xref: /netbsd-src/sys/kern/kern_sig.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: kern_sig.c,v 1.286 2008/06/25 11:05:46 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.286 2008/06/25 11:05:46 ad Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 
77 #define	SIGPROP		/* include signal properties table */
78 #include <sys/param.h>
79 #include <sys/signalvar.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/wait.h>
83 #include <sys/ktrace.h>
84 #include <sys/syslog.h>
85 #include <sys/filedesc.h>
86 #include <sys/file.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/exec.h>
91 #include <sys/kauth.h>
92 #include <sys/acct.h>
93 #include <sys/callout.h>
94 #include <sys/atomic.h>
95 #include <sys/cpu.h>
96 
97 #ifdef PAX_SEGVGUARD
98 #include <sys/pax.h>
99 #endif /* PAX_SEGVGUARD */
100 
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103 
104 static void	ksiginfo_exechook(struct proc *, void *);
105 static void	proc_stop_callout(void *);
106 
107 int	sigunwait(struct proc *, const ksiginfo_t *);
108 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
109 int	sigpost(struct lwp *, sig_t, int, int);
110 int	sigchecktrace(sigpend_t **);
111 void	sigswitch(bool, int, int);
112 void	sigrealloc(ksiginfo_t *);
113 
114 sigset_t	contsigmask, stopsigmask, sigcantmask;
115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
116 static void	sigacts_poolpage_free(struct pool *, void *);
117 static void	*sigacts_poolpage_alloc(struct pool *, int);
118 static callout_t proc_stop_ch;
119 static pool_cache_t siginfo_cache;
120 static pool_cache_t ksiginfo_cache;
121 
122 static struct pool_allocator sigactspool_allocator = {
123         .pa_alloc = sigacts_poolpage_alloc,
124 	.pa_free = sigacts_poolpage_free,
125 };
126 
127 #ifdef DEBUG
128 int	kern_logsigexit = 1;
129 #else
130 int	kern_logsigexit = 0;
131 #endif
132 
133 static	const char logcoredump[] =
134     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
135 static	const char lognocoredump[] =
136     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
137 
138 /*
139  * signal_init:
140  *
141  * 	Initialize global signal-related data structures.
142  */
143 void
144 signal_init(void)
145 {
146 
147 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
148 
149 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
150 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
151 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
152 
153 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
154 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
155 
156 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
157 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
158 
159 	exechook_establish(ksiginfo_exechook, NULL);
160 
161 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
162 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
163 }
164 
165 /*
166  * sigacts_poolpage_alloc:
167  *
168  *	 Allocate a page for the sigacts memory pool.
169  */
170 static void *
171 sigacts_poolpage_alloc(struct pool *pp, int flags)
172 {
173 
174 	return (void *)uvm_km_alloc(kernel_map,
175 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
176 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
177 	    | UVM_KMF_WIRED);
178 }
179 
180 /*
181  * sigacts_poolpage_free:
182  *
183  *	 Free a page on behalf of the sigacts memory pool.
184  */
185 static void
186 sigacts_poolpage_free(struct pool *pp, void *v)
187 {
188 
189         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
190 }
191 
192 /*
193  * sigactsinit:
194  *
195  *	 Create an initial sigctx structure, using the same signal state as
196  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
197  *	 copy it from parent.
198  */
199 struct sigacts *
200 sigactsinit(struct proc *pp, int share)
201 {
202 	struct sigacts *ps, *ps2;
203 
204 	ps = pp->p_sigacts;
205 
206 	if (share) {
207 		atomic_inc_uint(&ps->sa_refcnt);
208 		ps2 = ps;
209 	} else {
210 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
211 		/* XXXAD get rid of this */
212 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
213 		mutex_enter(&ps->sa_mutex);
214 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
215 		    sizeof(ps2->sa_sigdesc));
216 		mutex_exit(&ps->sa_mutex);
217 		ps2->sa_refcnt = 1;
218 	}
219 
220 	return ps2;
221 }
222 
223 /*
224  * sigactsunshare:
225  *
226  *	Make this process not share its sigctx, maintaining all
227  *	signal state.
228  */
229 void
230 sigactsunshare(struct proc *p)
231 {
232 	struct sigacts *ps, *oldps;
233 
234 	oldps = p->p_sigacts;
235 	if (oldps->sa_refcnt == 1)
236 		return;
237 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
238 	/* XXXAD get rid of this */
239 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
240 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
241 	p->p_sigacts = ps;
242 	sigactsfree(oldps);
243 }
244 
245 /*
246  * sigactsfree;
247  *
248  *	Release a sigctx structure.
249  */
250 void
251 sigactsfree(struct sigacts *ps)
252 {
253 
254 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
255 		mutex_destroy(&ps->sa_mutex);
256 		pool_cache_put(sigacts_cache, ps);
257 	}
258 }
259 
260 /*
261  * siginit:
262  *
263  *	Initialize signal state for process 0; set to ignore signals that
264  *	are ignored by default and disable the signal stack.  Locking not
265  *	required as the system is still cold.
266  */
267 void
268 siginit(struct proc *p)
269 {
270 	struct lwp *l;
271 	struct sigacts *ps;
272 	int signo, prop;
273 
274 	ps = p->p_sigacts;
275 	sigemptyset(&contsigmask);
276 	sigemptyset(&stopsigmask);
277 	sigemptyset(&sigcantmask);
278 	for (signo = 1; signo < NSIG; signo++) {
279 		prop = sigprop[signo];
280 		if (prop & SA_CONT)
281 			sigaddset(&contsigmask, signo);
282 		if (prop & SA_STOP)
283 			sigaddset(&stopsigmask, signo);
284 		if (prop & SA_CANTMASK)
285 			sigaddset(&sigcantmask, signo);
286 		if (prop & SA_IGNORE && signo != SIGCONT)
287 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
288 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
289 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
290 	}
291 	sigemptyset(&p->p_sigctx.ps_sigcatch);
292 	p->p_sflag &= ~PS_NOCLDSTOP;
293 
294 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
295 	sigemptyset(&p->p_sigpend.sp_set);
296 
297 	/*
298 	 * Reset per LWP state.
299 	 */
300 	l = LIST_FIRST(&p->p_lwps);
301 	l->l_sigwaited = NULL;
302 	l->l_sigstk.ss_flags = SS_DISABLE;
303 	l->l_sigstk.ss_size = 0;
304 	l->l_sigstk.ss_sp = 0;
305 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
306 	sigemptyset(&l->l_sigpend.sp_set);
307 
308 	/* One reference. */
309 	ps->sa_refcnt = 1;
310 }
311 
312 /*
313  * execsigs:
314  *
315  *	Reset signals for an exec of the specified process.
316  */
317 void
318 execsigs(struct proc *p)
319 {
320 	struct sigacts *ps;
321 	struct lwp *l;
322 	int signo, prop;
323 	sigset_t tset;
324 	ksiginfoq_t kq;
325 
326 	KASSERT(p->p_nlwps == 1);
327 
328 	sigactsunshare(p);
329 	ps = p->p_sigacts;
330 
331 	/*
332 	 * Reset caught signals.  Held signals remain held through
333 	 * l->l_sigmask (unless they were caught, and are now ignored
334 	 * by default).
335 	 *
336 	 * No need to lock yet, the process has only one LWP and
337 	 * at this point the sigacts are private to the process.
338 	 */
339 	sigemptyset(&tset);
340 	for (signo = 1; signo < NSIG; signo++) {
341 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
342 			prop = sigprop[signo];
343 			if (prop & SA_IGNORE) {
344 				if ((prop & SA_CONT) == 0)
345 					sigaddset(&p->p_sigctx.ps_sigignore,
346 					    signo);
347 				sigaddset(&tset, signo);
348 			}
349 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
350 		}
351 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
352 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
353 	}
354 	ksiginfo_queue_init(&kq);
355 
356 	mutex_enter(p->p_lock);
357 	sigclearall(p, &tset, &kq);
358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
359 
360 	/*
361 	 * Reset no zombies if child dies flag as Solaris does.
