksi;
964 
965 	KSI_INIT(&ksi);
966 	ksi.ksi_signo = SIGCHLD;
967 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
968 	ksi.ksi_pid = p->p_pid;
969 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
970 	ksi.ksi_status = p->p_xstat;
971 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
972 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
973 	kpsignal2(p->p_pptr, &ksi, dolock);
974 }
975 
976 /*
977  * Send the signal to the process.  If the signal has an action, the action
978  * is usually performed by the target process rather than the caller; we add
979  * the signal to the set of pending signals for the process.
980  *
981  * Exceptions:
982  *   o When a stop signal is sent to a sleeping process that takes the
983  *     default action, the process is stopped without awakening it.
984  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
985  *     regardless of the signal action (eg, blocked or ignored).
986  *
987  * Other ignored signals are discarded immediately.
988  *
989  * XXXSMP: Invoked as psignal() or sched_psignal().
990  */
991 void
992 psignal1(struct proc *p, int signum, int dolock)
993 {
994 	ksiginfo_t ksi;
995 
996 	KSI_INIT_EMPTY(&ksi);
997 	ksi.ksi_signo = signum;
998 	kpsignal2(p, &ksi, dolock);
999 }
1000 
1001 void
1002 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1003 {
1004 
1005 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1006 		size_t fd;
1007 		struct filedesc *fdp = p->p_fd;
1008 
1009 		ksi->ksi_fd = -1;
1010 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1011 			struct file *fp = fdp->fd_ofiles[fd];
1012 			/* XXX: lock? */
1013 			if (fp && fp->f_data == data) {
1014 				ksi->ksi_fd = fd;
1015 				break;
1016 			}
1017 		}
1018 	}
1019 	kpsignal2(p, ksi, dolock);
1020 }
1021 
1022 static void
1023 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1024 {
1025 	struct lwp *l, *suspended = NULL;
1026 	struct sadata_vp *vp;
1027 	int	s = 0, prop, allsusp;
1028 	sig_t	action;
1029 	int	signum = ksi->ksi_signo;
1030 
1031 #ifdef DIAGNOSTIC
1032 	if (signum <= 0 || signum >= NSIG)
1033 		panic("psignal signal number %d", signum);
1034 
1035 	/* XXXSMP: works, but icky */
1036 	if (dolock) {
1037 		SCHED_ASSERT_UNLOCKED();
1038 	} else {
1039 		SCHED_ASSERT_LOCKED();
1040 	}
1041 #endif
1042 
1043 	/*
1044 	 * Notify any interested parties in the signal.
1045 	 */
1046 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1047 
1048 	prop = sigprop[signum];
1049 
1050 	/*
1051 	 * If proc is traced, always give parent a chance.
1052 	 */
1053 	if (p->p_flag & P_TRACED) {
1054 		action = SIG_DFL;
1055 
1056 		/*
1057 		 * If the process is being traced and the signal is being
1058 		 * caught, make sure to save any ksiginfo.
1059 		 */
1060 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1061 			ksiginfo_put(p, ksi);
1062 	} else {
1063 		/*
1064 		 * If the signal was the result of a trap, reset it
1065 		 * to default action if it's currently masked, so that it would
1066 		 * coredump immediatelly instead of spinning repeatedly
1067 		 * taking the signal.
1068 		 */
1069 		if (KSI_TRAP_P(ksi)
1070 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1071 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1072 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1073 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1074 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1075 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1076 		}
1077 
1078 		/*
1079 		 * If the signal is being ignored,
1080 		 * then we forget about it immediately.
1081 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1082 		 * and if it is set to SIG_IGN,
1083 		 * action will be SIG_DFL here.)
1084 		 */
1085 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1086 			return;
1087 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1088 			action = SIG_HOLD;
1089 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1090 			action = SIG_CATCH;
1091 		else {
1092 			action = SIG_DFL;
1093 
1094 			if (prop & SA_KILL && p->p_nice > NZERO)
1095 				p->p_nice = NZERO;
1096 
1097 			/*
1098 			 * If sending a tty stop signal to a member of an
1099 			 * orphaned process group, discard the signal here if
1100 			 * the action is default; don't stop the process below
1101 			 * if sleeping, and don't clear any pending SIGCONT.
1102 			 */
1103 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1104 				return;
1105 		}
1106 	}
1107 
1108 	if (prop & SA_CONT)
1109 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1110 
1111 	if (prop & SA_STOP)
1112 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1113 
1114 	/*
1115 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1116 	 * please!), check if anything waits on it. If yes, save the
1117 	 * info into provided ps_sigwaited, and wake-up the waiter.
1118 	 * The signal won't be processed further here.
1119 	 */
1120 	if ((prop & SA_CANTMASK) == 0
1121 	    && p->p_sigctx.ps_sigwaited
1122 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1123 	    && p->p_stat != SSTOP) {
1124 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1125 		p->p_sigctx.ps_sigwaited = NULL;
1126 		if (dolock)
1127 			wakeup_one(&p->p_sigctx.ps_sigwait);
1128 		else
1129 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1130 		return;
1131 	}
1132 
1133 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1134 
1135 	/* CHECKSIGS() is "inlined" here. */
1136 	p->p_sigctx.ps_sigcheck = 1;
1137 
1138 	/*
1139 	 * Defer further processing for signals which are held,
1140 	 * except that stopped processes must be continued by SIGCONT.
1141 	 */
1142 	if (action == SIG_HOLD &&
1143 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1144 		ksiginfo_put(p, ksi);
1145 		return;
1146 	}
1147 	/* XXXSMP: works, but icky */
1148 	if (dolock)
1149 		SCHED_LOCK(s);
1150 
1151 	if (p->p_flag & P_SA) {
1152 		allsusp = 0;
1153 		l = NULL;
1154 		if (p->p_stat == SACTIVE) {
1155 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1156 				l = vp->savp_lwp;
1157 				KDASSERT(l != NULL);
1158 				if (l->l_flag & L_SA_IDLE) {
1159 					/* wakeup idle LWP */
1160 					goto found;
1161 					/*NOTREACHED*/
1162 				} else if (l->l_flag & L_SA_YIELD) {
1163 					/* idle LWP is already waking up */
1164 					goto out;
1165 					/*NOTREACHED*/
1166 				}
1167 			}
1168 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1169 				l = vp->savp_lwp;
1170 				if (l->l_stat == LSRUN ||
1171 				    l->l_stat == LSONPROC) {
1172 					signotify(p);
1173 					goto out;
1174 					/*NOTREACHED*/
1175 				}
1176 				if (l->l_stat == LSSLEEP &&
1177 				    l->l_flag & L_SINTR) {
1178 					/* ok to signal vp lwp */
1179 					break;
1180 				} else
1181 					l = NULL;
1182 			}
1183 		} else if (p->p_stat == SSTOP) {
1184 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1185 				l = vp->savp_lwp;
1186 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1187 					break;
1188 				l = NULL;
1189 			}
1190 		}
1191 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1192 		/*
1193 		 * At least one LWP is running or on a run queue.
