1 /* $NetBSD: kern_sig.c,v 1.339 2017/12/07 19:49:43 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.339 2017/12/07 19:49:43 christos Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_dtrace.h" 77 #include "opt_compat_sunos.h" 78 #include "opt_compat_netbsd.h" 79 #include "opt_compat_netbsd32.h" 80 #include "opt_pax.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/ptrace.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 #include <sys/ktrace.h> 90 #include <sys/syslog.h> 91 #include <sys/filedesc.h> 92 #include <sys/file.h> 93 #include <sys/pool.h> 94 #include <sys/ucontext.h> 95 #include <sys/exec.h> 96 #include <sys/kauth.h> 97 #include <sys/acct.h> 98 #include <sys/callout.h> 99 #include <sys/atomic.h> 100 #include <sys/cpu.h> 101 #include <sys/module.h> 102 #include <sys/sdt.h> 103 104 #ifdef PAX_SEGVGUARD 105 #include <sys/pax.h> 106 #endif /* PAX_SEGVGUARD */ 107 108 #include <uvm/uvm_extern.h> 109 110 #define SIGQUEUE_MAX 32 111 static pool_cache_t sigacts_cache __read_mostly; 112 static pool_cache_t ksiginfo_cache __read_mostly; 113 static callout_t proc_stop_ch __cacheline_aligned; 114 115 sigset_t contsigmask __cacheline_aligned; 116 static sigset_t stopsigmask __cacheline_aligned; 117 sigset_t sigcantmask __cacheline_aligned; 118 119 static void ksiginfo_exechook(struct proc *, void *); 120 static void proc_stop(struct proc *, int); 121 static void proc_stop_callout(void *); 122 static int sigchecktrace(void); 123 static int sigpost(struct lwp *, sig_t, int, int); 124 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *); 125 static int sigunwait(struct proc *, const ksiginfo_t *); 126 static void sigswitch(bool, int, int); 127 128 static void sigacts_poolpage_free(struct pool *, void *); 129 static void *sigacts_poolpage_alloc(struct pool *, int); 130 131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 132 int (*coredump_vec)(struct lwp *, const char *) = 133 (int (*)(struct lwp *, const char *))enosys; 134 135 /* 136 * DTrace SDT provider definitions 137 */ 138 SDT_PROVIDER_DECLARE(proc); 139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, 140 "struct lwp *", /* target thread */ 141 "struct proc *", /* target process */ 142 "int"); /* signal */ 143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard, 144 "struct lwp *", /* target thread */ 145 "struct proc *", /* target process */ 146 "int"); /* signal */ 147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle, 148 "int", /* signal */ 149 "ksiginfo_t *", /* signal info */ 150 "void (*)(void)"); /* handler address */ 151 152 153 static struct pool_allocator sigactspool_allocator = { 154 .pa_alloc = sigacts_poolpage_alloc, 155 .pa_free = sigacts_poolpage_free 156 }; 157 158 #ifdef DEBUG 159 int kern_logsigexit = 1; 160 #else 161 int kern_logsigexit = 0; 162 #endif 163 164 static const char logcoredump[] = 165 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 166 static const char lognocoredump[] = 167 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 168 169 static kauth_listener_t signal_listener; 170 171 static int 172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 173 void *arg0, void *arg1, void *arg2, void *arg3) 174 { 175 struct proc *p; 176 int result, signum; 177 178 result = KAUTH_RESULT_DEFER; 179 p = arg0; 180 signum = (int)(unsigned long)arg1; 181 182 if (action != KAUTH_PROCESS_SIGNAL) 183 return result; 184 185 if (kauth_cred_uidmatch(cred, p->p_cred) || 186 (signum == SIGCONT && (curproc->p_session == p->p_session))) 187 result = KAUTH_RESULT_ALLOW; 188 189 return result; 190 } 191 192 /* 193 * signal_init: 194 * 195 * Initialize global signal-related data structures. 196 */ 197 void 198 signal_init(void) 199 { 200 201 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 202 203 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 204 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 205 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 206 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 207 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 208 209 exechook_establish(ksiginfo_exechook, NULL); 210 211 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 212 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 213 214 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 215 signal_listener_cb, NULL); 216 } 217 218 /* 219 * sigacts_poolpage_alloc: 220 * 221 * Allocate a page for the sigacts memory pool. 222 */ 223 static void * 224 sigacts_poolpage_alloc(struct pool *pp, int flags) 225 { 226 227 return (void *)uvm_km_alloc(kernel_map, 228 PAGE_SIZE * 2, PAGE_SIZE * 2, 229 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 230 | UVM_KMF_WIRED); 231 } 232 233 /* 234 * sigacts_poolpage_free: 235 * 236 * Free a page on behalf of the sigacts memory pool. 237 */ 238 static void 239 sigacts_poolpage_free(struct pool *pp, void *v) 240 { 241 242 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 243 } 244 245 /* 246 * sigactsinit: 247 * 248 * Create an initial sigacts structure, using the same signal state 249 * as of specified process. If 'share' is set, share the sigacts by 250 * holding a reference, otherwise just copy it from parent. 251 */ 252 struct sigacts * 253 sigactsinit(struct proc *pp, int share) 254 { 255 struct sigacts *ps = pp->p_sigacts, *ps2; 256 257 if (__predict_false(share)) { 258 atomic_inc_uint(&ps->sa_refcnt); 259 return ps; 260 } 261 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 262 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 263 ps2->sa_refcnt = 1; 264 265 mutex_enter(&ps->sa_mutex); 266 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 267 mutex_exit(&ps->sa_mutex); 268 return ps2; 269 } 270 271 /* 272 * sigactsunshare: 273 * 274 * Make this process not share its sigacts, maintaining all signal state. 275 */ 276 void 277 sigactsunshare(struct proc *p) 278 { 279 struct sigacts *ps, *oldps = p->p_sigacts; 280 281 if (__predict_true(oldps->sa_refcnt == 1)) 282 return; 283 284 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 285 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 286 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 287 ps->sa_refcnt = 1; 288 289 p->p_sigacts = ps; 290 sigactsfree(oldps); 291 } 292 293 /* 294 * sigactsfree; 295 * 296 * Release a sigacts structure. 297 */ 298 void 299 sigactsfree(struct sigacts *ps) 300 { 301 302 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 303 mutex_destroy(&ps->sa_mutex); 304 pool_cache_put(sigacts_cache, ps); 305 } 306 } 307 308 /* 309 * siginit: 310 * 311 * Initialize signal state for process 0; set to ignore signals that 312 * are ignored by default and disable the signal stack. Locking not 313 * required as the system is still cold. 314 */ 315 void 316 siginit(struct proc *p) 317 { 318 struct lwp *l; 319 struct sigacts *ps; 320 int signo, prop; 321 322 ps = p->p_sigacts; 323 sigemptyset(&contsigmask); 324 sigemptyset(&stopsigmask); 325 sigemptyset(&sigcantmask); 326 for (signo = 1; signo < NSIG; signo++) { 327 prop = sigprop[signo]; 328 if (prop & SA_CONT) 329 sigaddset(&contsigmask, signo); 330 if (prop & SA_STOP) 331 sigaddset(&stopsigmask, signo); 332 if (prop & SA_CANTMASK) 333 sigaddset(&sigcantmask, signo); 334 if (prop & SA_IGNORE && signo != SIGCONT) 335 sigaddset(&p->p_sigctx.ps_sigignore, signo); 336 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 337 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 338 } 339 sigemptyset(&p->p_sigctx.ps_sigcatch); 340 p->p_sflag &= ~PS_NOCLDSTOP; 341 342 ksiginfo_queue_init(&p->p_sigpend.sp_info); 343 sigemptyset(&p->p_sigpend.sp_set); 344 345 /* 346 * Reset per LWP state. 