362 	 */
363 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
364 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
365 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
366 
367 	/*
368 	 * Reset per-LWP state.
369 	 */
370 	l = LIST_FIRST(&p->p_lwps);
371 	l->l_sigwaited = NULL;
372 	l->l_sigstk.ss_flags = SS_DISABLE;
373 	l->l_sigstk.ss_size = 0;
374 	l->l_sigstk.ss_sp = 0;
375 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
376 	sigemptyset(&l->l_sigpend.sp_set);
377 	mutex_exit(p->p_lock);
378 
379 	ksiginfo_queue_drain(&kq);
380 }
381 
382 /*
383  * ksiginfo_exechook:
384  *
385  *	Free all pending ksiginfo entries from a process on exec.
386  *	Additionally, drain any unused ksiginfo structures in the
387  *	system back to the pool.
388  *
389  *	XXX This should not be a hook, every process has signals.
390  */
391 static void
392 ksiginfo_exechook(struct proc *p, void *v)
393 {
394 	ksiginfoq_t kq;
395 
396 	ksiginfo_queue_init(&kq);
397 
398 	mutex_enter(p->p_lock);
399 	sigclearall(p, NULL, &kq);
400 	mutex_exit(p->p_lock);
401 
402 	ksiginfo_queue_drain(&kq);
403 }
404 
405 /*
406  * ksiginfo_alloc:
407  *
408  *	Allocate a new ksiginfo structure from the pool, and optionally copy
409  *	an existing one.  If the existing ksiginfo_t is from the pool, and
410  *	has not been queued somewhere, then just return it.  Additionally,
411  *	if the existing ksiginfo_t does not contain any information beyond
412  *	the signal number, then just return it.
413  */
414 ksiginfo_t *
415 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
416 {
417 	ksiginfo_t *kp;
418 
419 	if (ok != NULL) {
420 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
421 		    KSI_FROMPOOL)
422 		    	return ok;
423 		if (KSI_EMPTY_P(ok))
424 			return ok;
425 	}
426 
427 	kp = pool_cache_get(ksiginfo_cache, flags);
428 	if (kp == NULL) {
429 #ifdef DIAGNOSTIC
430 		printf("Out of memory allocating ksiginfo for pid %d\n",
431 		    p->p_pid);
432 #endif
433 		return NULL;
434 	}
435 
436 	if (ok != NULL) {
437 		memcpy(kp, ok, sizeof(*kp));
438 		kp->ksi_flags &= ~KSI_QUEUED;
439 	} else
440 		KSI_INIT_EMPTY(kp);
441 
442 	kp->ksi_flags |= KSI_FROMPOOL;
443 
444 	return kp;
445 }
446 
447 /*
448  * ksiginfo_free:
449  *
450  *	If the given ksiginfo_t is from the pool and has not been queued,
451  *	then free it.
452  */
453 void
454 ksiginfo_free(ksiginfo_t *kp)
455 {
456 
457 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
458 		return;
459 	pool_cache_put(ksiginfo_cache, kp);
460 }
461 
462 /*
463  * ksiginfo_queue_drain:
464  *
465  *	Drain a non-empty ksiginfo_t queue.
466  */
467 void
468 ksiginfo_queue_drain0(ksiginfoq_t *kq)
469 {
470 	ksiginfo_t *ksi;
471 
472 	KASSERT(!CIRCLEQ_EMPTY(kq));
473 
474 	while (!CIRCLEQ_EMPTY(kq)) {
475 		ksi = CIRCLEQ_FIRST(kq);
476 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
477 		pool_cache_put(ksiginfo_cache, ksi);
478 	}
479 }
480 
481 /*
482  * sigget:
483  *
484  *	Fetch the first pending signal from a set.  Optionally, also fetch
485  *	or manufacture a ksiginfo element.  Returns the number of the first
486  *	pending signal, or zero.
487  */
488 int
489 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
490 {
491         ksiginfo_t *ksi;
492 	sigset_t tset;
493 
494 	/* If there's no pending set, the signal is from the debugger. */
495 	if (sp == NULL) {
496 		if (out != NULL) {
497 			KSI_INIT(out);
498 			out->ksi_info._signo = signo;
499 			out->ksi_info._code = SI_USER;
500 		}
501 		return signo;
502 	}
503 
504 	/* Construct mask from signo, and 'mask'. */
505 	if (signo == 0) {
506 		if (mask != NULL) {
507 			tset = *mask;
508 			__sigandset(&sp->sp_set, &tset);
509 		} else
510 			tset = sp->sp_set;
511 
512 		/* If there are no signals pending, that's it. */
513 		if ((signo = firstsig(&tset)) == 0)
514 			return 0;
515 	} else {
516 		KASSERT(sigismember(&sp->sp_set, signo));
517 	}
518 
519 	sigdelset(&sp->sp_set, signo);
520 
521 	/* Find siginfo and copy it out. */
522 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
523 		if (ksi->ksi_signo == signo) {
524 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
525 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
526 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
527 			ksi->ksi_flags &= ~KSI_QUEUED;
528 			if (out != NULL) {
529 				memcpy(out, ksi, sizeof(*out));
530 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
531 			}
532 			ksiginfo_free(ksi);
533 			return signo;
534 		}
535 	}
536 
537 	/* If there's no siginfo, then manufacture it. */
538 	if (out != NULL) {
539 		KSI_INIT(out);
540 		out->ksi_info._signo = signo;
541 		out->ksi_info._code = SI_USER;
542 	}
543 
544 	return signo;
545 }
546 
547 /*
548  * sigput:
549  *
550  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
551  *	we need to (e.g. SA_SIGINFO was requested).
552  */
553 void
554 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
555 {
556 	ksiginfo_t *kp;
557 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
558 
559 	KASSERT(mutex_owned(p->p_lock));
560 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
561 
562 	sigaddset(&sp->sp_set, ksi->ksi_signo);
563 
564 	/*
565 	 * If siginfo is not required, or there is none, then just mark the
566 	 * signal as pending.
567 	 */
568 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
569 		return;
570 
571 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
572 
573 #ifdef notyet	/* XXX: QUEUING */
574 	if (ksi->ksi_signo < SIGRTMIN)
575 #endif
576 	{
577 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
578 			if (kp->ksi_signo == ksi->ksi_signo) {
579 				KSI_COPY(ksi, kp);
580 				kp->ksi_flags |= KSI_QUEUED;
581 				return;
582 			}
583 		}
584 	}
585 
586 	ksi->ksi_flags |= KSI_QUEUED;
587 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
588 }
589 
590 /*
591  * sigclear:
592  *
593  *	Clear all pending signals in the specified set.
594  */
595 void
596 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
597 {
598 	ksiginfo_t *ksi, *next;
599 
600 	if (mask == NULL)
601 		sigemptyset(&sp->sp_set);
602 	else
603 		sigminusset(mask, &sp->sp_set);
604 
605 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
606 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
607 		next = CIRCLEQ_NEXT(ksi, ksi_list);
608 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
609 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
610 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
611 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
612 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
613 		}
614 	}
615 }
616 
617 /*
618  * sigclearall:
619  *
620  *	Clear all pending signals in the specified set from a process and
621  *	its LWPs.
622  */
623 void
624 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
625 {
626 	struct lwp *l;
627 
628 	KASSERT(mutex_owned(p->p_lock));
629 
630 	sigclear(&p->p_sigpend, mask, kq);
631 
632 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
633 		sigclear(&l->l_sigpend, mask, kq);
634 	}
635 }
636 
637 /*
638  * sigispending:
639  *
640  *	Return true if there are pending signals for the current LWP.  May
641  *	be called unlocked provided that LW_PENDSIG is set, and that the
642  *	signal has been posted to the appopriate queue before LW_PENDSIG is
643  *	set.