1194 		 * The signal will be noticed when one of them returns
1195 		 * to userspace.
1196 		 */
1197 		signotify(p);
1198 		/*
1199 		 * The signal will be noticed very soon.
1200 		 */
1201 		goto out;
1202 		/*NOTREACHED*/
1203 	} else {
1204 		/*
1205 		 * Find out if any of the sleeps are interruptable,
1206 		 * and if all the live LWPs remaining are suspended.
1207 		 */
1208 		allsusp = 1;
1209 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1210 			if (l->l_stat == LSSLEEP &&
1211 			    l->l_flag & L_SINTR)
1212 				break;
1213 			if (l->l_stat == LSSUSPENDED)
1214 				suspended = l;
1215 			else if ((l->l_stat != LSZOMB) &&
1216 			    (l->l_stat != LSDEAD))
1217 				allsusp = 0;
1218 		}
1219 	}
1220 
1221  found:
1222 	switch (p->p_stat) {
1223 	case SACTIVE:
1224 
1225 		if (l != NULL && (p->p_flag & P_TRACED))
1226 			goto run;
1227 
1228 		/*
1229 		 * If SIGCONT is default (or ignored) and process is
1230 		 * asleep, we are finished; the process should not
1231 		 * be awakened.
1232 		 */
1233 		if ((prop & SA_CONT) && action == SIG_DFL) {
1234 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1235 			goto done;
1236 		}
1237 
1238 		/*
1239 		 * When a sleeping process receives a stop
1240 		 * signal, process immediately if possible.
1241 		 */
1242 		if ((prop & SA_STOP) && action == SIG_DFL) {
1243 			/*
1244 			 * If a child holding parent blocked,
1245 			 * stopping could cause deadlock.
1246 			 */
1247 			if (p->p_flag & P_PPWAIT) {
1248 				goto out;
1249 			}
1250 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1251 			p->p_xstat = signum;
1252 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1253 				/*
1254 				 * XXXSMP: recursive call; don't lock
1255 				 * the second time around.
1256 				 */
1257 				child_psignal(p, 0);
1258 			}
1259 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1260 			goto done;
1261 		}
1262 
1263 		if (l == NULL) {
1264 			/*
1265 			 * Special case: SIGKILL of a process
1266 			 * which is entirely composed of
1267 			 * suspended LWPs should succeed. We
1268 			 * make this happen by unsuspending one of
1269 			 * them.
1270 			 */
1271 			if (allsusp && (signum == SIGKILL)) {
1272 				lwp_continue(suspended);
1273 			}
1274 			goto done;
1275 		}
1276 		/*
1277 		 * All other (caught or default) signals
1278 		 * cause the process to run.
1279 		 */
1280 		goto runfast;
1281 		/*NOTREACHED*/
1282 	case SSTOP:
1283 		/* Process is stopped */
1284 		/*
1285 		 * If traced process is already stopped,
1286 		 * then no further action is necessary.
1287 		 */
1288 		if (p->p_flag & P_TRACED)
1289 			goto done;
1290 
1291 		/*
1292 		 * Kill signal always sets processes running,
1293 		 * if possible.
1294 		 */
1295 		if (signum == SIGKILL) {
1296 			l = proc_unstop(p);
1297 			if (l)
1298 				goto runfast;
1299 			goto done;
1300 		}
1301 
1302 		if (prop & SA_CONT) {
1303 			/*
1304 			 * If SIGCONT is default (or ignored),
1305 			 * we continue the process but don't
1306 			 * leave the signal in ps_siglist, as
1307 			 * it has no further action.  If
1308 			 * SIGCONT is held, we continue the
1309 			 * process and leave the signal in
1310 			 * ps_siglist.  If the process catches
1311 			 * SIGCONT, let it handle the signal
1312 			 * itself.  If it isn't waiting on an
1313 			 * event, then it goes back to run
1314 			 * state.  Otherwise, process goes
1315 			 * back to sleep state.
1316 			 */
1317 			if (action == SIG_DFL)
1318 				sigdelset(&p->p_sigctx.ps_siglist,
1319 				    signum);
1320 			l = proc_unstop(p);
1321 			if (l && (action == SIG_CATCH))
1322 				goto runfast;
1323 			goto out;
1324 		}
1325 
1326 		if (prop & SA_STOP) {
1327 			/*
1328 			 * Already stopped, don't need to stop again.
1329 			 * (If we did the shell could get confused.)
1330 			 */
1331 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1332 			goto done;
1333 		}
1334 
1335 		/*
1336 		 * If a lwp is sleeping interruptibly, then
1337 		 * wake it up; it will run until the kernel
1338 		 * boundary, where it will stop in issignal(),
1339 		 * since p->p_stat is still SSTOP. When the
1340 		 * process is continued, it will be made
1341 		 * runnable and can look at the signal.
1342 		 */
1343 		if (l)
1344 			goto run;
1345 		goto out;
1346 	case SIDL:
1347 		/* Process is being created by fork */
1348 		/* XXX: We are not ready to receive signals yet */
1349 		goto done;
1350 	default:
1351 		/* Else what? */
1352 		panic("psignal: Invalid process state %d.", p->p_stat);
1353 	}
1354 	/*NOTREACHED*/
1355 
1356  runfast:
1357 	if (action == SIG_CATCH) {
1358 		ksiginfo_put(p, ksi);
1359 		action = SIG_HOLD;
1360 	}
1361 	/*
1362 	 * Raise priority to at least PUSER.
