1 /* $NetBSD: kern_sig.c,v 1.342 2018/05/01 16:37:23 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.342 2018/05/01 16:37:23 kamil Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_dtrace.h" 77 #include "opt_compat_sunos.h" 78 #include "opt_compat_netbsd.h" 79 #include "opt_compat_netbsd32.h" 80 #include "opt_pax.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/ptrace.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 #include <sys/ktrace.h> 90 #include <sys/syslog.h> 91 #include <sys/filedesc.h> 92 #include <sys/file.h> 93 #include <sys/pool.h> 94 #include <sys/ucontext.h> 95 #include <sys/exec.h> 96 #include <sys/kauth.h> 97 #include <sys/acct.h> 98 #include <sys/callout.h> 99 #include <sys/atomic.h> 100 #include <sys/cpu.h> 101 #include <sys/module.h> 102 #include <sys/sdt.h> 103 104 #ifdef PAX_SEGVGUARD 105 #include <sys/pax.h> 106 #endif /* PAX_SEGVGUARD */ 107 108 #include <uvm/uvm_extern.h> 109 110 #define SIGQUEUE_MAX 32 111 static pool_cache_t sigacts_cache __read_mostly; 112 static pool_cache_t ksiginfo_cache __read_mostly; 113 static callout_t proc_stop_ch __cacheline_aligned; 114 115 sigset_t contsigmask __cacheline_aligned; 116 static sigset_t stopsigmask __cacheline_aligned; 117 sigset_t sigcantmask __cacheline_aligned; 118 119 static void ksiginfo_exechook(struct proc *, void *); 120 static void proc_stop(struct proc *, int); 121 static void proc_stop_done(struct proc *, int); 122 static void proc_stop_callout(void *); 123 static int sigchecktrace(void); 124 static int sigpost(struct lwp *, sig_t, int, int); 125 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *); 126 static int sigunwait(struct proc *, const ksiginfo_t *); 127 128 static void sigacts_poolpage_free(struct pool *, void *); 129 static void *sigacts_poolpage_alloc(struct pool *, int); 130 131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 132 int (*coredump_vec)(struct lwp *, const char *) = 133 (int (*)(struct lwp *, const char *))enosys; 134 135 /* 136 * DTrace SDT provider definitions 137 */ 138 SDT_PROVIDER_DECLARE(proc); 139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, 140 "struct lwp *", /* target thread */ 141 "struct proc *", /* target process */ 142 "int"); /* signal */ 143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard, 144 "struct lwp *", /* target thread */ 145 "struct proc *", /* target process */ 146 "int"); /* signal */ 147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle, 148 "int", /* signal */ 149 "ksiginfo_t *", /* signal info */ 150 "void (*)(void)"); /* handler address */ 151 152 153 static struct pool_allocator sigactspool_allocator = { 154 .pa_alloc = sigacts_poolpage_alloc, 155 .pa_free = sigacts_poolpage_free 156 }; 157 158 #ifdef DEBUG 159 int kern_logsigexit = 1; 160 #else 161 int kern_logsigexit = 0; 162 #endif 163 164 static const char logcoredump[] = 165 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 166 static const char lognocoredump[] = 167 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 168 169 static kauth_listener_t signal_listener; 170 171 static int 172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 173 void *arg0, void *arg1, void *arg2, void *arg3) 174 { 175 struct proc *p; 176 int result, signum; 177 178 result = KAUTH_RESULT_DEFER; 179 p = arg0; 180 signum = (int)(unsigned long)arg1; 181 182 if (action != KAUTH_PROCESS_SIGNAL) 183 return result; 184 185 if (kauth_cred_uidmatch(cred, p->p_cred) || 186 (signum == SIGCONT && (curproc->p_session == p->p_session))) 187 result = KAUTH_RESULT_ALLOW; 188 189 return result; 190 } 191 192 /* 193 * signal_init: 194 * 195 * Initialize global signal-related data structures. 196 */ 197 void 198 signal_init(void) 199 { 200 201 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 202 203 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 204 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 205 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 206 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 207 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 208 209 exechook_establish(ksiginfo_exechook, NULL); 210 211 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 212 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 213 214 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 215 signal_listener_cb, NULL); 216 } 217 218 /* 219 * sigacts_poolpage_alloc: 220 * 221 * Allocate a page for the sigacts memory pool. 222 */ 223 static void * 224 sigacts_poolpage_alloc(struct pool *pp, int flags) 225 { 226 227 return (void *)uvm_km_alloc(kernel_map, 228 PAGE_SIZE * 2, PAGE_SIZE * 2, 229 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 230 | UVM_KMF_WIRED); 231 } 232 233 /* 234 * sigacts_poolpage_free: 235 * 236 * Free a page on behalf of the sigacts memory pool. 237 */ 238 static void 239 sigacts_poolpage_free(struct pool *pp, void *v) 240 { 241 242 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 243 } 244 245 /* 246 * sigactsinit: 247 * 248 * Create an initial sigacts structure, using the same signal state 249 * as of specified process. If 'share' is set, share the sigacts by 250 * holding a reference, otherwise just copy it from parent. 