644  */
645 int
646 sigispending(struct lwp *l, int signo)
647 {
648 	struct proc *p = l->l_proc;
649 	sigset_t tset;
650 
651 	membar_consumer();
652 
653 	tset = l->l_sigpend.sp_set;
654 	sigplusset(&p->p_sigpend.sp_set, &tset);
655 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
656 	sigminusset(&l->l_sigmask, &tset);
657 
658 	if (signo == 0) {
659 		if (firstsig(&tset) != 0)
660 			return EINTR;
661 	} else if (sigismember(&tset, signo))
662 		return EINTR;
663 
664 	return 0;
665 }
666 
667 /*
668  * siginfo_alloc:
669  *
670  *	 Allocate a new siginfo_t structure from the pool.
671  */
672 siginfo_t *
673 siginfo_alloc(int flags)
674 {
675 
676 	return pool_cache_get(siginfo_cache, flags);
677 }
678 
679 /*
680  * siginfo_free:
681  *
682  *	 Return a siginfo_t structure to the pool.
683  */
684 void
685 siginfo_free(void *arg)
686 {
687 
688 	pool_cache_put(siginfo_cache, arg);
689 }
690 
691 void
692 getucontext(struct lwp *l, ucontext_t *ucp)
693 {
694 	struct proc *p = l->l_proc;
695 
696 	KASSERT(mutex_owned(p->p_lock));
697 
698 	ucp->uc_flags = 0;
699 	ucp->uc_link = l->l_ctxlink;
700 
701 	ucp->uc_sigmask = l->l_sigmask;
702 	ucp->uc_flags |= _UC_SIGMASK;
703 
704 	/*
705 	 * The (unsupplied) definition of the `current execution stack'
706 	 * in the System V Interface Definition appears to allow returning
707 	 * the main context stack.
708 	 */
709 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
710 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
711 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
712 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
713 	} else {
714 		/* Simply copy alternate signal execution stack. */
715 		ucp->uc_stack = l->l_sigstk;
716 	}
717 	ucp->uc_flags |= _UC_STACK;
718 	mutex_exit(p->p_lock);
719 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
720 	mutex_enter(p->p_lock);
721 }
722 
723 int
724 setucontext(struct lwp *l, const ucontext_t *ucp)
725 {
726 	struct proc *p = l->l_proc;
727 	int error;
728 
729 	KASSERT(mutex_owned(p->p_lock));
730 
731 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
732 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
733 		if (error != 0)
734 			return error;
735 	}
736 
737 	mutex_exit(p->p_lock);
738 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
739 	mutex_enter(p->p_lock);
740 	if (error != 0)
741 		return (error);
742 
743 	l->l_ctxlink = ucp->uc_link;
744 
745 	/*
746 	 * If there was stack information, update whether or not we are
747 	 * still running on an alternate signal stack.
748 	 */
749 	if ((ucp->uc_flags & _UC_STACK) != 0) {
750 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
751 			l->l_sigstk.ss_flags |= SS_ONSTACK;
752 		else
753 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
754 	}
755 
756 	return 0;
757 }
758 
759 /*
760  * Common code for kill process group/broadcast kill.  cp is calling
761  * process.
762  */
763 int
764 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
765 {
766 	struct proc	*p, *cp;
767 	kauth_cred_t	pc;
768 	struct pgrp	*pgrp;
769 	int		nfound;
770 	int		signo = ksi->ksi_signo;
771 
772 	cp = l->l_proc;
773 	pc = l->l_cred;
774 	nfound = 0;
775 
776 	mutex_enter(proc_lock);
777 	if (all) {
778 		/*
779 		 * broadcast
780 		 */
781 		PROCLIST_FOREACH(p, &allproc) {
782 			if (p->p_pid <= 1 || p == cp ||
783 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
784 				continue;
785 			mutex_enter(p->p_lock);
786 			if (kauth_authorize_process(pc,
787 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
788 			    NULL) == 0) {
789 				nfound++;
790 				if (signo)
791 					kpsignal2(p, ksi);
792 			}
793 			mutex_exit(p->p_lock);
794 		}
795 	} else {
796 		if (pgid == 0)
797 			/*
798 			 * zero pgid means send to my process group.
799 			 */
800 			pgrp = cp->p_pgrp;
801 		else {
802 			pgrp = pg_find(pgid, PFIND_LOCKED);
803 			if (pgrp == NULL)
804 				goto out;
805 		}
806 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
807 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
808 				continue;
809 			mutex_enter(p->p_lock);
810 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
811 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
812 				nfound++;
813 				if (signo && P_ZOMBIE(p) == 0)
814 					kpsignal2(p, ksi);
815 			}
816 			mutex_exit(p->p_lock);
817 		}
818 	}
819   out:
820 	mutex_exit(proc_lock);
821 	return (nfound ? 0 : ESRCH);
822 }
823 
824 /*
825  * Send a signal to a process group. If checktty is 1, limit to members
826  * which have a controlling terminal.
827  */
828 void
829 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
830 {
831 	ksiginfo_t ksi;
832 
833 	KASSERT(!cpu_intr_p());
834 	KASSERT(mutex_owned(proc_lock));
835 
836 	KSI_INIT_EMPTY(&ksi);
837 	ksi.ksi_signo = sig;
838 	kpgsignal(pgrp, &ksi, NULL, checkctty);
839 }
840 
841 void
842 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
843 {
844 	struct proc *p;
845 
846 	KASSERT(!cpu_intr_p());
847 	KASSERT(mutex_owned(proc_lock));
848 
849 	if (pgrp)
850 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
851 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
852 				kpsignal(p, ksi, data);
853 }
854 
855 /*
856  * Send a signal caused by a trap to the current LWP.  If it will be caught
857  * immediately, deliver it with correct code.  Otherwise, post it normally.
858  */
859 void
860 trapsignal(struct lwp *l, ksiginfo_t *ksi)
861 {
862 	struct proc	*p;
863 	struct sigacts	*ps;
864 	int signo = ksi->ksi_signo;
865 
866 	KASSERT(KSI_TRAP_P(ksi));
867 
868 	ksi->ksi_lid = l->l_lid;
869 	p = l->l_proc;
870 
871 	KASSERT(!cpu_intr_p());
872 	mutex_enter(proc_lock);
873 	mutex_enter(p->p_lock);
874 	ps = p->p_sigacts;
875 	if ((p->p_slflag & PSL_TRACED) == 0 &&
876 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
877 	    !sigismember(&l->l_sigmask, signo)) {
878 		mutex_exit(proc_lock);
879 		l->l_ru.ru_nsignals++;
880 		kpsendsig(l, ksi, &l->l_sigmask);
881 		mutex_exit(p->p_lock);
882 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
883 		    &l->l_sigmask, ksi);
884 	} else {
885 		/* XXX for core dump/debugger */
886 		p->p_sigctx.ps_lwp = l->l_lid;
887 		p->p_sigctx.ps_signo = ksi->ksi_signo;
888 		p->p_sigctx.ps_code = ksi->ksi_trap;
889 		kpsignal2(p, ksi);
890 		mutex_exit(p->p_lock);
891 		mutex_exit(proc_lock);
892 	}
893 }
894 
895 /*
896  * Fill in signal information and signal the parent for a child status change.