1363 	 */
1364 	if (l->l_priority > PUSER)
1365 		l->l_priority = PUSER;
1366  run:
1367 	if (action == SIG_CATCH) {
1368 		ksiginfo_put(p, ksi);
1369 		action = SIG_HOLD;
1370 	}
1371 
1372 	setrunnable(l);		/* XXXSMP: recurse? */
1373  out:
1374 	if (action == SIG_CATCH)
1375 		ksiginfo_put(p, ksi);
1376  done:
1377 	/* XXXSMP: works, but icky */
1378 	if (dolock)
1379 		SCHED_UNLOCK(s);
1380 }
1381 
1382 siginfo_t *
1383 siginfo_alloc(int flags)
1384 {
1385 
1386 	return pool_get(&siginfo_pool, flags);
1387 }
1388 
1389 void
1390 siginfo_free(void *arg)
1391 {
1392 
1393 	pool_put(&siginfo_pool, arg);
1394 }
1395 
1396 void
1397 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1398 {
1399 	struct proc *p = l->l_proc;
1400 	struct lwp *le, *li;
1401 	siginfo_t *si;
1402 	int f;
1403 
1404 	if (p->p_flag & P_SA) {
1405 
1406 		/* XXXUPSXXX What if not on sa_vp ? */
1407 
1408 		f = l->l_flag & L_SA;
1409 		l->l_flag &= ~L_SA;
1410 		si = siginfo_alloc(PR_WAITOK);
1411 		si->_info = ksi->ksi_info;
1412 		le = li = NULL;
1413 		if (KSI_TRAP_P(ksi))
1414 			le = l;
1415 		else
1416 			li = l;
1417 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1418 		    sizeof(*si), si, siginfo_free) != 0) {
1419 			siginfo_free(si);
1420 #if 0
1421 			if (KSI_TRAP_P(ksi))
1422 				/* XXX What do we do here?? */;
1423 #endif
1424 		}
1425 		l->l_flag |= f;
1426 		return;
1427 	}
1428 
1429 	(*p->p_emul->e_sendsig)(ksi, mask);
1430 }
1431 
1432 static inline int firstsig(const sigset_t *);
1433 
1434 static inline int
1435 firstsig(const sigset_t *ss)
1436 {
1437 	int sig;
1438 
1439 	sig = ffs(ss->__bits[0]);
1440 	if (sig != 0)
1441 		return (sig);
1442 #if NSIG > 33
1443 	sig = ffs(ss->__bits[1]);
1444 	if (sig != 0)
1445 		return (sig + 32);
1446 #endif
1447 #if NSIG > 65
1448 	sig = ffs(ss->__bits[2]);
1449 	if (sig != 0)
1450 		return (sig + 64);
1451 #endif
1452 #if NSIG > 97
1453 	sig = ffs(ss->__bits[3]);
1454 	if (sig != 0)
1455 		return (sig + 96);
1456 #endif
1457 	return (0);
1458 }
1459 
1460 /*
1461  * If the current process has received a signal (should be caught or cause
1462  * termination, should interrupt current syscall), return the signal number.
1463  * Stop signals with default action are processed immediately, then cleared;
1464  * they aren't returned.  This is checked after each entry to the system for
1465  * a syscall or trap (though this can usually be done without calling issignal
1466  * by checking the pending signal masks in the CURSIG macro.) The normal call
1467  * sequence is
1468  *
1469  *	while (signum = CURSIG(curlwp))
1470  *		postsig(signum);
1471  */
1472 int
1473 issignal(struct lwp *l)
1474 {
1475 	struct proc	*p = l->l_proc;
1476 	int		s = 0, signum, prop;
1477 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1478 	sigset_t	ss;
1479 
1480 	/* Bail out if we do not own the virtual processor */
1481 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1482 		return 0;
1483 
1484 	if (p->p_stat == SSTOP) {
1485 		/*
1486 		 * The process is stopped/stopping. Stop ourselves now that
1487 		 * we're on the kernel/userspace boundary.
1488 		 */
1489 		if (dolock)
1490 			SCHED_LOCK(s);
1491 		l->l_stat = LSSTOP;
1492 		p->p_nrlwps--;
1493 		if (p->p_flag & P_TRACED)
1494 			goto sigtraceswitch;
1495 		else
1496 			goto sigswitch;
1497 	}
1498 	for (;;) {
1499 		sigpending1(p, &ss);
1500 		if (p->p_flag & P_PPWAIT)
1501 			sigminusset(&stopsigmask, &ss);
1502 		signum = firstsig(&ss);
1503 		if (signum == 0) {		 	/* no signal to send */
1504 			p->p_sigctx.ps_sigcheck = 0;
1505 			if (locked && dolock)
1506 				SCHED_LOCK(s);
1507 			return (0);
1508 		}
1509 							/* take the signal! */
1510 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1511 
1512 		/*
1513 		 * We should see pending but ignored signals
1514 		 * only if P_TRACED was on when they were posted.
1515 		 */
1516 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1517 		    (p->p_flag & P_TRACED) == 0)
1518 			continue;
1519 
1520 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1521 			/*
1522 			 * If traced, always stop, and stay
1523 			 * stopped until released by the debugger.
1524 			 */
1525 			p->p_xstat = signum;
1526 
1527 			/* Emulation-specific handling of signal trace */
1528 			if ((p->p_emul->e_tracesig != NULL) &&
1529 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1530 				goto childresumed;
1531 
1532 			if ((p->p_flag & P_FSTRACE) == 0)
1533 				child_psignal(p, dolock);
1534 			if (dolock)
1535 				SCHED_LOCK(s);
1536 			proc_stop(p, 1);
1537 		sigtraceswitch:
1538 			mi_switch(l, NULL);
1539 			SCHED_ASSERT_UNLOCKED();
1540 			if (dolock)
1541 				splx(s);
1542 			else
1543 				dolock = 1;
1544 
1545 		childresumed:
1546 			/*
1547 			 * If we are no longer being traced, or the parent
1548 			 * didn't give us a signal, look for more signals.
1549 			 */
1550 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1551 				continue;
1552 
1553 			/*
1554 			 * If the new signal is being masked, look for other
1555 			 * signals.
1556 			 */
1557 			signum = p->p_xstat;
1558 			p->p_xstat = 0;
1559 			/*
1560 			 * `p->p_sigctx.ps_siglist |= mask' is done
1561 			 * in setrunnable().
1562 			 */
1563 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1564 				continue;
1565 							/* take the signal! */
1566 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1567 		}
1568 
1569 		prop = sigprop[signum];
1570 
1571 		/*
1572 		 * Decide whether the signal should be returned.
1573 		 * Return the signal's number, or fall through
1574 		 * to clear it from the pending mask.
1575 		 */
1576 		switch ((long)SIGACTION(p, signum).sa_handler) {
1577 
1578 		case (long)SIG_DFL:
1579 			/*
1580 			 * Don't take default actions on system processes.
