xref: /netbsd-src/sys/kern/kern_sig.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /*	$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_compat_sunos.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_compat_netbsd32.h"
76 #include "opt_pax.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/exec.h>
92 #include <sys/kauth.h>
93 #include <sys/acct.h>
94 #include <sys/callout.h>
95 #include <sys/atomic.h>
96 #include <sys/cpu.h>
97 
98 #ifdef PAX_SEGVGUARD
99 #include <sys/pax.h>
100 #endif /* PAX_SEGVGUARD */
101 
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104 
105 static void	ksiginfo_exechook(struct proc *, void *);
106 static void	proc_stop_callout(void *);
107 
108 int	sigunwait(struct proc *, const ksiginfo_t *);
109 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
110 int	sigpost(struct lwp *, sig_t, int, int);
111 int	sigchecktrace(sigpend_t **);
112 void	sigswitch(bool, int, int);
113 void	sigrealloc(ksiginfo_t *);
114 
115 sigset_t	contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void	sigacts_poolpage_free(struct pool *, void *);
118 static void	*sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 
121 static struct pool_allocator sigactspool_allocator = {
122         .pa_alloc = sigacts_poolpage_alloc,
123 	.pa_free = sigacts_poolpage_free,
124 };
125 
126 #ifdef DEBUG
127 int	kern_logsigexit = 1;
128 #else
129 int	kern_logsigexit = 0;
130 #endif
131 
132 static	const char logcoredump[] =
133     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
134 static	const char lognocoredump[] =
135     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
136 
137 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
138     &pool_allocator_nointr, IPL_NONE);
139 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
140     NULL, IPL_VM);
141 
142 /*
143  * signal_init:
144  *
145  * 	Initialize global signal-related data structures.
146  */
147 void
148 signal_init(void)
149 {
150 
151 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
152 
153 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
154 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
155 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
156 
157 	exechook_establish(ksiginfo_exechook, NULL);
158 
159 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
160 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
161 }
162 
163 /*
164  * sigacts_poolpage_alloc:
165  *
166  *	 Allocate a page for the sigacts memory pool.
167  */
168 static void *
169 sigacts_poolpage_alloc(struct pool *pp, int flags)
170 {
171 
172 	return (void *)uvm_km_alloc(kernel_map,
173 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
174 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
175 	    | UVM_KMF_WIRED);
176 }
177 
178 /*
179  * sigacts_poolpage_free:
180  *
181  *	 Free a page on behalf of the sigacts memory pool.
182  */
183 static void
184 sigacts_poolpage_free(struct pool *pp, void *v)
185 {
186 
187         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
188 }
189 
190 /*
191  * sigactsinit:
192  *
193  *	 Create an initial sigctx structure, using the same signal state as
194  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
195  *	 copy it from parent.
196  */
197 struct sigacts *
198 sigactsinit(struct proc *pp, int share)
199 {
200 	struct sigacts *ps, *ps2;
201 
202 	ps = pp->p_sigacts;
203 
204 	if (share) {
205 		atomic_inc_uint(&ps->sa_refcnt);
206 		ps2 = ps;
207 	} else {
208 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
209 		/* XXXAD get rid of this */
210 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
211 		mutex_enter(&ps->sa_mutex);
212 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
213 		    sizeof(ps2->sa_sigdesc));
214 		mutex_exit(&ps->sa_mutex);
215 		ps2->sa_refcnt = 1;
216 	}
217 
218 	return ps2;
219 }
220 
221 /*
222  * sigactsunshare:
223  *
224  *	Make this process not share its sigctx, maintaining all
225  *	signal state.
226  */
227 void
228 sigactsunshare(struct proc *p)
229 {
230 	struct sigacts *ps, *oldps;
231 
232 	oldps = p->p_sigacts;
233 	if (oldps->sa_refcnt == 1)
234 		return;
235 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
236 	/* XXXAD get rid of this */
237 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
238 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
239 	p->p_sigacts = ps;
240 	sigactsfree(oldps);
241 }
242 
243 /*
244  * sigactsfree;
245  *
246  *	Release a sigctx structure.
247  */
248 void
249 sigactsfree(struct sigacts *ps)
250 {
251 
252 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
253 		mutex_destroy(&ps->sa_mutex);
254 		pool_cache_put(sigacts_cache, ps);
255 	}
256 }
257 
258 /*
259  * siginit:
260  *
261  *	Initialize signal state for process 0; set to ignore signals that
262  *	are ignored by default and disable the signal stack.  Locking not
263  *	required as the system is still cold.
264  */
265 void
266 siginit(struct proc *p)
267 {
268 	struct lwp *l;
269 	struct sigacts *ps;
270 	int signo, prop;
271 
272 	ps = p->p_sigacts;
273 	sigemptyset(&contsigmask);
274 	sigemptyset(&stopsigmask);
275 	sigemptyset(&sigcantmask);
276 	for (signo = 1; signo < NSIG; signo++) {
277 		prop = sigprop[signo];
278 		if (prop & SA_CONT)
279 			sigaddset(&contsigmask, signo);
280 		if (prop & SA_STOP)
281 			sigaddset(&stopsigmask, signo);
282 		if (prop & SA_CANTMASK)
283 			sigaddset(&sigcantmask, signo);
284 		if (prop & SA_IGNORE && signo != SIGCONT)
285 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
286 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
287 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
288 	}
289 	sigemptyset(&p->p_sigctx.ps_sigcatch);
290 	p->p_sflag &= ~PS_NOCLDSTOP;
291 
292 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
293 	sigemptyset(&p->p_sigpend.sp_set);
294 
295 	/*
296 	 * Reset per LWP state.
297 	 */
298 	l = LIST_FIRST(&p->p_lwps);
299 	l->l_sigwaited = NULL;
300 	l->l_sigstk.ss_flags = SS_DISABLE;
301 	l->l_sigstk.ss_size = 0;
302 	l->l_sigstk.ss_sp = 0;
303 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
304 	sigemptyset(&l->l_sigpend.sp_set);
305 
306 	/* One reference. */
307 	ps->sa_refcnt = 1;
308 }
309 
310 /*
311  * execsigs:
312  *
313  *	Reset signals for an exec of the specified process.
314  */
315 void
316 execsigs(struct proc *p)
317 {
318 	struct sigacts *ps;
319 	struct lwp *l;
320 	int signo, prop;
321 	sigset_t tset;
322 	ksiginfoq_t kq;
323 
324 	KASSERT(p->p_nlwps == 1);
325 
326 	sigactsunshare(p);
327 	ps = p->p_sigacts;
328 
329 	/*
330 	 * Reset caught signals.  Held signals remain held through
331 	 * l->l_sigmask (unless they were caught, and are now ignored
332 	 * by default).
333 	 *
334 	 * No need to lock yet, the process has only one LWP and
335 	 * at this point the sigacts are private to the process.
336 	 */
337 	sigemptyset(&tset);
338 	for (signo = 1; signo < NSIG; signo++) {
339 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
340 			prop = sigprop[signo];
341 			if (prop & SA_IGNORE) {
342 				if ((prop & SA_CONT) == 0)
343 					sigaddset(&p->p_sigctx.ps_sigignore,
344 					    signo);
345 				sigaddset(&tset, signo);
346 			}
347 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
348 		}
349 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
350 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
351 	}
352 	ksiginfo_queue_init(&kq);
353 
354 	mutex_enter(p->p_lock);
355 	sigclearall(p, &tset, &kq);
356 	sigemptyset(&p->p_sigctx.ps_sigcatch);
357 
358 	/*
359 	 * Reset no zombies if child dies flag as Solaris does.
360 	 */
361 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
362 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
363 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
364 
365 	/*
366 	 * Reset per-LWP state.