897  */
898 void
899 child_psignal(struct proc *p, int mask)
900 {
901 	ksiginfo_t ksi;
902 	struct proc *q;
903 	int xstat;
904 
905 	KASSERT(mutex_owned(proc_lock));
906 	KASSERT(mutex_owned(p->p_lock));
907 
908 	xstat = p->p_xstat;
909 
910 	KSI_INIT(&ksi);
911 	ksi.ksi_signo = SIGCHLD;
912 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
913 	ksi.ksi_pid = p->p_pid;
914 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
915 	ksi.ksi_status = xstat;
916 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
917 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
918 
919 	q = p->p_pptr;
920 
921 	mutex_exit(p->p_lock);
922 	mutex_enter(q->p_lock);
923 
924 	if ((q->p_sflag & mask) == 0)
925 		kpsignal2(q, &ksi);
926 
927 	mutex_exit(q->p_lock);
928 	mutex_enter(p->p_lock);
929 }
930 
931 void
932 psignal(struct proc *p, int signo)
933 {
934 	ksiginfo_t ksi;
935 
936 	KASSERT(!cpu_intr_p());
937 	KASSERT(mutex_owned(proc_lock));
938 
939 	KSI_INIT_EMPTY(&ksi);
940 	ksi.ksi_signo = signo;
941 	mutex_enter(p->p_lock);
942 	kpsignal2(p, &ksi);
943 	mutex_exit(p->p_lock);
944 }
945 
946 void
947 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
948 {
949 	fdfile_t *ff;
950 	file_t *fp;
951 
952 	KASSERT(!cpu_intr_p());
953 	KASSERT(mutex_owned(proc_lock));
954 
955 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
956 		size_t fd;
957 		filedesc_t *fdp = p->p_fd;
958 
959 		/* XXXSMP locking */
960 		ksi->ksi_fd = -1;
961 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
962 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
963 				continue;
964 			if ((fp = ff->ff_file) == NULL)
965 				continue;
966 			if (fp->f_data == data) {
967 				ksi->ksi_fd = fd;
968 				break;
969 			}
970 		}
971 	}
972 	mutex_enter(p->p_lock);
973 	kpsignal2(p, ksi);
974 	mutex_exit(p->p_lock);
975 }
976 
977 /*
978  * sigismasked:
979  *
980  *	 Returns true if signal is ignored or masked for the specified LWP.
981  */
982 int
983 sigismasked(struct lwp *l, int sig)
984 {
985 	struct proc *p = l->l_proc;
986 
987 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
988 	    sigismember(&l->l_sigmask, sig));
989 }
990 
991 /*
992  * sigpost:
993  *
994  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
995  *	 able to take the signal.
996  */
997 int
998 sigpost(struct lwp *l, sig_t action, int prop, int sig)
999 {
1000 	int rv, masked;
1001 
1002 	KASSERT(mutex_owned(l->l_proc->p_lock));
1003 
1004 	/*
1005 	 * If the LWP is on the way out, sigclear() will be busy draining all
1006 	 * pending signals.  Don't give it more.
1007 	 */
1008 	if (l->l_refcnt == 0)
1009 		return 0;
1010 
1011 	lwp_lock(l);
1012 
1013 	/*
1014 	 * Have the LWP check for signals.  This ensures that even if no LWP
1015 	 * is found to take the signal immediately, it should be taken soon.
1016 	 */
1017 	l->l_flag |= LW_PENDSIG;
1018 
1019 	/*
1020 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1021 	 */
1022 	masked = sigismember(&l->l_sigmask, sig);
1023 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1024 		lwp_unlock(l);
1025 		return 0;
1026 	}
1027 
1028 	/*
1029 	 * If killing the process, make it run fast.
1030 	 */
1031 	if (__predict_false((prop & SA_KILL) != 0) &&
1032 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1033 		KASSERT(l->l_class == SCHED_OTHER);
1034 		lwp_changepri(l, MAXPRI_USER);
1035 	}
1036 
1037 	/*
1038 	 * If the LWP is running or on a run queue, then we win.  If it's
1039 	 * sleeping interruptably, wake it and make it take the signal.  If
1040 	 * the sleep isn't interruptable, then the chances are it will get
1041 	 * to see the signal soon anyhow.  If suspended, it can't take the
1042 	 * signal right now.  If it's LWP private or for all LWPs, save it
1043 	 * for later; otherwise punt.
1044 	 */
1045 	rv = 0;
1046 
1047 	switch (l->l_stat) {
1048 	case LSRUN:
1049 	case LSONPROC:
1050 		lwp_need_userret(l);
1051 		rv = 1;
1052 		break;
1053 
1054 	case LSSLEEP:
1055 		if ((l->l_flag & LW_SINTR) != 0) {
1056 			/* setrunnable() will release the lock. */
1057 			setrunnable(l);
1058 			return 1;
1059 		}
1060 		break;
1061 
1062 	case LSSUSPENDED:
1063 		if ((prop & SA_KILL) != 0) {
1064 			/* lwp_continue() will release the lock. */
1065 			lwp_continue(l);
1066 			return 1;
1067 		}
1068 		break;
1069 
1070 	case LSSTOP:
1071 		if ((prop & SA_STOP) != 0)
1072 			break;
1073 
1074 		/*
1075 		 * If the LWP is stopped and we are sending a continue
1076 		 * signal, then start it again.
1077 		 */
1078 		if ((prop & SA_CONT) != 0) {
1079 			if (l->l_wchan != NULL) {
1080 				l->l_stat = LSSLEEP;
1081 				l->l_proc->p_nrlwps++;
1082 				rv = 1;
1083 				break;
1084 			}
1085 			/* setrunnable() will release the lock. */
1086 			setrunnable(l);
1087 			return 1;
1088 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1089 			/* setrunnable() will release the lock. */
1090 			setrunnable(l);
1091 			return 1;
1092 		}
1093 		break;
1094 
1095 	default:
1096 		break;
1097 	}
1098 
1099 	lwp_unlock(l);
1100 	return rv;
1101 }
1102 
1103 /*
1104  * Notify an LWP that it has a pending signal.
1105  */
1106 void
1107 signotify(struct lwp *l)
1108 {
1109 	KASSERT(lwp_locked(l, NULL));
1110 
1111 	l->l_flag |= LW_PENDSIG;
1112 	lwp_need_userret(l);
1113 }
1114 
1115 /*
1116  * Find an LWP within process p that is waiting on signal ksi, and hand
1117  * it on.
1118  */
1119 int
1120 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1121 {
1122 	struct lwp *l;
1123 	int signo;
1124 
1125 	KASSERT(mutex_owned(p->p_lock));
1126 
1127 	signo = ksi->ksi_signo;
1128 
1129 	if (ksi->ksi_lid != 0) {
1130 		/*
1131 		 * Signal came via _lwp_kill().  Find the LWP and see if
1132 		 * it's interested.
1133 		 */
1134 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1135 			return 0;
1136 		if (l->l_sigwaited == NULL ||
1137 		    !sigismember(&l->l_sigwaitset, signo))
1138 			return 0;
1139 	} else {
1140 		/*
1141 		 * Look for any LWP that may be interested.
1142 		 */
1143 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1144 			KASSERT(l->l_sigwaited != NULL);
1145 			if (sigismember(&l->l_sigwaitset, signo))
1146 				break;
1147 		}
1148 	}
1149 
1150 	if (l != NULL) {
1151 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1152 		l->l_sigwaited = NULL;
1153 		LIST_REMOVE(l, l_sigwaiter);
1154 		cv_signal(&l->l_sigcv);
1155 		return 1;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Send the signal to the process.  If the signal has an action, the action
1163  * is usually performed by the target process rather than the caller; we add
1164  * the signal to the set of pending signals for the process.
1165  *
1166  * Exceptions:
1167  *   o When a stop signal is sent to a sleeping process that takes the
1168  *     default action, the process is stopped without awakening it.
1169  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1170  *     regardless of the signal action (eg, blocked or ignored).
1171  *
1172  * Other ignored signals are discarded immediately.
1173  */
1174 void
1175 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1176 {
1177 	int prop, lid, toall, signo = ksi->ksi_signo;
1178 	struct sigacts *sa;
1179 	struct lwp *l;
1180 	ksiginfo_t *kp;
1181 	ksiginfoq_t kq;
1182 	sig_t action;
1183 
1184 	KASSERT(!cpu_intr_p());
1185 	KASSERT(mutex_owned(proc_lock));
1186 	KASSERT(mutex_owned(p->p_lock));
1187 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1188 	KASSERT(signo > 0 && signo < NSIG);
1189 
1190 	/*
1191 	 * If the process is being created by fork, is a zombie or is
1192 	 * exiting, then just drop the signal here and bail out.