347 */ 348 l = LIST_FIRST(&p->p_lwps); 349 l->l_sigwaited = NULL; 350 l->l_sigstk = SS_INIT; 351 ksiginfo_queue_init(&l->l_sigpend.sp_info); 352 sigemptyset(&l->l_sigpend.sp_set); 353 354 /* One reference. */ 355 ps->sa_refcnt = 1; 356 } 357 358 /* 359 * execsigs: 360 * 361 * Reset signals for an exec of the specified process. 362 */ 363 void 364 execsigs(struct proc *p) 365 { 366 struct sigacts *ps; 367 struct lwp *l; 368 int signo, prop; 369 sigset_t tset; 370 ksiginfoq_t kq; 371 372 KASSERT(p->p_nlwps == 1); 373 374 sigactsunshare(p); 375 ps = p->p_sigacts; 376 377 /* 378 * Reset caught signals. Held signals remain held through 379 * l->l_sigmask (unless they were caught, and are now ignored 380 * by default). 381 * 382 * No need to lock yet, the process has only one LWP and 383 * at this point the sigacts are private to the process. 384 */ 385 sigemptyset(&tset); 386 for (signo = 1; signo < NSIG; signo++) { 387 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 388 prop = sigprop[signo]; 389 if (prop & SA_IGNORE) { 390 if ((prop & SA_CONT) == 0) 391 sigaddset(&p->p_sigctx.ps_sigignore, 392 signo); 393 sigaddset(&tset, signo); 394 } 395 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 396 } 397 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 398 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 399 } 400 ksiginfo_queue_init(&kq); 401 402 mutex_enter(p->p_lock); 403 sigclearall(p, &tset, &kq); 404 sigemptyset(&p->p_sigctx.ps_sigcatch); 405 406 /* 407 * Reset no zombies if child dies flag as Solaris does. 408 */ 409 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 410 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 411 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 412 413 /* 414 * Reset per-LWP state. 415 */ 416 l = LIST_FIRST(&p->p_lwps); 417 l->l_sigwaited = NULL; 418 l->l_sigstk = SS_INIT; 419 ksiginfo_queue_init(&l->l_sigpend.sp_info); 420 sigemptyset(&l->l_sigpend.sp_set); 421 mutex_exit(p->p_lock); 422 423 ksiginfo_queue_drain(&kq); 424 } 425 426 /* 427 * ksiginfo_exechook: 428 * 429 * Free all pending ksiginfo entries from a process on exec. 430 * Additionally, drain any unused ksiginfo structures in the 431 * system back to the pool. 432 * 433 * XXX This should not be a hook, every process has signals. 434 */ 435 static void 436 ksiginfo_exechook(struct proc *p, void *v) 437 { 438 ksiginfoq_t kq; 439 440 ksiginfo_queue_init(&kq); 441 442 mutex_enter(p->p_lock); 443 sigclearall(p, NULL, &kq); 444 mutex_exit(p->p_lock); 445 446 ksiginfo_queue_drain(&kq); 447 } 448 449 /* 450 * ksiginfo_alloc: 451 * 452 * Allocate a new ksiginfo structure from the pool, and optionally copy 453 * an existing one. If the existing ksiginfo_t is from the pool, and 454 * has not been queued somewhere, then just return it. Additionally, 455 * if the existing ksiginfo_t does not contain any information beyond 456 * the signal number, then just return it. 457 */ 458 ksiginfo_t * 459 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 460 { 461 ksiginfo_t *kp; 462 463 if (ok != NULL) { 464 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 465 KSI_FROMPOOL) 466 return ok; 467 if (KSI_EMPTY_P(ok)) 468 return ok; 469 } 470 471 kp = pool_cache_get(ksiginfo_cache, flags); 472 if (kp == NULL) { 473 #ifdef DIAGNOSTIC 474 printf("Out of memory allocating ksiginfo for pid %d\n", 475 p->p_pid); 476 #endif 477 return NULL; 478 } 479 480 if (ok != NULL) { 481 memcpy(kp, ok, sizeof(*kp)); 482 kp->ksi_flags &= ~KSI_QUEUED; 483 } else 484 KSI_INIT_EMPTY(kp); 485 486 kp->ksi_flags |= KSI_FROMPOOL; 487 488 return kp; 489 } 490 491 /* 492 * ksiginfo_free: 493 * 494 * If the given ksiginfo_t is from the pool and has not been queued, 495 * then free it. 496 */ 497 void 498 ksiginfo_free(ksiginfo_t *kp) 499 { 500 501 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 502 return; 503 pool_cache_put(ksiginfo_cache, kp); 504 } 505 506 /* 507 * ksiginfo_queue_drain: 508 * 509 * Drain a non-empty ksiginfo_t queue. 510 */ 511 void 512 ksiginfo_queue_drain0(ksiginfoq_t *kq) 513 { 514 ksiginfo_t *ksi; 515 516 KASSERT(!TAILQ_EMPTY(kq)); 517 518 while (!TAILQ_EMPTY(kq)) { 519 ksi = TAILQ_FIRST(kq); 520 TAILQ_REMOVE(kq, ksi, ksi_list); 521 pool_cache_put(ksiginfo_cache, ksi); 522 } 523 } 524 525 static int 526 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 527 { 528 ksiginfo_t *ksi, *nksi; 529 530 if (sp == NULL) 531 goto out; 532 533 /* Find siginfo and copy it out. */ 534 int count = 0; 535 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) { 536 if (ksi->ksi_signo != signo) 537 continue; 538 if (count++ > 0) /* Only remove the first, count all of them */ 539 continue; 540 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 541 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 542 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 543 ksi->ksi_flags &= ~KSI_QUEUED; 544 if (out != NULL) { 545 memcpy(out, ksi, sizeof(*out)); 546 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 547 } 548 ksiginfo_free(ksi); 549 } 550 if (count) 551 return count; 552 553 out: 554 /* If there is no siginfo, then manufacture it. */ 555 if (out != NULL) { 556 KSI_INIT(out); 557 out->ksi_info._signo = signo; 558 out->ksi_info._code = SI_NOINFO; 559 } 560 return 0; 561 } 562 563 /* 564 * sigget: 565 * 566 * Fetch the first pending signal from a set. Optionally, also fetch 567 * or manufacture a ksiginfo element. Returns the number of the first 568 * pending signal, or zero. 569 */ 570 int 571 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 572 { 573 sigset_t tset; 574 int count; 575 576 /* If there's no pending set, the signal is from the debugger. */ 577 if (sp == NULL) 578 goto out; 579 580 /* Construct mask from signo, and 'mask'. */ 581 if (signo == 0) { 582 if (mask != NULL) { 583 tset = *mask; 584 __sigandset(&sp->sp_set, &tset); 585 } else 586 tset = sp->sp_set; 587 588 /* If there are no signals pending - return. */ 589 if ((signo = firstsig(&tset)) == 0) 590 goto out; 591 } else { 592 KASSERT(sigismember(&sp->sp_set, signo)); 593 } 594 595 sigdelset(&sp->sp_set, signo); 596 out: 597 count = siggetinfo(sp, out, signo); 598 if (count > 1) 599 sigaddset(&sp->sp_set, signo); 600 return signo; 601 } 602 603 /* 604 * sigput: 605 * 606 * Append a new ksiginfo element to the list of pending ksiginfo's. 607 */ 608 static int 609 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 610 { 611 ksiginfo_t *kp; 612 613 KASSERT(mutex_owned(p->p_lock)); 614 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 615 616 sigaddset(&sp->sp_set, ksi->ksi_signo); 617 618 /* 619 * If there is no siginfo, we are done. 620 */ 621 if (KSI_EMPTY_P(ksi)) 622 return 0; 623 624 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 625 626 size_t count = 0; 627 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 628 count++; 629 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX) 630 continue; 631 if (kp->ksi_signo == ksi->ksi_signo) { 632 KSI_COPY(ksi, kp); 633 kp->ksi_flags |= KSI_QUEUED; 634 return 0; 635 } 636 } 637 638 if (count >= SIGQUEUE_MAX) { 639 #ifdef DIAGNOSTIC 640 printf("%s(%d): Signal queue is full signal=%d\n", 641 