367 	 */
368 	l = LIST_FIRST(&p->p_lwps);
369 	l->l_sigwaited = NULL;
370 	l->l_sigstk.ss_flags = SS_DISABLE;
371 	l->l_sigstk.ss_size = 0;
372 	l->l_sigstk.ss_sp = 0;
373 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
374 	sigemptyset(&l->l_sigpend.sp_set);
375 	mutex_exit(p->p_lock);
376 
377 	ksiginfo_queue_drain(&kq);
378 }
379 
380 /*
381  * ksiginfo_exechook:
382  *
383  *	Free all pending ksiginfo entries from a process on exec.
384  *	Additionally, drain any unused ksiginfo structures in the
385  *	system back to the pool.
386  *
387  *	XXX This should not be a hook, every process has signals.
388  */
389 static void
390 ksiginfo_exechook(struct proc *p, void *v)
391 {
392 	ksiginfoq_t kq;
393 
394 	ksiginfo_queue_init(&kq);
395 
396 	mutex_enter(p->p_lock);
397 	sigclearall(p, NULL, &kq);
398 	mutex_exit(p->p_lock);
399 
400 	ksiginfo_queue_drain(&kq);
401 }
402 
403 /*
404  * ksiginfo_alloc:
405  *
406  *	Allocate a new ksiginfo structure from the pool, and optionally copy
407  *	an existing one.  If the existing ksiginfo_t is from the pool, and
408  *	has not been queued somewhere, then just return it.  Additionally,
409  *	if the existing ksiginfo_t does not contain any information beyond
410  *	the signal number, then just return it.
411  */
412 ksiginfo_t *
413 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
414 {
415 	ksiginfo_t *kp;
416 
417 	if (ok != NULL) {
418 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
419 		    KSI_FROMPOOL)
420 		    	return ok;
421 		if (KSI_EMPTY_P(ok))
422 			return ok;
423 	}
424 
425 	kp = pool_get(&ksiginfo_pool, flags);
426 	if (kp == NULL) {
427 #ifdef DIAGNOSTIC
428 		printf("Out of memory allocating ksiginfo for pid %d\n",
429 		    p->p_pid);
430 #endif
431 		return NULL;
432 	}
433 
434 	if (ok != NULL) {
435 		memcpy(kp, ok, sizeof(*kp));
436 		kp->ksi_flags &= ~KSI_QUEUED;
437 	} else
438 		KSI_INIT_EMPTY(kp);
439 
440 	kp->ksi_flags |= KSI_FROMPOOL;
441 
442 	return kp;
443 }
444 
445 /*
446  * ksiginfo_free:
447  *
448  *	If the given ksiginfo_t is from the pool and has not been queued,
449  *	then free it.
450  */
451 void
452 ksiginfo_free(ksiginfo_t *kp)
453 {
454 
455 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
456 		return;
457 	pool_put(&ksiginfo_pool, kp);
458 }
459 
460 /*
461  * ksiginfo_queue_drain:
462  *
463  *	Drain a non-empty ksiginfo_t queue.
464  */
465 void
466 ksiginfo_queue_drain0(ksiginfoq_t *kq)
467 {
468 	ksiginfo_t *ksi;
469 
470 	KASSERT(!CIRCLEQ_EMPTY(kq));
471 
472 	while (!CIRCLEQ_EMPTY(kq)) {
473 		ksi = CIRCLEQ_FIRST(kq);
474 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
475 		pool_put(&ksiginfo_pool, ksi);
476 	}
477 }
478 
479 /*
480  * sigget:
481  *
482  *	Fetch the first pending signal from a set.  Optionally, also fetch
483  *	or manufacture a ksiginfo element.  Returns the number of the first
484  *	pending signal, or zero.
485  */
486 int
487 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
488 {
489         ksiginfo_t *ksi;
490 	sigset_t tset;
491 
492 	/* If there's no pending set, the signal is from the debugger. */
493 	if (sp == NULL) {
494 		if (out != NULL) {
495 			KSI_INIT(out);
496 			out->ksi_info._signo = signo;
497 			out->ksi_info._code = SI_USER;
498 		}
499 		return signo;
500 	}
501 
502 	/* Construct mask from signo, and 'mask'. */
503 	if (signo == 0) {
504 		if (mask != NULL) {
505 			tset = *mask;
506 			__sigandset(&sp->sp_set, &tset);
507 		} else
508 			tset = sp->sp_set;
509 
510 		/* If there are no signals pending, that's it. */
511 		if ((signo = firstsig(&tset)) == 0)
512 			return 0;
513 	} else {
514 		KASSERT(sigismember(&sp->sp_set, signo));
515 	}
516 
517 	sigdelset(&sp->sp_set, signo);
518 
519 	/* Find siginfo and copy it out. */
520 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
521 		if (ksi->ksi_signo == signo) {
522 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
523 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
524 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
525 			ksi->ksi_flags &= ~KSI_QUEUED;
526 			if (out != NULL) {
527 				memcpy(out, ksi, sizeof(*out));
528 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
529 			}
530 			ksiginfo_free(ksi);
531 			return signo;
532 		}
533 	}
534 
535 	/* If there's no siginfo, then manufacture it. */
536 	if (out != NULL) {
537 		KSI_INIT(out);
538 		out->ksi_info._signo = signo;
539 		out->ksi_info._code = SI_USER;
540 	}
541 
542 	return signo;
543 }
544 
545 /*
546  * sigput:
547  *
548  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
549  *	we need to (e.g. SA_SIGINFO was requested).
550  */
551 void
552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
553 {
554 	ksiginfo_t *kp;
555 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
556 
557 	KASSERT(mutex_owned(p->p_lock));
558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559 
560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
561 
562 	/*
563 	 * If siginfo is not required, or there is none, then just mark the
564 	 * signal as pending.
565 	 */
566 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
567 		return;
568 
569 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
570 
571 #ifdef notyet	/* XXX: QUEUING */
572 	if (ksi->ksi_signo < SIGRTMIN)
573 #endif
574 	{
575 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
576 			if (kp->ksi_signo == ksi->ksi_signo) {
577 				KSI_COPY(ksi, kp);
578 				kp->ksi_flags |= KSI_QUEUED;
579 				return;
580 			}
581 		}
582 	}
583 
584 	ksi->ksi_flags |= KSI_QUEUED;
585 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
586 }
587 
588 /*
589  * sigclear:
590  *
591  *	Clear all pending signals in the specified set.
592  */
593 void
594 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
595 {
596 	ksiginfo_t *ksi, *next;
597 
598 	if (mask == NULL)
599 		sigemptyset(&sp->sp_set);
600 	else
601 		sigminusset(mask, &sp->sp_set);
602 
603 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
604 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
605 		next = CIRCLEQ_NEXT(ksi, ksi_list);
606 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
607 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
608 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
609 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
610 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
611 		}
612 	}
613 }
614 
615 /*
616  * sigclearall:
617  *
618  *	Clear all pending signals in the specified set from a process and
619  *	its LWPs.
620  */
621 void
622 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
623 {
624 	struct lwp *l;
625 
626 	KASSERT(mutex_owned(p->p_lock));
627 
628 	sigclear(&p->p_sigpend, mask, kq);
629 
630 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
631 		sigclear(&l->l_sigpend, mask, kq);
632 	}
633 }
634 
635 /*
636  * sigispending:
637  *
638  *	Return true if there are pending signals for the current LWP.  May
639  *	be called unlocked provided that LW_PENDSIG is set, and that the
640  *	signal has been posted to the appopriate queue before LW_PENDSIG is
641  *	set.
642  */
643 int
644 sigispending(struct lwp *l, int signo)
645 {
646 	struct proc *p = l->l_proc;
647 	sigset_t tset;
648 
649 	membar_consumer();
650 
651 	tset = l->l_sigpend.sp_set;
652 	sigplusset(&p->p_sigpend.sp_set, &tset);
653 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
654 	sigminusset(&l->l_sigmask, &tset);
655 
656 	if (signo == 0) {
657 		if (firstsig(&tset) != 0)
658 			return EINTR;
659 	} else if (sigismember(&tset, signo))
660 		return EINTR;
661 
662 	return 0;
663 }
664 
665 /*
666  * siginfo_alloc:
667  *
668  *	 Allocate a new siginfo_t structure from the pool.