1193 	 */
1194 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1195 		return;
1196 
1197 	/*
1198 	 * Notify any interested parties of the signal.
1199 	 */
1200 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1201 
1202 	/*
1203 	 * Some signals including SIGKILL must act on the entire process.
1204 	 */
1205 	kp = NULL;
1206 	prop = sigprop[signo];
1207 	toall = ((prop & SA_TOALL) != 0);
1208 
1209 	if (toall)
1210 		lid = 0;
1211 	else
1212 		lid = ksi->ksi_lid;
1213 
1214 	/*
1215 	 * If proc is traced, always give parent a chance.
1216 	 */
1217 	if (p->p_slflag & PSL_TRACED) {
1218 		action = SIG_DFL;
1219 
1220 		if (lid == 0) {
1221 			/*
1222 			 * If the process is being traced and the signal
1223 			 * is being caught, make sure to save any ksiginfo.
1224 			 */
1225 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1226 				return;
1227 			sigput(&p->p_sigpend, p, kp);
1228 		}
1229 	} else {
1230 		/*
1231 		 * If the signal was the result of a trap and is not being
1232 		 * caught, then reset it to default action so that the
1233 		 * process dumps core immediately.
1234 		 */
1235 		if (KSI_TRAP_P(ksi)) {
1236 			sa = p->p_sigacts;
1237 			mutex_enter(&sa->sa_mutex);
1238 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1239 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1240 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1241 			}
1242 			mutex_exit(&sa->sa_mutex);
1243 		}
1244 
1245 		/*
1246 		 * If the signal is being ignored, then drop it.  Note: we
1247 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1248 		 * SIG_IGN, action will be SIG_DFL here.
1249 		 */
1250 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1251 			return;
1252 
1253 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1254 			action = SIG_CATCH;
1255 		else {
1256 			action = SIG_DFL;
1257 
1258 			/*
1259 			 * If sending a tty stop signal to a member of an
1260 			 * orphaned process group, discard the signal here if
1261 			 * the action is default; don't stop the process below
1262 			 * if sleeping, and don't clear any pending SIGCONT.
1263 			 */
1264 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1265 				return;
1266 
1267 			if (prop & SA_KILL && p->p_nice > NZERO)
1268 				p->p_nice = NZERO;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * If stopping or continuing a process, discard any pending
1274 	 * signals that would do the inverse.
1275 	 */
1276 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1277 		ksiginfo_queue_init(&kq);
1278 		if ((prop & SA_CONT) != 0)
1279 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1280 		if ((prop & SA_STOP) != 0)
1281 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1282 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1283 	}
1284 
1285 	/*
1286 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1287 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1288 	 * the signal info.  The signal won't be processed further here.
1289 	 */
1290 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1291 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1292 	    sigunwait(p, ksi))
1293 		return;
1294 
1295 	/*
1296 	 * XXXSMP Should be allocated by the caller, we're holding locks
1297 	 * here.
1298 	 */
1299 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1300 		return;
1301 
1302 	/*
1303 	 * LWP private signals are easy - just find the LWP and post
1304 	 * the signal to it.
1305 	 */
1306 	if (lid != 0) {
1307 		l = lwp_find(p, lid);
1308 		if (l != NULL) {
1309 			sigput(&l->l_sigpend, p, kp);
1310 			membar_producer();
1311 			(void)sigpost(l, action, prop, kp->ksi_signo);
1312 		}
1313 		goto out;
1314 	}
1315 
1316 	/*
1317 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
1318 	 */
1319 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1320 		if ((p->p_slflag & PSL_TRACED) != 0)
1321 			goto deliver;
1322 
1323 		/*
1324 		 * If SIGCONT is default (or ignored) and process is
1325 		 * asleep, we are finished; the process should not
1326 		 * be awakened.
1327 		 */
1328 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1329 			goto out;
1330 
1331 		sigput(&p->p_sigpend, p, kp);
1332 	} else {
1333 		/*
1334 		 * Process is stopped or stopping.  If traced, then no
1335 		 * further action is necessary.
1336 		 */
1337 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1338 			goto out;
1339 
1340 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1341 			/*
1342 			 * Re-adjust p_nstopchild if the process wasn't
1343 			 * collected by its parent.
1344 			 */
1345 			p->p_stat = SACTIVE;
1346 			p->p_sflag &= ~PS_STOPPING;
1347 			if (!p->p_waited)
1348 				p->p_pptr->p_nstopchild--;
1349 
1350 			/*
1351 			 * If SIGCONT is default (or ignored), we continue
1352 			 * the process but don't leave the signal in
1353 			 * ps_siglist, as it has no further action.  If
1354 			 * SIGCONT is held, we continue the process and
1355 			 * leave the signal in ps_siglist.  If the process
1356 			 * catches SIGCONT, let it handle the signal itself.
1357 			 * If it isn't waiting on an event, then it goes
1358 			 * back to run state.  Otherwise, process goes back
1359 			 * to sleep state.
1360 			 */
1361 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1362 				sigput(&p->p_sigpend, p, kp);
1363 		} else if ((prop & SA_STOP) != 0) {
1364 			/*
1365 			 * Already stopped, don't need to stop again.
1366 			 * (If we did the shell could get confused.)
1367 			 */
1368 			goto out;
1369 		} else
1370 			sigput(&p->p_sigpend, p, kp);
1371 	}
1372 
1373  deliver:
1374 	/*
1375 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1376 	 * visible on the per process list (for sigispending()).  This
1377 	 * is unlikely to be needed in practice, but...
1378 	 */
1379 	membar_producer();
1380 
1381 	/*
1382 	 * Try to find an LWP that can take the signal.
1383 	 */
1384 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1385 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1386 			break;
1387 
1388  out:
1389  	/*
1390  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1391  	 * with locks held.  The caller should take care of this.
1392  	 */
1393  	ksiginfo_free(kp);
1394 }
1395 
1396 void
1397 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1398 {
1399 	struct proc *p = l->l_proc;
1400 
1401 	KASSERT(mutex_owned(p->p_lock));
1402 
1403 	(*p->p_emul->e_sendsig)(ksi, mask);
1404 }
1405 
1406 /*
1407  * Stop any LWPs sleeping interruptably.
1408  */
1409 static void
1410 proc_stop_lwps(struct proc *p)
1411 {
1412 	struct lwp *l;
1413 
1414 	KASSERT(mutex_owned(p->p_lock));
1415 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1416 
1417 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1418 		lwp_lock(l);
1419 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1420 			l->l_stat = LSSTOP;
1421 			p->p_nrlwps--;
1422 		}
1423 		lwp_unlock(l);
1424 	}
1425 }
1426 
1427 /*
1428  * Finish stopping of a process.  Mark it stopped and notify the parent.
1429  *
1430  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1431  */
1432 static void
1433 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1434 {
1435 
1436 	KASSERT(mutex_owned(proc_lock));
1437 	KASSERT(mutex_owned(p->p_lock));
1438 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1439 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1440 
1441 	p->p_sflag &= ~PS_STOPPING;
1442 	p->p_stat = SSTOP;
1443 	p->p_waited = 0;
1444 	p->p_pptr->p_nstopchild++;
1445 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1446 		if (ppsig) {
1447 			/* child_psignal drops p_lock briefly. */
1448 			child_psignal(p, ppmask);
1449 		}
1450 		cv_broadcast(&p->p_pptr->p_waitcv);
1451 	}
1452 }
1453 
1454 /*
1455  * Stop the current process and switch away when being stopped or traced.