p->p_comm, p->p_pid, ksi->ksi_signo); 642 #endif 643 return EAGAIN; 644 } 645 ksi->ksi_flags |= KSI_QUEUED; 646 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 647 648 return 0; 649 } 650 651 /* 652 * sigclear: 653 * 654 * Clear all pending signals in the specified set. 655 */ 656 void 657 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 658 { 659 ksiginfo_t *ksi, *next; 660 661 if (mask == NULL) 662 sigemptyset(&sp->sp_set); 663 else 664 sigminusset(mask, &sp->sp_set); 665 666 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 667 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 668 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 669 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 670 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 671 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 672 } 673 } 674 } 675 676 /* 677 * sigclearall: 678 * 679 * Clear all pending signals in the specified set from a process and 680 * its LWPs. 681 */ 682 void 683 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 684 { 685 struct lwp *l; 686 687 KASSERT(mutex_owned(p->p_lock)); 688 689 sigclear(&p->p_sigpend, mask, kq); 690 691 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 692 sigclear(&l->l_sigpend, mask, kq); 693 } 694 } 695 696 /* 697 * sigispending: 698 * 699 * Return the first signal number if there are pending signals for the 700 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 701 * and that the signal has been posted to the appopriate queue before 702 * LW_PENDSIG is set. 703 */ 704 int 705 sigispending(struct lwp *l, int signo) 706 { 707 struct proc *p = l->l_proc; 708 sigset_t tset; 709 710 membar_consumer(); 711 712 tset = l->l_sigpend.sp_set; 713 sigplusset(&p->p_sigpend.sp_set, &tset); 714 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 715 sigminusset(&l->l_sigmask, &tset); 716 717 if (signo == 0) { 718 return firstsig(&tset); 719 } 720 return sigismember(&tset, signo) ? signo : 0; 721 } 722 723 void 724 getucontext(struct lwp *l, ucontext_t *ucp) 725 { 726 struct proc *p = l->l_proc; 727 728 KASSERT(mutex_owned(p->p_lock)); 729 730 ucp->uc_flags = 0; 731 ucp->uc_link = l->l_ctxlink; 732 ucp->uc_sigmask = l->l_sigmask; 733 ucp->uc_flags |= _UC_SIGMASK; 734 735 /* 736 * The (unsupplied) definition of the `current execution stack' 737 * in the System V Interface Definition appears to allow returning 738 * the main context stack. 739 */ 740 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 741 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 742 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 743 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 744 } else { 745 /* Simply copy alternate signal execution stack. */ 746 ucp->uc_stack = l->l_sigstk; 747 } 748 ucp->uc_flags |= _UC_STACK; 749 mutex_exit(p->p_lock); 750 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 751 mutex_enter(p->p_lock); 752 } 753 754 int 755 setucontext(struct lwp *l, const ucontext_t *ucp) 756 { 757 struct proc *p = l->l_proc; 758 int error; 759 760 KASSERT(mutex_owned(p->p_lock)); 761 762 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 763 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 764 if (error != 0) 765 return error; 766 } 767 768 mutex_exit(p->p_lock); 769 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 770 mutex_enter(p->p_lock); 771 if (error != 0) 772 return (error); 773 774 l->l_ctxlink = ucp->uc_link; 775 776 /* 777 * If there was stack information, update whether or not we are 778 * still running on an alternate signal stack. 779 */ 780 if ((ucp->uc_flags & _UC_STACK) != 0) { 781 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 782 l->l_sigstk.ss_flags |= SS_ONSTACK; 783 else 784 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 785 } 786 787 return 0; 788 } 789 790 /* 791 * killpg1: common code for kill process group/broadcast kill. 792 */ 793 int 794 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 795 { 796 struct proc *p, *cp; 797 kauth_cred_t pc; 798 struct pgrp *pgrp; 799 int nfound; 800 int signo = ksi->ksi_signo; 801 802 cp = l->l_proc; 803 pc = l->l_cred; 804 nfound = 0; 805 806 mutex_enter(proc_lock); 807 if (all) { 808 /* 809 * Broadcast. 810 */ 811 PROCLIST_FOREACH(p, &allproc) { 812 if (p->p_pid <= 1 || p == cp || 813 (p->p_flag & PK_SYSTEM) != 0) 814 continue; 815 mutex_enter(p->p_lock); 816 if (kauth_authorize_process(pc, 817 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 818 NULL) == 0) { 819 nfound++; 820 if (signo) 821 kpsignal2(p, ksi); 822 } 823 mutex_exit(p->p_lock); 824 } 825 } else { 826 if (pgid == 0) 827 /* Zero pgid means send to my process group. */ 828 pgrp = cp->p_pgrp; 829 else { 830 pgrp = pgrp_find(pgid); 831 if (pgrp == NULL) 832 goto out; 833 } 834 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 835 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 836 continue; 837 mutex_enter(p->p_lock); 838 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 839 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 840 nfound++; 841 if (signo && P_ZOMBIE(p) == 0) 842 kpsignal2(p, ksi); 843 } 844 mutex_exit(p->p_lock); 845 } 846 } 847 out: 848 mutex_exit(proc_lock); 849 return nfound ? 0 : ESRCH; 850 } 851 852 /* 853 * Send a signal to a process group. If checktty is set, limit to members 854 * which have a controlling terminal. 855 */ 856 void 857 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 858 { 859 ksiginfo_t ksi; 860 861 KASSERT(!cpu_intr_p()); 862 KASSERT(mutex_owned(proc_lock)); 863 864 KSI_INIT_EMPTY(&ksi); 865 ksi.ksi_signo = sig; 866 kpgsignal(pgrp, &ksi, NULL, checkctty); 867 } 868 869 void 870 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 871 { 872 struct proc *p; 873 874 KASSERT(!cpu_intr_p()); 875 KASSERT(mutex_owned(proc_lock)); 876 KASSERT(pgrp != NULL); 877 878 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 879 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 880 kpsignal(p, ksi, data); 881 } 882 883 /* 884 * Send a signal caused by a trap to the current LWP. If it will be caught 885 * immediately, deliver it with correct code. Otherwise, post it normally. 886 */ 887 void 888 trapsignal(struct lwp *l, ksiginfo_t *ksi) 889 { 890 struct proc *p; 891 struct sigacts *ps; 892 int signo = ksi->ksi_signo; 893 sigset_t *mask; 894 895 KASSERT(KSI_TRAP_P(ksi)); 896 897 ksi->ksi_lid = l->l_lid; 898 p = l->l_proc; 899 900 KASSERT(!cpu_intr_p()); 901 mutex_enter(proc_lock); 902 mutex_enter(p->p_lock); 903 mask = &l->l_sigmask; 904 ps = p->p_sigacts; 905 906 const bool traced = (p->p_slflag & PSL_TRACED) != 0; 907 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo); 908 const bool masked = sigismember(mask, signo); 909 if (!traced && caught && !masked) { 910 mutex_exit(proc_lock); 911 l->l_ru.ru_nsignals++; 912 kpsendsig(l, ksi, mask); 913 mutex_exit(p->p_lock); 914 if (ktrpoint(KTR_PSIG)) { 915 if (p->p_emul->e_ktrpsig) 916 p->p_emul->e_ktrpsig(signo, 917 SIGACTION_PS(ps, signo).sa_handler, 918 mask, ksi); 919 else 920 ktrpsig(signo, 921 SIGACTION_PS(ps, signo).sa_handler, 922 mask, ksi); 923 } 924 return; 925 } 926 927 /* 928 * If the signal is masked or ignored, then unmask it and 929 * reset it to the default action so that the process or 930 * its tracer will be notified. 