1581 			 */
1582 			if (p->p_pid <= 1) {
1583 #ifdef DIAGNOSTIC
1584 				/*
1585 				 * Are you sure you want to ignore SIGSEGV
1586 				 * in init? XXX
1587 				 */
1588 				printf("Process (pid %d) got signal %d\n",
1589 				    p->p_pid, signum);
1590 #endif
1591 				break;		/* == ignore */
1592 			}
1593 			/*
1594 			 * If there is a pending stop signal to process
1595 			 * with default action, stop here,
1596 			 * then clear the signal.  However,
1597 			 * if process is member of an orphaned
1598 			 * process group, ignore tty stop signals.
1599 			 */
1600 			if (prop & SA_STOP) {
1601 				if (p->p_flag & P_TRACED ||
1602 		    		    (p->p_pgrp->pg_jobc == 0 &&
1603 				    prop & SA_TTYSTOP))
1604 					break;	/* == ignore */
1605 				p->p_xstat = signum;
1606 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1607 					child_psignal(p, dolock);
1608 				if (dolock)
1609 					SCHED_LOCK(s);
1610 				proc_stop(p, 1);
1611 			sigswitch:
1612 				mi_switch(l, NULL);
1613 				SCHED_ASSERT_UNLOCKED();
1614 				if (dolock)
1615 					splx(s);
1616 				else
1617 					dolock = 1;
1618 				break;
1619 			} else if (prop & SA_IGNORE) {
1620 				/*
1621 				 * Except for SIGCONT, shouldn't get here.
1622 				 * Default action is to ignore; drop it.
1623 				 */
1624 				break;		/* == ignore */
1625 			} else
1626 				goto keep;
1627 			/*NOTREACHED*/
1628 
1629 		case (long)SIG_IGN:
1630 			/*
1631 			 * Masking above should prevent us ever trying
1632 			 * to take action on an ignored signal other
1633 			 * than SIGCONT, unless process is traced.
1634 			 */
1635 #ifdef DEBUG_ISSIGNAL
1636 			if ((prop & SA_CONT) == 0 &&
1637 			    (p->p_flag & P_TRACED) == 0)
1638 				printf("issignal\n");
1639 #endif
1640 			break;		/* == ignore */
1641 
1642 		default:
1643 			/*
1644 			 * This signal has an action, let
1645 			 * postsig() process it.
1646 			 */
1647 			goto keep;
1648 		}
1649 	}
1650 	/* NOTREACHED */
1651 
1652  keep:
1653 						/* leave the signal for later */
1654 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1655 	CHECKSIGS(p);
1656 	if (locked && dolock)
1657 		SCHED_LOCK(s);
1658 	return (signum);
1659 }
1660 
1661 /*
1662  * Put the argument process into the stopped state and notify the parent
1663  * via wakeup.  Signals are handled elsewhere.  The process must not be
1664  * on the run queue.
1665  */
1666 void
1667 proc_stop(struct proc *p, int dowakeup)
1668 {
1669 	struct lwp *l;
1670 	struct proc *parent;
1671 	struct sadata_vp *vp;
1672 
1673 	SCHED_ASSERT_LOCKED();
1674 
1675 	/* XXX lock process LWP state */
1676 	p->p_flag &= ~P_WAITED;
1677 	p->p_stat = SSTOP;
1678 	parent = p->p_pptr;
1679 	parent->p_nstopchild++;
1680 
1681 	if (p->p_flag & P_SA) {
1682 		/*
1683 		 * Only (try to) put the LWP on the VP in stopped
1684 		 * state.
1685 		 * All other LWPs will suspend in sa_setwoken()
1686 		 * because the VP-LWP in stopped state cannot be
1687 		 * repossessed.
1688 		 */
1689 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1690 			l = vp->savp_lwp;
1691 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1692 				l->l_stat = LSSTOP;
1693 				p->p_nrlwps--;
1694 			} else if (l->l_stat == LSRUN) {
1695 				/* Remove LWP from the run queue */
1696 				remrunqueue(l);
1697 				l->l_stat = LSSTOP;
1698 				p->p_nrlwps--;
1699 			} else if (l->l_stat == LSSLEEP &&
1700 			    l->l_flag & L_SA_IDLE) {
1701 				l->l_flag &= ~L_SA_IDLE;
1702 				l->l_stat = LSSTOP;
1703 			}
1704 		}
1705 		goto out;
1706 	}
1707 
1708 	/*
1709 	 * Put as many LWP's as possible in stopped state.
1710 	 * Sleeping ones will notice the stopped state as they try to
1711 	 * return to userspace.
1712 	 */
1713 
1714 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1715 		if (l->l_stat == LSONPROC) {
1716 			/* XXX SMP this assumes that a LWP that is LSONPROC
1717 			 * is curlwp and hence is about to be mi_switched
1718 			 * away; the only callers of proc_stop() are:
1719 			 * - psignal
1720 			 * - issignal()
1721 			 * For the former, proc_stop() is only called when
1722 			 * no processes are running, so we don't worry.
1723 			 * For the latter, proc_stop() is called right
1724 			 * before mi_switch().
1725 			 */
1726 			l->l_stat = LSSTOP;
1727 			p->p_nrlwps--;
1728 		} else if (l->l_stat == LSRUN) {
1729 			/* Remove LWP from the run queue */
1730 			remrunqueue(l);
1731 			l->l_stat = LSSTOP;
1732 			p->p_nrlwps--;
1733 		} else if ((l->l_stat == LSSLEEP) ||
1734 		    (l->l_stat == LSSUSPENDED) ||
1735 		    (l->l_stat == LSZOMB) ||
1736 		    (l->l_stat == LSDEAD)) {
1737 			/*
1738 			 * Don't do anything; let sleeping LWPs
1739 			 * discover the stopped state of the process
1740 			 * on their way out of the kernel; otherwise,
1741 			 * things like NFS threads that sleep with
1742 			 * locks will block the rest of the system
1743 			 * from getting any work done.
1744 			 *
1745 			 * Suspended/dead/zombie LWPs aren't going
1746 			 * anywhere, so we don't need to touch them.