251 */ 252 struct sigacts * 253 sigactsinit(struct proc *pp, int share) 254 { 255 struct sigacts *ps = pp->p_sigacts, *ps2; 256 257 if (__predict_false(share)) { 258 atomic_inc_uint(&ps->sa_refcnt); 259 return ps; 260 } 261 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 262 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 263 ps2->sa_refcnt = 1; 264 265 mutex_enter(&ps->sa_mutex); 266 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 267 mutex_exit(&ps->sa_mutex); 268 return ps2; 269 } 270 271 /* 272 * sigactsunshare: 273 * 274 * Make this process not share its sigacts, maintaining all signal state. 275 */ 276 void 277 sigactsunshare(struct proc *p) 278 { 279 struct sigacts *ps, *oldps = p->p_sigacts; 280 281 if (__predict_true(oldps->sa_refcnt == 1)) 282 return; 283 284 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 285 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 286 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 287 ps->sa_refcnt = 1; 288 289 p->p_sigacts = ps; 290 sigactsfree(oldps); 291 } 292 293 /* 294 * sigactsfree; 295 * 296 * Release a sigacts structure. 297 */ 298 void 299 sigactsfree(struct sigacts *ps) 300 { 301 302 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 303 mutex_destroy(&ps->sa_mutex); 304 pool_cache_put(sigacts_cache, ps); 305 } 306 } 307 308 /* 309 * siginit: 310 * 311 * Initialize signal state for process 0; set to ignore signals that 312 * are ignored by default and disable the signal stack. Locking not 313 * required as the system is still cold. 314 */ 315 void 316 siginit(struct proc *p) 317 { 318 struct lwp *l; 319 struct sigacts *ps; 320 int signo, prop; 321 322 ps = p->p_sigacts; 323 sigemptyset(&contsigmask); 324 sigemptyset(&stopsigmask); 325 sigemptyset(&sigcantmask); 326 for (signo = 1; signo < NSIG; signo++) { 327 prop = sigprop[signo]; 328 if (prop & SA_CONT) 329 sigaddset(&contsigmask, signo); 330 if (prop & SA_STOP) 331 sigaddset(&stopsigmask, signo); 332 if (prop & SA_CANTMASK) 333 sigaddset(&sigcantmask, signo); 334 if (prop & SA_IGNORE && signo != SIGCONT) 335 sigaddset(&p->p_sigctx.ps_sigignore, signo); 336 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 337 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 338 } 339 sigemptyset(&p->p_sigctx.ps_sigcatch); 340 p->p_sflag &= ~PS_NOCLDSTOP; 341 342 ksiginfo_queue_init(&p->p_sigpend.sp_info); 343 sigemptyset(&p->p_sigpend.sp_set); 344 345 /* 346 * Reset per LWP state. 347 */ 348 l = LIST_FIRST(&p->p_lwps); 349 l->l_sigwaited = NULL; 350 l->l_sigstk = SS_INIT; 351 ksiginfo_queue_init(&l->l_sigpend.sp_info); 352 sigemptyset(&l->l_sigpend.sp_set); 353 354 /* One reference. */ 355 ps->sa_refcnt = 1; 356 } 357 358 /* 359 * execsigs: 360 * 361 * Reset signals for an exec of the specified process. 362 */ 363 void 364 execsigs(struct proc *p) 365 { 366 struct sigacts *ps; 367 struct lwp *l; 368 int signo, prop; 369 sigset_t tset; 370 ksiginfoq_t kq; 371 372 KASSERT(p->p_nlwps == 1); 373 374 sigactsunshare(p); 375 ps = p->p_sigacts; 376 377 /* 378 * Reset caught signals. Held signals remain held through 379 * l->l_sigmask (unless they were caught, and are now ignored 380 * by default). 381 * 382 * No need to lock yet, the process has only one LWP and 383 * at this point the sigacts are private to the process. 384 */ 385 sigemptyset(&tset); 386 for (signo = 1; signo < NSIG; signo++) { 387 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 388 prop = sigprop[signo]; 389 if (prop & SA_IGNORE) { 390 if ((prop & SA_CONT) == 0) 391 sigaddset(&p->p_sigctx.ps_sigignore, 392 signo); 393 sigaddset(&tset, signo); 394 } 395 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 396 } 397 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 398 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 399 } 400 ksiginfo_queue_init(&kq); 401 402 mutex_enter(p->p_lock); 403 sigclearall(p, &tset, &kq); 404 sigemptyset(&p->p_sigctx.ps_sigcatch); 405 406 /* 407 * Reset no zombies if child dies flag as Solaris does. 408 */ 409 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 410 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 411 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 412 413 /* 414 * Reset per-LWP state. 415 */ 416 l = LIST_FIRST(&p->p_lwps); 417 l->l_sigwaited = NULL; 418 l->l_sigstk = SS_INIT; 419 ksiginfo_queue_init(&l->l_sigpend.sp_info); 420 sigemptyset(&l->l_sigpend.sp_set); 421 mutex_exit(p->p_lock); 422 423 ksiginfo_queue_drain(&kq); 424 } 425 426 /* 427 * ksiginfo_exechook: 428 * 429 * Free all pending ksiginfo entries from a process on exec. 430 * Additionally, drain any unused ksiginfo structures in the 431 * system back to the pool. 432 * 433 * XXX This should not be a hook, every process has signals. 434 */ 435 static void 436 ksiginfo_exechook(struct proc *p, void *v) 437 { 438 ksiginfoq_t kq; 439 440 ksiginfo_queue_init(&kq); 441 442 mutex_enter(p->p_lock); 443 sigclearall(p, NULL, &kq); 444 mutex_exit(p->p_lock); 445 446 ksiginfo_queue_drain(&kq); 447 } 448 449 /* 450 * ksiginfo_alloc: 451 * 452 * Allocate a new ksiginfo structure from the pool, and optionally copy 453 * an existing one. If the existing ksiginfo_t is from the pool, and 454 * has not been queued somewhere, then just return it. Additionally, 455 * if the existing ksiginfo_t does not contain any information beyond 456 * the signal number, then just return it. 457 */ 458 ksiginfo_t * 459 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 460 { 461 ksiginfo_t *kp; 462 463 if (ok != NULL) { 464 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 465 