1 /* $NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_multiprocessor.h" 73 #include "opt_compat_sunos.h" 74 #include "opt_compat_netbsd.h" 75 #include "opt_compat_netbsd32.h" 76 #include "opt_pax.h" 77 78 #define SIGPROP /* include signal properties table */ 79 #include <sys/param.h> 80 #include <sys/signalvar.h> 81 #include <sys/proc.h> 82 #include <sys/systm.h> 83 #include <sys/wait.h> 84 #include <sys/ktrace.h> 85 #include <sys/syslog.h> 86 #include <sys/filedesc.h> 87 #include <sys/file.h> 88 #include <sys/malloc.h> 89 #include <sys/pool.h> 90 #include <sys/ucontext.h> 91 #include <sys/exec.h> 92 #include <sys/kauth.h> 93 #include <sys/acct.h> 94 #include <sys/callout.h> 95 #include <sys/atomic.h> 96 #include <sys/cpu.h> 97 98 #ifdef PAX_SEGVGUARD 99 #include <sys/pax.h> 100 #endif /* PAX_SEGVGUARD */ 101 102 #include <uvm/uvm.h> 103 #include <uvm/uvm_extern.h> 104 105 static void ksiginfo_exechook(struct proc *, void *); 106 static void proc_stop_callout(void *); 107 108 int sigunwait(struct proc *, const ksiginfo_t *); 109 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 110 int sigpost(struct lwp *, sig_t, int, int); 111 int sigchecktrace(sigpend_t **); 112 void sigswitch(bool, int, int); 113 void sigrealloc(ksiginfo_t *); 114 115 sigset_t contsigmask, stopsigmask, sigcantmask; 116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 117 static void sigacts_poolpage_free(struct pool *, void *); 118 static void *sigacts_poolpage_alloc(struct pool *, int); 119 static callout_t proc_stop_ch; 120 121 static struct pool_allocator sigactspool_allocator = { 122 .pa_alloc = sigacts_poolpage_alloc, 123 .pa_free = sigacts_poolpage_free, 124 }; 125 126 #ifdef DEBUG 127 int kern_logsigexit = 1; 128 #else 129 int kern_logsigexit = 0; 130 #endif 131 132 static const char logcoredump[] = 133 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 134 static const char lognocoredump[] = 135 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 136 137 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 138 &pool_allocator_nointr, IPL_NONE); 139 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", 140 NULL, IPL_VM); 141 142 /* 143 * signal_init: 144 * 145 * Initialize global signal-related data structures. 146 */ 147 void 148 signal_init(void) 149 { 150 151 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 152 153 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 154 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 155 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 156 157 exechook_establish(ksiginfo_exechook, NULL); 158 159 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 160 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 161 } 162 163 /* 164 * sigacts_poolpage_alloc: 165 * 166 * Allocate a page for the sigacts memory pool. 167 */ 168 static void * 169 sigacts_poolpage_alloc(struct pool *pp, int flags) 170 { 171 172 return (void *)uvm_km_alloc(kernel_map, 173 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 174 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 175 | UVM_KMF_WIRED); 176 } 177 178 /* 179 * sigacts_poolpage_free: 180 * 181 * Free a page on behalf of the sigacts memory pool. 182 */ 183 static void 184 sigacts_poolpage_free(struct pool *pp, void *v) 185 { 186 187 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 188 } 189 190 /* 191 * sigactsinit: 192 * 193 * Create an initial sigctx structure, using the same signal state as 194 * p. If 'share' is set, share the sigctx_proc part, otherwise just 195 * copy it from parent. 196 */ 197 struct sigacts * 198 sigactsinit(struct proc *pp, int share) 199 { 200 struct sigacts *ps, *ps2; 201 202 ps = pp->p_sigacts; 203 204 if (share) { 205 atomic_inc_uint(&ps->sa_refcnt); 206 ps2 = ps; 207 } else { 208 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 209 /* XXXAD get rid of this */ 210 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 211 mutex_enter(&ps->sa_mutex); 212 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 213 sizeof(ps2->sa_sigdesc)); 214 mutex_exit(&ps->sa_mutex); 215 ps2->sa_refcnt = 1; 216 } 217 218 return ps2; 219 } 220 221 /* 222 * sigactsunshare: 223 * 224 * Make this process not share its sigctx, maintaining all 225 * signal state. 226 */ 227 void 228 sigactsunshare(struct proc *p) 229 { 230 struct sigacts *ps, *oldps; 231 232 oldps = p->p_sigacts; 233 if (oldps->sa_refcnt == 1) 234 return; 235 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 236 /* XXXAD get rid of this */ 237 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 238 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 239 p->p_sigacts = ps; 240 sigactsfree(oldps); 241 } 242 243 /* 244 * sigactsfree; 245 * 246 * Release a sigctx structure. 247 */ 248 void 249 sigactsfree(struct sigacts *ps) 250 { 251 252 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 253 mutex_destroy(&ps->sa_mutex); 254 pool_cache_put(sigacts_cache, ps); 255 } 256 } 257 258 /* 259 * siginit: 260 * 261 * Initialize signal state for process 0; set to ignore signals that 262 * are ignored by default and disable the signal stack. Locking not 263 * required as the system is still cold. 264 */ 265 void 266 siginit(struct proc *p) 267 { 268 struct lwp *l; 269 struct sigacts *ps; 270 int signo, prop; 271 272 ps = p->p_sigacts; 273 sigemptyset(&contsigmask); 274 sigemptyset(&stopsigmask); 275 sigemptyset(&sigcantmask); 276 for (signo = 1; signo < NSIG; signo++) { 277 prop = sigprop[signo]; 278 if (prop & SA_CONT) 279 sigaddset(&contsigmask, signo); 280 if (prop & SA_STOP) 281 sigaddset(&stopsigmask, signo); 282 if (prop & SA_CANTMASK) 283 sigaddset(&sigcantmask, signo); 284 if (prop & SA_IGNORE && signo != SIGCONT) 285 sigaddset(&p->p_sigctx.ps_sigignore, signo); 286 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 287 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 288 } 289 sigemptyset(&p->p_sigctx.ps_sigcatch); 290 p->p_sflag &= ~PS_NOCLDSTOP; 291 292 ksiginfo_queue_init(&p->p_sigpend.sp_info); 293 sigemptyset(&p->p_sigpend.sp_set); 294 295 /* 296 * Reset per LWP state. 297 */ 298 l = LIST_FIRST(&p->p_lwps); 299 l->l_sigwaited = NULL; 300 l->l_sigstk.ss_flags = SS_DISABLE; 301 l->l_sigstk.ss_size = 0; 302 l->l_sigstk.ss_sp = 0; 303 ksiginfo_queue_init(&l->l_sigpend.sp_info); 304 sigemptyset(&l->l_sigpend.sp_set); 305 306 /* One reference. */ 307 ps->sa_refcnt = 1; 308 } 309 310 /* 311 * execsigs: 312 * 313 * Reset signals for an exec of the specified process. 314 */ 315 void 316 execsigs(struct proc *p) 317 { 318 struct sigacts *ps; 319 struct lwp *l; 320 int signo, prop; 321 sigset_t tset; 322 ksiginfoq_t kq; 323 324 KASSERT(p->p_nlwps == 1); 325 326 sigactsunshare(p); 327 ps = p->p_sigacts; 328 329 /* 330 * Reset caught signals. Held signals remain held through 331 * l->l_sigmask (unless they were caught, and are now ignored 332 * by default). 