931 */ 932 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN; 933 if (masked || ignored) { 934 mutex_enter(&ps->sa_mutex); 935 sigdelset(mask, signo); 936 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 937 sigdelset(&p->p_sigctx.ps_sigignore, signo); 938 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo); 939 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 940 mutex_exit(&ps->sa_mutex); 941 } 942 943 kpsignal2(p, ksi); 944 mutex_exit(p->p_lock); 945 mutex_exit(proc_lock); 946 } 947 948 /* 949 * Fill in signal information and signal the parent for a child status change. 950 */ 951 void 952 child_psignal(struct proc *p, int mask) 953 { 954 ksiginfo_t ksi; 955 struct proc *q; 956 int xsig; 957 958 KASSERT(mutex_owned(proc_lock)); 959 KASSERT(mutex_owned(p->p_lock)); 960 961 xsig = p->p_xsig; 962 963 KSI_INIT(&ksi); 964 ksi.ksi_signo = SIGCHLD; 965 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 966 ksi.ksi_pid = p->p_pid; 967 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 968 ksi.ksi_status = xsig; 969 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 970 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 971 972 q = p->p_pptr; 973 974 mutex_exit(p->p_lock); 975 mutex_enter(q->p_lock); 976 977 if ((q->p_sflag & mask) == 0) 978 kpsignal2(q, &ksi); 979 980 mutex_exit(q->p_lock); 981 mutex_enter(p->p_lock); 982 } 983 984 void 985 psignal(struct proc *p, int signo) 986 { 987 ksiginfo_t ksi; 988 989 KASSERT(!cpu_intr_p()); 990 KASSERT(mutex_owned(proc_lock)); 991 992 KSI_INIT_EMPTY(&ksi); 993 ksi.ksi_signo = signo; 994 mutex_enter(p->p_lock); 995 kpsignal2(p, &ksi); 996 mutex_exit(p->p_lock); 997 } 998 999 void 1000 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1001 { 1002 fdfile_t *ff; 1003 file_t *fp; 1004 fdtab_t *dt; 1005 1006 KASSERT(!cpu_intr_p()); 1007 KASSERT(mutex_owned(proc_lock)); 1008 1009 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1010 size_t fd; 1011 filedesc_t *fdp = p->p_fd; 1012 1013 /* XXXSMP locking */ 1014 ksi->ksi_fd = -1; 1015 dt = fdp->fd_dt; 1016 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1017 if ((ff = dt->dt_ff[fd]) == NULL) 1018 continue; 1019 if ((fp = ff->ff_file) == NULL) 1020 continue; 1021 if (fp->f_data == data) { 1022 ksi->ksi_fd = fd; 1023 break; 1024 } 1025 } 1026 } 1027 mutex_enter(p->p_lock); 1028 kpsignal2(p, ksi); 1029 mutex_exit(p->p_lock); 1030 } 1031 1032 /* 1033 * sigismasked: 1034 * 1035 * Returns true if signal is ignored or masked for the specified LWP. 1036 */ 1037 int 1038 sigismasked(struct lwp *l, int sig) 1039 { 1040 struct proc *p = l->l_proc; 1041 1042 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1043 sigismember(&l->l_sigmask, sig); 1044 } 1045 1046 /* 1047 * sigpost: 1048 * 1049 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1050 * be able to take the signal. 1051 */ 1052 static int 1053 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1054 { 1055 int rv, masked; 1056 struct proc *p = l->l_proc; 1057 1058 KASSERT(mutex_owned(p->p_lock)); 1059 1060 /* 1061 * If the LWP is on the way out, sigclear() will be busy draining all 1062 * pending signals. Don't give it more. 1063 */ 1064 if (l->l_refcnt == 0) 1065 return 0; 1066 1067 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0); 1068 1069 /* 1070 * Have the LWP check for signals. This ensures that even if no LWP 1071 * is found to take the signal immediately, it should be taken soon. 1072 */ 1073 lwp_lock(l); 1074 l->l_flag |= LW_PENDSIG; 1075 1076 /* 1077 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1078 * Note: SIGKILL and SIGSTOP cannot be masked. 1079 */ 1080 masked = sigismember(&l->l_sigmask, sig); 1081 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1082 lwp_unlock(l); 1083 return 0; 1084 } 1085 1086 /* 1087 * If killing the process, make it run fast. 1088 */ 1089 if (__predict_false((prop & SA_KILL) != 0) && 1090 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1091 KASSERT(l->l_class == SCHED_OTHER); 1092 lwp_changepri(l, MAXPRI_USER); 1093 } 1094 1095 /* 1096 * If the LWP is running or on a run queue, then we win. If it's 1097 * sleeping interruptably, wake it and make it take the signal. If 1098 * the sleep isn't interruptable, then the chances are it will get 1099 * to see the signal soon anyhow. If suspended, it can't take the 1100 * signal right now. If it's LWP private or for all LWPs, save it 1101 * for later; otherwise punt. 1102 */ 1103 rv = 0; 1104 1105 switch (l->l_stat) { 1106 case LSRUN: 1107 case LSONPROC: 1108 lwp_need_userret(l); 1109 rv = 1; 1110 break; 1111 1112 case LSSLEEP: 1113 if ((l->l_flag & LW_SINTR) != 0) { 1114 /* setrunnable() will release the lock. */ 1115 setrunnable(l); 1116 return 1; 1117 } 1118 break; 1119 1120 case LSSUSPENDED: 1121 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1122 /* lwp_continue() will release the lock. */ 1123 lwp_continue(l); 1124 return 1; 1125 } 1126 break; 1127 1128 case LSSTOP: 1129 if ((prop & SA_STOP) != 0) 1130 break; 1131 1132 /* 1133 * If the LWP is stopped and we are sending a continue 1134 * signal, then start it again. 1135 */ 1136 if ((prop & SA_CONT) != 0) { 1137 if (l->l_wchan != NULL) { 1138 l->l_stat = LSSLEEP; 1139 p->p_nrlwps++; 1140 rv = 1; 1141 break; 1142 } 1143 /* setrunnable() will release the lock. */ 1144 setrunnable(l); 1145 return 1; 1146 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1147 /* setrunnable() will release the lock. */ 1148 setrunnable(l); 1149 return 1; 1150 } 1151 break; 1152 1153 default: 1154 break; 1155 } 1156 1157 lwp_unlock(l); 1158 return rv; 1159 } 1160 1161 /* 1162 * Notify an LWP that it has a pending signal. 1163 */ 1164 void 1165 signotify(struct lwp *l) 1166 { 1167 KASSERT(lwp_locked(l, NULL)); 1168 1169 l->l_flag |= LW_PENDSIG; 1170 lwp_need_userret(l); 1171 } 1172 1173 /* 1174 * Find an LWP within process p that is waiting on signal ksi, and hand 1175 * it on. 1176 */ 1177 static int 1178 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1179 { 1180 struct lwp *l; 1181 int signo; 1182 1183 KASSERT(mutex_owned(p->p_lock)); 1184 1185 signo = ksi->ksi_signo; 1186 1187 if (ksi->ksi_lid != 0) { 1188 /* 1189 * Signal came via _lwp_kill(). Find the LWP and see if 1190 * it's interested. 1191 */ 1192 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1193 return 0; 1194 if (l->l_sigwaited == NULL || 1195 !sigismember(&l->l_sigwaitset, signo)) 1196 return 0; 1197 } else { 1198 /* 1199 * Look for any LWP that may be interested. 1200 */ 1201 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1202 KASSERT(l->l_sigwaited != NULL); 1203 if (sigismember(&l->l_sigwaitset, signo)) 1204 break; 1205 } 1206 } 1207 1208 if (l != NULL) { 1209 l->l_sigwaited->ksi_info = ksi->ksi_info; 1210 l->l_sigwaited = NULL; 1211 LIST_REMOVE(l, l_sigwaiter); 1212 cv_signal(&l->l_sigcv); 1213 return 1; 1214 } 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Send the signal to the process. If the signal has an action, the action 1221 * is usually performed by the target process rather than the caller; we add 1222 * the signal to the set of pending signals for the process. 1223 * 1224 * Exceptions: 1225 * o When a stop signal is sent to a sleeping process that takes the 1226 * default action, the process is stopped without awakening it. 1227 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1228 * regardless of the signal action (eg, blocked or ignored). 1229 * 1230 * Other ignored signals are discarded immediately. 