1747 			 */
1748 		}
1749 #ifdef DIAGNOSTIC
1750 		else {
1751 			panic("proc_stop: process %d lwp %d "
1752 			      "in unstoppable state %d.\n",
1753 			    p->p_pid, l->l_lid, l->l_stat);
1754 		}
1755 #endif
1756 	}
1757 
1758  out:
1759 	/* XXX unlock process LWP state */
1760 
1761 	if (dowakeup)
1762 		sched_wakeup((caddr_t)p->p_pptr);
1763 }
1764 
1765 /*
1766  * Given a process in state SSTOP, set the state back to SACTIVE and
1767  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1768  *
1769  * If no LWPs ended up runnable (and therefore able to take a signal),
1770  * return a LWP that is sleeping interruptably. The caller can wake
1771  * that LWP up to take a signal.
1772  */
1773 struct lwp *
1774 proc_unstop(struct proc *p)
1775 {
1776 	struct lwp *l, *lr = NULL;
1777 	struct sadata_vp *vp;
1778 	int cantake = 0;
1779 
1780 	SCHED_ASSERT_LOCKED();
1781 
1782 	/*
1783 	 * Our caller wants to be informed if there are only sleeping
1784 	 * and interruptable LWPs left after we have run so that it
1785 	 * can invoke setrunnable() if required - return one of the
1786 	 * interruptable LWPs if this is the case.
1787 	 */
1788 
1789 	if (!(p->p_flag & P_WAITED))
1790 		p->p_pptr->p_nstopchild--;
1791 	p->p_stat = SACTIVE;
1792 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1793 		if (l->l_stat == LSRUN) {
1794 			lr = NULL;
1795 			cantake = 1;
1796 		}
1797 		if (l->l_stat != LSSTOP)
1798 			continue;
1799 
1800 		if (l->l_wchan != NULL) {
1801 			l->l_stat = LSSLEEP;
1802 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1803 				lr = l;
1804 				cantake = 1;
1805 			}
1806 		} else {
1807 			setrunnable(l);
1808 			lr = NULL;
1809 			cantake = 1;
1810 		}
1811 	}
1812 	if (p->p_flag & P_SA) {
1813 		/* Only consider returning the LWP on the VP. */
1814 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1815 			lr = vp->savp_lwp;
1816 			if (lr->l_stat == LSSLEEP) {
1817 				if (lr->l_flag & L_SA_YIELD) {
1818 					setrunnable(lr);
1819 					break;
1820 				} else if (lr->l_flag & L_SINTR)
1821 					return lr;
1822 			}
1823 		}
1824 		return NULL;
1825 	}
1826 	return lr;
1827 }
1828 
1829 /*
1830  * Take the action for the specified signal
1831  * from the current set of pending signals.
1832  */
1833 void
1834 postsig(int signum)
1835 {
1836 	struct lwp *l;
1837 	struct proc	*p;
1838 	struct sigacts	*ps;
1839 	sig_t		action;
1840 	sigset_t	*returnmask;
1841 
1842 	l = curlwp;
1843 	p = l->l_proc;
1844 	ps = p->p_sigacts;
1845 #ifdef DIAGNOSTIC
1846 	if (signum == 0)
1847 		panic("postsig");
1848 #endif
1849 
1850 	KERNEL_PROC_LOCK(l);
1851 
1852 #ifdef MULTIPROCESSOR
1853 	/*
1854 	 * On MP, issignal() can return the same signal to multiple
1855 	 * LWPs.  The LWPs will block above waiting for the kernel
1856 	 * lock and the first LWP which gets through will then remove
1857 	 * the signal from ps_siglist.  All other LWPs exit here.
1858 	 */
1859 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1860 		KERNEL_PROC_UNLOCK(l);
1861 		return;
1862 	}
1863 #endif
1864 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1865 	action = SIGACTION_PS(ps, signum).sa_handler;
1866 	if (action == SIG_DFL) {
1867 #ifdef KTRACE
1868 		if (KTRPOINT(p, KTR_PSIG))
1869 			ktrpsig(l, signum, action,
1870 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1871 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1872 			    NULL);
1873 #endif
1874 		/*
1875 		 * Default action, where the default is to kill
1876 		 * the process.  (Other cases were ignored above.)
1877 		 */
1878 		sigexit(l, signum);
1879 		/* NOTREACHED */
1880 	} else {
1881 		ksiginfo_t *ksi;
1882 		/*
1883 		 * If we get here, the signal must be caught.
1884 		 */
1885 #ifdef DIAGNOSTIC
1886 		if (action == SIG_IGN ||
1887 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1888 			panic("postsig action");
1889 #endif
1890 		/*
1891 		 * Set the new mask value and also defer further
1892 		 * occurrences of this signal.
1893 		 *
1894 		 * Special case: user has done a sigpause.  Here the
1895 		 * current mask is not of interest, but rather the
1896 		 * mask from before the sigpause is what we want
1897 		 * restored after the signal processing is completed.
1898 		 */
1899 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1900 			returnmask = &p->p_sigctx.ps_oldmask;
1901 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1902 		} else
1903 			returnmask = &p->p_sigctx.ps_sigmask;
1904 		p->p_stats->p_ru.ru_nsignals++;
1905 		ksi = ksiginfo_get(p, signum);
1906 #ifdef KTRACE
1907 		if (KTRPOINT(p, KTR_PSIG))
1908 			ktrpsig(l, signum, action,
1909 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1910 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1911 			    ksi);
1912 #endif
1913 		if (ksi == NULL) {
1914 			ksiginfo_t ksi1;
1915 			/*
1916 			 * we did not save any siginfo for this, either
1917 			 * because the signal was not caught, or because the
1918 			 * user did not request SA_SIGINFO
1919 			 */
1920 			KSI_INIT_EMPTY(&ksi1);
1921 			ksi1.ksi_signo = signum;
1922 			kpsendsig(l, &ksi1, returnmask);
1923 		} else {
1924 			kpsendsig(l, ksi, returnmask);
1925 			pool_put(&ksiginfo_pool, ksi);
1926 		}
1927 		p->p_sigctx.ps_lwp = 0;
1928 		p->p_sigctx.ps_code = 0;
1929 		p->p_sigctx.ps_signo = 0;
1930 		(void) splsched();	/* XXXSMP */
1931 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1932 		    &p->p_sigctx.ps_sigmask);
1933 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1934 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1935 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1936 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1937 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1938 		}
1939 		(void) spl0();		/* XXXSMP */
1940 	}
1941 
1942 	KERNEL_PROC_UNLOCK(l);
1943 }
1944 
1945 /*
1946  * Kill the current process for stated reason.