333 * 334 * No need to lock yet, the process has only one LWP and 335 * at this point the sigacts are private to the process. 336 */ 337 sigemptyset(&tset); 338 for (signo = 1; signo < NSIG; signo++) { 339 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 340 prop = sigprop[signo]; 341 if (prop & SA_IGNORE) { 342 if ((prop & SA_CONT) == 0) 343 sigaddset(&p->p_sigctx.ps_sigignore, 344 signo); 345 sigaddset(&tset, signo); 346 } 347 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 348 } 349 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 350 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 351 } 352 ksiginfo_queue_init(&kq); 353 354 mutex_enter(p->p_lock); 355 sigclearall(p, &tset, &kq); 356 sigemptyset(&p->p_sigctx.ps_sigcatch); 357 358 /* 359 * Reset no zombies if child dies flag as Solaris does. 360 */ 361 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 362 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 363 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 364 365 /* 366 * Reset per-LWP state. 367 */ 368 l = LIST_FIRST(&p->p_lwps); 369 l->l_sigwaited = NULL; 370 l->l_sigstk.ss_flags = SS_DISABLE; 371 l->l_sigstk.ss_size = 0; 372 l->l_sigstk.ss_sp = 0; 373 ksiginfo_queue_init(&l->l_sigpend.sp_info); 374 sigemptyset(&l->l_sigpend.sp_set); 375 mutex_exit(p->p_lock); 376 377 ksiginfo_queue_drain(&kq); 378 } 379 380 /* 381 * ksiginfo_exechook: 382 * 383 * Free all pending ksiginfo entries from a process on exec. 384 * Additionally, drain any unused ksiginfo structures in the 385 * system back to the pool. 386 * 387 * XXX This should not be a hook, every process has signals. 388 */ 389 static void 390 ksiginfo_exechook(struct proc *p, void *v) 391 { 392 ksiginfoq_t kq; 393 394 ksiginfo_queue_init(&kq); 395 396 mutex_enter(p->p_lock); 397 sigclearall(p, NULL, &kq); 398 mutex_exit(p->p_lock); 399 400 ksiginfo_queue_drain(&kq); 401 } 402 403 /* 404 * ksiginfo_alloc: 405 * 406 * Allocate a new ksiginfo structure from the pool, and optionally copy 407 * an existing one. If the existing ksiginfo_t is from the pool, and 408 * has not been queued somewhere, then just return it. Additionally, 409 * if the existing ksiginfo_t does not contain any information beyond 410 * the signal number, then just return it. 411 */ 412 ksiginfo_t * 413 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 414 { 415 ksiginfo_t *kp; 416 417 if (ok != NULL) { 418 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 419 KSI_FROMPOOL) 420 return ok; 421 if (KSI_EMPTY_P(ok)) 422 return ok; 423 } 424 425 kp = pool_get(&ksiginfo_pool, flags); 426 if (kp == NULL) { 427 #ifdef DIAGNOSTIC 428 printf("Out of memory allocating ksiginfo for pid %d\n", 429 p->p_pid); 430 #endif 431 return NULL; 432 } 433 434 if (ok != NULL) { 435 memcpy(kp, ok, sizeof(*kp)); 436 kp->ksi_flags &= ~KSI_QUEUED; 437 } else 438 KSI_INIT_EMPTY(kp); 439 440 kp->ksi_flags |= KSI_FROMPOOL; 441 442 return kp; 443 } 444 445 /* 446 * ksiginfo_free: 447 * 448 * If the given ksiginfo_t is from the pool and has not been queued, 449 * then free it. 450 */ 451 void 452 ksiginfo_free(ksiginfo_t *kp) 453 { 454 455 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 456 return; 457 pool_put(&ksiginfo_pool, kp); 458 } 459 460 /* 461 * ksiginfo_queue_drain: 462 * 463 * Drain a non-empty ksiginfo_t queue. 464 */ 465 void 466 ksiginfo_queue_drain0(ksiginfoq_t *kq) 467 { 468 ksiginfo_t *ksi; 469 470 KASSERT(!CIRCLEQ_EMPTY(kq)); 471 472 while (!CIRCLEQ_EMPTY(kq)) { 473 ksi = CIRCLEQ_FIRST(kq); 474 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 475 pool_put(&ksiginfo_pool, ksi); 476 } 477 } 478 479 /* 480 * sigget: 481 * 482 * Fetch the first pending signal from a set. Optionally, also fetch 483 * or manufacture a ksiginfo element. Returns the number of the first 484 * pending signal, or zero. 485 */ 486 int 487 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 488 { 489 ksiginfo_t *ksi; 490 sigset_t tset; 491 492 /* If there's no pending set, the signal is from the debugger. */ 493 if (sp == NULL) { 494 if (out != NULL) { 495 KSI_INIT(out); 496 out->ksi_info._signo = signo; 497 out->ksi_info._code = SI_USER; 498 } 499 return signo; 500 } 501 502 /* Construct mask from signo, and 'mask'. */ 503 if (signo == 0) { 504 if (mask != NULL) { 505 tset = *mask; 506 __sigandset(&sp->sp_set, &tset); 507 } else 508 tset = sp->sp_set; 509 510 /* If there are no signals pending, that's it. */ 511 if ((signo = firstsig(&tset)) == 0) 512 return 0; 513 } else { 514 KASSERT(sigismember(&sp->sp_set, signo)); 515 } 516 517 sigdelset(&sp->sp_set, signo); 518 519 /* Find siginfo and copy it out. */ 520 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 521 if (ksi->ksi_signo == signo) { 522 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 523 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 524 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 525 ksi->ksi_flags &= ~KSI_QUEUED; 526 if (out != NULL) { 527 memcpy(out, ksi, sizeof(*out)); 528 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 529 } 530 ksiginfo_free(ksi); 531 return signo; 532 } 533 } 534 535 /* If there's no siginfo, then manufacture it. */ 536 if (out != NULL) { 537 KSI_INIT(out); 538 out->ksi_info._signo = signo; 539 out->ksi_info._code = SI_USER; 540 } 541 542 return signo; 543 } 544 545 /* 546 * sigput: 547 * 548 * Append a new ksiginfo element to the list of pending ksiginfo's, if 549 * we need to (e.g. SA_SIGINFO was requested). 550 */ 551 void 552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 553 { 554 ksiginfo_t *kp; 555 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 556 557 KASSERT(mutex_owned(p->p_lock)); 558 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 559 560 sigaddset(&sp->sp_set, ksi->ksi_signo); 561 562 /* 563 * If siginfo is not required, or there is none, then just mark the 564 * signal as pending. 