1456  */
1457 void
1458 sigswitch(bool ppsig, int ppmask, int signo)
1459 {
1460 	struct lwp *l = curlwp;
1461 	struct proc *p = l->l_proc;
1462 	int biglocks;
1463 
1464 	KASSERT(mutex_owned(p->p_lock));
1465 	KASSERT(l->l_stat == LSONPROC);
1466 	KASSERT(p->p_nrlwps > 0);
1467 
1468 	/*
1469 	 * On entry we know that the process needs to stop.  If it's
1470 	 * the result of a 'sideways' stop signal that has been sourced
1471 	 * through issignal(), then stop other LWPs in the process too.
1472 	 */
1473 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1474 		KASSERT(signo != 0);
1475 		proc_stop(p, 1, signo);
1476 		KASSERT(p->p_nrlwps > 0);
1477 	}
1478 
1479 	/*
1480 	 * If we are the last live LWP, and the stop was a result of
1481 	 * a new signal, then signal the parent.
1482 	 */
1483 	if ((p->p_sflag & PS_STOPPING) != 0) {
1484 		if (!mutex_tryenter(proc_lock)) {
1485 			mutex_exit(p->p_lock);
1486 			mutex_enter(proc_lock);
1487 			mutex_enter(p->p_lock);
1488 		}
1489 
1490 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1491 			/*
1492 			 * Note that proc_stop_done() can drop
1493 			 * p->p_lock briefly.
1494 			 */
1495 			proc_stop_done(p, ppsig, ppmask);
1496 		}
1497 
1498 		mutex_exit(proc_lock);
1499 	}
1500 
1501 	/*
1502 	 * Unlock and switch away.
1503 	 */
1504 	KERNEL_UNLOCK_ALL(l, &biglocks);
1505 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1506 		p->p_nrlwps--;
1507 		lwp_lock(l);
1508 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1509 		l->l_stat = LSSTOP;
1510 		lwp_unlock(l);
1511 	}
1512 
1513 	mutex_exit(p->p_lock);
1514 	lwp_lock(l);
1515 	mi_switch(l);
1516 	KERNEL_LOCK(biglocks, l);
1517 	mutex_enter(p->p_lock);
1518 }
1519 
1520 /*
1521  * Check for a signal from the debugger.
1522  */
1523 int
1524 sigchecktrace(sigpend_t **spp)
1525 {
1526 	struct lwp *l = curlwp;
1527 	struct proc *p = l->l_proc;
1528 	int signo;
1529 
1530 	KASSERT(mutex_owned(p->p_lock));
1531 
1532 	/*
1533 	 * If we are no longer being traced, or the parent didn't
1534 	 * give us a signal, look for more signals.
1535 	 */
1536 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1537 		return 0;
1538 
1539 	/* If there's a pending SIGKILL, process it immediately. */
1540 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1541 		return 0;
1542 
1543 	/*
1544 	 * If the new signal is being masked, look for other signals.
1545 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1546 	 */
1547 	signo = p->p_xstat;
1548 	p->p_xstat = 0;
1549 	if ((sigprop[signo] & SA_TOLWP) != 0)
1550 		*spp = &l->l_sigpend;
1551 	else
1552 		*spp = &p->p_sigpend;
1553 	if (sigismember(&l->l_sigmask, signo))
1554 		signo = 0;
1555 
1556 	return signo;
1557 }
1558 
1559 /*
1560  * If the current process has received a signal (should be caught or cause
1561  * termination, should interrupt current syscall), return the signal number.
1562  *
1563  * Stop signals with default action are processed immediately, then cleared;
1564  * they aren't returned.  This is checked after each entry to the system for
1565  * a syscall or trap.
1566  *
1567  * We will also return -1 if the process is exiting and the current LWP must
1568  * follow suit.
1569  *
1570  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1571  * can switch away, though.
1572  */
1573 int
1574 issignal(struct lwp *l)
1575 {
1576 	struct proc *p = l->l_proc;
1577 	int signo = 0, prop;
1578 	sigpend_t *sp = NULL;
1579 	sigset_t ss;
1580 
1581 	KASSERT(mutex_owned(p->p_lock));
1582 
1583 	for (;;) {
1584 		/* Discard any signals that we have decided not to take. */
1585 		if (signo != 0)
1586 			(void)sigget(sp, NULL, signo, NULL);
1587 
1588 		/*
1589 		 * If the process is stopped/stopping, then stop ourselves
1590 		 * now that we're on the kernel/userspace boundary.  When
1591 		 * we awaken, check for a signal from the debugger.
1592 		 */
1593 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1594 			sigswitch(true, PS_NOCLDSTOP, 0);
1595 			signo = sigchecktrace(&sp);
1596 		} else
1597 			signo = 0;
1598 
1599 		/*
1600 		 * If the debugger didn't provide a signal, find a pending
1601 		 * signal from our set.  Check per-LWP signals first, and
1602 		 * then per-process.
1603 		 */
1604 		if (signo == 0) {
1605 			sp = &l->l_sigpend;
1606 			ss = sp->sp_set;
1607 			if ((p->p_lflag & PL_PPWAIT) != 0)
1608 				sigminusset(&stopsigmask, &ss);
1609 			sigminusset(&l->l_sigmask, &ss);
1610 
1611 			if ((signo = firstsig(&ss)) == 0) {
1612 				sp = &p->p_sigpend;
1613 				ss = sp->sp_set;
1614 				if ((p->p_lflag & PL_PPWAIT) != 0)
1615 					sigminusset(&stopsigmask, &ss);
1616 				sigminusset(&l->l_sigmask, &ss);
1617 
1618 				if ((signo = firstsig(&ss)) == 0) {
1619 					/*
1620 					 * No signal pending - clear the
1621 					 * indicator and bail out.
1622 					 */
1623 					lwp_lock(l);
1624 					l->l_flag &= ~LW_PENDSIG;
1625 					lwp_unlock(l);
1626 					sp = NULL;
1627 					break;
1628 				}
1629 			}
1630 		}
1631 
1632 		/*
1633 		 * We should see pending but ignored signals only if
1634 		 * we are being traced.
1635 		 */
1636 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1637 		    (p->p_slflag & PSL_TRACED) == 0) {
1638 			/* Discard the signal. */
1639 			continue;
1640 		}
1641 
1642 		/*
1643 		 * If traced, always stop, and stay stopped until released
1644 		 * by the debugger.  If the our parent process is waiting
1645 		 * for us, don't hang as we could deadlock.
1646 		 */
1647 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1648 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1649 			/* Take the signal. */
1650 			(void)sigget(sp, NULL, signo, NULL);
1651 			p->p_xstat = signo;
1652 
1653 			/* Emulation-specific handling of signal trace */
1654 			if (p->p_emul->e_tracesig == NULL ||
1655 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1656 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1657 				    signo);
1658 
1659 			/* Check for a signal from the debugger. */
1660 			if ((signo = sigchecktrace(&sp)) == 0)
1661 				continue;
1662 		}
1663 
1664 		prop = sigprop[signo];
1665 
1666 		/*
1667 		 * Decide whether the signal should be returned.
1668 		 */
1669 		switch ((long)SIGACTION(p, signo).sa_handler) {
1670 		case (long)SIG_DFL:
1671 			/*
1672 			 * Don't take default actions on system processes.
1673 			 */
1674 			if (p->p_pid <= 1) {
1675 #ifdef DIAGNOSTIC
1676 				/*
1677 				 * Are you sure you want to ignore SIGSEGV
1678 				 * in init? XXX
1679 				 */
1680 				printf_nolog("Process (pid %d) got sig %d\n",
1681 				    p->p_pid, signo);
1682 #endif
1683 				continue;
1684 			}
1685 
1686 			/*
1687 			 * If there is a pending stop signal to process with
1688 			 * default action, stop here, then clear the signal.
1689 			 * However, if process is member of an orphaned
1690 			 * process group, ignore tty stop signals.