1947  */
1948 void
1949 killproc(struct proc *p, const char *why)
1950 {
1951 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1952 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1953 	psignal(p, SIGKILL);
1954 }
1955 
1956 /*
1957  * Force the current process to exit with the specified signal, dumping core
1958  * if appropriate.  We bypass the normal tests for masked and caught signals,
1959  * allowing unrecoverable failures to terminate the process without changing
1960  * signal state.  Mark the accounting record with the signal termination.
1961  * If dumping core, save the signal number for the debugger.  Calls exit and
1962  * does not return.
1963  */
1964 
1965 #if defined(DEBUG)
1966 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1967 #else
1968 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1969 #endif
1970 
1971 static	const char logcoredump[] =
1972 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1973 static	const char lognocoredump[] =
1974 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1975 
1976 /* Wrapper function for use in p_userret */
1977 static void
1978 lwp_coredump_hook(struct lwp *l, void *arg __unused)
1979 {
1980 	int s;
1981 
1982 	/*
1983 	 * Suspend ourselves, so that the kernel stack and therefore
1984 	 * the userland registers saved in the trapframe are around
1985 	 * for coredump() to write them out.
1986 	 */
1987 	KERNEL_PROC_LOCK(l);
1988 	l->l_flag &= ~L_DETACHED;
1989 	SCHED_LOCK(s);
1990 	l->l_stat = LSSUSPENDED;
1991 	l->l_proc->p_nrlwps--;
1992 	/* XXX NJWLWP check if this makes sense here: */
1993 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1994 	mi_switch(l, NULL);
1995 	SCHED_ASSERT_UNLOCKED();
1996 	splx(s);
1997 
1998 	lwp_exit(l);
1999 }
2000 
2001 void
2002 sigexit(struct lwp *l, int signum)
2003 {
2004 	struct proc	*p;
2005 #if 0
2006 	struct lwp	*l2;
2007 #endif
2008 	int		exitsig;
2009 #ifdef COREDUMP
2010 	int		error;
2011 #endif
2012 
2013 	p = l->l_proc;
2014 
2015 	/*
2016 	 * Don't permit coredump() or exit1() multiple times
2017 	 * in the same process.
2018 	 */
2019 	if (p->p_flag & P_WEXIT) {
2020 		KERNEL_PROC_UNLOCK(l);
2021 		(*p->p_userret)(l, p->p_userret_arg);
2022 	}
2023 	p->p_flag |= P_WEXIT;
2024 	/* We don't want to switch away from exiting. */
2025 	/* XXX multiprocessor: stop LWPs on other processors. */
2026 #if 0
2027 	if (p->p_flag & P_SA) {
2028 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2029 		    l2->l_flag &= ~L_SA;
2030 		p->p_flag &= ~P_SA;
2031 	}
2032 #endif
2033 
2034 	/* Make other LWPs stick around long enough to be dumped */
2035 	p->p_userret = lwp_coredump_hook;
2036 	p->p_userret_arg = NULL;
2037 
2038 	exitsig = signum;
2039 	p->p_acflag |= AXSIG;
2040 	if (sigprop[signum] & SA_CORE) {
2041 		p->p_sigctx.ps_signo = signum;
2042 #ifdef COREDUMP
2043 		if ((error = coredump(l, NULL)) == 0)
2044 			exitsig |= WCOREFLAG;
2045 #endif
2046 
2047 		if (kern_logsigexit) {
2048 			/* XXX What if we ever have really large UIDs? */
2049 			int uid = l->l_cred ?
2050 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2051 
2052 #ifdef COREDUMP
2053 			if (error)
2054 				log(LOG_INFO, lognocoredump, p->p_pid,
2055 				    p->p_comm, uid, signum, error);
2056 			else
2057 #endif
2058 				log(LOG_INFO, logcoredump, p->p_pid,
2059 				    p->p_comm, uid, signum);
2060 		}
2061 
2062 	}
2063 
2064 	exit1(l, W_EXITCODE(0, exitsig));
2065 	/* NOTREACHED */
2066 }
2067 
2068 #ifdef COREDUMP
2069 struct coredump_iostate {
2070 	struct lwp *io_lwp;
2071 	struct vnode *io_vp;
2072 	kauth_cred_t io_cred;
2073 	off_t io_offset;
2074 };
2075 
2076 int
2077 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2078 {
2079 	struct coredump_iostate *io = cookie;
2080 	int error;
2081 
2082 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2083 	    io->io_offset, segflg,
2084 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2085 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2086 	if (error) {
2087 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2088 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2089 		    segflg == UIO_USERSPACE ? "user" : "system",
2090 		    len, data, (long long) io->io_offset, error);
2091 		return (error);
2092 	}
2093 
2094 	io->io_offset += len;
2095 	return (0);
2096 }
2097 
2098 /*
2099  * Dump core, into a file named "progname.core" or "core" (depending on the
2100  * value of shortcorename), unless the process was setuid/setgid.
2101  */
2102 int
2103 coredump(struct lwp *l, const char *pattern)
2104 {
2105 	struct vnode		*vp;
2106 	struct proc		*p;
2107 	struct vmspace		*vm;
2108 	kauth_cred_t		cred;
2109 	struct nameidata	nd;
2110 	struct vattr		vattr;
2111 	struct mount		*mp;
2112 	struct coredump_iostate	io;
2113 	int			error, error1;
2114 	char			*name = NULL;
2115 
2116 	p = l->l_proc;
2117 	vm = p->p_vmspace;
2118 	cred = l->l_cred;
2119 
2120 	/*
2121 	 * Make sure the process has not set-id, to prevent data leaks,
2122 	 * unless it was specifically requested to allow set-id coredumps.
2123 	 */
2124 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2125 		return EPERM;
2126 
2127 	/*
2128 	 * Refuse to core if the data + stack + user size is larger than
2129 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2130 	 * data.
2131 	 */
2132 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2133 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2134 		return EFBIG;		/* better error code? */
2135 
2136 restart:
2137 	/*
2138 	 * The core dump will go in the current working directory.  Make
2139 	 * sure that the directory is still there and that the mount flags
2140 	 * allow us to write core dumps there.