KSI_FROMPOOL) 466 return ok; 467 if (KSI_EMPTY_P(ok)) 468 return ok; 469 } 470 471 kp = pool_cache_get(ksiginfo_cache, flags); 472 if (kp == NULL) { 473 #ifdef DIAGNOSTIC 474 printf("Out of memory allocating ksiginfo for pid %d\n", 475 p->p_pid); 476 #endif 477 return NULL; 478 } 479 480 if (ok != NULL) { 481 memcpy(kp, ok, sizeof(*kp)); 482 kp->ksi_flags &= ~KSI_QUEUED; 483 } else 484 KSI_INIT_EMPTY(kp); 485 486 kp->ksi_flags |= KSI_FROMPOOL; 487 488 return kp; 489 } 490 491 /* 492 * ksiginfo_free: 493 * 494 * If the given ksiginfo_t is from the pool and has not been queued, 495 * then free it. 496 */ 497 void 498 ksiginfo_free(ksiginfo_t *kp) 499 { 500 501 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 502 return; 503 pool_cache_put(ksiginfo_cache, kp); 504 } 505 506 /* 507 * ksiginfo_queue_drain: 508 * 509 * Drain a non-empty ksiginfo_t queue. 510 */ 511 void 512 ksiginfo_queue_drain0(ksiginfoq_t *kq) 513 { 514 ksiginfo_t *ksi; 515 516 KASSERT(!TAILQ_EMPTY(kq)); 517 518 while (!TAILQ_EMPTY(kq)) { 519 ksi = TAILQ_FIRST(kq); 520 TAILQ_REMOVE(kq, ksi, ksi_list); 521 pool_cache_put(ksiginfo_cache, ksi); 522 } 523 } 524 525 static int 526 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 527 { 528 ksiginfo_t *ksi, *nksi; 529 530 if (sp == NULL) 531 goto out; 532 533 /* Find siginfo and copy it out. */ 534 int count = 0; 535 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) { 536 if (ksi->ksi_signo != signo) 537 continue; 538 if (count++ > 0) /* Only remove the first, count all of them */ 539 continue; 540 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 541 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 542 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 543 ksi->ksi_flags &= ~KSI_QUEUED; 544 if (out != NULL) { 545 memcpy(out, ksi, sizeof(*out)); 546 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 547 } 548 ksiginfo_free(ksi); 549 } 550 if (count) 551 return count; 552 553 out: 554 /* If there is no siginfo, then manufacture it. */ 555 if (out != NULL) { 556 KSI_INIT(out); 557 out->ksi_info._signo = signo; 558 out->ksi_info._code = SI_NOINFO; 559 } 560 return 0; 561 } 562 563 /* 564 * sigget: 565 * 566 * Fetch the first pending signal from a set. Optionally, also fetch 567 * or manufacture a ksiginfo element. Returns the number of the first 568 * pending signal, or zero. 569 */ 570 int 571 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 572 { 573 sigset_t tset; 574 int count; 575 576 /* If there's no pending set, the signal is from the debugger. */ 577 if (sp == NULL) 578 goto out; 579 580 /* Construct mask from signo, and 'mask'. */ 581 if (signo == 0) { 582 if (mask != NULL) { 583 tset = *mask; 584 __sigandset(&sp->sp_set, &tset); 585 } else 586 tset = sp->sp_set; 587 588 /* If there are no signals pending - return. */ 589 if ((signo = firstsig(&tset)) == 0) 590 goto out; 591 } else { 592 KASSERT(sigismember(&sp->sp_set, signo)); 593 } 594 595 sigdelset(&sp->sp_set, signo); 596 out: 597 count = siggetinfo(sp, out, signo); 598 if (count > 1) 599 sigaddset(&sp->sp_set, signo); 600 return signo; 601 } 602 603 /* 604 * sigput: 605 * 606 * Append a new ksiginfo element to the list of pending ksiginfo's. 607 */ 608 static int 609 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 610 { 611 ksiginfo_t *kp; 612 613 KASSERT(mutex_owned(p->p_lock)); 614 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 615 616 sigaddset(&sp->sp_set, ksi->ksi_signo); 617 618 /* 619 * If there is no siginfo, we are done. 620 */ 621 if (KSI_EMPTY_P(ksi)) 622 return 0; 623 624 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 625 626 size_t count = 0; 627 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 628 count++; 629 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX) 630 continue; 631 if (kp->ksi_signo == ksi->ksi_signo) { 632 KSI_COPY(ksi, kp); 633 kp->ksi_flags |= KSI_QUEUED; 634 return 0; 635 } 636 } 637 638 if (count >= SIGQUEUE_MAX) { 639 #ifdef DIAGNOSTIC 640 printf("%s(%d): Signal queue is full signal=%d\n", 641 p->p_comm, p->p_pid, ksi->ksi_signo); 642 #endif 643 return EAGAIN; 644 } 645 ksi->ksi_flags |= KSI_QUEUED; 646 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 647 648 return 0; 649 } 650 651 /* 652 * sigclear: 653 * 654 * Clear all pending signals in the specified set. 655 */ 656 void 657 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 658 { 659 ksiginfo_t *ksi, *next; 660 661 if (mask == NULL) 662 sigemptyset(&sp->sp_set); 663 else 664 sigminusset(mask, &sp->sp_set); 665 666 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 667 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 668 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 669 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 670 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 671 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 672 } 673 } 674 } 675 676 /* 677 * sigclearall: 678 * 679 * Clear all pending signals in the specified set from a process and 680 * its LWPs. 681 */ 682 void 683 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 684 { 685 struct lwp *l; 686 687 KASSERT(mutex_owned(p->p_lock)); 688 689 sigclear(&p->p_sigpend, mask, kq); 690 691 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 692 sigclear(&l->l_sigpend, mask, kq); 693 } 694 } 695 696 /* 697 * sigispending: 698 * 699 * Return the first signal number if