669  */
670 siginfo_t *
671 siginfo_alloc(int flags)
672 {
673 
674 	return pool_get(&siginfo_pool, flags);
675 }
676 
677 /*
678  * siginfo_free:
679  *
680  *	 Return a siginfo_t structure to the pool.
681  */
682 void
683 siginfo_free(void *arg)
684 {
685 
686 	pool_put(&siginfo_pool, arg);
687 }
688 
689 void
690 getucontext(struct lwp *l, ucontext_t *ucp)
691 {
692 	struct proc *p = l->l_proc;
693 
694 	KASSERT(mutex_owned(p->p_lock));
695 
696 	ucp->uc_flags = 0;
697 	ucp->uc_link = l->l_ctxlink;
698 
699 	ucp->uc_sigmask = l->l_sigmask;
700 	ucp->uc_flags |= _UC_SIGMASK;
701 
702 	/*
703 	 * The (unsupplied) definition of the `current execution stack'
704 	 * in the System V Interface Definition appears to allow returning
705 	 * the main context stack.
706 	 */
707 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
708 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
709 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
710 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
711 	} else {
712 		/* Simply copy alternate signal execution stack. */
713 		ucp->uc_stack = l->l_sigstk;
714 	}
715 	ucp->uc_flags |= _UC_STACK;
716 	mutex_exit(p->p_lock);
717 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
718 	mutex_enter(p->p_lock);
719 }
720 
721 int
722 setucontext(struct lwp *l, const ucontext_t *ucp)
723 {
724 	struct proc *p = l->l_proc;
725 	int error;
726 
727 	KASSERT(mutex_owned(p->p_lock));
728 
729 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
730 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
731 		if (error != 0)
732 			return error;
733 	}
734 
735 	mutex_exit(p->p_lock);
736 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
737 	mutex_enter(p->p_lock);
738 	if (error != 0)
739 		return (error);
740 
741 	l->l_ctxlink = ucp->uc_link;
742 
743 	/*
744 	 * If there was stack information, update whether or not we are
745 	 * still running on an alternate signal stack.
746 	 */
747 	if ((ucp->uc_flags & _UC_STACK) != 0) {
748 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
749 			l->l_sigstk.ss_flags |= SS_ONSTACK;
750 		else
751 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
752 	}
753 
754 	return 0;
755 }
756 
757 /*
758  * Common code for kill process group/broadcast kill.  cp is calling
759  * process.
760  */
761 int
762 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
763 {
764 	struct proc	*p, *cp;
765 	kauth_cred_t	pc;
766 	struct pgrp	*pgrp;
767 	int		nfound;
768 	int		signo = ksi->ksi_signo;
769 
770 	cp = l->l_proc;
771 	pc = l->l_cred;
772 	nfound = 0;
773 
774 	mutex_enter(proc_lock);
775 	if (all) {
776 		/*
777 		 * broadcast
778 		 */
779 		PROCLIST_FOREACH(p, &allproc) {
780 			if (p->p_pid <= 1 || p == cp ||
781 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
782 				continue;
783 			mutex_enter(p->p_lock);
784 			if (kauth_authorize_process(pc,
785 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
786 			    NULL) == 0) {
787 				nfound++;
788 				if (signo)
789 					kpsignal2(p, ksi);
790 			}
791 			mutex_exit(p->p_lock);
792 		}
793 	} else {
794 		if (pgid == 0)
795 			/*
796 			 * zero pgid means send to my process group.
797 			 */
798 			pgrp = cp->p_pgrp;
799 		else {
800 			pgrp = pg_find(pgid, PFIND_LOCKED);
801 			if (pgrp == NULL)
802 				goto out;
803 		}
804 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
805 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
806 				continue;
807 			mutex_enter(p->p_lock);
808 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
809 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
810 				nfound++;
811 				if (signo && P_ZOMBIE(p) == 0)
812 					kpsignal2(p, ksi);
813 			}
814 			mutex_exit(p->p_lock);
815 		}
816 	}
817   out:
818 	mutex_exit(proc_lock);
819 	return (nfound ? 0 : ESRCH);
820 }
821 
822 /*
823  * Send a signal to a process group. If checktty is 1, limit to members
824  * which have a controlling terminal.
825  */
826 void
827 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
828 {
829 	ksiginfo_t ksi;
830 
831 	KASSERT(!cpu_intr_p());
832 	KASSERT(mutex_owned(proc_lock));
833 
834 	KSI_INIT_EMPTY(&ksi);
835 	ksi.ksi_signo = sig;
836 	kpgsignal(pgrp, &ksi, NULL, checkctty);
837 }
838 
839 void
840 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
841 {
842 	struct proc *p;
843 
844 	KASSERT(!cpu_intr_p());
845 	KASSERT(mutex_owned(proc_lock));
846 
847 	if (pgrp)
848 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
849 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
850 				kpsignal(p, ksi, data);
851 }
852 
853 /*
854  * Send a signal caused by a trap to the current LWP.  If it will be caught
855  * immediately, deliver it with correct code.  Otherwise, post it normally.
856  */
857 void
858 trapsignal(struct lwp *l, ksiginfo_t *ksi)
859 {
860 	struct proc	*p;
861 	struct sigacts	*ps;
862 	int signo = ksi->ksi_signo;
863 
864 	KASSERT(KSI_TRAP_P(ksi));
865 
866 	ksi->ksi_lid = l->l_lid;
867 	p = l->l_proc;
868 
869 	KASSERT(!cpu_intr_p());
870 	mutex_enter(proc_lock);
871 	mutex_enter(p->p_lock);
872 	ps = p->p_sigacts;
873 	if ((p->p_slflag & PSL_TRACED) == 0 &&
874 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
875 	    !sigismember(&l->l_sigmask, signo)) {
876 		mutex_exit(proc_lock);
877 		l->l_ru.ru_nsignals++;
878 		kpsendsig(l, ksi, &l->l_sigmask);
879 		mutex_exit(p->p_lock);
880 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
881 		    &l->l_sigmask, ksi);
882 	} else {
883 		/* XXX for core dump/debugger */
884 		p->p_sigctx.ps_lwp = l->l_lid;
885 		p->p_sigctx.ps_signo = ksi->ksi_signo;
886 		p->p_sigctx.ps_code = ksi->ksi_trap;
887 		kpsignal2(p, ksi);
888 		mutex_exit(p->p_lock);
889 		mutex_exit(proc_lock);
890 	}
891 }
892 
893 /*
894  * Fill in signal information and signal the parent for a child status change.