1231 */ 1232 int 1233 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1234 { 1235 int prop, signo = ksi->ksi_signo; 1236 struct lwp *l = NULL; 1237 ksiginfo_t *kp; 1238 lwpid_t lid; 1239 sig_t action; 1240 bool toall, debtrap = false; 1241 int error = 0; 1242 1243 KASSERT(!cpu_intr_p()); 1244 KASSERT(mutex_owned(proc_lock)); 1245 KASSERT(mutex_owned(p->p_lock)); 1246 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1247 KASSERT(signo > 0 && signo < NSIG); 1248 1249 /* 1250 * If the process is being created by fork, is a zombie or is 1251 * exiting, then just drop the signal here and bail out. 1252 */ 1253 if (p->p_stat == SIDL && signo == SIGTRAP 1254 && (p->p_slflag & PSL_TRACED)) { 1255 /* allow an initial SIGTRAP for traced processes */ 1256 debtrap = true; 1257 } else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) { 1258 return 0; 1259 } 1260 1261 /* XXX for core dump/debugger */ 1262 p->p_sigctx.ps_lwp = ksi->ksi_lid; 1263 p->p_sigctx.ps_info = ksi->ksi_info; 1264 1265 /* 1266 * Notify any interested parties of the signal. 1267 */ 1268 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1269 1270 /* 1271 * Some signals including SIGKILL must act on the entire process. 1272 */ 1273 kp = NULL; 1274 prop = sigprop[signo]; 1275 toall = ((prop & SA_TOALL) != 0); 1276 lid = toall ? 0 : ksi->ksi_lid; 1277 1278 /* 1279 * If proc is traced, always give parent a chance. 1280 */ 1281 if (p->p_slflag & PSL_TRACED) { 1282 action = SIG_DFL; 1283 1284 if (lid == 0) { 1285 /* 1286 * If the process is being traced and the signal 1287 * is being caught, make sure to save any ksiginfo. 1288 */ 1289 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1290 goto discard; 1291 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1292 goto out; 1293 } 1294 } else { 1295 1296 /* 1297 * If the signal is being ignored, then drop it. Note: we 1298 * don't set SIGCONT in ps_sigignore, and if it is set to 1299 * SIG_IGN, action will be SIG_DFL here. 1300 */ 1301 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1302 goto discard; 1303 1304 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1305 action = SIG_CATCH; 1306 else { 1307 action = SIG_DFL; 1308 1309 /* 1310 * If sending a tty stop signal to a member of an 1311 * orphaned process group, discard the signal here if 1312 * the action is default; don't stop the process below 1313 * if sleeping, and don't clear any pending SIGCONT. 1314 */ 1315 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1316 goto discard; 1317 1318 if (prop & SA_KILL && p->p_nice > NZERO) 1319 p->p_nice = NZERO; 1320 } 1321 } 1322 1323 /* 1324 * If stopping or continuing a process, discard any pending 1325 * signals that would do the inverse. 1326 */ 1327 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1328 ksiginfoq_t kq; 1329 1330 ksiginfo_queue_init(&kq); 1331 if ((prop & SA_CONT) != 0) 1332 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1333 if ((prop & SA_STOP) != 0) 1334 sigclear(&p->p_sigpend, &contsigmask, &kq); 1335 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1336 } 1337 1338 /* 1339 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1340 * please!), check if any LWPs are waiting on it. If yes, pass on 1341 * the signal info. The signal won't be processed further here. 1342 */ 1343 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1344 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1345 sigunwait(p, ksi)) 1346 goto discard; 1347 1348 /* 1349 * XXXSMP Should be allocated by the caller, we're holding locks 1350 * here. 1351 */ 1352 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1353 goto discard; 1354 1355 /* 1356 * LWP private signals are easy - just find the LWP and post 1357 * the signal to it. 1358 */ 1359 if (lid != 0) { 1360 if (__predict_false(debtrap)) { 1361 l = LIST_FIRST(&p->p_lwps); 1362 if (l->l_lid != lid) 1363 l = NULL; 1364 } else { 1365 l = lwp_find(p, lid); 1366 } 1367 if (l != NULL) { 1368 if ((error = sigput(&l->l_sigpend, p, kp)) != 0) 1369 goto out; 1370 membar_producer(); 1371 if (sigpost(l, action, prop, kp->ksi_signo) != 0) 1372 signo = -1; 1373 } 1374 goto out; 1375 } 1376 1377 /* 1378 * Some signals go to all LWPs, even if posted with _lwp_kill() 1379 * or for an SA process. 1380 */ 1381 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1382 if ((p->p_slflag & PSL_TRACED) != 0) 1383 goto deliver; 1384 1385 /* 1386 * If SIGCONT is default (or ignored) and process is 1387 * asleep, we are finished; the process should not 1388 * be awakened. 1389 */ 1390 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1391 goto out; 1392 } else { 1393 /* 1394 * Process is stopped or stopping. 1395 * - If traced, then no action is needed, unless killing. 1396 * - Run the process only if sending SIGCONT or SIGKILL. 1397 */ 1398 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1399 goto out; 1400 } 1401 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1402 /* 1403 * Re-adjust p_nstopchild if the process was 1404 * stopped but not yet collected by its parent. 1405 */ 1406 if (p->p_stat == SSTOP && !p->p_waited) 1407 p->p_pptr->p_nstopchild--; 1408 p->p_stat = SACTIVE; 1409 p->p_sflag &= ~PS_STOPPING; 1410 if (p->p_slflag & PSL_TRACED) { 1411 KASSERT(signo == SIGKILL); 1412 goto deliver; 1413 } 1414 /* 1415 * Do not make signal pending if SIGCONT is default. 1416 * 1417 * If the process catches SIGCONT, let it handle the 1418 * signal itself (if waiting on event - process runs, 1419 * otherwise continues sleeping). 1420 */ 1421 if ((prop & SA_CONT) != 0) { 1422 p->p_xsig = SIGCONT; 1423 p->p_sflag |= PS_CONTINUED; 1424 child_psignal(p, 0); 1425 if (action == SIG_DFL) { 1426 KASSERT(signo != SIGKILL); 1427 goto deliver; 1428 } 1429 } 1430 } else if ((prop & SA_STOP) != 0) { 1431 /* 1432 * Already stopped, don't need to stop again. 1433 * (If we did the shell could get confused.) 1434 */ 1435 goto out; 1436 } 1437 } 1438 /* 1439 * Make signal pending. 1440 */ 1441 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1442 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1443 goto out; 1444 deliver: 1445 /* 1446 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1447 * visible on the per process list (for sigispending()). This 1448 * is unlikely to be needed in practice, but... 1449 */ 1450 membar_producer(); 1451 1452 /* 1453 * Try to find an LWP that can take the signal. 1454 */ 1455 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1456 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1457 break; 1458 } 1459 signo = -1; 1460 out: 1461 /* 1462 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1463 * with locks held. The caller should take care of this. 1464 */ 1465 ksiginfo_free(kp); 1466 if (signo == -1) 1467 return error; 1468 discard: 1469 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0); 1470 return error; 1471 } 1472 1473 void 1474 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1475 { 1476 struct proc *p = l->l_proc; 1477 1478 KASSERT(mutex_owned(p->p_lock)); 1479 (*p->p_emul->e_sendsig)(ksi, mask); 1480 } 1481 1482 /* 1483 * Stop any LWPs sleeping interruptably. 1484 */ 1485 static void 1486 proc_stop_lwps(struct proc *p) 1487 { 1488 struct lwp *l; 1489 1490 KASSERT(mutex_owned(p->p_lock)); 1491 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1492 1493 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1494 lwp_lock(l); 1495 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1496 l->l_stat = LSSTOP; 1497 p->p_nrlwps--; 1498 } 1499 lwp_unlock(l); 1500 } 1501 } 1502 1503 /* 1504 * Finish stopping of a process. Mark it stopped and notify the parent. 