1691 			 */
1692 			if (prop & SA_STOP) {
1693 				/*
1694 				 * XXX Don't hold proc_lock for p_lflag,
1695 				 * but it's not a big deal.
1696 				 */
1697 				if (p->p_slflag & PSL_TRACED ||
1698 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1699 				    prop & SA_TTYSTOP)) {
1700 				    	/* Ignore the signal. */
1701 					continue;
1702 				}
1703 				/* Take the signal. */
1704 				(void)sigget(sp, NULL, signo, NULL);
1705 				p->p_xstat = signo;
1706 				signo = 0;
1707 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1708 			} else if (prop & SA_IGNORE) {
1709 				/*
1710 				 * Except for SIGCONT, shouldn't get here.
1711 				 * Default action is to ignore; drop it.
1712 				 */
1713 				continue;
1714 			}
1715 			break;
1716 
1717 		case (long)SIG_IGN:
1718 #ifdef DEBUG_ISSIGNAL
1719 			/*
1720 			 * Masking above should prevent us ever trying
1721 			 * to take action on an ignored signal other
1722 			 * than SIGCONT, unless process is traced.
1723 			 */
1724 			if ((prop & SA_CONT) == 0 &&
1725 			    (p->p_slflag & PSL_TRACED) == 0)
1726 				printf_nolog("issignal\n");
1727 #endif
1728 			continue;
1729 
1730 		default:
1731 			/*
1732 			 * This signal has an action, let postsig() process
1733 			 * it.
1734 			 */
1735 			break;
1736 		}
1737 
1738 		break;
1739 	}
1740 
1741 	l->l_sigpendset = sp;
1742 	return signo;
1743 }
1744 
1745 /*
1746  * Take the action for the specified signal
1747  * from the current set of pending signals.
1748  */
1749 void
1750 postsig(int signo)
1751 {
1752 	struct lwp	*l;
1753 	struct proc	*p;
1754 	struct sigacts	*ps;
1755 	sig_t		action;
1756 	sigset_t	*returnmask;
1757 	ksiginfo_t	ksi;
1758 
1759 	l = curlwp;
1760 	p = l->l_proc;
1761 	ps = p->p_sigacts;
1762 
1763 	KASSERT(mutex_owned(p->p_lock));
1764 	KASSERT(signo > 0);
1765 
1766 	/*
1767 	 * Set the new mask value and also defer further occurrences of this
1768 	 * signal.
1769 	 *
1770 	 * Special case: user has done a sigsuspend.  Here the current mask is
1771 	 * not of interest, but rather the mask from before the sigsuspen is
1772 	 * what we want restored after the signal processing is completed.
1773 	 */
1774 	if (l->l_sigrestore) {
1775 		returnmask = &l->l_sigoldmask;
1776 		l->l_sigrestore = 0;
1777 	} else
1778 		returnmask = &l->l_sigmask;
1779 
1780 	/*
1781 	 * Commit to taking the signal before releasing the mutex.
1782 	 */
1783 	action = SIGACTION_PS(ps, signo).sa_handler;
1784 	l->l_ru.ru_nsignals++;
1785 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1786 
1787 	if (ktrpoint(KTR_PSIG)) {
1788 		mutex_exit(p->p_lock);
1789 		ktrpsig(signo, action, returnmask, NULL);
1790 		mutex_enter(p->p_lock);
1791 	}
1792 
1793 	if (action == SIG_DFL) {
1794 		/*
1795 		 * Default action, where the default is to kill
1796 		 * the process.  (Other cases were ignored above.)
1797 		 */
1798 		sigexit(l, signo);
1799 		return;
1800 	}
1801 
1802 	/*
1803 	 * If we get here, the signal must be caught.
1804 	 */
1805 #ifdef DIAGNOSTIC
1806 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1807 		panic("postsig action");
1808 #endif
1809 
1810 	kpsendsig(l, &ksi, returnmask);
1811 }
1812 
1813 /*
1814  * sendsig_reset:
1815  *
1816  *	Reset the signal action.  Called from emulation specific sendsig()
1817  *	before unlocking to deliver the signal.
1818  */
1819 void
1820 sendsig_reset(struct lwp *l, int signo)
1821 {
1822 	struct proc *p = l->l_proc;
1823 	struct sigacts *ps = p->p_sigacts;
1824 
1825 	KASSERT(mutex_owned(p->p_lock));
1826 
1827 	p->p_sigctx.ps_lwp = 0;
1828 	p->p_sigctx.ps_code = 0;
1829 	p->p_sigctx.ps_signo = 0;
1830 
1831 	mutex_enter(&ps->sa_mutex);
1832 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1833 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1834 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1835 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1836 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1837 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1838 	}
1839 	mutex_exit(&ps->sa_mutex);
1840 }
1841 
1842 /*
1843  * Kill the current process for stated reason.
1844  */
1845 void
1846 killproc(struct proc *p, const char *why)
1847 {
1848 
1849 	KASSERT(mutex_owned(proc_lock));
1850 
1851 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1852 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1853 	psignal(p, SIGKILL);
1854 }
1855 
1856 /*
1857  * Force the current process to exit with the specified signal, dumping core
1858  * if appropriate.  We bypass the normal tests for masked and caught
1859  * signals, allowing unrecoverable failures to terminate the process without
1860  * changing signal state.  Mark the accounting record with the signal
1861  * termination.  If dumping core, save the signal number for the debugger.
1862  * Calls exit and does not return.
1863  */
1864 void
1865 sigexit(struct lwp *l, int signo)
1866 {
1867 	int exitsig, error, docore;
1868 	struct proc *p;
1869 	struct lwp *t;
1870 
1871 	p = l->l_proc;
1872 
1873 	KASSERT(mutex_owned(p->p_lock));
1874 	KERNEL_UNLOCK_ALL(l, NULL);
1875 
1876 	/*
1877 	 * Don't permit coredump() multiple times in the same process.
1878 	 * Call back into sigexit, where we will be suspended until
1879 	 * the deed is done.  Note that this is a recursive call, but
1880 	 * LW_WCORE will prevent us from coming back this way.
1881 	 */
1882 	if ((p->p_sflag & PS_WCORE) != 0) {
1883 		lwp_lock(l);
1884 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1885 		lwp_unlock(l);
1886 		mutex_exit(p->p_lock);
1887 		lwp_userret(l);
1888 		panic("sigexit 1");
1889 		/* NOTREACHED */
1890 	}
1891 
1892 	/* If process is already on the way out, then bail now. */
1893 	if ((p->p_sflag & PS_WEXIT) != 0) {
1894 		mutex_exit(p->p_lock);
1895 		lwp_exit(l);
1896 		panic("sigexit 2");
1897 		/* NOTREACHED */
1898 	}
1899 
1900 	/*
1901 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
1902 	 * so that their registers are available long enough to be dumped.
1903  	 */
1904 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1905 		p->p_sflag |= PS_WCORE;
1906 		for (;;) {
1907 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1908 				lwp_lock(t);
1909 				if (t == l) {
1910 					t->l_flag &= ~LW_WSUSPEND;
1911 					lwp_unlock(t);
1912 					continue;
1913 				}
1914 				t->l_flag |= (LW_WCORE | LW_WEXIT);
1915 				lwp_suspend(l, t);
1916 			}
1917 
1918 			if (p->p_nrlwps == 1)
1919 				break;
1920 
1921 			/*
1922 			 * Kick any LWPs sitting in lwp_wait1(), and wait
1923 			 * for everyone else to stop before proceeding.
1924 			 */
1925 			p->p_nlwpwait++;
1926 			cv_broadcast(&p->p_lwpcv);
1927 			cv_wait(&p->p_lwpcv, p->p_lock);
1928 			p->p_nlwpwait--;
1929 		}
1930 	}
1931 
1932 	exitsig = signo;
1933 	p->p_acflag |= AXSIG;
1934 	p->p_sigctx.ps_signo = signo;
1935 
1936 	if (docore) {
1937 		mutex_exit(p->p_lock);
1938 		if ((error = coredump(l, NULL)) == 0)
1939 			exitsig |= WCOREFLAG;
1940 
1941 		if (kern_logsigexit) {
1942 			int uid = l->l_cred ?