895  */
896 void
897 child_psignal(struct proc *p, int mask)
898 {
899 	ksiginfo_t ksi;
900 	struct proc *q;
901 	int xstat;
902 
903 	KASSERT(mutex_owned(proc_lock));
904 	KASSERT(mutex_owned(p->p_lock));
905 
906 	xstat = p->p_xstat;
907 
908 	KSI_INIT(&ksi);
909 	ksi.ksi_signo = SIGCHLD;
910 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
911 	ksi.ksi_pid = p->p_pid;
912 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
913 	ksi.ksi_status = xstat;
914 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
915 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
916 
917 	q = p->p_pptr;
918 
919 	mutex_exit(p->p_lock);
920 	mutex_enter(q->p_lock);
921 
922 	if ((q->p_sflag & mask) == 0)
923 		kpsignal2(q, &ksi);
924 
925 	mutex_exit(q->p_lock);
926 	mutex_enter(p->p_lock);
927 }
928 
929 void
930 psignal(struct proc *p, int signo)
931 {
932 	ksiginfo_t ksi;
933 
934 	KASSERT(!cpu_intr_p());
935 	KASSERT(mutex_owned(proc_lock));
936 
937 	KSI_INIT_EMPTY(&ksi);
938 	ksi.ksi_signo = signo;
939 	mutex_enter(p->p_lock);
940 	kpsignal2(p, &ksi);
941 	mutex_exit(p->p_lock);
942 }
943 
944 void
945 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
946 {
947 	fdfile_t *ff;
948 	file_t *fp;
949 
950 	KASSERT(!cpu_intr_p());
951 	KASSERT(mutex_owned(proc_lock));
952 
953 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
954 		size_t fd;
955 		filedesc_t *fdp = p->p_fd;
956 
957 		/* XXXSMP locking */
958 		ksi->ksi_fd = -1;
959 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
960 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
961 				continue;
962 			if ((fp = ff->ff_file) == NULL)
963 				continue;
964 			if (fp->f_data == data) {
965 				ksi->ksi_fd = fd;
966 				break;
967 			}
968 		}
969 	}
970 	mutex_enter(p->p_lock);
971 	kpsignal2(p, ksi);
972 	mutex_exit(p->p_lock);
973 }
974 
975 /*
976  * sigismasked:
977  *
978  *	 Returns true if signal is ignored or masked for the specified LWP.
979  */
980 int
981 sigismasked(struct lwp *l, int sig)
982 {
983 	struct proc *p = l->l_proc;
984 
985 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
986 	    sigismember(&l->l_sigmask, sig));
987 }
988 
989 /*
990  * sigpost:
991  *
992  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
993  *	 able to take the signal.
994  */
995 int
996 sigpost(struct lwp *l, sig_t action, int prop, int sig)
997 {
998 	int rv, masked;
999 
1000 	KASSERT(mutex_owned(l->l_proc->p_lock));
1001 
1002 	/*
1003 	 * If the LWP is on the way out, sigclear() will be busy draining all
1004 	 * pending signals.  Don't give it more.
1005 	 */
1006 	if (l->l_refcnt == 0)
1007 		return 0;
1008 
1009 	lwp_lock(l);
1010 
1011 	/*
1012 	 * Have the LWP check for signals.  This ensures that even if no LWP
1013 	 * is found to take the signal immediately, it should be taken soon.
1014 	 */
1015 	l->l_flag |= LW_PENDSIG;
1016 
1017 	/*
1018 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1019 	 */
1020 	masked = sigismember(&l->l_sigmask, sig);
1021 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1022 		lwp_unlock(l);
1023 		return 0;
1024 	}
1025 
1026 	/*
1027 	 * If killing the process, make it run fast.
1028 	 */
1029 	if (__predict_false((prop & SA_KILL) != 0) &&
1030 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1031 		KASSERT(l->l_class == SCHED_OTHER);
1032 		lwp_changepri(l, MAXPRI_USER);
1033 	}
1034 
1035 	/*
1036 	 * If the LWP is running or on a run queue, then we win.  If it's
1037 	 * sleeping interruptably, wake it and make it take the signal.  If
1038 	 * the sleep isn't interruptable, then the chances are it will get
1039 	 * to see the signal soon anyhow.  If suspended, it can't take the
1040 	 * signal right now.  If it's LWP private or for all LWPs, save it
1041 	 * for later; otherwise punt.
1042 	 */
1043 	rv = 0;
1044 
1045 	switch (l->l_stat) {
1046 	case LSRUN:
1047 	case LSONPROC:
1048 		lwp_need_userret(l);
1049 		rv = 1;
1050 		break;
1051 
1052 	case LSSLEEP:
1053 		if ((l->l_flag & LW_SINTR) != 0) {
1054 			/* setrunnable() will release the lock. */
1055 			setrunnable(l);
1056 			return 1;
1057 		}
1058 		break;
1059 
1060 	case LSSUSPENDED:
1061 		if ((prop & SA_KILL) != 0) {
1062 			/* lwp_continue() will release the lock. */
1063 			lwp_continue(l);
1064 			return 1;
1065 		}
1066 		break;
1067 
1068 	case LSSTOP:
1069 		if ((prop & SA_STOP) != 0)
1070 			break;
1071 
1072 		/*
1073 		 * If the LWP is stopped and we are sending a continue
1074 		 * signal, then start it again.
1075 		 */
1076 		if ((prop & SA_CONT) != 0) {
1077 			if (l->l_wchan != NULL) {
1078 				l->l_stat = LSSLEEP;
1079 				l->l_proc->p_nrlwps++;
1080 				rv = 1;
1081 				break;
1082 			}
1083 			/* setrunnable() will release the lock. */
1084 			setrunnable(l);
1085 			return 1;
1086 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1087 			/* setrunnable() will release the lock. */
1088 			setrunnable(l);
1089 			return 1;
1090 		}
1091 		break;
1092 
1093 	default:
1094 		break;
1095 	}
1096 
1097 	lwp_unlock(l);
1098 	return rv;
1099 }
1100 
1101 /*
1102  * Notify an LWP that it has a pending signal.
1103  */
1104 void
1105 signotify(struct lwp *l)
1106 {
1107 	KASSERT(lwp_locked(l, NULL));
1108 
1109 	l->l_flag |= LW_PENDSIG;
1110 	lwp_need_userret(l);
1111 }
1112 
1113 /*
1114  * Find an LWP within process p that is waiting on signal ksi, and hand
1115  * it on.
1116  */
1117 int
1118 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1119 {
1120 	struct lwp *l;
1121 	int signo;
1122 
1123 	KASSERT(mutex_owned(p->p_lock));
1124 
1125 	signo = ksi->ksi_signo;
1126 
1127 	if (ksi->ksi_lid != 0) {
1128 		/*
1129 		 * Signal came via _lwp_kill().  Find the LWP and see if
1130 		 * it's interested.
1131 		 */
1132 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1133 			return 0;
1134 		if (l->l_sigwaited == NULL ||
1135 		    !sigismember(&l->l_sigwaitset, signo))
1136 			return 0;
1137 	} else {
1138 		/*
1139 		 * Look for any LWP that may be interested.
1140 		 */
1141 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1142 			KASSERT(l->l_sigwaited != NULL);
1143 			if (sigismember(&l->l_sigwaitset, signo))
1144 				break;
1145 		}
1146 	}
1147 
1148 	if (l != NULL) {
1149 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1150 		l->l_sigwaited = NULL;
1151 		LIST_REMOVE(l, l_sigwaiter);
1152 		cv_signal(&l->l_sigcv);
1153 		return 1;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Send the signal to the process.  If the signal has an action, the action
1161  * is usually performed by the target process rather than the caller; we add
1162  * the signal to the set of pending signals for the process.
1163  *
1164  * Exceptions:
1165  *   o When a stop signal is sent to a sleeping process that takes the
1166  *     default action, the process is stopped without awakening it.
1167  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1168  *     regardless of the signal action (eg, blocked or ignored).
1169  *
1170  * Other ignored signals are discarded immediately.
1171  */
1172 void
1173 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1174 {
1175 	int prop, lid, toall, signo = ksi->ksi_signo;
1176 	struct sigacts *sa;
1177 	struct lwp *l;
1178 	ksiginfo_t *kp;
1179 	ksiginfoq_t kq;
1180 	sig_t action;
1181 
1182 	KASSERT(!cpu_intr_p());
1183 	KASSERT(mutex_owned(proc_lock));
1184 	KASSERT(mutex_owned(p->p_lock));
1185 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1186 	KASSERT(signo > 0 && signo < NSIG);
1187 
1188 	/*
1189 	 * If the process is being created by fork, is a zombie or is
1190 	 * exiting, then just drop the signal here and bail out.