there are pending signals for the 700 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 701 * and that the signal has been posted to the appopriate queue before 702 * LW_PENDSIG is set. 703 */ 704 int 705 sigispending(struct lwp *l, int signo) 706 { 707 struct proc *p = l->l_proc; 708 sigset_t tset; 709 710 membar_consumer(); 711 712 tset = l->l_sigpend.sp_set; 713 sigplusset(&p->p_sigpend.sp_set, &tset); 714 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 715 sigminusset(&l->l_sigmask, &tset); 716 717 if (signo == 0) { 718 return firstsig(&tset); 719 } 720 return sigismember(&tset, signo) ? signo : 0; 721 } 722 723 void 724 getucontext(struct lwp *l, ucontext_t *ucp) 725 { 726 struct proc *p = l->l_proc; 727 728 KASSERT(mutex_owned(p->p_lock)); 729 730 ucp->uc_flags = 0; 731 ucp->uc_link = l->l_ctxlink; 732 ucp->uc_sigmask = l->l_sigmask; 733 ucp->uc_flags |= _UC_SIGMASK; 734 735 /* 736 * The (unsupplied) definition of the `current execution stack' 737 * in the System V Interface Definition appears to allow returning 738 * the main context stack. 739 */ 740 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 741 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 742 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 743 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 744 } else { 745 /* Simply copy alternate signal execution stack. */ 746 ucp->uc_stack = l->l_sigstk; 747 } 748 ucp->uc_flags |= _UC_STACK; 749 mutex_exit(p->p_lock); 750 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 751 mutex_enter(p->p_lock); 752 } 753 754 int 755 setucontext(struct lwp *l, const ucontext_t *ucp) 756 { 757 struct proc *p = l->l_proc; 758 int error; 759 760 KASSERT(mutex_owned(p->p_lock)); 761 762 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 763 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 764 if (error != 0) 765 return error; 766 } 767 768 mutex_exit(p->p_lock); 769 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 770 mutex_enter(p->p_lock); 771 if (error != 0) 772 return (error); 773 774 l->l_ctxlink = ucp->uc_link; 775 776 /* 777 * If there was stack information, update whether or not we are 778 * still running on an alternate signal stack. 779 */ 780 if ((ucp->uc_flags & _UC_STACK) != 0) { 781 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 782 l->l_sigstk.ss_flags |= SS_ONSTACK; 783 else 784 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 785 } 786 787 return 0; 788 } 789 790 /* 791 * killpg1: common code for kill process group/broadcast kill. 792 */ 793 int 794 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 795 { 796 struct proc *p, *cp; 797 kauth_cred_t pc; 798 struct pgrp *pgrp; 799 int nfound; 800 int signo = ksi->ksi_signo; 801 802 cp = l->l_proc; 803 pc = l->l_cred; 804 nfound = 0; 805 806 mutex_enter(proc_lock); 807 if (all) { 808 /* 809 * Broadcast. 810 */ 811 PROCLIST_FOREACH(p, &allproc) { 812 if (p->p_pid <= 1 || p == cp || 813 (p->p_flag & PK_SYSTEM) != 0) 814 continue; 815 mutex_enter(p->p_lock); 816 if (kauth_authorize_process(pc, 817 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 818 NULL) == 0) { 819 nfound++; 820 if (signo) 821 kpsignal2(p, ksi); 822 } 823 mutex_exit(p->p_lock); 824 } 825 } else { 826 if (pgid == 0) 827 /* Zero pgid means send to my process group. */ 828 pgrp = cp->p_pgrp; 829 else { 830 pgrp = pgrp_find(pgid); 831 if (pgrp == NULL) 832 goto out; 833 } 834 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 835 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 836 continue; 837 mutex_enter(p->p_lock); 838 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 839 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 840 nfound++; 841 if (signo && P_ZOMBIE(p) == 0) 842 kpsignal2(p, ksi); 843 } 844 mutex_exit(p->p_lock); 845 } 846 } 847 out: 848 mutex_exit(proc_lock); 849 return nfound ? 0 : ESRCH; 850 } 851 852 /* 853 * Send a signal to a process group. If checktty is set, limit to members 854 * which have a controlling terminal. 855 */ 856 void 857 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 858 { 859 ksiginfo_t ksi; 860 861 KASSERT(!cpu_intr_p()); 862 KASSERT(mutex_owned(proc_lock)); 863 864 KSI_INIT_EMPTY(&ksi); 865 ksi.ksi_signo = sig; 866 kpgsignal(pgrp, &ksi, NULL, checkctty); 867 } 868 869 void 870 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 871 { 872 struct proc *p; 873 874 KASSERT(!cpu_intr_p()); 875 KASSERT(mutex_owned(proc_lock)); 876 KASSERT(pgrp != NULL); 877 878 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 879 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 880 kpsignal(p, ksi, data); 881 } 882 883 /* 884 * Send a signal caused by a trap to the current LWP. If it will be caught 885 * immediately, deliver it with correct code. Otherwise, post it normally. 886 */ 887 void 888 trapsignal(struct lwp *l, ksiginfo_t *ksi) 889 { 890 struct proc *p; 891 struct sigacts *ps; 892 int signo = ksi->ksi_signo; 893 sigset_t *mask; 894 895 KASSERT(KSI_TRAP_P(ksi)); 896 897 ksi->ksi_lid = l->l_lid; 898 p = l->l_proc; 899 900 KASSERT(!cpu_intr_p()); 901 mutex_enter(proc_lock); 902 mutex_enter(p->p_lock); 903 mask = &l->l_sigmask; 904 ps = p->p_sigacts; 905 906 const bool traced = (p->p_slflag & PSL_TRACED) != 0; 907 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo); 908 const bool masked = sigismember(mask, signo); 909 if (!traced && caught && !masked) { 910 mutex_exit(proc_lock); 911 l->l_ru.ru_nsignals++; 912 kpsendsig(l, ksi, mask); 913 mutex_exit(p->p_lock); 914 if (ktrpoint(KTR_PSIG)) { 915 if (p->p_emul->e_ktrpsig) 916 p->p_emul->e_ktrpsig(signo, 917 SIGACTION_PS(ps, signo).sa_handler, 918 mask, ksi); 919 else 920 ktrpsig(signo, 921 SIGACTION_PS(ps, signo).sa_handler, 922 mask, ksi); 923 } 924 return; 925 } 926 927 /* 928 * If the signal is masked or ignored, then unmask it and 929 * reset it to the default action so that the process or 930 * its tracer will be notified. 