565 */ 566 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi)) 567 return; 568 569 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 570 571 #ifdef notyet /* XXX: QUEUING */ 572 if (ksi->ksi_signo < SIGRTMIN) 573 #endif 574 { 575 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 576 if (kp->ksi_signo == ksi->ksi_signo) { 577 KSI_COPY(ksi, kp); 578 kp->ksi_flags |= KSI_QUEUED; 579 return; 580 } 581 } 582 } 583 584 ksi->ksi_flags |= KSI_QUEUED; 585 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 586 } 587 588 /* 589 * sigclear: 590 * 591 * Clear all pending signals in the specified set. 592 */ 593 void 594 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 595 { 596 ksiginfo_t *ksi, *next; 597 598 if (mask == NULL) 599 sigemptyset(&sp->sp_set); 600 else 601 sigminusset(mask, &sp->sp_set); 602 603 ksi = CIRCLEQ_FIRST(&sp->sp_info); 604 for (; ksi != (void *)&sp->sp_info; ksi = next) { 605 next = CIRCLEQ_NEXT(ksi, ksi_list); 606 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 607 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 608 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 609 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 610 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 611 } 612 } 613 } 614 615 /* 616 * sigclearall: 617 * 618 * Clear all pending signals in the specified set from a process and 619 * its LWPs. 620 */ 621 void 622 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 623 { 624 struct lwp *l; 625 626 KASSERT(mutex_owned(p->p_lock)); 627 628 sigclear(&p->p_sigpend, mask, kq); 629 630 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 631 sigclear(&l->l_sigpend, mask, kq); 632 } 633 } 634 635 /* 636 * sigispending: 637 * 638 * Return true if there are pending signals for the current LWP. May 639 * be called unlocked provided that LW_PENDSIG is set, and that the 640 * signal has been posted to the appopriate queue before LW_PENDSIG is 641 * set. 642 */ 643 int 644 sigispending(struct lwp *l, int signo) 645 { 646 struct proc *p = l->l_proc; 647 sigset_t tset; 648 649 membar_consumer(); 650 651 tset = l->l_sigpend.sp_set; 652 sigplusset(&p->p_sigpend.sp_set, &tset); 653 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 654 sigminusset(&l->l_sigmask, &tset); 655 656 if (signo == 0) { 657 if (firstsig(&tset) != 0) 658 return EINTR; 659 } else if (sigismember(&tset, signo)) 660 return EINTR; 661 662 return 0; 663 } 664 665 /* 666 * siginfo_alloc: 667 * 668 * Allocate a new siginfo_t structure from the pool. 669 */ 670 siginfo_t * 671 siginfo_alloc(int flags) 672 { 673 674 return pool_get(&siginfo_pool, flags); 675 } 676 677 /* 678 * siginfo_free: 679 * 680 * Return a siginfo_t structure to the pool. 681 */ 682 void 683 siginfo_free(void *arg) 684 { 685 686 pool_put(&siginfo_pool, arg); 687 } 688 689 void 690 getucontext(struct lwp *l, ucontext_t *ucp) 691 { 692 struct proc *p = l->l_proc; 693 694 KASSERT(mutex_owned(p->p_lock)); 695 696 ucp->uc_flags = 0; 697 ucp->uc_link = l->l_ctxlink; 698 699 ucp->uc_sigmask = l->l_sigmask; 700 ucp->uc_flags |= _UC_SIGMASK; 701 702 /* 703 * The (unsupplied) definition of the `current execution stack' 704 * in the System V Interface Definition appears to allow returning 705 * the main context stack. 706 */ 707 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 708 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 709 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 710 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 711 } else { 712 /* Simply copy alternate signal execution stack. */ 713 ucp->uc_stack = l->l_sigstk; 714 } 715 ucp->uc_flags |= _UC_STACK; 716 mutex_exit(p->p_lock); 717 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 718 mutex_enter(p->p_lock); 719 } 720 721 int 722 setucontext(struct lwp *l, const ucontext_t *ucp) 723 { 724 struct proc *p = l->l_proc; 725 int error; 726 727 KASSERT(mutex_owned(p->p_lock)); 728 729 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 730 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 731 if (error != 0) 732 return error; 733 } 734 735 mutex_exit(p->p_lock); 736 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 737 mutex_enter(p->p_lock); 738 if (error != 0) 739 return (error); 740 741 l->l_ctxlink = ucp->uc_link; 742 743 /* 744 * If there was stack information, update whether or not we are 745 * still running on an alternate signal stack. 746 */ 747 if ((ucp->uc_flags & _UC_STACK) != 0) { 748 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 749 l->l_sigstk.ss_flags |= SS_ONSTACK; 750 else 751 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 752 } 753 754 return 0; 755 } 756 757 /* 758 * Common code for kill process group/broadcast kill. cp is calling 759 * process. 760 */ 761 int 762 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 763 { 764 struct proc *p, *cp; 765 kauth_cred_t pc; 766 struct pgrp *pgrp; 767 int nfound; 768 int signo = ksi->ksi_signo; 769 770 cp = l->l_proc; 771 pc = l->l_cred; 772 nfound = 0; 773 774 mutex_enter(proc_lock); 775 if (all) { 776 /* 777 * broadcast 778 */ 779 PROCLIST_FOREACH(p, &allproc) { 780 if (p->p_pid <= 1 || p == cp || 781 p->p_flag & (PK_SYSTEM|PK_MARKER)) 782 continue; 783 mutex_enter(p->p_lock); 784 if (kauth_authorize_process(pc, 785 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 786 NULL) == 0) { 787 nfound++; 788 if (signo) 789 kpsignal2(p, ksi); 790 } 791 mutex_exit(p->p_lock); 792 } 793 } else { 794 if (pgid == 0) 795 /* 796 * zero pgid means send to my process group. 797 */ 798 pgrp = cp->p_pgrp; 799 else { 800 pgrp = pg_find(pgid, PFIND_LOCKED); 801 if (pgrp == NULL) 802 goto out; 803 } 804 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 806 continue; 807 mutex_enter(p->p_lock); 808 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 809 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 810 nfound++; 811 if (signo && P_ZOMBIE(p) == 0) 812 kpsignal2(p, ksi); 813 } 814 mutex_exit(p->p_lock); 815 } 816 } 817 out: 818 mutex_exit(proc_lock); 819 return (nfound ? 0 : ESRCH); 820 } 821 822 /* 823 * Send a signal to a process group. If checktty is 1, limit to members 824 * which have a controlling terminal. 825 */ 826 void 827 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 828 { 829 ksiginfo_t ksi; 830 831 KASSERT(!cpu_intr_p()); 832 KASSERT(mutex_owned(proc_lock)); 833 834 KSI_INIT_EMPTY(&ksi); 835 ksi.ksi_signo = sig; 836 kpgsignal(pgrp, &ksi, NULL, checkctty); 837 } 838 839 void 840 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 841 { 842 struct proc *p; 843 844 KASSERT(!cpu_intr_p()); 845 KASSERT(mutex_owned(proc_lock)); 846 847 if (pgrp) 848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 849 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 850 kpsignal(p, ksi, data); 851 } 852 853 /* 854 * Send a signal caused by a trap to the current LWP. If it will be caught 855 * immediately, deliver it with correct code. Otherwise, post it normally. 856 */ 857 void 858 trapsignal(struct lwp *l, ksiginfo_t *ksi) 859 { 860 struct proc *p; 861 struct sigacts *ps; 862 int signo = ksi->ksi_signo; 863 864 KASSERT(KSI_TRAP_P(ksi)); 865 866 ksi->ksi_lid = l->l_lid; 867 p = l->l_proc; 868 869 KASSERT(!cpu_intr_p()); 870 mutex_enter(proc_lock); 871 mutex_enter(p->p_lock); 872 ps = p->p_sigacts; 873 if ((p->p_slflag & PSL_TRACED) == 0 && 874 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 875 !sigismember(&l->l_sigmask, signo)) { 876 mutex_exit(proc_lock); 877 l->l_ru.ru_nsignals++; 878 kpsendsig(l, ksi, &l->l_sigmask); 879 mutex_exit(p->p_lock); 880 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 881 &l->l_sigmask, ksi); 882 } else { 883 /* XXX for core dump/debugger */ 884 p->p_sigctx.ps_lwp = l->l_lid; 885 p->p_sigctx.ps_signo = ksi->ksi_signo; 886 p->p_sigctx.ps_code = ksi->ksi_trap; 887 kpsignal2(p, ksi); 888 mutex_exit(p->p_lock); 889 mutex_exit(proc_lock); 890 } 891 } 892 893 /* 894 * Fill in signal information and signal the parent for a child status change. 