1191 	 */
1192 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1193 		return;
1194 
1195 	/*
1196 	 * Notify any interested parties of the signal.
1197 	 */
1198 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1199 
1200 	/*
1201 	 * Some signals including SIGKILL must act on the entire process.
1202 	 */
1203 	kp = NULL;
1204 	prop = sigprop[signo];
1205 	toall = ((prop & SA_TOALL) != 0);
1206 
1207 	if (toall)
1208 		lid = 0;
1209 	else
1210 		lid = ksi->ksi_lid;
1211 
1212 	/*
1213 	 * If proc is traced, always give parent a chance.
1214 	 */
1215 	if (p->p_slflag & PSL_TRACED) {
1216 		action = SIG_DFL;
1217 
1218 		if (lid == 0) {
1219 			/*
1220 			 * If the process is being traced and the signal
1221 			 * is being caught, make sure to save any ksiginfo.
1222 			 */
1223 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1224 				return;
1225 			sigput(&p->p_sigpend, p, kp);
1226 		}
1227 	} else {
1228 		/*
1229 		 * If the signal was the result of a trap and is not being
1230 		 * caught, then reset it to default action so that the
1231 		 * process dumps core immediately.
1232 		 */
1233 		if (KSI_TRAP_P(ksi)) {
1234 			sa = p->p_sigacts;
1235 			mutex_enter(&sa->sa_mutex);
1236 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1237 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1238 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1239 			}
1240 			mutex_exit(&sa->sa_mutex);
1241 		}
1242 
1243 		/*
1244 		 * If the signal is being ignored, then drop it.  Note: we
1245 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1246 		 * SIG_IGN, action will be SIG_DFL here.
1247 		 */
1248 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1249 			return;
1250 
1251 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1252 			action = SIG_CATCH;
1253 		else {
1254 			action = SIG_DFL;
1255 
1256 			/*
1257 			 * If sending a tty stop signal to a member of an
1258 			 * orphaned process group, discard the signal here if
1259 			 * the action is default; don't stop the process below
1260 			 * if sleeping, and don't clear any pending SIGCONT.
1261 			 */
1262 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1263 				return;
1264 
1265 			if (prop & SA_KILL && p->p_nice > NZERO)
1266 				p->p_nice = NZERO;
1267 		}
1268 	}
1269 
1270 	/*
1271 	 * If stopping or continuing a process, discard any pending
1272 	 * signals that would do the inverse.
1273 	 */
1274 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1275 		ksiginfo_queue_init(&kq);
1276 		if ((prop & SA_CONT) != 0)
1277 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1278 		if ((prop & SA_STOP) != 0)
1279 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1280 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1281 	}
1282 
1283 	/*
1284 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1285 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1286 	 * the signal info.  The signal won't be processed further here.
1287 	 */
1288 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1289 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1290 	    sigunwait(p, ksi))
1291 		return;
1292 
1293 	/*
1294 	 * XXXSMP Should be allocated by the caller, we're holding locks
1295 	 * here.
1296 	 */
1297 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1298 		return;
1299 
1300 	/*
1301 	 * LWP private signals are easy - just find the LWP and post
1302 	 * the signal to it.
1303 	 */
1304 	if (lid != 0) {
1305 		l = lwp_find(p, lid);
1306 		if (l != NULL) {
1307 			sigput(&l->l_sigpend, p, kp);
1308 			membar_producer();
1309 			(void)sigpost(l, action, prop, kp->ksi_signo);
1310 		}
1311 		goto out;
1312 	}
1313 
1314 	/*
1315 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
1316 	 */
1317 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1318 		if ((p->p_slflag & PSL_TRACED) != 0)
1319 			goto deliver;
1320 
1321 		/*
1322 		 * If SIGCONT is default (or ignored) and process is
1323 		 * asleep, we are finished; the process should not
1324 		 * be awakened.
1325 		 */
1326 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1327 			goto out;
1328 
1329 		sigput(&p->p_sigpend, p, kp);
1330 	} else {
1331 		/*
1332 		 * Process is stopped or stopping.  If traced, then no
1333 		 * further action is necessary.
1334 		 */
1335 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1336 			goto out;
1337 
1338 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1339 			/*
1340 			 * Re-adjust p_nstopchild if the process wasn't
1341 			 * collected by its parent.
1342 			 */
1343 			p->p_stat = SACTIVE;
1344 			p->p_sflag &= ~PS_STOPPING;
1345 			if (!p->p_waited)
1346 				p->p_pptr->p_nstopchild--;
1347 
1348 			/*
1349 			 * If SIGCONT is default (or ignored), we continue
1350 			 * the process but don't leave the signal in
1351 			 * ps_siglist, as it has no further action.  If
1352 			 * SIGCONT is held, we continue the process and
1353 			 * leave the signal in ps_siglist.  If the process
1354 			 * catches SIGCONT, let it handle the signal itself.
1355 			 * If it isn't waiting on an event, then it goes
1356 			 * back to run state.  Otherwise, process goes back
1357 			 * to sleep state.
1358 			 */
1359 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1360 				sigput(&p->p_sigpend, p, kp);
1361 		} else if ((prop & SA_STOP) != 0) {
1362 			/*
1363 			 * Already stopped, don't need to stop again.
1364 			 * (If we did the shell could get confused.)
1365 			 */
1366 			goto out;
1367 		} else
1368 			sigput(&p->p_sigpend, p, kp);
1369 	}
1370 
1371  deliver:
1372 	/*
1373 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1374 	 * visible on the per process list (for sigispending()).  This
1375 	 * is unlikely to be needed in practice, but...
1376 	 */
1377 	membar_producer();
1378 
1379 	/*
1380 	 * Try to find an LWP that can take the signal.
1381 	 */
1382 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1383 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1384 			break;
1385 
1386  out:
1387  	/*
1388  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1389  	 * with locks held.  The caller should take care of this.
1390  	 */
1391  	ksiginfo_free(kp);
1392 }
1393 
1394 void
1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1396 {
1397 	struct proc *p = l->l_proc;
1398 
1399 	KASSERT(mutex_owned(p->p_lock));
1400 
1401 	(*p->p_emul->e_sendsig)(ksi, mask);
1402 }
1403 
1404 /*
1405  * Stop any LWPs sleeping interruptably.
1406  */
1407 static void
1408 proc_stop_lwps(struct proc *p)
1409 {
1410 	struct lwp *l;
1411 
1412 	KASSERT(mutex_owned(p->p_lock));
1413 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1414 
1415 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1416 		lwp_lock(l);
1417 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1418 			l->l_stat = LSSTOP;
1419 			p->p_nrlwps--;
1420 		}
1421 		lwp_unlock(l);
1422 	}
1423 }
1424 
1425 /*
1426  * Finish stopping of a process.  Mark it stopped and notify the parent.
1427  *
1428  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1429  */
1430 static void
1431 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1432 {
1433 
1434 	KASSERT(mutex_owned(proc_lock));
1435 	KASSERT(mutex_owned(p->p_lock));
1436 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1437 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1438 
1439 	p->p_sflag &= ~PS_STOPPING;
1440 	p->p_stat = SSTOP;
1441 	p->p_waited = 0;
1442 	p->p_pptr->p_nstopchild++;
1443 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1444 		if (ppsig) {
1445 			/* child_psignal drops p_lock briefly. */
1446 			child_psignal(p, ppmask);
1447 		}
1448 		cv_broadcast(&p->p_pptr->p_waitcv);
1449 	}
1450 }
1451 
1452 /*
1453  * Stop the current process and switch away when being stopped or traced.