931 */ 932 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN; 933 if (masked || ignored) { 934 mutex_enter(&ps->sa_mutex); 935 sigdelset(mask, signo); 936 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 937 sigdelset(&p->p_sigctx.ps_sigignore, signo); 938 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo); 939 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 940 mutex_exit(&ps->sa_mutex); 941 } 942 943 kpsignal2(p, ksi); 944 mutex_exit(p->p_lock); 945 mutex_exit(proc_lock); 946 } 947 948 /* 949 * Fill in signal information and signal the parent for a child status change. 950 */ 951 void 952 child_psignal(struct proc *p, int mask) 953 { 954 ksiginfo_t ksi; 955 struct proc *q; 956 int xsig; 957 958 KASSERT(mutex_owned(proc_lock)); 959 KASSERT(mutex_owned(p->p_lock)); 960 961 xsig = p->p_xsig; 962 963 KSI_INIT(&ksi); 964 ksi.ksi_signo = SIGCHLD; 965 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 966 ksi.ksi_pid = p->p_pid; 967 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 968 ksi.ksi_status = xsig; 969 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 970 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 971 972 q = p->p_pptr; 973 974 mutex_exit(p->p_lock); 975 mutex_enter(q->p_lock); 976 977 if ((q->p_sflag & mask) == 0) 978 kpsignal2(q, &ksi); 979 980 mutex_exit(q->p_lock); 981 mutex_enter(p->p_lock); 982 } 983 984 void 985 psignal(struct proc *p, int signo) 986 { 987 ksiginfo_t ksi; 988 989 KASSERT(!cpu_intr_p()); 990 KASSERT(mutex_owned(proc_lock)); 991 992 KSI_INIT_EMPTY(&ksi); 993 ksi.ksi_signo = signo; 994 mutex_enter(p->p_lock); 995 kpsignal2(p, &ksi); 996 mutex_exit(p->p_lock); 997 } 998 999 void 1000 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1001 { 1002 fdfile_t *ff; 1003 file_t *fp; 1004 fdtab_t *dt; 1005 1006 KASSERT(!cpu_intr_p()); 1007 KASSERT(mutex_owned(proc_lock)); 1008 1009 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1010 size_t fd; 1011 filedesc_t *fdp = p->p_fd; 1012 1013 /* XXXSMP locking */ 1014 ksi->ksi_fd = -1; 1015 dt = fdp->fd_dt; 1016 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1017 if ((ff = dt->dt_ff[fd]) == NULL) 1018 continue; 1019 if ((fp = ff->ff_file) == NULL) 1020 continue; 1021 if (fp->f_data == data) { 1022 ksi->ksi_fd = fd; 1023 break; 1024 } 1025 } 1026 } 1027 mutex_enter(p->p_lock); 1028 kpsignal2(p, ksi); 1029 mutex_exit(p->p_lock); 1030 } 1031 1032 /* 1033 * sigismasked: 1034 * 1035 * Returns true if signal is ignored or masked for the specified LWP. 1036 */ 1037 int 1038 sigismasked(struct lwp *l, int sig) 1039 { 1040 struct proc *p = l->l_proc; 1041 1042 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1043 sigismember(&l->l_sigmask, sig); 1044 } 1045 1046 /* 1047 * sigpost: 1048 * 1049 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1050 * be able to take the signal. 1051 */ 1052 static int 1053 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1054 { 1055 int rv, masked; 1056 struct proc *p = l->l_proc; 1057 1058 KASSERT(mutex_owned(p->p_lock)); 1059 1060 /* 1061 * If the LWP is on the way out, sigclear() will be busy draining all 1062 * pending signals. Don't give it more. 1063 */ 1064 if (l->l_refcnt == 0) 1065 return 0; 1066 1067 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0); 1068 1069 /* 1070 * Have the LWP check for signals. This ensures that even if no LWP 1071 * is found to take the signal immediately, it should be taken soon. 1072 */ 1073 lwp_lock(l); 1074 l->l_flag |= LW_PENDSIG; 1075 1076 /* 1077 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1078 * Note: SIGKILL and SIGSTOP cannot be masked. 1079 */ 1080 masked = sigismember(&l->l_sigmask, sig); 1081 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1082 lwp_unlock(l); 1083 return 0; 1084 } 1085 1086 /* 1087 * If killing the process, make it run fast. 1088 */ 1089 if (__predict_false((prop & SA_KILL) != 0) && 1090 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1091 KASSERT(l->l_class == SCHED_OTHER); 1092 lwp_changepri(l, MAXPRI_USER); 1093 } 1094 1095 /* 1096 * If the LWP is running or on a run queue, then we win. If it's 1097 * sleeping interruptably, wake it and make it take the signal. If 1098 * the sleep isn't interruptable, then the chances are it will get 1099 * to see the signal soon anyhow. If suspended, it can't take the 1100 * signal right now. If it's LWP private or for all LWPs, save it 1101 * for later; otherwise punt. 1102 */ 1103 rv = 0; 1104 1105 switch (l->l_stat) { 1106 case LSRUN: 1107 case LSONPROC: 1108 lwp_need_userret(l); 1109 rv = 1; 1110 break; 1111 1112 case LSSLEEP: 1113 if ((l->l_flag & LW_SINTR) != 0) { 1114 /* setrunnable() will release the lock. */ 1115 setrunnable(l); 1116 return 1; 1117 } 1118 break; 1119 1120 case LSSUSPENDED: 1121 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1122 /* lwp_continue() will release the lock. */ 1123 lwp_continue(l); 1124 return 1; 1125 } 1126 break; 1127 1128 case LSSTOP: 1129 if ((prop & SA_STOP) != 0) 1130 break; 1131 1132 /* 1133 * If the LWP is stopped and we are sending a continue 1134 * signal, then start it again. 