895 */ 896 void 897 child_psignal(struct proc *p, int mask) 898 { 899 ksiginfo_t ksi; 900 struct proc *q; 901 int xstat; 902 903 KASSERT(mutex_owned(proc_lock)); 904 KASSERT(mutex_owned(p->p_lock)); 905 906 xstat = p->p_xstat; 907 908 KSI_INIT(&ksi); 909 ksi.ksi_signo = SIGCHLD; 910 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 911 ksi.ksi_pid = p->p_pid; 912 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 913 ksi.ksi_status = xstat; 914 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 915 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 916 917 q = p->p_pptr; 918 919 mutex_exit(p->p_lock); 920 mutex_enter(q->p_lock); 921 922 if ((q->p_sflag & mask) == 0) 923 kpsignal2(q, &ksi); 924 925 mutex_exit(q->p_lock); 926 mutex_enter(p->p_lock); 927 } 928 929 void 930 psignal(struct proc *p, int signo) 931 { 932 ksiginfo_t ksi; 933 934 KASSERT(!cpu_intr_p()); 935 KASSERT(mutex_owned(proc_lock)); 936 937 KSI_INIT_EMPTY(&ksi); 938 ksi.ksi_signo = signo; 939 mutex_enter(p->p_lock); 940 kpsignal2(p, &ksi); 941 mutex_exit(p->p_lock); 942 } 943 944 void 945 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 946 { 947 fdfile_t *ff; 948 file_t *fp; 949 950 KASSERT(!cpu_intr_p()); 951 KASSERT(mutex_owned(proc_lock)); 952 953 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 954 size_t fd; 955 filedesc_t *fdp = p->p_fd; 956 957 /* XXXSMP locking */ 958 ksi->ksi_fd = -1; 959 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 960 if ((ff = fdp->fd_ofiles[fd]) == NULL) 961 continue; 962 if ((fp = ff->ff_file) == NULL) 963 continue; 964 if (fp->f_data == data) { 965 ksi->ksi_fd = fd; 966 break; 967 } 968 } 969 } 970 mutex_enter(p->p_lock); 971 kpsignal2(p, ksi); 972 mutex_exit(p->p_lock); 973 } 974 975 /* 976 * sigismasked: 977 * 978 * Returns true if signal is ignored or masked for the specified LWP. 979 */ 980 int 981 sigismasked(struct lwp *l, int sig) 982 { 983 struct proc *p = l->l_proc; 984 985 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 986 sigismember(&l->l_sigmask, sig)); 987 } 988 989 /* 990 * sigpost: 991 * 992 * Post a pending signal to an LWP. Returns non-zero if the LWP was 993 * able to take the signal. 994 */ 995 int 996 sigpost(struct lwp *l, sig_t action, int prop, int sig) 997 { 998 int rv, masked; 999 1000 KASSERT(mutex_owned(l->l_proc->p_lock)); 1001 1002 /* 1003 * If the LWP is on the way out, sigclear() will be busy draining all 1004 * pending signals. Don't give it more. 1005 */ 1006 if (l->l_refcnt == 0) 1007 return 0; 1008 1009 lwp_lock(l); 1010 1011 /* 1012 * Have the LWP check for signals. This ensures that even if no LWP 1013 * is found to take the signal immediately, it should be taken soon. 1014 */ 1015 l->l_flag |= LW_PENDSIG; 1016 1017 /* 1018 * SIGCONT can be masked, but must always restart stopped LWPs. 1019 */ 1020 masked = sigismember(&l->l_sigmask, sig); 1021 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1022 lwp_unlock(l); 1023 return 0; 1024 } 1025 1026 /* 1027 * If killing the process, make it run fast. 1028 */ 1029 if (__predict_false((prop & SA_KILL) != 0) && 1030 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1031 KASSERT(l->l_class == SCHED_OTHER); 1032 lwp_changepri(l, MAXPRI_USER); 1033 } 1034 1035 /* 1036 * If the LWP is running or on a run queue, then we win. If it's 1037 * sleeping interruptably, wake it and make it take the signal. If 1038 * the sleep isn't interruptable, then the chances are it will get 1039 * to see the signal soon anyhow. If suspended, it can't take the 1040 * signal right now. If it's LWP private or for all LWPs, save it 1041 * for later; otherwise punt. 1042 */ 1043 rv = 0; 1044 1045 switch (l->l_stat) { 1046 case LSRUN: 1047 case LSONPROC: 1048 lwp_need_userret(l); 1049 rv = 1; 1050 break; 1051 1052 case LSSLEEP: 1053 if ((l->l_flag & LW_SINTR) != 0) { 1054 /* setrunnable() will release the lock. */ 1055 setrunnable(l); 1056 return 1; 1057 } 1058 break; 1059 1060 case LSSUSPENDED: 1061 if ((prop & SA_KILL) != 0) { 1062 /* lwp_continue() will release the lock. */ 1063 lwp_continue(l); 1064 return 1; 1065 } 1066 break; 1067 1068 case LSSTOP: 1069 if ((prop & SA_STOP) != 0) 1070 break; 1071 1072 /* 1073 * If the LWP is stopped and we are sending a continue 1074 * signal, then start it again. 1075 */ 1076 if ((prop & SA_CONT) != 0) { 1077 if (l->l_wchan != NULL) { 1078 l->l_stat = LSSLEEP; 1079 l->l_proc->p_nrlwps++; 1080 rv = 1; 1081 break; 1082 } 1083 /* setrunnable() will release the lock. */ 1084 setrunnable(l); 1085 return 1; 1086 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1087 /* setrunnable() will release the lock. */ 1088 setrunnable(l); 1089 return 1; 1090 } 1091 break; 1092 1093 default: 1094 break; 1095 } 1096 1097 lwp_unlock(l); 1098 return rv; 1099 } 1100 1101 /* 1102 * Notify an LWP that it has a pending signal. 1103 */ 1104 void 1105 signotify(struct lwp *l) 1106 { 1107 KASSERT(lwp_locked(l, NULL)); 1108 1109 l->l_flag |= LW_PENDSIG; 1110 lwp_need_userret(l); 1111 } 1112 1113 /* 1114 * Find an LWP within process p that is waiting on signal ksi, and hand 1115 * it on. 1116 */ 1117 int 1118 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1119 { 1120 struct lwp *l; 1121 int signo; 1122 1123 KASSERT(mutex_owned(p->p_lock)); 1124 1125 signo = ksi->ksi_signo; 1126 1127 if (ksi->ksi_lid != 0) { 1128 /* 1129 * Signal came via _lwp_kill(). Find the LWP and see if 1130 * it's interested. 1131 */ 1132 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1133 return 0; 1134 if (l->l_sigwaited == NULL || 1135 !sigismember(&l->l_sigwaitset, signo)) 1136 return 0; 1137 } else { 1138 /* 1139 * Look for any LWP that may be interested. 1140 */ 1141 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1142 KASSERT(l->l_sigwaited != NULL); 1143 if (sigismember(&l->l_sigwaitset, signo)) 1144 break; 1145 } 1146 } 1147 1148 if (l != NULL) { 1149 l->l_sigwaited->ksi_info = ksi->ksi_info; 1150 l->l_sigwaited = NULL; 1151 LIST_REMOVE(l, l_sigwaiter); 1152 cv_signal(&l->l_sigcv); 1153 return 1; 1154 } 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * Send the signal to the process. If the signal has an action, the action 1161 * is usually performed by the target process rather than the caller; we add 1162 * the signal to the set of pending signals for the process. 1163 * 1164 * Exceptions: 1165 * o When a stop signal is sent to a sleeping process that takes the 1166 * default action, the process is stopped without awakening it. 1167 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1168 * regardless of the signal action (eg, blocked or ignored). 