1454  */
1455 void
1456 sigswitch(bool ppsig, int ppmask, int signo)
1457 {
1458 	struct lwp *l = curlwp;
1459 	struct proc *p = l->l_proc;
1460 #ifdef MULTIPROCESSOR
1461 	int biglocks;
1462 #endif
1463 
1464 	KASSERT(mutex_owned(p->p_lock));
1465 	KASSERT(l->l_stat == LSONPROC);
1466 	KASSERT(p->p_nrlwps > 0);
1467 
1468 	/*
1469 	 * On entry we know that the process needs to stop.  If it's
1470 	 * the result of a 'sideways' stop signal that has been sourced
1471 	 * through issignal(), then stop other LWPs in the process too.
1472 	 */
1473 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1474 		KASSERT(signo != 0);
1475 		proc_stop(p, 1, signo);
1476 		KASSERT(p->p_nrlwps > 0);
1477 	}
1478 
1479 	/*
1480 	 * If we are the last live LWP, and the stop was a result of
1481 	 * a new signal, then signal the parent.
1482 	 */
1483 	if ((p->p_sflag & PS_STOPPING) != 0) {
1484 		if (!mutex_tryenter(proc_lock)) {
1485 			mutex_exit(p->p_lock);
1486 			mutex_enter(proc_lock);
1487 			mutex_enter(p->p_lock);
1488 		}
1489 
1490 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1491 			/*
1492 			 * Note that proc_stop_done() can drop
1493 			 * p->p_lock briefly.
1494 			 */
1495 			proc_stop_done(p, ppsig, ppmask);
1496 		}
1497 
1498 		mutex_exit(proc_lock);
1499 	}
1500 
1501 	/*
1502 	 * Unlock and switch away.
1503 	 */
1504 	KERNEL_UNLOCK_ALL(l, &biglocks);
1505 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1506 		p->p_nrlwps--;
1507 		lwp_lock(l);
1508 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1509 		l->l_stat = LSSTOP;
1510 		lwp_unlock(l);
1511 	}
1512 
1513 	mutex_exit(p->p_lock);
1514 	lwp_lock(l);
1515 	mi_switch(l);
1516 	KERNEL_LOCK(biglocks, l);
1517 	mutex_enter(p->p_lock);
1518 }
1519 
1520 /*
1521  * Check for a signal from the debugger.
1522  */
1523 int
1524 sigchecktrace(sigpend_t **spp)
1525 {
1526 	struct lwp *l = curlwp;
1527 	struct proc *p = l->l_proc;
1528 	int signo;
1529 
1530 	KASSERT(mutex_owned(p->p_lock));
1531 
1532 	/*
1533 	 * If we are no longer being traced, or the parent didn't
1534 	 * give us a signal, look for more signals.
1535 	 */
1536 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1537 		return 0;
1538 
1539 	/* If there's a pending SIGKILL, process it immediately. */
1540 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1541 		return 0;
1542 
1543 	/*
1544 	 * If the new signal is being masked, look for other signals.
1545 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1546 	 */
1547 	signo = p->p_xstat;
1548 	p->p_xstat = 0;
1549 	if ((sigprop[signo] & SA_TOLWP) != 0)
1550 		*spp = &l->l_sigpend;
1551 	else
1552 		*spp = &p->p_sigpend;
1553 	if (sigismember(&l->l_sigmask, signo))
1554 		signo = 0;
1555 
1556 	return signo;
1557 }
1558 
1559 /*
1560  * If the current process has received a signal (should be caught or cause
1561  * termination, should interrupt current syscall), return the signal number.
1562  *
1563  * Stop signals with default action are processed immediately, then cleared;
1564  * they aren't returned.  This is checked after each entry to the system for
1565  * a syscall or trap.
1566  *
1567  * We will also return -1 if the process is exiting and the current LWP must
1568  * follow suit.
1569  *
1570  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1571  * can switch away, though.
1572  */
1573 int
1574 issignal(struct lwp *l)
1575 {
1576 	struct proc *p = l->l_proc;
1577 	int signo = 0, prop;
1578 	sigpend_t *sp = NULL;
1579 	sigset_t ss;
1580 
1581 	KASSERT(mutex_owned(p->p_lock));
1582 
1583 	for (;;) {
1584 		/* Discard any signals that we have decided not to take. */
1585 		if (signo != 0)
1586 			(void)sigget(sp, NULL, signo, NULL);
1587 
1588 		/*
1589 		 * If the process is stopped/stopping, then stop ourselves
1590 		 * now that we're on the kernel/userspace boundary.  When
1591 		 * we awaken, check for a signal from the debugger.
1592 		 */
1593 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1594 			sigswitch(true, PS_NOCLDSTOP, 0);
1595 			signo = sigchecktrace(&sp);
1596 		} else
1597 			signo = 0;
1598 
1599 		/*
1600 		 * If the debugger didn't provide a signal, find a pending
1601 		 * signal from our set.  Check per-LWP signals first, and
1602 		 * then per-process.
1603 		 */
1604 		if (signo == 0) {
1605 			sp = &l->l_sigpend;
1606 			ss = sp->sp_set;
1607 			if ((p->p_sflag & PS_PPWAIT) != 0)
1608 				sigminusset(&stopsigmask, &ss);
1609 			sigminusset(&l->l_sigmask, &ss);
1610 
1611 			if ((signo = firstsig(&ss)) == 0) {
1612 				sp = &p->p_sigpend;
1613 				ss = sp->sp_set;
1614 				if ((p->p_sflag & PS_PPWAIT) != 0)
1615 					sigminusset(&stopsigmask, &ss);
1616 				sigminusset(&l->l_sigmask, &ss);
1617 
1618 				if ((signo = firstsig(&ss)) == 0) {
1619 					/*
1620 					 * No signal pending - clear the
1621 					 * indicator and bail out.
1622 					 */
1623 					lwp_lock(l);
1624 					l->l_flag &= ~LW_PENDSIG;
1625 					lwp_unlock(l);
1626 					sp = NULL;
1627 					break;
1628 				}
1629 			}
1630 		}
1631 
1632 		/*
1633 		 * We should see pending but ignored signals only if
1634 		 * we are being traced.
1635 		 */
1636 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1637 		    (p->p_slflag & PSL_TRACED) == 0) {
1638 			/* Discard the signal. */
1639 			continue;
1640 		}
1641 
1642 		/*
1643 		 * If traced, always stop, and stay stopped until released
1644 		 * by the debugger.  If the our parent process is waiting
1645 		 * for us, don't hang as we could deadlock.
1646 		 */
1647 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1648 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1649 			/* Take the signal. */
1650 			(void)sigget(sp, NULL, signo, NULL);
1651 			p->p_xstat = signo;
1652 
1653 			/* Emulation-specific handling of signal trace */
1654 			if (p->p_emul->e_tracesig == NULL ||
1655 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1656 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1657 				    signo);
1658 
1659 			/* Check for a signal from the debugger. */
1660 			if ((signo = sigchecktrace(&sp)) == 0)
1661 				continue;
1662 		}
1663 
1664 		prop = sigprop[signo];
1665 
1666 		/*
1667 		 * Decide whether the signal should be returned.
1668 		 */
1669 		switch ((long)SIGACTION(p, signo).sa_handler) {
1670 		case (long)SIG_DFL:
1671 			/*
1672 			 * Don't take default actions on system processes.
1673 			 */
1674 			if (p->p_pid <= 1) {
1675 #ifdef DIAGNOSTIC
1676 				/*
1677 				 * Are you sure you want to ignore SIGSEGV
1678 				 * in init? XXX
1679 				 */
1680 				printf_nolog("Process (pid %d) got sig %d\n",
1681 				    p->p_pid, signo);
1682 #endif
1683 				continue;
1684 			}
1685 
1686 			/*
1687 			 * If there is a pending stop signal to process with
1688 			 * default action, stop here, then clear the signal.
1689 			 * However, if process is member of an orphaned
1690 			 * process group, ignore tty stop signals.
1691 			 */
1692 			if (prop & SA_STOP) {
1693 				/*
1694 				 * XXX Don't hold proc_lock for p_lflag,
1695 				 * but it's not a big deal.