1943 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
1944 
1945 			if (error)
1946 				log(LOG_INFO, lognocoredump, p->p_pid,
1947 				    p->p_comm, uid, signo, error);
1948 			else
1949 				log(LOG_INFO, logcoredump, p->p_pid,
1950 				    p->p_comm, uid, signo);
1951 		}
1952 
1953 #ifdef PAX_SEGVGUARD
1954 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
1955 #endif /* PAX_SEGVGUARD */
1956 		/* Acquire the sched state mutex.  exit1() will release it. */
1957 		mutex_enter(p->p_lock);
1958 	}
1959 
1960 	/* No longer dumping core. */
1961 	p->p_sflag &= ~PS_WCORE;
1962 
1963 	exit1(l, W_EXITCODE(0, exitsig));
1964 	/* NOTREACHED */
1965 }
1966 
1967 /*
1968  * Put process 'p' into the stopped state and optionally, notify the parent.
1969  */
1970 void
1971 proc_stop(struct proc *p, int notify, int signo)
1972 {
1973 	struct lwp *l;
1974 
1975 	KASSERT(mutex_owned(p->p_lock));
1976 
1977 	/*
1978 	 * First off, set the stopping indicator and bring all sleeping
1979 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
1980 	 * unlock between here and the p->p_nrlwps check below.
1981 	 */
1982 	p->p_sflag |= PS_STOPPING;
1983 	if (notify)
1984 		p->p_sflag |= PS_NOTIFYSTOP;
1985 	else
1986 		p->p_sflag &= ~PS_NOTIFYSTOP;
1987 	membar_producer();
1988 
1989 	proc_stop_lwps(p);
1990 
1991 	/*
1992 	 * If there are no LWPs available to take the signal, then we
1993 	 * signal the parent process immediately.  Otherwise, the last
1994 	 * LWP to stop will take care of it.
1995 	 */
1996 
1997 	if (p->p_nrlwps == 0) {
1998 		proc_stop_done(p, true, PS_NOCLDSTOP);
1999 	} else {
2000 		/*
2001 		 * Have the remaining LWPs come to a halt, and trigger
2002 		 * proc_stop_callout() to ensure that they do.
2003 		 */
2004 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2005 			sigpost(l, SIG_DFL, SA_STOP, signo);
2006 		callout_schedule(&proc_stop_ch, 1);
2007 	}
2008 }
2009 
2010 /*
2011  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2012  * but wait for them to come to a halt at the kernel-user boundary.  This is
2013  * to allow LWPs to release any locks that they may hold before stopping.
2014  *
2015  * Non-interruptable sleeps can be long, and there is the potential for an
2016  * LWP to begin sleeping interruptably soon after the process has been set
2017  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2018  * stopping, and so complete halt of the process and the return of status
2019  * information to the parent could be delayed indefinitely.
2020  *
2021  * To handle this race, proc_stop_callout() runs once per tick while there
2022  * are stopping processes in the system.  It sets LWPs that are sleeping
2023  * interruptably into the LSSTOP state.
2024  *
2025  * Note that we are not concerned about keeping all LWPs stopped while the
2026  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2027  * What we do need to ensure is that all LWPs in a stopping process have
2028  * stopped at least once, so that notification can be sent to the parent
2029  * process.
2030  */
2031 static void
2032 proc_stop_callout(void *cookie)
2033 {
2034 	bool more, restart;
2035 	struct proc *p;
2036 
2037 	(void)cookie;
2038 
2039 	do {
2040 		restart = false;
2041 		more = false;
2042 
2043 		mutex_enter(proc_lock);
2044 		PROCLIST_FOREACH(p, &allproc) {
2045 			if ((p->p_flag & PK_MARKER) != 0)
2046 				continue;
2047 			mutex_enter(p->p_lock);
2048 
2049 			if ((p->p_sflag & PS_STOPPING) == 0) {
2050 				mutex_exit(p->p_lock);
2051 				continue;
2052 			}
2053 
2054 			/* Stop any LWPs sleeping interruptably. */
2055 			proc_stop_lwps(p);
2056 			if (p->p_nrlwps == 0) {
2057 				/*
2058 				 * We brought the process to a halt.
2059 				 * Mark it as stopped and notify the
2060 				 * parent.
2061 				 */
2062 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2063 					/*
2064 					 * Note that proc_stop_done() will
2065 					 * drop p->p_lock briefly.
2066 					 * Arrange to restart and check
2067 					 * all processes again.
2068 					 */
2069 					restart = true;
2070 				}
2071 				proc_stop_done(p, true, PS_NOCLDSTOP);
2072 			} else
2073 				more = true;
2074 
2075 			mutex_exit(p->p_lock);
2076 			if (restart)
2077 				break;
2078 		}
2079 		mutex_exit(proc_lock);
2080 	} while (restart);
2081 
2082 	/*
2083 	 * If we noted processes that are stopping but still have
2084 	 * running LWPs, then arrange to check again in 1 tick.
2085 	 */
2086 	if (more)
2087 		callout_schedule(&proc_stop_ch, 1);
2088 }
2089 
2090 /*
2091  * Given a process in state SSTOP, set the state back to SACTIVE and
2092  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2093  */
2094 void
2095 proc_unstop(struct proc *p)
2096 {
2097 	struct lwp *l;
2098 	int sig;
2099 
2100 	KASSERT(mutex_owned(proc_lock));
2101 	KASSERT(mutex_owned(p->p_lock));
2102 
2103 	p->p_stat = SACTIVE;
2104 	p->p_sflag &= ~PS_STOPPING;
2105 	sig = p->p_xstat;
2106 
2107 	if (!p->p_waited)
2108 		p->p_pptr->p_nstopchild--;
2109 
2110 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2111 		lwp_lock(l);
2112 		if (l->l_stat != LSSTOP) {
2113 			lwp_unlock(l);
2114 			continue;
2115 		}
2116 		if (l->l_wchan == NULL) {
2117 			setrunnable(l);
2118 			continue;
2119 		}
2120 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2121 		        setrunnable(l);
2122 		        sig = 0;
2123 		} else {
2124 			l->l_stat = LSSLEEP;
2125 			p->p_nrlwps++;
2126 			lwp_unlock(l);
2127 		}
2128 	}
2129 }
2130 
2131 static int
2132 filt_sigattach(struct knote *kn)
2133 {
2134 	struct proc *p = curproc;
2135 
2136 	kn->kn_obj = p;
2137 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2138 
2139 	mutex_enter(p->p_lock);
2140 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2141 	mutex_exit(p->p_lock);
2142 
2143 	return (0);
2144 }
2145 
2146 static void
2147 filt_sigdetach(struct knote *kn)
2148 {
2149 	struct proc *p = kn->kn_obj;
2150 
2151 	mutex_enter(p->p_lock);
2152 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2153 	mutex_exit(p->p_lock);
2154 }
2155 
2156 /*
2157  * signal knotes are shared with proc knotes, so we apply a mask to
2158  * the hint in order to differentiate them from process hints.  This
2159  * could be avoided by using a signal-specific knote list, but probably
2160  * isn't worth the trouble.
2161  */
2162 static int
2163 filt_signal(struct knote *kn, long hint)
2164 {
2165 
2166 	if (hint & NOTE_SIGNAL) {
2167 		hint &= ~NOTE_SIGNAL;
2168 
2169 		if (kn->kn_id == hint)
2170 			kn->kn_data++;
2171 	}
2172 	return (kn->kn_data != 0);
2173 }
2174 
2175 const struct filterops sig_filtops = {
2176 	0, filt_sigattach, filt_sigdetach, filt_signal
2177 };
2178