1169 * 1170 * Other ignored signals are discarded immediately. 1171 */ 1172 void 1173 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1174 { 1175 int prop, lid, toall, signo = ksi->ksi_signo; 1176 struct sigacts *sa; 1177 struct lwp *l; 1178 ksiginfo_t *kp; 1179 ksiginfoq_t kq; 1180 sig_t action; 1181 1182 KASSERT(!cpu_intr_p()); 1183 KASSERT(mutex_owned(proc_lock)); 1184 KASSERT(mutex_owned(p->p_lock)); 1185 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1186 KASSERT(signo > 0 && signo < NSIG); 1187 1188 /* 1189 * If the process is being created by fork, is a zombie or is 1190 * exiting, then just drop the signal here and bail out. 1191 */ 1192 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1193 return; 1194 1195 /* 1196 * Notify any interested parties of the signal. 1197 */ 1198 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1199 1200 /* 1201 * Some signals including SIGKILL must act on the entire process. 1202 */ 1203 kp = NULL; 1204 prop = sigprop[signo]; 1205 toall = ((prop & SA_TOALL) != 0); 1206 1207 if (toall) 1208 lid = 0; 1209 else 1210 lid = ksi->ksi_lid; 1211 1212 /* 1213 * If proc is traced, always give parent a chance. 1214 */ 1215 if (p->p_slflag & PSL_TRACED) { 1216 action = SIG_DFL; 1217 1218 if (lid == 0) { 1219 /* 1220 * If the process is being traced and the signal 1221 * is being caught, make sure to save any ksiginfo. 1222 */ 1223 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1224 return; 1225 sigput(&p->p_sigpend, p, kp); 1226 } 1227 } else { 1228 /* 1229 * If the signal was the result of a trap and is not being 1230 * caught, then reset it to default action so that the 1231 * process dumps core immediately. 1232 */ 1233 if (KSI_TRAP_P(ksi)) { 1234 sa = p->p_sigacts; 1235 mutex_enter(&sa->sa_mutex); 1236 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1237 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1238 SIGACTION(p, signo).sa_handler = SIG_DFL; 1239 } 1240 mutex_exit(&sa->sa_mutex); 1241 } 1242 1243 /* 1244 * If the signal is being ignored, then drop it. Note: we 1245 * don't set SIGCONT in ps_sigignore, and if it is set to 1246 * SIG_IGN, action will be SIG_DFL here. 1247 */ 1248 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1249 return; 1250 1251 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1252 action = SIG_CATCH; 1253 else { 1254 action = SIG_DFL; 1255 1256 /* 1257 * If sending a tty stop signal to a member of an 1258 * orphaned process group, discard the signal here if 1259 * the action is default; don't stop the process below 1260 * if sleeping, and don't clear any pending SIGCONT. 1261 */ 1262 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1263 return; 1264 1265 if (prop & SA_KILL && p->p_nice > NZERO) 1266 p->p_nice = NZERO; 1267 } 1268 } 1269 1270 /* 1271 * If stopping or continuing a process, discard any pending 1272 * signals that would do the inverse. 1273 */ 1274 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1275 ksiginfo_queue_init(&kq); 1276 if ((prop & SA_CONT) != 0) 1277 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1278 if ((prop & SA_STOP) != 0) 1279 sigclear(&p->p_sigpend, &contsigmask, &kq); 1280 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1281 } 1282 1283 /* 1284 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1285 * please!), check if any LWPs are waiting on it. If yes, pass on 1286 * the signal info. The signal won't be processed further here. 1287 */ 1288 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1289 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1290 sigunwait(p, ksi)) 1291 return; 1292 1293 /* 1294 * XXXSMP Should be allocated by the caller, we're holding locks 1295 * here. 1296 */ 1297 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1298 return; 1299 1300 /* 1301 * LWP private signals are easy - just find the LWP and post 1302 * the signal to it. 1303 */ 1304 if (lid != 0) { 1305 l = lwp_find(p, lid); 1306 if (l != NULL) { 1307 sigput(&l->l_sigpend, p, kp); 1308 membar_producer(); 1309 (void)sigpost(l, action, prop, kp->ksi_signo); 1310 } 1311 goto out; 1312 } 1313 1314 /* 1315 * Some signals go to all LWPs, even if posted with _lwp_kill(). 1316 */ 1317 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1318 if ((p->p_slflag & PSL_TRACED) != 0) 1319 goto deliver; 1320 1321 /* 1322 * If SIGCONT is default (or ignored) and process is 1323 * asleep, we are finished; the process should not 1324 * be awakened. 1325 */ 1326 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1327 goto out; 1328 1329 sigput(&p->p_sigpend, p, kp); 1330 } else { 1331 /* 1332 * Process is stopped or stopping. If traced, then no 1333 * further action is necessary. 1334 */ 1335 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1336 goto out; 1337 1338 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1339 /* 1340 * Re-adjust p_nstopchild if the process wasn't 1341 * collected by its parent. 1342 */ 1343 p->p_stat = SACTIVE; 1344 p->p_sflag &= ~PS_STOPPING; 1345 if (!p->p_waited) 1346 p->p_pptr->p_nstopchild--; 1347 1348 /* 1349 * If SIGCONT is default (or ignored), we continue 1350 * the process but don't leave the signal in 1351 * ps_siglist, as it has no further action. If 1352 * SIGCONT is held, we continue the process and 1353 * leave the signal in ps_siglist. If the process 1354 * catches SIGCONT, let it handle the signal itself. 1355 * If it isn't waiting on an event, then it goes 1356 * back to run state. Otherwise, process goes back 1357 * to sleep state. 1358 */ 1359 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1360 sigput(&p->p_sigpend, p, kp); 1361 } else if ((prop & SA_STOP) != 0) { 1362 /* 1363 * Already stopped, don't need to stop again. 1364 * (If we did the shell could get confused.) 1365 */ 1366 goto out; 1367 } else 1368 sigput(&p->p_sigpend, p, kp); 1369 } 1370 1371 deliver: 1372 /* 1373 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1374 * visible on the per process list (for sigispending()). This 1375 * is unlikely to be needed in practice, but... 1376 */ 1377 membar_producer(); 1378 1379 /* 1380 * Try to find an LWP that can take the signal. 1381 */ 1382 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1383 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1384 break; 1385 1386 out: 1387 /* 1388 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1389 * with locks held. The caller should take care of this. 1390 */ 1391 ksiginfo_free(kp); 1392 } 1393 1394 void 1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1396 { 1397 struct proc *p = l->l_proc; 1398 1399 KASSERT(mutex_owned(p->p_lock)); 1400 1401 (*p->p_emul->e_sendsig)(ksi, mask); 1402 } 1403 1404 /* 1405 * Stop any LWPs sleeping interruptably. 