1696 				 */
1697 				if (p->p_slflag & PSL_TRACED ||
1698 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1699 				    prop & SA_TTYSTOP)) {
1700 				    	/* Ignore the signal. */
1701 					continue;
1702 				}
1703 				/* Take the signal. */
1704 				(void)sigget(sp, NULL, signo, NULL);
1705 				p->p_xstat = signo;
1706 				signo = 0;
1707 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1708 			} else if (prop & SA_IGNORE) {
1709 				/*
1710 				 * Except for SIGCONT, shouldn't get here.
1711 				 * Default action is to ignore; drop it.
1712 				 */
1713 				continue;
1714 			}
1715 			break;
1716 
1717 		case (long)SIG_IGN:
1718 #ifdef DEBUG_ISSIGNAL
1719 			/*
1720 			 * Masking above should prevent us ever trying
1721 			 * to take action on an ignored signal other
1722 			 * than SIGCONT, unless process is traced.
1723 			 */
1724 			if ((prop & SA_CONT) == 0 &&
1725 			    (p->p_slflag & PSL_TRACED) == 0)
1726 				printf_nolog("issignal\n");
1727 #endif
1728 			continue;
1729 
1730 		default:
1731 			/*
1732 			 * This signal has an action, let postsig() process
1733 			 * it.
1734 			 */
1735 			break;
1736 		}
1737 
1738 		break;
1739 	}
1740 
1741 	l->l_sigpendset = sp;
1742 	return signo;
1743 }
1744 
1745 /*
1746  * Take the action for the specified signal
1747  * from the current set of pending signals.
1748  */
1749 void
1750 postsig(int signo)
1751 {
1752 	struct lwp	*l;
1753 	struct proc	*p;
1754 	struct sigacts	*ps;
1755 	sig_t		action;
1756 	sigset_t	*returnmask;
1757 	ksiginfo_t	ksi;
1758 
1759 	l = curlwp;
1760 	p = l->l_proc;
1761 	ps = p->p_sigacts;
1762 
1763 	KASSERT(mutex_owned(p->p_lock));
1764 	KASSERT(signo > 0);
1765 
1766 	/*
1767 	 * Set the new mask value and also defer further occurrences of this
1768 	 * signal.
1769 	 *
1770 	 * Special case: user has done a sigsuspend.  Here the current mask is
1771 	 * not of interest, but rather the mask from before the sigsuspen is
1772 	 * what we want restored after the signal processing is completed.
1773 	 */
1774 	if (l->l_sigrestore) {
1775 		returnmask = &l->l_sigoldmask;
1776 		l->l_sigrestore = 0;
1777 	} else
1778 		returnmask = &l->l_sigmask;
1779 
1780 	/*
1781 	 * Commit to taking the signal before releasing the mutex.
1782 	 */
1783 	action = SIGACTION_PS(ps, signo).sa_handler;
1784 	l->l_ru.ru_nsignals++;
1785 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1786 
1787 	if (ktrpoint(KTR_PSIG)) {
1788 		mutex_exit(p->p_lock);
1789 		ktrpsig(signo, action, returnmask, NULL);
1790 		mutex_enter(p->p_lock);
1791 	}
1792 
1793 	if (action == SIG_DFL) {
1794 		/*
1795 		 * Default action, where the default is to kill
1796 		 * the process.  (Other cases were ignored above.)
1797 		 */
1798 		sigexit(l, signo);
1799 		return;
1800 	}
1801 
1802 	/*
1803 	 * If we get here, the signal must be caught.
1804 	 */
1805 #ifdef DIAGNOSTIC
1806 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1807 		panic("postsig action");
1808 #endif
1809 
1810 	kpsendsig(l, &ksi, returnmask);
1811 }
1812 
1813 /*
1814  * sendsig_reset:
1815  *
1816  *	Reset the signal action.  Called from emulation specific sendsig()
1817  *	before unlocking to deliver the signal.
1818  */
1819 void
1820 sendsig_reset(struct lwp *l, int signo)
1821 {
1822 	struct proc *p = l->l_proc;
1823 	struct sigacts *ps = p->p_sigacts;
1824 
1825 	KASSERT(mutex_owned(p->p_lock));
1826 
1827 	p->p_sigctx.ps_lwp = 0;
1828 	p->p_sigctx.ps_code = 0;
1829 	p->p_sigctx.ps_signo = 0;
1830 
1831 	mutex_enter(&ps->sa_mutex);
1832 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1833 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1834 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1835 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1836 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1837 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1838 	}
1839 	mutex_exit(&ps->sa_mutex);
1840 }
1841 
1842 /*
1843  * Kill the current process for stated reason.
1844  */
1845 void
1846 killproc(struct proc *p, const char *why)
1847 {
1848 
1849 	KASSERT(mutex_owned(proc_lock));
1850 
1851 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1852 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1853 	psignal(p, SIGKILL);
1854 }
1855 
1856 /*
1857  * Force the current process to exit with the specified signal, dumping core
1858  * if appropriate.  We bypass the normal tests for masked and caught
1859  * signals, allowing unrecoverable failures to terminate the process without
1860  * changing signal state.  Mark the accounting record with the signal
1861  * termination.  If dumping core, save the signal number for the debugger.
1862  * Calls exit and does not return.
1863  */
1864 void
1865 sigexit(struct lwp *l, int signo)
1866 {
1867 	int exitsig, error, docore;
1868 	struct proc *p;
1869 	struct lwp *t;
1870 
1871 	p = l->l_proc;
1872 
1873 	KASSERT(mutex_owned(p->p_lock));
1874 	KERNEL_UNLOCK_ALL(l, NULL);
1875 
1876 	/*
1877 	 * Don't permit coredump() multiple times in the same process.
1878 	 * Call back into sigexit, where we will be suspended until
1879 	 * the deed is done.  Note that this is a recursive call, but
1880 	 * LW_WCORE will prevent us from coming back this way.
1881 	 */
1882 	if ((p->p_sflag & PS_WCORE) != 0) {
1883 		lwp_lock(l);
1884 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1885 		lwp_unlock(l);
1886 		mutex_exit(p->p_lock);
1887 		lwp_userret(l);
1888 		panic("sigexit 1");
1889 		/* NOTREACHED */
1890 	}
1891 
1892 	/* If process is already on the way out, then bail now. */
1893 	if ((p->p_sflag & PS_WEXIT) != 0) {
1894 		mutex_exit(p->p_lock);
1895 		lwp_exit(l);
1896 		panic("sigexit 2");
1897 		/* NOTREACHED */
1898 	}
1899 
1900 	/*
1901 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
1902 	 * so that their registers are available long enough to be dumped.
1903  	 */
1904 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1905 		p->p_sflag |= PS_WCORE;
1906 		for (;;) {
1907 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1908 				lwp_lock(t);
1909 				if (t == l) {
1910 					t->l_flag &= ~LW_WSUSPEND;
1911 					lwp_unlock(t);
1912 					continue;
1913 				}
1914 				t->l_flag |= (LW_WCORE | LW_WEXIT);
1915 				lwp_suspend(l, t);
1916 			}
1917 
1918 			if (p->p_nrlwps == 1)
1919 				break;
1920 
1921 			/*
1922 			 * Kick any LWPs sitting in lwp_wait1(), and wait
1923 			 * for everyone else to stop before proceeding.
1924 			 */
1925 			p->p_nlwpwait++;
1926 			cv_broadcast(&p->p_lwpcv);
1927 			cv_wait(&p->p_lwpcv, p->p_lock);
1928 			p->p_nlwpwait--;
1929 		}
1930 	}
1931 
1932 	exitsig = signo;
1933 	p->p_acflag |= AXSIG;
1934 	p->p_sigctx.ps_signo = signo;
1935 
1936 	if (docore) {
1937 		mutex_exit(p->p_lock);
1938 		if ((error = coredump(l, NULL)) == 0)
1939 			exitsig |= WCOREFLAG;
1940 
1941 		if (kern_logsigexit) {
1942 			int uid = l->l_cred ?