2141 	 */
2142 	vp = p->p_cwdi->cwdi_cdir;
2143 	if (vp->v_mount == NULL ||
2144 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2145 		error = EPERM;
2146 		goto done;
2147 	}
2148 
2149 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2150 		pattern = security_setidcore_path;
2151 
2152 	if (pattern == NULL)
2153 		pattern = p->p_limit->pl_corename;
2154 	if (name == NULL) {
2155 		name = PNBUF_GET();
2156 	}
2157 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2158 		goto done;
2159 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2160 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2161 	    S_IRUSR | S_IWUSR)) != 0)
2162 		goto done;
2163 	vp = nd.ni_vp;
2164 
2165 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2166 		VOP_UNLOCK(vp, 0);
2167 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2168 			goto done;
2169 		if ((error = vn_start_write(NULL, &mp,
2170 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2171 			goto done;
2172 		goto restart;
2173 	}
2174 
2175 	/* Don't dump to non-regular files or files with links. */
2176 	if (vp->v_type != VREG ||
2177 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2178 		error = EINVAL;
2179 		goto out;
2180 	}
2181 	VATTR_NULL(&vattr);
2182 	vattr.va_size = 0;
2183 
2184 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2185 		vattr.va_uid = security_setidcore_owner;
2186 		vattr.va_gid = security_setidcore_group;
2187 		vattr.va_mode = security_setidcore_mode;
2188 	}
2189 
2190 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
2191 	VOP_SETATTR(vp, &vattr, cred, l);
2192 	p->p_acflag |= ACORE;
2193 
2194 	io.io_lwp = l;
2195 	io.io_vp = vp;
2196 	io.io_cred = cred;
2197 	io.io_offset = 0;
2198 
2199 	/* Now dump the actual core file. */
2200 	error = (*p->p_execsw->es_coredump)(l, &io);
2201  out:
2202 	VOP_UNLOCK(vp, 0);
2203 	vn_finished_write(mp, 0);
2204 	error1 = vn_close(vp, FWRITE, cred, l);
2205 	if (error == 0)
2206 		error = error1;
2207 done:
2208 	if (name != NULL)
2209 		PNBUF_PUT(name);
2210 	return error;
2211 }
2212 #endif /* COREDUMP */
2213 
2214 /*
2215  * Nonexistent system call-- signal process (may want to handle it).
2216  * Flag error in case process won't see signal immediately (blocked or ignored).
2217  */
2218 #ifndef PTRACE
2219 __weak_alias(sys_ptrace, sys_nosys);
2220 #endif
2221 
2222 /* ARGSUSED */
2223 int
2224 sys_nosys(struct lwp *l, void *v __unused, register_t *retval __unused)
2225 {
2226 	struct proc 	*p;
2227 
2228 	p = l->l_proc;
2229 	psignal(p, SIGSYS);
2230 	return (ENOSYS);
2231 }
2232 
2233 #ifdef COREDUMP
2234 static int
2235 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2236 {
2237 	const char	*s;
2238 	char		*d, *end;
2239 	int		i;
2240 
2241 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2242 		if (*s == '%') {
2243 			switch (*(s + 1)) {
2244 			case 'n':
2245 				i = snprintf(d, end - d, "%s", p->p_comm);
2246 				break;
2247 			case 'p':
2248 				i = snprintf(d, end - d, "%d", p->p_pid);
2249 				break;
2250 			case 'u':
2251 				i = snprintf(d, end - d, "%.*s",
2252 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2253 				    p->p_pgrp->pg_session->s_login);
2254 				break;
2255 			case 't':
2256 				i = snprintf(d, end - d, "%ld",
2257 				    p->p_stats->p_start.tv_sec);
2258 				break;
2259 			default:
2260 				goto copy;
2261 			}
2262 			d += i;
2263 			s++;
2264 		} else {
2265  copy:			*d = *s;
2266 			d++;
2267 		}
2268 		if (d >= end)
2269 			return (ENAMETOOLONG);
2270 	}
2271 	*d = '\0';
2272 	return 0;
2273 }
2274 #endif /* COREDUMP */
2275 
2276 void
2277 getucontext(struct lwp *l, ucontext_t *ucp)
2278 {
2279 	struct proc	*p;
2280 
2281 	p = l->l_proc;
2282 
2283 	ucp->uc_flags = 0;
2284 	ucp->uc_link = l->l_ctxlink;
2285 
2286 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2287 	ucp->uc_flags |= _UC_SIGMASK;
2288 
2289 	/*
2290 	 * The (unsupplied) definition of the `current execution stack'
2291 	 * in the System V Interface Definition appears to allow returning
2292 	 * the main context stack.
2293 	 */
2294 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2295 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2296 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2297 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2298 	} else {
2299 		/* Simply copy alternate signal execution stack. */
2300 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2301 	}
2302 	ucp->uc_flags |= _UC_STACK;
2303 
2304 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2305 }
2306 
2307 /* ARGSUSED */
2308 int
2309 sys_getcontext(struct lwp *l, void *v, register_t *retval __unused)
2310 {
2311 	struct sys_getcontext_args /* {
2312 		syscallarg(struct __ucontext *) ucp;
2313 	} */ *uap = v;
2314 	ucontext_t uc;
2315 
2316 	getucontext(l, &uc);
2317 
2318 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2319 }
2320 
2321 int
2322 setucontext(struct lwp *l, const ucontext_t *ucp)
2323 {
2324 	struct proc	*p;
2325 	int		error;
2326 
2327 	p = l->l_proc;
2328 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2329 		return (error);
2330 	l->l_ctxlink = ucp->uc_link;
2331 
2332 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2333 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2334 
2335 	/*
2336 	 * If there was stack information, update whether or not we are
2337 	 * still running on an alternate signal stack.
2338 	 */
2339 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2340 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2341 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2342 		else
2343 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /* ARGSUSED */
2350 int
2351 sys_setcontext(struct lwp *l, void *v, register_t *retval __unused)
2352 {
2353 	struct sys_setcontext_args /* {
2354 		syscallarg(const ucontext_t *) ucp;
2355 	} */ *uap = v;
2356 	ucontext_t uc;
2357 	int error;
2358 
2359 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2360 		exit1(l, W_EXITCODE(0, 0));
2361 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2362 	    (error = setucontext(l, &uc)) != 0)
2363 		return (error);
2364 
2365 	return (EJUSTRETURN);
2366 }
2367 
2368 /*
2369  * sigtimedwait(2) system call, used also for implementation
2370  * of sigwaitinfo() and sigwait().