1406 */ 1407 static void 1408 proc_stop_lwps(struct proc *p) 1409 { 1410 struct lwp *l; 1411 1412 KASSERT(mutex_owned(p->p_lock)); 1413 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1414 1415 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1416 lwp_lock(l); 1417 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1418 l->l_stat = LSSTOP; 1419 p->p_nrlwps--; 1420 } 1421 lwp_unlock(l); 1422 } 1423 } 1424 1425 /* 1426 * Finish stopping of a process. Mark it stopped and notify the parent. 1427 * 1428 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1429 */ 1430 static void 1431 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1432 { 1433 1434 KASSERT(mutex_owned(proc_lock)); 1435 KASSERT(mutex_owned(p->p_lock)); 1436 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1437 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1438 1439 p->p_sflag &= ~PS_STOPPING; 1440 p->p_stat = SSTOP; 1441 p->p_waited = 0; 1442 p->p_pptr->p_nstopchild++; 1443 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1444 if (ppsig) { 1445 /* child_psignal drops p_lock briefly. */ 1446 child_psignal(p, ppmask); 1447 } 1448 cv_broadcast(&p->p_pptr->p_waitcv); 1449 } 1450 } 1451 1452 /* 1453 * Stop the current process and switch away when being stopped or traced. 1454 */ 1455 void 1456 sigswitch(bool ppsig, int ppmask, int signo) 1457 { 1458 struct lwp *l = curlwp; 1459 struct proc *p = l->l_proc; 1460 #ifdef MULTIPROCESSOR 1461 int biglocks; 1462 #endif 1463 1464 KASSERT(mutex_owned(p->p_lock)); 1465 KASSERT(l->l_stat == LSONPROC); 1466 KASSERT(p->p_nrlwps > 0); 1467 1468 /* 1469 * On entry we know that the process needs to stop. If it's 1470 * the result of a 'sideways' stop signal that has been sourced 1471 * through issignal(), then stop other LWPs in the process too. 1472 */ 1473 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1474 KASSERT(signo != 0); 1475 proc_stop(p, 1, signo); 1476 KASSERT(p->p_nrlwps > 0); 1477 } 1478 1479 /* 1480 * If we are the last live LWP, and the stop was a result of 1481 * a new signal, then signal the parent. 1482 */ 1483 if ((p->p_sflag & PS_STOPPING) != 0) { 1484 if (!mutex_tryenter(proc_lock)) { 1485 mutex_exit(p->p_lock); 1486 mutex_enter(proc_lock); 1487 mutex_enter(p->p_lock); 1488 } 1489 1490 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1491 /* 1492 * Note that proc_stop_done() can drop 1493 * p->p_lock briefly. 1494 */ 1495 proc_stop_done(p, ppsig, ppmask); 1496 } 1497 1498 mutex_exit(proc_lock); 1499 } 1500 1501 /* 1502 * Unlock and switch away. 1503 */ 1504 KERNEL_UNLOCK_ALL(l, &biglocks); 1505 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1506 p->p_nrlwps--; 1507 lwp_lock(l); 1508 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1509 l->l_stat = LSSTOP; 1510 lwp_unlock(l); 1511 } 1512 1513 mutex_exit(p->p_lock); 1514 lwp_lock(l); 1515 mi_switch(l); 1516 KERNEL_LOCK(biglocks, l); 1517 mutex_enter(p->p_lock); 1518 } 1519 1520 /* 1521 * Check for a signal from the debugger. 1522 */ 1523 int 1524 sigchecktrace(sigpend_t **spp) 1525 { 1526 struct lwp *l = curlwp; 1527 struct proc *p = l->l_proc; 1528 int signo; 1529 1530 KASSERT(mutex_owned(p->p_lock)); 1531 1532 /* 1533 * If we are no longer being traced, or the parent didn't 1534 * give us a signal, look for more signals. 1535 */ 1536 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1537 return 0; 1538 1539 /* If there's a pending SIGKILL, process it immediately. */ 1540 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1541 return 0; 1542 1543 /* 1544 * If the new signal is being masked, look for other signals. 1545 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1546 */ 1547 signo = p->p_xstat; 1548 p->p_xstat = 0; 1549 if ((sigprop[signo] & SA_TOLWP) != 0) 1550 *spp = &l->l_sigpend; 1551 else 1552 *spp = &p->p_sigpend; 1553 if (sigismember(&l->l_sigmask, signo)) 1554 signo = 0; 1555 1556 return signo; 1557 } 1558 1559 /* 1560 * If the current process has received a signal (should be caught or cause 1561 * termination, should interrupt current syscall), return the signal number. 1562 * 1563 * Stop signals with default action are processed immediately, then cleared; 1564 * they aren't returned. This is checked after each entry to the system for 1565 * a syscall or trap. 1566 * 1567 * We will also return -1 if the process is exiting and the current LWP must 1568 * follow suit. 1569 * 1570 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We 1571 * can switch away, though. 1572 */ 1573 int 1574 issignal(struct lwp *l) 1575 { 1576 struct proc *p = l->l_proc; 1577 int signo = 0, prop; 1578 sigpend_t *sp = NULL; 1579 sigset_t ss; 1580 1581 KASSERT(mutex_owned(p->p_lock)); 1582 1583 for (;;) { 1584 /* Discard any signals that we have decided not to take. */ 1585 if (signo != 0) 1586 (void)sigget(sp, NULL, signo, NULL); 1587 1588 /* 1589 * If the process is stopped/stopping, then stop ourselves 1590 * now that we're on the kernel/userspace boundary. When 1591 * we awaken, check for a signal from the debugger. 1592 */ 1593 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1594 sigswitch(true, PS_NOCLDSTOP, 0); 1595 signo = sigchecktrace(&sp); 1596 } else 1597 signo = 0; 1598 1599 /* 1600 * If the debugger didn't provide a signal, find a pending 1601 * signal from our set. Check per-LWP signals first, and 1602 * then per-process. 1603 */ 1604 if (signo == 0) { 1605 sp = &l->l_sigpend; 1606 ss = sp->sp_set; 1607 if ((p->p_sflag & PS_PPWAIT) != 0) 1608 sigminusset(&stopsigmask, &ss); 1609 sigminusset(&l->l_sigmask, &ss); 1610 1611 if ((signo = firstsig(&ss)) == 0) { 1612 sp = &p->p_sigpend; 1613 ss = sp->sp_set; 1614 if ((p->p_sflag & PS_PPWAIT) != 0) 1615 sigminusset(&stopsigmask, &ss); 1616 sigminusset(&l->l_sigmask, &ss); 1617 1618 if ((signo = firstsig(&ss)) == 0) { 1619 /* 1620 * No signal pending - clear the 1621 * indicator and bail out. 1622 */ 1623 lwp_lock(l); 1624 l->l_flag &= ~LW_PENDSIG; 1625 lwp_unlock(l); 1626 sp = NULL; 1627 break; 1628 } 1629 } 1630 } 1631 1632 /* 1633 * We should see pending but ignored signals only if 1634 * we are being traced. 1635 */ 1636 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1637 (p->p_slflag & PSL_TRACED) == 0) { 1638 /* Discard the signal. */ 1639 continue; 1640 } 1641 1642 /* 1643 * If traced, always stop, and stay stopped until released 1644 * by the debugger. If the our parent process is waiting 1645 * for us, don't hang as we could deadlock. 1646 */ 1647 if ((p->p_slflag & PSL_TRACED) != 0 && 1648 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) { 1649 /* Take the signal. */ 1650 (void)sigget(sp, NULL, signo, NULL); 1651 p->p_xstat = signo; 1652 1653 /* Emulation-specific handling of signal trace */ 1654 if (p->p_emul->e_tracesig == NULL || 1655 (*p->p_emul->e_tracesig)(p, signo) == 0) 1656 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1657 signo); 1658 1659 /* Check for a signal from the debugger. */ 1660 if ((signo = sigchecktrace(&sp)) == 0) 1661 continue; 1662 } 1663 1664 prop = sigprop[signo]; 1665 1666 /* 1667 * Decide whether the signal should be returned. 