1135 */ 1136 if ((prop & SA_CONT) != 0) { 1137 if (l->l_wchan != NULL) { 1138 l->l_stat = LSSLEEP; 1139 p->p_nrlwps++; 1140 rv = 1; 1141 break; 1142 } 1143 /* setrunnable() will release the lock. */ 1144 setrunnable(l); 1145 return 1; 1146 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1147 /* setrunnable() will release the lock. */ 1148 setrunnable(l); 1149 return 1; 1150 } 1151 break; 1152 1153 default: 1154 break; 1155 } 1156 1157 lwp_unlock(l); 1158 return rv; 1159 } 1160 1161 /* 1162 * Notify an LWP that it has a pending signal. 1163 */ 1164 void 1165 signotify(struct lwp *l) 1166 { 1167 KASSERT(lwp_locked(l, NULL)); 1168 1169 l->l_flag |= LW_PENDSIG; 1170 lwp_need_userret(l); 1171 } 1172 1173 /* 1174 * Find an LWP within process p that is waiting on signal ksi, and hand 1175 * it on. 1176 */ 1177 static int 1178 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1179 { 1180 struct lwp *l; 1181 int signo; 1182 1183 KASSERT(mutex_owned(p->p_lock)); 1184 1185 signo = ksi->ksi_signo; 1186 1187 if (ksi->ksi_lid != 0) { 1188 /* 1189 * Signal came via _lwp_kill(). Find the LWP and see if 1190 * it's interested. 1191 */ 1192 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1193 return 0; 1194 if (l->l_sigwaited == NULL || 1195 !sigismember(&l->l_sigwaitset, signo)) 1196 return 0; 1197 } else { 1198 /* 1199 * Look for any LWP that may be interested. 1200 */ 1201 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1202 KASSERT(l->l_sigwaited != NULL); 1203 if (sigismember(&l->l_sigwaitset, signo)) 1204 break; 1205 } 1206 } 1207 1208 if (l != NULL) { 1209 l->l_sigwaited->ksi_info = ksi->ksi_info; 1210 l->l_sigwaited = NULL; 1211 LIST_REMOVE(l, l_sigwaiter); 1212 cv_signal(&l->l_sigcv); 1213 return 1; 1214 } 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Send the signal to the process. If the signal has an action, the action 1221 * is usually performed by the target process rather than the caller; we add 1222 * the signal to the set of pending signals for the process. 1223 * 1224 * Exceptions: 1225 * o When a stop signal is sent to a sleeping process that takes the 1226 * default action, the process is stopped without awakening it. 1227 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1228 * regardless of the signal action (eg, blocked or ignored). 1229 * 1230 * Other ignored signals are discarded immediately. 1231 */ 1232 int 1233 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1234 { 1235 int prop, signo = ksi->ksi_signo; 1236 struct lwp *l = NULL; 1237 ksiginfo_t *kp; 1238 lwpid_t lid; 1239 sig_t action; 1240 bool toall, debtrap = false; 1241 int error = 0; 1242 1243 KASSERT(!cpu_intr_p()); 1244 KASSERT(mutex_owned(proc_lock)); 1245 KASSERT(mutex_owned(p->p_lock)); 1246 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1247 KASSERT(signo > 0 && signo < NSIG); 1248 1249 /* 1250 * If the process is being created by fork, is a zombie or is 1251 * exiting, then just drop the signal here and bail out. 1252 */ 1253 if (p->p_stat == SIDL && signo == SIGTRAP 1254 && (p->p_slflag & PSL_TRACED)) { 1255 /* allow an initial SIGTRAP for traced processes */ 1256 debtrap = true; 1257 } else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) { 1258 return 0; 1259 } 1260 1261 /* XXX for core dump/debugger */ 1262 p->p_sigctx.ps_lwp = ksi->ksi_lid; 1263 p->p_sigctx.ps_info = ksi->ksi_info; 1264 1265 /* 1266 * Notify any interested parties of the signal. 1267 */ 1268 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1269 1270 /* 1271 * Some signals including SIGKILL must act on the entire process. 1272 */ 1273 kp = NULL; 1274 prop = sigprop[signo]; 1275 toall = ((prop & SA_TOALL) != 0); 1276 lid = toall ? 0 : ksi->ksi_lid; 1277 1278 /* 1279 * If proc is traced, always give parent a chance. 1280 */ 1281 if (p->p_slflag & PSL_TRACED) { 1282 action = SIG_DFL; 1283 1284 if (lid == 0) { 1285 /* 1286 * If the process is being traced and the signal 1287 * is being caught, make sure to save any ksiginfo. 1288 */ 1289 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1290 goto discard; 1291 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1292 goto out; 1293 } 1294 } else { 1295 1296 /* 1297 * If the signal is being ignored, then drop it. Note: we 1298 * don't set SIGCONT in ps_sigignore, and if it is set to 1299 * SIG_IGN, action will be SIG_DFL here. 1300 */ 1301 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1302 goto discard; 1303 1304 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1305 action = SIG_CATCH; 1306 else { 1307 action = SIG_DFL; 1308 1309 /* 1310 * If sending a tty stop signal to a member of an 1311 * orphaned process group, discard the signal here if 1312 * the action is default; don't stop the process below 1313 * if sleeping, and don't clear any pending SIGCONT. 1314 */ 1315 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1316 goto discard; 1317 1318 if (prop & SA_KILL && p->p_nice > NZERO) 1319 p->p_nice = NZERO; 1320 } 1321 } 1322 1323 /* 1324 * If stopping or continuing a process, discard any pending 1325 * signals that would do the inverse. 