1505 * 1506 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1507 */ 1508 static void 1509 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1510 { 1511 1512 KASSERT(mutex_owned(proc_lock)); 1513 KASSERT(mutex_owned(p->p_lock)); 1514 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1515 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1516 1517 p->p_sflag &= ~PS_STOPPING; 1518 p->p_stat = SSTOP; 1519 p->p_waited = 0; 1520 p->p_pptr->p_nstopchild++; 1521 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1522 if (ppsig) { 1523 /* child_psignal drops p_lock briefly. */ 1524 child_psignal(p, ppmask); 1525 } 1526 cv_broadcast(&p->p_pptr->p_waitcv); 1527 } 1528 } 1529 1530 /* 1531 * Stop the current process and switch away when being stopped or traced. 1532 */ 1533 static void 1534 sigswitch(bool ppsig, int ppmask, int signo) 1535 { 1536 struct lwp *l = curlwp; 1537 struct proc *p = l->l_proc; 1538 int biglocks; 1539 1540 KASSERT(mutex_owned(p->p_lock)); 1541 KASSERT(l->l_stat == LSONPROC); 1542 KASSERT(p->p_nrlwps > 0); 1543 1544 /* 1545 * On entry we know that the process needs to stop. If it's 1546 * the result of a 'sideways' stop signal that has been sourced 1547 * through issignal(), then stop other LWPs in the process too. 1548 */ 1549 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1550 KASSERT(signo != 0); 1551 proc_stop(p, signo); 1552 KASSERT(p->p_nrlwps > 0); 1553 } 1554 1555 /* 1556 * If we are the last live LWP, and the stop was a result of 1557 * a new signal, then signal the parent. 1558 */ 1559 if ((p->p_sflag & PS_STOPPING) != 0) { 1560 if (!mutex_tryenter(proc_lock)) { 1561 mutex_exit(p->p_lock); 1562 mutex_enter(proc_lock); 1563 mutex_enter(p->p_lock); 1564 } 1565 1566 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1567 /* 1568 * Note that proc_stop_done() can drop 1569 * p->p_lock briefly. 1570 */ 1571 proc_stop_done(p, ppsig, ppmask); 1572 } 1573 1574 mutex_exit(proc_lock); 1575 } 1576 1577 /* 1578 * Unlock and switch away. 1579 */ 1580 KERNEL_UNLOCK_ALL(l, &biglocks); 1581 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1582 p->p_nrlwps--; 1583 lwp_lock(l); 1584 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1585 l->l_stat = LSSTOP; 1586 lwp_unlock(l); 1587 } 1588 1589 mutex_exit(p->p_lock); 1590 lwp_lock(l); 1591 mi_switch(l); 1592 KERNEL_LOCK(biglocks, l); 1593 mutex_enter(p->p_lock); 1594 } 1595 1596 /* 1597 * Check for a signal from the debugger. 1598 */ 1599 static int 1600 sigchecktrace(void) 1601 { 1602 struct lwp *l = curlwp; 1603 struct proc *p = l->l_proc; 1604 int signo; 1605 1606 KASSERT(mutex_owned(p->p_lock)); 1607 1608 /* If there's a pending SIGKILL, process it immediately. */ 1609 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1610 return 0; 1611 1612 /* 1613 * If we are no longer being traced, or the parent didn't 1614 * give us a signal, or we're stopping, look for more signals. 1615 */ 1616 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 || 1617 (p->p_sflag & PS_STOPPING) != 0) 1618 return 0; 1619 1620 /* 1621 * If the new signal is being masked, look for other signals. 1622 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1623 */ 1624 signo = p->p_xsig; 1625 p->p_xsig = 0; 1626 if (sigismember(&l->l_sigmask, signo)) { 1627 signo = 0; 1628 } 1629 return signo; 1630 } 1631 1632 /* 1633 * If the current process has received a signal (should be caught or cause 1634 * termination, should interrupt current syscall), return the signal number. 1635 * 1636 * Stop signals with default action are processed immediately, then cleared; 1637 * they aren't returned. This is checked after each entry to the system for 1638 * a syscall or trap. 1639 * 1640 * We will also return -1 if the process is exiting and the current LWP must 1641 * follow suit. 1642 */ 1643 int 1644 issignal(struct lwp *l) 1645 { 1646 struct proc *p; 1647 int signo, prop; 1648 sigpend_t *sp; 1649 sigset_t ss; 1650 1651 p = l->l_proc; 1652 sp = NULL; 1653 signo = 0; 1654 1655 KASSERT(p == curproc); 1656 KASSERT(mutex_owned(p->p_lock)); 1657 1658 for (;;) { 1659 /* Discard any signals that we have decided not to take. */ 1660 if (signo != 0) { 1661 (void)sigget(sp, NULL, signo, NULL); 1662 } 1663 1664 /* 1665 * If the process is stopped/stopping, then stop ourselves 1666 * now that we're on the kernel/userspace boundary. When 1667 * we awaken, check for a signal from the debugger. 1668 */ 1669 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1670 sigswitch(true, PS_NOCLDSTOP, 0); 1671 signo = sigchecktrace(); 1672 } else 1673 signo = 0; 1674 1675 /* Signals from the debugger are "out of band". */ 1676 sp = NULL; 1677 1678 /* 1679 * If the debugger didn't provide a signal, find a pending 1680 * signal from our set. Check per-LWP signals first, and 1681 * then per-process. 1682 */ 1683 if (signo == 0) { 1684 sp = &l->l_sigpend; 1685 ss = sp->sp_set; 1686 if ((p->p_lflag & PL_PPWAIT) != 0) 1687 sigminusset(&stopsigmask, &ss); 1688 sigminusset(&l->l_sigmask, &ss); 1689 1690 if ((signo = firstsig(&ss)) == 0) { 1691 sp = &p->p_sigpend; 1692 ss = sp->sp_set; 1693 if ((p->p_lflag & PL_PPWAIT) != 0) 1694 sigminusset(&stopsigmask, &ss); 1695 sigminusset(&l->l_sigmask, &ss); 1696 1697 if ((signo = firstsig(&ss)) == 0) { 1698 /* 1699 * No signal pending - clear the 1700 * indicator and bail out. 1701 */ 1702 lwp_lock(l); 1703 l->l_flag &= ~LW_PENDSIG; 1704 lwp_unlock(l); 1705 sp = NULL; 1706 break; 1707 } 1708 } 1709 } 1710 1711 /* 1712 * We should see pending but ignored signals only if 1713 * we are being traced. 1714 */ 1715 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1716 (p->p_slflag & PSL_TRACED) == 0) { 1717 /* Discard the signal. */ 1718 continue; 1719 } 1720 1721 /* 1722 * If traced, always stop, and stay stopped until released 1723 * by the debugger. If the our parent process is waiting 1724 * for us, don't hang as we could deadlock. 1725 */ 1726 if ((p->p_slflag & PSL_TRACED) != 0 && 1727 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1728 /* 1729 * Take the signal, but don't remove it from the 1730 * siginfo queue, because the debugger can send 1731 * it later. 1732 */ 1733 if (sp) 1734 sigdelset(&sp->sp_set, signo); 1735 p->p_xsig = signo; 1736 1737 /* Emulation-specific handling of signal trace */ 1738 if (p->p_emul->e_tracesig == NULL || 1739 (*p->p_emul->e_tracesig)(p, signo) == 0) 1740 sigswitch(1, 0, signo); 1741 1742 /* Check for a signal from the debugger. */ 1743 if ((signo = sigchecktrace()) == 0) 1744 continue; 1745 1746 /* Signals from the debugger are "out of band". */ 1747 sp = NULL; 1748 } 1749 1750 prop = sigprop[signo]; 1751 1752 /* 1753 * Decide whether the signal should be returned. 1754 */ 1755 switch ((long)SIGACTION(p, signo).sa_handler) { 1756 case (long)SIG_DFL: 1757 /* 1758 * Don't take default actions on system processes. 1759 */ 1760 if (p->p_pid <= 1) { 1761 #ifdef DIAGNOSTIC 1762 /* 1763 * Are you sure you want to ignore SIGSEGV 1764 * in init? XXX 1765 */ 1766 printf_nolog("Process (pid %d) got sig %d\n", 1767 p->p_pid, signo); 1768 #endif 1769 continue; 1770 } 1771 1772 /* 1773 * If there is a pending stop signal to process with 1774 * default action, stop here, then clear the signal. 