2371  *
2372  * This only handles single LWP in signal wait. libpthread provides
2373  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2374  */
2375 int
2376 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2377 {
2378 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2379 }
2380 
2381 int
2382 __sigtimedwait1(struct lwp *l, void *v, register_t *retval __unused,
2383     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2384 {
2385 	struct sys___sigtimedwait_args /* {
2386 		syscallarg(const sigset_t *) set;
2387 		syscallarg(siginfo_t *) info;
2388 		syscallarg(struct timespec *) timeout;
2389 	} */ *uap = v;
2390 	sigset_t *waitset, twaitset;
2391 	struct proc *p = l->l_proc;
2392 	int error, signum;
2393 	int timo = 0;
2394 	struct timespec ts, tsstart;
2395 	ksiginfo_t *ksi;
2396 
2397 	memset(&tsstart, 0, sizeof tsstart);	 /* XXX gcc */
2398 
2399 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2400 
2401 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2402 		FREE(waitset, M_TEMP);
2403 		return (error);
2404 	}
2405 
2406 	/*
2407 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2408 	 * ignore SA_CANTMASK signals in waitset, we do this
2409 	 * only for the below siglist check.
2410 	 */
2411 	sigminusset(&sigcantmask, waitset);
2412 
2413 	/*
2414 	 * First scan siglist and check if there is signal from
2415 	 * our waitset already pending.
2416 	 */
2417 	twaitset = *waitset;
2418 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2419 	if ((signum = firstsig(&twaitset))) {
2420 		/* found pending signal */
2421 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2422 		ksi = ksiginfo_get(p, signum);
2423 		if (!ksi) {
2424 			/* No queued siginfo, manufacture one */
2425 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2426 			KSI_INIT(ksi);
2427 			ksi->ksi_info._signo = signum;
2428 			ksi->ksi_info._code = SI_USER;
2429 		}
2430 
2431 		goto sig;
2432 	}
2433 
2434 	/*
2435 	 * Calculate timeout, if it was specified.
2436 	 */
2437 	if (SCARG(uap, timeout)) {
2438 		uint64_t ms;
2439 
2440 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2441 			return (error);
2442 
2443 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2444 		timo = mstohz(ms);
2445 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2446 			timo = 1;
2447 		if (timo <= 0)
2448 			return (EAGAIN);
2449 
2450 		/*
2451 		 * Remember current uptime, it would be used in
2452 		 * ECANCELED/ERESTART case.
2453 		 */
2454 		getnanouptime(&tsstart);
2455 	}
2456 
2457 	/*
2458 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2459 	 * here; it's not possible to pass pointer to a structure
2460 	 * on current process's stack, the current process might
2461 	 * be swapped out at the time the signal would get delivered.
2462 	 */
2463 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2464 	p->p_sigctx.ps_sigwaited = ksi;
2465 	p->p_sigctx.ps_sigwait = waitset;
2466 
2467 	/*
2468 	 * Wait for signal to arrive. We can either be woken up or
2469 	 * time out.
2470 	 */
2471 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2472 
2473 	/*
2474 	 * Need to find out if we woke as a result of lwp_wakeup()
2475 	 * or a signal outside our wait set.
2476 	 */
2477 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2478 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2479 		/* wakeup via _lwp_wakeup() */
2480 		error = ECANCELED;
2481 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2482 		/* spurious wakeup - arrange for syscall restart */
2483 		error = ERESTART;
2484 		goto fail;
2485 	}
2486 
2487 	/*
2488 	 * On error, clear sigwait indication. psignal1() clears it
2489 	 * in !error case.
2490 	 */
2491 	if (error) {
2492 		p->p_sigctx.ps_sigwaited = NULL;
2493 
2494 		/*
2495 		 * If the sleep was interrupted (either by signal or wakeup),
2496 		 * update the timeout and copyout new value back.
2497 		 * It would be used when the syscall would be restarted
2498 		 * or called again.
2499 		 */
2500 		if (timo && (error == ERESTART || error == ECANCELED)) {
2501 			struct timespec tsnow;
2502 			int err;
2503 
2504 /* XXX double check the following change */
2505 			getnanouptime(&tsnow);
2506 
2507 			/* compute how much time has passed since start */
2508 			timespecsub(&tsnow, &tsstart, &tsnow);
2509 			/* substract passed time from timeout */
2510 			timespecsub(&ts, &tsnow, &ts);
2511 
2512 			if (ts.tv_sec < 0) {
2513 				error = EAGAIN;
2514 				goto fail;
2515 			}
2516 /* XXX double check the previous change */
2517 
2518 			/* copy updated timeout to userland */
2519 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2520 			    sizeof(ts)))) {
2521 				error = err;
2522 				goto fail;
2523 			}
2524 		}
2525 
2526 		goto fail;
2527 	}
2528 
2529 	/*
2530 	 * If a signal from the wait set arrived, copy it to userland.
2531 	 * Copy only the used part of siginfo, the padding part is
2532 	 * left unchanged (userland is not supposed to touch it anyway).
2533 	 */
2534  sig:
2535 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2536 
2537  fail:
2538 	FREE(waitset, M_TEMP);
2539 	pool_put(&ksiginfo_pool, ksi);
2540 	p->p_sigctx.ps_sigwait = NULL;
2541 
2542 	return (error);
2543 }
2544 
2545 /*
2546  * Returns true if signal is ignored or masked for passed process.
2547  */
2548 int
2549 sigismasked(struct proc *p, int sig)
2550 {
2551 
2552 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2553 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2554 }
2555 
2556 static int
2557 filt_sigattach(struct knote *kn)
2558 {
2559 	struct proc *p = curproc;
2560 
2561 	kn->kn_ptr.p_proc = p;
2562 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2563 
2564 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2565 
2566 	return (0);
2567 }
2568 
2569 static void
2570 filt_sigdetach(struct knote *kn)
2571 {
2572 	struct proc *p = kn->kn_ptr.p_proc;
2573 
2574 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2575 }
2576 
2577 /*
2578  * signal knotes are shared with proc knotes, so we apply a mask to
2579  * the hint in order to differentiate them from process hints.  This
2580  * could be avoided by using a signal-specific knote list, but probably
2581  * isn't worth the trouble.
2582  */
2583 static int
2584 filt_signal(struct knote *kn, long hint)
2585 {
2586 
2587 	if (hint & NOTE_SIGNAL) {
2588 		hint &= ~NOTE_SIGNAL;
2589 
2590 		if (kn->kn_id == hint)
2591 			kn->kn_data++;
2592 	}
2593 	return (kn->kn_data != 0);
2594 }
2595 
2596 const struct filterops sig_filtops = {
2597 	0, filt_sigattach, filt_sigdetach, filt_signal
2598 };
2599