1943 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
1944 
1945 			if (error)
1946 				log(LOG_INFO, lognocoredump, p->p_pid,
1947 				    p->p_comm, uid, signo, error);
1948 			else
1949 				log(LOG_INFO, logcoredump, p->p_pid,
1950 				    p->p_comm, uid, signo);
1951 		}
1952 
1953 #ifdef PAX_SEGVGUARD
1954 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
1955 #endif /* PAX_SEGVGUARD */
1956 		/* Acquire the sched state mutex.  exit1() will release it. */
1957 		mutex_enter(p->p_lock);
1958 	}
1959 
1960 	/* No longer dumping core. */
1961 	p->p_sflag &= ~PS_WCORE;
1962 
1963 	exit1(l, W_EXITCODE(0, exitsig));
1964 	/* NOTREACHED */
1965 }
1966 
1967 /*
1968  * Put process 'p' into the stopped state and optionally, notify the parent.
1969  */
1970 void
1971 proc_stop(struct proc *p, int notify, int signo)
1972 {
1973 	struct lwp *l;
1974 
1975 	KASSERT(mutex_owned(p->p_lock));
1976 
1977 	/*
1978 	 * First off, set the stopping indicator and bring all sleeping
1979 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
1980 	 * unlock between here and the p->p_nrlwps check below.
1981 	 */
1982 	p->p_sflag |= PS_STOPPING;
1983 	if (notify)
1984 		p->p_sflag |= PS_NOTIFYSTOP;
1985 	else
1986 		p->p_sflag &= ~PS_NOTIFYSTOP;
1987 	membar_producer();
1988 
1989 	proc_stop_lwps(p);
1990 
1991 	/*
1992 	 * If there are no LWPs available to take the signal, then we
1993 	 * signal the parent process immediately.  Otherwise, the last
1994 	 * LWP to stop will take care of it.
1995 	 */
1996 
1997 	if (p->p_nrlwps == 0) {
1998 		proc_stop_done(p, true, PS_NOCLDSTOP);
1999 	} else {
2000 		/*
2001 		 * Have the remaining LWPs come to a halt, and trigger
2002 		 * proc_stop_callout() to ensure that they do.
2003 		 */
2004 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2005 			sigpost(l, SIG_DFL, SA_STOP, signo);
2006 		callout_schedule(&proc_stop_ch, 1);
2007 	}
2008 }
2009 
2010 /*
2011  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2012  * but wait for them to come to a halt at the kernel-user boundary.  This is
2013  * to allow LWPs to release any locks that they may hold before stopping.
2014  *
2015  * Non-interruptable sleeps can be long, and there is the potential for an
2016  * LWP to begin sleeping interruptably soon after the process has been set
2017  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2018  * stopping, and so complete halt of the process and the return of status
2019  * information to the parent could be delayed indefinitely.
2020  *
2021  * To handle this race, proc_stop_callout() runs once per tick while there
2022  * are stopping processes in the system.  It sets LWPs that are sleeping
2023  * interruptably into the LSSTOP state.
2024  *
2025  * Note that we are not concerned about keeping all LWPs stopped while the
2026  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2027  * What we do need to ensure is that all LWPs in a stopping process have
2028  * stopped at least once, so that notification can be sent to the parent
2029  * process.
2030  */
2031 static void
2032 proc_stop_callout(void *cookie)
2033 {
2034 	bool more, restart;
2035 	struct proc *p;
2036 
2037 	(void)cookie;
2038 
2039 	do {
2040 		restart = false;
2041 		more = false;
2042 
2043 		mutex_enter(proc_lock);
2044 		PROCLIST_FOREACH(p, &allproc) {
2045 			if ((p->p_flag & PK_MARKER) != 0)
2046 				continue;
2047 			mutex_enter(p->p_lock);
2048 
2049 			if ((p->p_sflag & PS_STOPPING) == 0) {
2050 				mutex_exit(p->p_lock);
2051 				continue;
2052 			}
2053 
2054 			/* Stop any LWPs sleeping interruptably. */
2055 			proc_stop_lwps(p);
2056 			if (p->p_nrlwps == 0) {
2057 				/*
2058 				 * We brought the process to a halt.
2059 				 * Mark it as stopped and notify the
2060 				 * parent.
2061 				 */
2062 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2063 					/*
2064 					 * Note that proc_stop_done() will
2065 					 * drop p->p_lock briefly.
2066 					 * Arrange to restart and check
2067 					 * all processes again.
2068 					 */
2069 					restart = true;
2070 				}
2071 				proc_stop_done(p, true, PS_NOCLDSTOP);
2072 			} else
2073 				more = true;
2074 
2075 			mutex_exit(p->p_lock);
2076 			if (restart)
2077 				break;
2078 		}
2079 		mutex_exit(proc_lock);
2080 	} while (restart);
2081 
2082 	/*
2083 	 * If we noted processes that are stopping but still have
2084 	 * running LWPs, then arrange to check again in 1 tick.
2085 	 */
2086 	if (more)
2087 		callout_schedule(&proc_stop_ch, 1);
2088 }
2089 
2090 /*
2091  * Given a process in state SSTOP, set the state back to SACTIVE and
2092  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2093  */
2094 void
2095 proc_unstop(struct proc *p)
2096 {
2097 	struct lwp *l;
2098 	int sig;
2099 
2100 	KASSERT(mutex_owned(proc_lock));
2101 	KASSERT(mutex_owned(p->p_lock));
2102 
2103 	p->p_stat = SACTIVE;
2104 	p->p_sflag &= ~PS_STOPPING;
2105 	sig = p->p_xstat;
2106 
2107 	if (!p->p_waited)
2108 		p->p_pptr->p_nstopchild--;
2109 
2110 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2111 		lwp_lock(l);
2112 		if (l->l_stat != LSSTOP) {
2113 			lwp_unlock(l);
2114 			continue;
2115 		}
2116 		if (l->l_wchan == NULL) {
2117 			setrunnable(l);
2118 			continue;
2119 		}
2120 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2121 		        setrunnable(l);
2122 		        sig = 0;
2123 		} else {
2124 			l->l_stat = LSSLEEP;
2125 			p->p_nrlwps++;
2126 			lwp_unlock(l);
2127 		}
2128 	}
2129 }
2130 
2131 static int
2132 filt_sigattach(struct knote *kn)
2133 {
2134 	struct proc *p = curproc;
2135 
2136 	kn->kn_obj = p;
2137 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2138 
2139 	mutex_enter(p->p_lock);
2140 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2141 	mutex_exit(p->p_lock);
2142 
2143 	return (0);
2144 }
2145 
2146 static void
2147 filt_sigdetach(struct knote *kn)
2148 {
2149 	struct proc *p = kn->kn_obj;
2150 
2151 	mutex_enter(p->p_lock);
2152 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2153 	mutex_exit(p->p_lock);
2154 }
2155 
2156 /*
2157  * signal knotes are shared with proc knotes, so we apply a mask to
2158  * the hint in order to differentiate them from process hints.  This
2159  * could be avoided by using a signal-specific knote list, but probably
2160  * isn't worth the trouble.
2161  */
2162 static int
2163 filt_signal(struct knote *kn, long hint)
2164 {
2165 
2166 	if (hint & NOTE_SIGNAL) {
2167 		hint &= ~NOTE_SIGNAL;
2168 
2169 		if (kn->kn_id == hint)
2170 			kn->kn_data++;
2171 	}
2172 	return (kn->kn_data != 0);
2173 }
2174 
2175 const struct filterops sig_filtops = {
2176 	0, filt_sigattach, filt_sigdetach, filt_signal
2177 };
2178