1775 * However, if process is member of an orphaned 1776 * process group, ignore tty stop signals. 1777 */ 1778 if (prop & SA_STOP) { 1779 /* 1780 * XXX Don't hold proc_lock for p_lflag, 1781 * but it's not a big deal. 1782 */ 1783 if (p->p_slflag & PSL_TRACED || 1784 ((p->p_lflag & PL_ORPHANPG) != 0 && 1785 prop & SA_TTYSTOP)) { 1786 /* Ignore the signal. */ 1787 continue; 1788 } 1789 /* Take the signal. */ 1790 (void)sigget(sp, NULL, signo, NULL); 1791 p->p_xsig = signo; 1792 p->p_sflag &= ~PS_CONTINUED; 1793 signo = 0; 1794 sigswitch(true, PS_NOCLDSTOP, p->p_xsig); 1795 } else if (prop & SA_IGNORE) { 1796 /* 1797 * Except for SIGCONT, shouldn't get here. 1798 * Default action is to ignore; drop it. 1799 */ 1800 continue; 1801 } 1802 break; 1803 1804 case (long)SIG_IGN: 1805 #ifdef DEBUG_ISSIGNAL 1806 /* 1807 * Masking above should prevent us ever trying 1808 * to take action on an ignored signal other 1809 * than SIGCONT, unless process is traced. 1810 */ 1811 if ((prop & SA_CONT) == 0 && 1812 (p->p_slflag & PSL_TRACED) == 0) 1813 printf_nolog("issignal\n"); 1814 #endif 1815 continue; 1816 1817 default: 1818 /* 1819 * This signal has an action, let postsig() process 1820 * it. 1821 */ 1822 break; 1823 } 1824 1825 break; 1826 } 1827 1828 l->l_sigpendset = sp; 1829 return signo; 1830 } 1831 1832 /* 1833 * Take the action for the specified signal 1834 * from the current set of pending signals. 1835 */ 1836 void 1837 postsig(int signo) 1838 { 1839 struct lwp *l; 1840 struct proc *p; 1841 struct sigacts *ps; 1842 sig_t action; 1843 sigset_t *returnmask; 1844 ksiginfo_t ksi; 1845 1846 l = curlwp; 1847 p = l->l_proc; 1848 ps = p->p_sigacts; 1849 1850 KASSERT(mutex_owned(p->p_lock)); 1851 KASSERT(signo > 0); 1852 1853 /* 1854 * Set the new mask value and also defer further occurrences of this 1855 * signal. 1856 * 1857 * Special case: user has done a sigsuspend. Here the current mask is 1858 * not of interest, but rather the mask from before the sigsuspend is 1859 * what we want restored after the signal processing is completed. 1860 */ 1861 if (l->l_sigrestore) { 1862 returnmask = &l->l_sigoldmask; 1863 l->l_sigrestore = 0; 1864 } else 1865 returnmask = &l->l_sigmask; 1866 1867 /* 1868 * Commit to taking the signal before releasing the mutex. 1869 */ 1870 action = SIGACTION_PS(ps, signo).sa_handler; 1871 l->l_ru.ru_nsignals++; 1872 if (l->l_sigpendset == NULL) { 1873 /* From the debugger */ 1874 if (p->p_sigctx.ps_faked && 1875 signo == p->p_sigctx.ps_info._signo) { 1876 KSI_INIT(&ksi); 1877 ksi.ksi_info = p->p_sigctx.ps_info; 1878 ksi.ksi_lid = p->p_sigctx.ps_lwp; 1879 p->p_sigctx.ps_faked = false; 1880 } else { 1881 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 1882 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 1883 } 1884 } else 1885 sigget(l->l_sigpendset, &ksi, signo, NULL); 1886 1887 if (ktrpoint(KTR_PSIG)) { 1888 mutex_exit(p->p_lock); 1889 if (p->p_emul->e_ktrpsig) 1890 p->p_emul->e_ktrpsig(signo, action, 1891 returnmask, &ksi); 1892 else 1893 ktrpsig(signo, action, returnmask, &ksi); 1894 mutex_enter(p->p_lock); 1895 } 1896 1897 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0); 1898 1899 if (action == SIG_DFL) { 1900 /* 1901 * Default action, where the default is to kill 1902 * the process. (Other cases were ignored above.) 1903 */ 1904 sigexit(l, signo); 1905 return; 1906 } 1907 1908 /* 1909 * If we get here, the signal must be caught. 1910 */ 1911 #ifdef DIAGNOSTIC 1912 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1913 panic("postsig action"); 1914 #endif 1915 1916 kpsendsig(l, &ksi, returnmask); 1917 } 1918 1919 /* 1920 * sendsig: 1921 * 1922 * Default signal delivery method for NetBSD. 1923 */ 1924 void 1925 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1926 { 1927 struct sigacts *sa; 1928 int sig; 1929 1930 sig = ksi->ksi_signo; 1931 sa = curproc->p_sigacts; 1932 1933 switch (sa->sa_sigdesc[sig].sd_vers) { 1934 case 0: 1935 case 1: 1936 /* Compat for 1.6 and earlier. */ 1937 if (sendsig_sigcontext_vec == NULL) { 1938 break; 1939 } 1940 (*sendsig_sigcontext_vec)(ksi, mask); 1941 return; 1942 case 2: 1943 case 3: 1944 sendsig_siginfo(ksi, mask); 1945 return; 1946 default: 1947 break; 1948 } 1949 1950 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 1951 sigexit(curlwp, SIGILL); 1952 } 1953 1954 /* 1955 * sendsig_reset: 1956 * 1957 * Reset the signal action. Called from emulation specific sendsig() 1958 * before unlocking to deliver the signal. 1959 */ 1960 void 1961 sendsig_reset(struct lwp *l, int signo) 1962 { 1963 struct proc *p = l->l_proc; 1964 struct sigacts *ps = p->p_sigacts; 1965 1966 KASSERT(mutex_owned(p->p_lock)); 1967 1968 p->p_sigctx.ps_lwp = 0; 1969 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 1970 1971 mutex_enter(&ps->sa_mutex); 1972 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1973 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1974 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1975 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1976 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1977 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1978 } 1979 mutex_exit(&ps->sa_mutex); 1980 } 1981 1982 /* 1983 * Kill the current process for stated reason. 1984 */ 1985 void 1986 killproc(struct proc *p, const char *why) 1987 { 1988 1989 KASSERT(mutex_owned(proc_lock)); 1990 1991 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1992 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1993 psignal(p, SIGKILL); 1994 } 1995 1996 /* 1997 * Force the current process to exit with the specified signal, dumping core 1998 * if appropriate. We bypass the normal tests for masked and caught 1999 * signals, allowing unrecoverable failures to terminate the process without 2000 * changing signal state. Mark the accounting record with the signal 2001 * termination. If dumping core, save the signal number for the debugger. 2002 * Calls exit and does not return. 2003 */ 2004 void 2005 sigexit(struct lwp *l, int signo) 2006 { 2007 int exitsig, error, docore; 2008 struct proc *p; 2009 struct lwp *t; 2010 2011 p = l->l_proc; 2012 2013 KASSERT(mutex_owned(p->p_lock)); 2014 KERNEL_UNLOCK_ALL(l, NULL); 2015 2016 /* 2017 * Don't permit coredump() multiple times in the same process. 2018 * Call back into sigexit, where we will be suspended until 2019 * the deed is done. Note that this is a recursive call, but 2020 * LW_WCORE will prevent us from coming back this way. 2021 */ 2022 if ((p->p_sflag & PS_WCORE) != 0) { 2023 lwp_lock(l); 2024 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2025 lwp_unlock(l); 2026 mutex_exit(p->p_lock); 2027 lwp_userret(l); 2028 panic("sigexit 1"); 2029 /* NOTREACHED */ 2030 } 2031 2032 /* If process is already on the way out, then bail now. */ 2033 if ((p->p_sflag & PS_WEXIT) != 0) { 2034 mutex_exit(p->p_lock); 2035 lwp_exit(l); 2036 panic("sigexit 2"); 2037 /* NOTREACHED */ 2038 } 2039 2040 /* 2041 * Prepare all other LWPs for exit. If dumping core, suspend them 2042 * so that their registers are available long enough to be dumped. 2043 */ 2044 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2045 p->p_sflag |= PS_WCORE; 2046 for (;;) { 2047 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2048 lwp_lock(t); 2049 if (t == l) { 2050 t->l_flag &= ~LW_WSUSPEND; 2051 lwp_unlock(t); 2052 continue; 2053 } 2054 t->l_flag |= (LW_WCORE | LW_WEXIT); 2055 lwp_suspend(l, t); 2056 } 2057 2058 if (p->p_nrlwps == 1) 2059 break; 2060 2061 /* 2062 * Kick any LWPs sitting in lwp_wait1(), and wait 2063 * for everyone else to stop before proceeding. 