1668 */ 1669 switch ((long)SIGACTION(p, signo).sa_handler) { 1670 case (long)SIG_DFL: 1671 /* 1672 * Don't take default actions on system processes. 1673 */ 1674 if (p->p_pid <= 1) { 1675 #ifdef DIAGNOSTIC 1676 /* 1677 * Are you sure you want to ignore SIGSEGV 1678 * in init? XXX 1679 */ 1680 printf_nolog("Process (pid %d) got sig %d\n", 1681 p->p_pid, signo); 1682 #endif 1683 continue; 1684 } 1685 1686 /* 1687 * If there is a pending stop signal to process with 1688 * default action, stop here, then clear the signal. 1689 * However, if process is member of an orphaned 1690 * process group, ignore tty stop signals. 1691 */ 1692 if (prop & SA_STOP) { 1693 /* 1694 * XXX Don't hold proc_lock for p_lflag, 1695 * but it's not a big deal. 1696 */ 1697 if (p->p_slflag & PSL_TRACED || 1698 ((p->p_lflag & PL_ORPHANPG) != 0 && 1699 prop & SA_TTYSTOP)) { 1700 /* Ignore the signal. */ 1701 continue; 1702 } 1703 /* Take the signal. */ 1704 (void)sigget(sp, NULL, signo, NULL); 1705 p->p_xstat = signo; 1706 signo = 0; 1707 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1708 } else if (prop & SA_IGNORE) { 1709 /* 1710 * Except for SIGCONT, shouldn't get here. 1711 * Default action is to ignore; drop it. 1712 */ 1713 continue; 1714 } 1715 break; 1716 1717 case (long)SIG_IGN: 1718 #ifdef DEBUG_ISSIGNAL 1719 /* 1720 * Masking above should prevent us ever trying 1721 * to take action on an ignored signal other 1722 * than SIGCONT, unless process is traced. 1723 */ 1724 if ((prop & SA_CONT) == 0 && 1725 (p->p_slflag & PSL_TRACED) == 0) 1726 printf_nolog("issignal\n"); 1727 #endif 1728 continue; 1729 1730 default: 1731 /* 1732 * This signal has an action, let postsig() process 1733 * it. 1734 */ 1735 break; 1736 } 1737 1738 break; 1739 } 1740 1741 l->l_sigpendset = sp; 1742 return signo; 1743 } 1744 1745 /* 1746 * Take the action for the specified signal 1747 * from the current set of pending signals. 1748 */ 1749 void 1750 postsig(int signo) 1751 { 1752 struct lwp *l; 1753 struct proc *p; 1754 struct sigacts *ps; 1755 sig_t action; 1756 sigset_t *returnmask; 1757 ksiginfo_t ksi; 1758 1759 l = curlwp; 1760 p = l->l_proc; 1761 ps = p->p_sigacts; 1762 1763 KASSERT(mutex_owned(p->p_lock)); 1764 KASSERT(signo > 0); 1765 1766 /* 1767 * Set the new mask value and also defer further occurrences of this 1768 * signal. 1769 * 1770 * Special case: user has done a sigsuspend. Here the current mask is 1771 * not of interest, but rather the mask from before the sigsuspen is 1772 * what we want restored after the signal processing is completed. 1773 */ 1774 if (l->l_sigrestore) { 1775 returnmask = &l->l_sigoldmask; 1776 l->l_sigrestore = 0; 1777 } else 1778 returnmask = &l->l_sigmask; 1779 1780 /* 1781 * Commit to taking the signal before releasing the mutex. 1782 */ 1783 action = SIGACTION_PS(ps, signo).sa_handler; 1784 l->l_ru.ru_nsignals++; 1785 sigget(l->l_sigpendset, &ksi, signo, NULL); 1786 1787 if (ktrpoint(KTR_PSIG)) { 1788 mutex_exit(p->p_lock); 1789 ktrpsig(signo, action, returnmask, NULL); 1790 mutex_enter(p->p_lock); 1791 } 1792 1793 if (action == SIG_DFL) { 1794 /* 1795 * Default action, where the default is to kill 1796 * the process. (Other cases were ignored above.) 1797 */ 1798 sigexit(l, signo); 1799 return; 1800 } 1801 1802 /* 1803 * If we get here, the signal must be caught. 1804 */ 1805 #ifdef DIAGNOSTIC 1806 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1807 panic("postsig action"); 1808 #endif 1809 1810 kpsendsig(l, &ksi, returnmask); 1811 } 1812 1813 /* 1814 * sendsig_reset: 1815 * 1816 * Reset the signal action. Called from emulation specific sendsig() 1817 * before unlocking to deliver the signal. 1818 */ 1819 void 1820 sendsig_reset(struct lwp *l, int signo) 1821 { 1822 struct proc *p = l->l_proc; 1823 struct sigacts *ps = p->p_sigacts; 1824 1825 KASSERT(mutex_owned(p->p_lock)); 1826 1827 p->p_sigctx.ps_lwp = 0; 1828 p->p_sigctx.ps_code = 0; 1829 p->p_sigctx.ps_signo = 0; 1830 1831 mutex_enter(&ps->sa_mutex); 1832 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1833 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1834 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1835 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1836 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1837 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1838 } 1839 mutex_exit(&ps->sa_mutex); 1840 } 1841 1842 /* 1843 * Kill the current process for stated reason. 1844 */ 1845 void 1846 killproc(struct proc *p, const char *why) 1847 { 1848 1849 KASSERT(mutex_owned(proc_lock)); 1850 1851 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1852 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1853 psignal(p, SIGKILL); 1854 } 1855 1856 /* 1857 * Force the current process to exit with the specified signal, dumping core 1858 * if appropriate. We bypass the normal tests for masked and caught 1859 * signals, allowing unrecoverable failures to terminate the process without 1860 * changing signal state. Mark the accounting record with the signal 1861 * termination. If dumping core, save the signal number for the debugger. 1862 * Calls exit and does not return. 1863 */ 1864 void 1865 sigexit(struct lwp *l, int signo) 1866 { 1867 int exitsig, error, docore; 1868 struct proc *p; 1869 struct lwp *t; 1870 1871 p = l->l_proc; 1872 1873 KASSERT(mutex_owned(p->p_lock)); 1874 KERNEL_UNLOCK_ALL(l, NULL); 1875 1876 /* 1877 * Don't permit coredump() multiple times in the same process. 1878 * Call back into sigexit, where we will be suspended until 1879 * the deed is done. Note that this is a recursive call, but 1880 * LW_WCORE will prevent us from coming back this way. 1881 */ 1882 if ((p->p_sflag & PS_WCORE) != 0) { 1883 lwp_lock(l); 1884 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1885 lwp_unlock(l); 1886 mutex_exit(p->p_lock); 1887 lwp_userret(l); 1888 panic("sigexit 1"); 1889 /* NOTREACHED */ 1890 } 1891 1892 /* If process is already on the way out, then bail now. */ 1893 if ((p->p_sflag & PS_WEXIT) != 0) { 1894 mutex_exit(p->p_lock); 1895 lwp_exit(l); 1896 panic("sigexit 2"); 1897 /* NOTREACHED */ 1898 } 1899 1900 /* 1901 * Prepare all other LWPs for exit. If dumping core, suspend them 1902 * so that their registers are available long enough to be dumped. 1903 */ 1904 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1905 p->p_sflag |= PS_WCORE; 1906 for (;;) { 1907 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1908 lwp_lock(t); 1909 if (t == l) { 1910 t->l_flag &= ~LW_WSUSPEND; 1911 lwp_unlock(t); 1912 continue; 1913 } 1914 t->l_flag |= (LW_WCORE | LW_WEXIT); 1915 lwp_suspend(l, t); 1916 } 1917 1918 if (p->p_nrlwps == 1) 1919 break; 1920 1921 /* 1922 * Kick any LWPs sitting in lwp_wait1(), and wait 1923 * for everyone else to stop before proceeding. 