1326 */ 1327 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1328 ksiginfoq_t kq; 1329 1330 ksiginfo_queue_init(&kq); 1331 if ((prop & SA_CONT) != 0) 1332 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1333 if ((prop & SA_STOP) != 0) 1334 sigclear(&p->p_sigpend, &contsigmask, &kq); 1335 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1336 } 1337 1338 /* 1339 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1340 * please!), check if any LWPs are waiting on it. If yes, pass on 1341 * the signal info. The signal won't be processed further here. 1342 */ 1343 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1344 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1345 sigunwait(p, ksi)) 1346 goto discard; 1347 1348 /* 1349 * XXXSMP Should be allocated by the caller, we're holding locks 1350 * here. 1351 */ 1352 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1353 goto discard; 1354 1355 /* 1356 * LWP private signals are easy - just find the LWP and post 1357 * the signal to it. 1358 */ 1359 if (lid != 0) { 1360 if (__predict_false(debtrap)) { 1361 l = LIST_FIRST(&p->p_lwps); 1362 if (l->l_lid != lid) 1363 l = NULL; 1364 } else { 1365 l = lwp_find(p, lid); 1366 } 1367 if (l != NULL) { 1368 if ((error = sigput(&l->l_sigpend, p, kp)) != 0) 1369 goto out; 1370 membar_producer(); 1371 if (sigpost(l, action, prop, kp->ksi_signo) != 0) 1372 signo = -1; 1373 } 1374 goto out; 1375 } 1376 1377 /* 1378 * Some signals go to all LWPs, even if posted with _lwp_kill() 1379 * or for an SA process. 1380 */ 1381 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1382 if ((p->p_slflag & PSL_TRACED) != 0) 1383 goto deliver; 1384 1385 /* 1386 * If SIGCONT is default (or ignored) and process is 1387 * asleep, we are finished; the process should not 1388 * be awakened. 1389 */ 1390 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1391 goto out; 1392 } else { 1393 /* 1394 * Process is stopped or stopping. 1395 * - If traced, then no action is needed, unless killing. 1396 * - Run the process only if sending SIGCONT or SIGKILL. 1397 */ 1398 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1399 goto out; 1400 } 1401 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1402 /* 1403 * Re-adjust p_nstopchild if the process was 1404 * stopped but not yet collected by its parent. 1405 */ 1406 if (p->p_stat == SSTOP && !p->p_waited) 1407 p->p_pptr->p_nstopchild--; 1408 p->p_stat = SACTIVE; 1409 p->p_sflag &= ~PS_STOPPING; 1410 if (p->p_slflag & PSL_TRACED) { 1411 KASSERT(signo == SIGKILL); 1412 goto deliver; 1413 } 1414 /* 1415 * Do not make signal pending if SIGCONT is default. 1416 * 1417 * If the process catches SIGCONT, let it handle the 1418 * signal itself (if waiting on event - process runs, 1419 * otherwise continues sleeping). 1420 */ 1421 if ((prop & SA_CONT) != 0) { 1422 p->p_xsig = SIGCONT; 1423 p->p_sflag |= PS_CONTINUED; 1424 child_psignal(p, 0); 1425 if (action == SIG_DFL) { 1426 KASSERT(signo != SIGKILL); 1427 goto deliver; 1428 } 1429 } 1430 } else if ((prop & SA_STOP) != 0) { 1431 /* 1432 * Already stopped, don't need to stop again. 1433 * (If we did the shell could get confused.) 1434 */ 1435 goto out; 1436 } 1437 } 1438 /* 1439 * Make signal pending. 1440 */ 1441 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1442 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1443 goto out; 1444 deliver: 1445 /* 1446 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1447 * visible on the per process list (for sigispending()). This 1448 * is unlikely to be needed in practice, but... 1449 */ 1450 membar_producer(); 1451 1452 /* 1453 * Try to find an LWP that can take the signal. 1454 */ 1455 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1456 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1457 break; 1458 } 1459 signo = -1; 1460 out: 1461 /* 1462 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1463 * with locks held. The caller should take care of this. 1464 */ 1465 ksiginfo_free(kp); 1466 if (signo == -1) 1467 return error; 1468 discard: 1469 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0); 1470 return error; 1471 } 1472 1473 void 1474 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1475 { 1476 struct proc *p = l->l_proc; 1477 1478 KASSERT(mutex_owned(p->p_lock)); 1479 (*p->p_emul->e_sendsig)(ksi, mask); 1480 } 1481 1482 /* 1483 * Stop any LWPs sleeping interruptably. 1484 */ 1485 static void 1486 proc_stop_lwps(struct proc *p) 1487 { 1488 struct lwp *l; 1489 1490 KASSERT(mutex_owned(p->p_lock)); 1491 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1492 1493 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1494 lwp_lock(l); 1495 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1496 l->l_stat = LSSTOP; 1497 p->p_nrlwps--; 1498 } 1499 lwp_unlock(l); 1500 } 1501 } 1502 1503 /* 1504 * Finish stopping of a process. Mark it stopped and notify the parent. 1505 * 1506 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1507 */ 1508 static void 1509 proc_stop_done(struct proc *p, int ppmask) 1510 { 1511 1512 KASSERT(mutex_owned(proc_lock)); 1513 KASSERT(mutex_owned(p->p_lock)); 1514 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1515 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1516 1517 p->p_sflag &= ~PS_STOPPING; 1518 p->p_stat = SSTOP; 1519 p->p_waited = 0; 1520 p->p_pptr->p_nstopchild++; 1521 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1522 /* child_psignal drops p_lock briefly. */ 1523 child_psignal(p, ppmask); 1524 cv_broadcast(&p->p_pptr->p_waitcv); 1525 } 1526 } 1527 1528 /* 1529 * Stop the current process and switch away when being stopped or traced. 