2064 */ 2065 p->p_nlwpwait++; 2066 cv_broadcast(&p->p_lwpcv); 2067 cv_wait(&p->p_lwpcv, p->p_lock); 2068 p->p_nlwpwait--; 2069 } 2070 } 2071 2072 exitsig = signo; 2073 p->p_acflag |= AXSIG; 2074 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2075 p->p_sigctx.ps_info._signo = signo; 2076 p->p_sigctx.ps_info._code = SI_NOINFO; 2077 2078 if (docore) { 2079 mutex_exit(p->p_lock); 2080 error = (*coredump_vec)(l, NULL); 2081 2082 if (kern_logsigexit) { 2083 int uid = l->l_cred ? 2084 (int)kauth_cred_geteuid(l->l_cred) : -1; 2085 2086 if (error) 2087 log(LOG_INFO, lognocoredump, p->p_pid, 2088 p->p_comm, uid, signo, error); 2089 else 2090 log(LOG_INFO, logcoredump, p->p_pid, 2091 p->p_comm, uid, signo); 2092 } 2093 2094 #ifdef PAX_SEGVGUARD 2095 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2096 #endif /* PAX_SEGVGUARD */ 2097 /* Acquire the sched state mutex. exit1() will release it. */ 2098 mutex_enter(p->p_lock); 2099 if (error == 0) 2100 p->p_sflag |= PS_COREDUMP; 2101 } 2102 2103 /* No longer dumping core. */ 2104 p->p_sflag &= ~PS_WCORE; 2105 2106 exit1(l, 0, exitsig); 2107 /* NOTREACHED */ 2108 } 2109 2110 /* 2111 * Put process 'p' into the stopped state and optionally, notify the parent. 2112 */ 2113 void 2114 proc_stop(struct proc *p, int signo) 2115 { 2116 struct lwp *l; 2117 2118 KASSERT(mutex_owned(p->p_lock)); 2119 2120 /* 2121 * First off, set the stopping indicator and bring all sleeping 2122 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2123 * unlock between here and the p->p_nrlwps check below. 2124 */ 2125 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP; 2126 membar_producer(); 2127 2128 proc_stop_lwps(p); 2129 2130 /* 2131 * If there are no LWPs available to take the signal, then we 2132 * signal the parent process immediately. Otherwise, the last 2133 * LWP to stop will take care of it. 2134 */ 2135 2136 if (p->p_nrlwps == 0) { 2137 proc_stop_done(p, true, PS_NOCLDSTOP); 2138 } else { 2139 /* 2140 * Have the remaining LWPs come to a halt, and trigger 2141 * proc_stop_callout() to ensure that they do. 2142 */ 2143 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2144 sigpost(l, SIG_DFL, SA_STOP, signo); 2145 } 2146 callout_schedule(&proc_stop_ch, 1); 2147 } 2148 } 2149 2150 /* 2151 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2152 * but wait for them to come to a halt at the kernel-user boundary. This is 2153 * to allow LWPs to release any locks that they may hold before stopping. 2154 * 2155 * Non-interruptable sleeps can be long, and there is the potential for an 2156 * LWP to begin sleeping interruptably soon after the process has been set 2157 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2158 * stopping, and so complete halt of the process and the return of status 2159 * information to the parent could be delayed indefinitely. 2160 * 2161 * To handle this race, proc_stop_callout() runs once per tick while there 2162 * are stopping processes in the system. It sets LWPs that are sleeping 2163 * interruptably into the LSSTOP state. 2164 * 2165 * Note that we are not concerned about keeping all LWPs stopped while the 2166 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2167 * What we do need to ensure is that all LWPs in a stopping process have 2168 * stopped at least once, so that notification can be sent to the parent 2169 * process. 2170 */ 2171 static void 2172 proc_stop_callout(void *cookie) 2173 { 2174 bool more, restart; 2175 struct proc *p; 2176 2177 (void)cookie; 2178 2179 do { 2180 restart = false; 2181 more = false; 2182 2183 mutex_enter(proc_lock); 2184 PROCLIST_FOREACH(p, &allproc) { 2185 mutex_enter(p->p_lock); 2186 2187 if ((p->p_sflag & PS_STOPPING) == 0) { 2188 mutex_exit(p->p_lock); 2189 continue; 2190 } 2191 2192 /* Stop any LWPs sleeping interruptably. */ 2193 proc_stop_lwps(p); 2194 if (p->p_nrlwps == 0) { 2195 /* 2196 * We brought the process to a halt. 2197 * Mark it as stopped and notify the 2198 * parent. 2199 */ 2200 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2201 /* 2202 * Note that proc_stop_done() will 2203 * drop p->p_lock briefly. 2204 * Arrange to restart and check 2205 * all processes again. 2206 */ 2207 restart = true; 2208 } 2209 proc_stop_done(p, true, PS_NOCLDSTOP); 2210 } else 2211 more = true; 2212 2213 mutex_exit(p->p_lock); 2214 if (restart) 2215 break; 2216 } 2217 mutex_exit(proc_lock); 2218 } while (restart); 2219 2220 /* 2221 * If we noted processes that are stopping but still have 2222 * running LWPs, then arrange to check again in 1 tick. 2223 */ 2224 if (more) 2225 callout_schedule(&proc_stop_ch, 1); 2226 } 2227 2228 /* 2229 * Given a process in state SSTOP, set the state back to SACTIVE and 2230 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2231 */ 2232 void 2233 proc_unstop(struct proc *p) 2234 { 2235 struct lwp *l; 2236 int sig; 2237 2238 KASSERT(mutex_owned(proc_lock)); 2239 KASSERT(mutex_owned(p->p_lock)); 2240 2241 p->p_stat = SACTIVE; 2242 p->p_sflag &= ~PS_STOPPING; 2243 sig = p->p_xsig; 2244 2245 if (!p->p_waited) 2246 p->p_pptr->p_nstopchild--; 2247 2248 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2249 lwp_lock(l); 2250 if (l->l_stat != LSSTOP) { 2251 lwp_unlock(l); 2252 continue; 2253 } 2254 if (l->l_wchan == NULL) { 2255 setrunnable(l); 2256 continue; 2257 } 2258 if (sig && (l->l_flag & LW_SINTR) != 0) { 2259 setrunnable(l); 2260 sig = 0; 2261 } else { 2262 l->l_stat = LSSLEEP; 2263 p->p_nrlwps++; 2264 lwp_unlock(l); 2265 } 2266 } 2267 } 2268 2269 void 2270 proc_stoptrace(int trapno) 2271 { 2272 struct lwp *l = curlwp; 2273 struct proc *p = l->l_proc, *pp; 2274 2275 mutex_enter(p->p_lock); 2276 pp = p->p_pptr; 2277 if (pp->p_pid == 1) { 2278 CLR(p->p_slflag, PSL_SYSCALL); /* XXXSMP */ 2279 mutex_exit(p->p_lock); 2280 return; 2281 } 2282 2283 p->p_xsig = SIGTRAP; 2284 p->p_sigctx.ps_info._signo = p->p_xsig; 2285 p->p_sigctx.ps_info._code = trapno; 2286 sigswitch(true, 0, p->p_xsig); 2287 mutex_exit(p->p_lock); 2288 } 2289 2290 static int 2291 filt_sigattach(struct knote *kn) 2292 { 2293 struct proc *p = curproc; 2294 2295 kn->kn_obj = p; 2296 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2297 2298 mutex_enter(p->p_lock); 2299 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2300 mutex_exit(p->p_lock); 2301 2302 return 0; 2303 } 2304 2305 static void 2306 filt_sigdetach(struct knote *kn) 2307 { 2308 struct proc *p = kn->kn_obj; 2309 2310 mutex_enter(p->p_lock); 2311 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2312 mutex_exit(p->p_lock); 2313 } 2314 2315 /* 2316 * Signal knotes are shared with proc knotes, so we apply a mask to 2317 * the hint in order to differentiate them from process hints. This 2318 * could be avoided by using a signal-specific knote list, but probably 2319 * isn't worth the trouble. 2320 */ 2321 static int 2322 filt_signal(struct knote *kn, long hint) 2323 { 2324 2325 if (hint & NOTE_SIGNAL) { 2326 hint &= ~NOTE_SIGNAL; 2327 2328 if (kn->kn_id == hint) 2329 kn->kn_data++; 2330 } 2331 return (kn->kn_data != 0); 2332 } 2333 2334 const struct filterops sig_filtops = { 2335 .f_isfd = 0, 2336 .f_attach = filt_sigattach, 2337 .f_detach = filt_sigdetach, 2338 .f_event = filt_signal, 2339 }; 2340