1924 */ 1925 p->p_nlwpwait++; 1926 cv_broadcast(&p->p_lwpcv); 1927 cv_wait(&p->p_lwpcv, p->p_lock); 1928 p->p_nlwpwait--; 1929 } 1930 } 1931 1932 exitsig = signo; 1933 p->p_acflag |= AXSIG; 1934 p->p_sigctx.ps_signo = signo; 1935 1936 if (docore) { 1937 mutex_exit(p->p_lock); 1938 if ((error = coredump(l, NULL)) == 0) 1939 exitsig |= WCOREFLAG; 1940 1941 if (kern_logsigexit) { 1942 int uid = l->l_cred ? 1943 (int)kauth_cred_geteuid(l->l_cred) : -1; 1944 1945 if (error) 1946 log(LOG_INFO, lognocoredump, p->p_pid, 1947 p->p_comm, uid, signo, error); 1948 else 1949 log(LOG_INFO, logcoredump, p->p_pid, 1950 p->p_comm, uid, signo); 1951 } 1952 1953 #ifdef PAX_SEGVGUARD 1954 pax_segvguard(l, p->p_textvp, p->p_comm, true); 1955 #endif /* PAX_SEGVGUARD */ 1956 /* Acquire the sched state mutex. exit1() will release it. */ 1957 mutex_enter(p->p_lock); 1958 } 1959 1960 /* No longer dumping core. */ 1961 p->p_sflag &= ~PS_WCORE; 1962 1963 exit1(l, W_EXITCODE(0, exitsig)); 1964 /* NOTREACHED */ 1965 } 1966 1967 /* 1968 * Put process 'p' into the stopped state and optionally, notify the parent. 1969 */ 1970 void 1971 proc_stop(struct proc *p, int notify, int signo) 1972 { 1973 struct lwp *l; 1974 1975 KASSERT(mutex_owned(p->p_lock)); 1976 1977 /* 1978 * First off, set the stopping indicator and bring all sleeping 1979 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 1980 * unlock between here and the p->p_nrlwps check below. 1981 */ 1982 p->p_sflag |= PS_STOPPING; 1983 if (notify) 1984 p->p_sflag |= PS_NOTIFYSTOP; 1985 else 1986 p->p_sflag &= ~PS_NOTIFYSTOP; 1987 membar_producer(); 1988 1989 proc_stop_lwps(p); 1990 1991 /* 1992 * If there are no LWPs available to take the signal, then we 1993 * signal the parent process immediately. Otherwise, the last 1994 * LWP to stop will take care of it. 1995 */ 1996 1997 if (p->p_nrlwps == 0) { 1998 proc_stop_done(p, true, PS_NOCLDSTOP); 1999 } else { 2000 /* 2001 * Have the remaining LWPs come to a halt, and trigger 2002 * proc_stop_callout() to ensure that they do. 2003 */ 2004 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2005 sigpost(l, SIG_DFL, SA_STOP, signo); 2006 callout_schedule(&proc_stop_ch, 1); 2007 } 2008 } 2009 2010 /* 2011 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2012 * but wait for them to come to a halt at the kernel-user boundary. This is 2013 * to allow LWPs to release any locks that they may hold before stopping. 2014 * 2015 * Non-interruptable sleeps can be long, and there is the potential for an 2016 * LWP to begin sleeping interruptably soon after the process has been set 2017 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2018 * stopping, and so complete halt of the process and the return of status 2019 * information to the parent could be delayed indefinitely. 2020 * 2021 * To handle this race, proc_stop_callout() runs once per tick while there 2022 * are stopping processes in the system. It sets LWPs that are sleeping 2023 * interruptably into the LSSTOP state. 2024 * 2025 * Note that we are not concerned about keeping all LWPs stopped while the 2026 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2027 * What we do need to ensure is that all LWPs in a stopping process have 2028 * stopped at least once, so that notification can be sent to the parent 2029 * process. 2030 */ 2031 static void 2032 proc_stop_callout(void *cookie) 2033 { 2034 bool more, restart; 2035 struct proc *p; 2036 2037 (void)cookie; 2038 2039 do { 2040 restart = false; 2041 more = false; 2042 2043 mutex_enter(proc_lock); 2044 PROCLIST_FOREACH(p, &allproc) { 2045 if ((p->p_flag & PK_MARKER) != 0) 2046 continue; 2047 mutex_enter(p->p_lock); 2048 2049 if ((p->p_sflag & PS_STOPPING) == 0) { 2050 mutex_exit(p->p_lock); 2051 continue; 2052 } 2053 2054 /* Stop any LWPs sleeping interruptably. */ 2055 proc_stop_lwps(p); 2056 if (p->p_nrlwps == 0) { 2057 /* 2058 * We brought the process to a halt. 2059 * Mark it as stopped and notify the 2060 * parent. 2061 */ 2062 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2063 /* 2064 * Note that proc_stop_done() will 2065 * drop p->p_lock briefly. 2066 * Arrange to restart and check 2067 * all processes again. 2068 */ 2069 restart = true; 2070 } 2071 proc_stop_done(p, true, PS_NOCLDSTOP); 2072 } else 2073 more = true; 2074 2075 mutex_exit(p->p_lock); 2076 if (restart) 2077 break; 2078 } 2079 mutex_exit(proc_lock); 2080 } while (restart); 2081 2082 /* 2083 * If we noted processes that are stopping but still have 2084 * running LWPs, then arrange to check again in 1 tick. 2085 */ 2086 if (more) 2087 callout_schedule(&proc_stop_ch, 1); 2088 } 2089 2090 /* 2091 * Given a process in state SSTOP, set the state back to SACTIVE and 2092 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2093 */ 2094 void 2095 proc_unstop(struct proc *p) 2096 { 2097 struct lwp *l; 2098 int sig; 2099 2100 KASSERT(mutex_owned(proc_lock)); 2101 KASSERT(mutex_owned(p->p_lock)); 2102 2103 p->p_stat = SACTIVE; 2104 p->p_sflag &= ~PS_STOPPING; 2105 sig = p->p_xstat; 2106 2107 if (!p->p_waited) 2108 p->p_pptr->p_nstopchild--; 2109 2110 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2111 lwp_lock(l); 2112 if (l->l_stat != LSSTOP) { 2113 lwp_unlock(l); 2114 continue; 2115 } 2116 if (l->l_wchan == NULL) { 2117 setrunnable(l); 2118 continue; 2119 } 2120 if (sig && (l->l_flag & LW_SINTR) != 0) { 2121 setrunnable(l); 2122 sig = 0; 2123 } else { 2124 l->l_stat = LSSLEEP; 2125 p->p_nrlwps++; 2126 lwp_unlock(l); 2127 } 2128 } 2129 } 2130 2131 static int 2132 filt_sigattach(struct knote *kn) 2133 { 2134 struct proc *p = curproc; 2135 2136 kn->kn_obj = p; 2137 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2138 2139 mutex_enter(p->p_lock); 2140 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2141 mutex_exit(p->p_lock); 2142 2143 return (0); 2144 } 2145 2146 static void 2147 filt_sigdetach(struct knote *kn) 2148 { 2149 struct proc *p = kn->kn_obj; 2150 2151 mutex_enter(p->p_lock); 2152 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2153 mutex_exit(p->p_lock); 2154 } 2155 2156 /* 2157 * signal knotes are shared with proc knotes, so we apply a mask to 2158 * the hint in order to differentiate them from process hints. This 2159 * could be avoided by using a signal-specific knote list, but probably 2160 * isn't worth the trouble. 2161 */ 2162 static int 2163 filt_signal(struct knote *kn, long hint) 2164 { 2165 2166 if (hint & NOTE_SIGNAL) { 2167 hint &= ~NOTE_SIGNAL; 2168 2169 if (kn->kn_id == hint) 2170 kn->kn_data++; 2171 } 2172 return (kn->kn_data != 0); 2173 } 2174 2175 const struct filterops sig_filtops = { 2176 0, filt_sigattach, filt_sigdetach, filt_signal 2177 }; 2178