1530 */ 1531 void 1532 sigswitch(int ppmask, int signo, bool relock) 1533 { 1534 struct lwp *l = curlwp; 1535 struct proc *p = l->l_proc; 1536 int biglocks; 1537 1538 KASSERT(mutex_owned(p->p_lock)); 1539 KASSERT(l->l_stat == LSONPROC); 1540 KASSERT(p->p_nrlwps > 0); 1541 1542 /* 1543 * On entry we know that the process needs to stop. If it's 1544 * the result of a 'sideways' stop signal that has been sourced 1545 * through issignal(), then stop other LWPs in the process too. 1546 */ 1547 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1548 KASSERT(signo != 0); 1549 proc_stop(p, signo); 1550 KASSERT(p->p_nrlwps > 0); 1551 } 1552 1553 /* 1554 * If we are the last live LWP, and the stop was a result of 1555 * a new signal, then signal the parent. 1556 */ 1557 if ((p->p_sflag & PS_STOPPING) != 0) { 1558 if (relock && !mutex_tryenter(proc_lock)) { 1559 mutex_exit(p->p_lock); 1560 mutex_enter(proc_lock); 1561 mutex_enter(p->p_lock); 1562 } 1563 1564 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1565 /* 1566 * Note that proc_stop_done() can drop 1567 * p->p_lock briefly. 1568 */ 1569 proc_stop_done(p, ppmask); 1570 } 1571 1572 mutex_exit(proc_lock); 1573 } 1574 1575 /* 1576 * Unlock and switch away. 1577 */ 1578 KERNEL_UNLOCK_ALL(l, &biglocks); 1579 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1580 p->p_nrlwps--; 1581 lwp_lock(l); 1582 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1583 l->l_stat = LSSTOP; 1584 lwp_unlock(l); 1585 } 1586 1587 mutex_exit(p->p_lock); 1588 lwp_lock(l); 1589 mi_switch(l); 1590 KERNEL_LOCK(biglocks, l); 1591 mutex_enter(p->p_lock); 1592 } 1593 1594 /* 1595 * Check for a signal from the debugger. 1596 */ 1597 static int 1598 sigchecktrace(void) 1599 { 1600 struct lwp *l = curlwp; 1601 struct proc *p = l->l_proc; 1602 int signo; 1603 1604 KASSERT(mutex_owned(p->p_lock)); 1605 1606 /* If there's a pending SIGKILL, process it immediately. */ 1607 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1608 return 0; 1609 1610 /* 1611 * If we are no longer being traced, or the parent didn't 1612 * give us a signal, or we're stopping, look for more signals. 1613 */ 1614 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 || 1615 (p->p_sflag & PS_STOPPING) != 0) 1616 return 0; 1617 1618 /* 1619 * If the new signal is being masked, look for other signals. 1620 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1621 */ 1622 signo = p->p_xsig; 1623 p->p_xsig = 0; 1624 if (sigismember(&l->l_sigmask, signo)) { 1625 signo = 0; 1626 } 1627 return signo; 1628 } 1629 1630 /* 1631 * If the current process has received a signal (should be caught or cause 1632 * termination, should interrupt current syscall), return the signal number. 1633 * 1634 * Stop signals with default action are processed immediately, then cleared; 1635 * they aren't returned. This is checked after each entry to the system for 1636 * a syscall or trap. 1637 * 1638 * We will also return -1 if the process is exiting and the current LWP must 1639 * follow suit. 1640 */ 1641 int 1642 issignal(struct lwp *l) 1643 { 1644 struct proc *p; 1645 int signo, prop; 1646 sigpend_t *sp; 1647 sigset_t ss; 1648 1649 p = l->l_proc; 1650 sp = NULL; 1651 signo = 0; 1652 1653 KASSERT(p == curproc); 1654 KASSERT(mutex_owned(p->p_lock)); 1655 1656 for (;;) { 1657 /* Discard any signals that we have decided not to take. */ 1658 if (signo != 0) { 1659 (void)sigget(sp, NULL, signo, NULL); 1660 } 1661 1662 /* 1663 * If the process is stopped/stopping, then stop ourselves 1664 * now that we're on the kernel/userspace boundary. When 1665 * we awaken, check for a signal from the debugger. 1666 */ 1667 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1668 sigswitch(PS_NOCLDSTOP, 0, true); 1669 signo = sigchecktrace(); 1670 } else 1671 signo = 0; 1672 1673 /* Signals from the debugger are "out of band". */ 1674 sp = NULL; 1675 1676 /* 1677 * If the debugger didn't provide a signal, find a pending 1678 * signal from our set. Check per-LWP signals first, and 1679 * then per-process. 1680 */ 1681 if (signo == 0) { 1682 sp = &l->l_sigpend; 1683 ss = sp->sp_set; 1684 if ((p->p_lflag & PL_PPWAIT) != 0) 1685 sigminusset(&stopsigmask, &ss); 1686 sigminusset(&l->l_sigmask, &ss); 1687 1688 if ((signo = firstsig(&ss)) == 0) { 1689 sp = &p->p_sigpend; 1690 ss = sp->sp_set; 1691 if ((p->p_lflag & PL_PPWAIT) != 0) 1692 sigminusset(&stopsigmask, &ss); 1693 sigminusset(&l->l_sigmask, &ss); 1694 1695 if ((signo = firstsig(&ss)) == 0) { 1696 /* 1697 * No signal pending - clear the 1698 * indicator and bail out. 1699 */ 1700 lwp_lock(l); 1701 l->l_flag &= ~LW_PENDSIG; 1702 lwp_unlock(l); 1703 sp = NULL; 1704 break; 1705 } 1706 } 1707 } 1708 1709 /* 1710 * We should see pending but ignored signals only if 1711 * we are being traced. 1712 */ 1713 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1714 (p->p_slflag & PSL_TRACED) == 0) { 1715 /* Discard the signal. */ 1716 continue; 1717 } 1718 1719 /* 1720 * If traced, always stop, and stay stopped until released 1721 * by the debugger. If the our parent is our debugger waiting 1722 * for us and we vforked, don't hang as we could deadlock. 1723 * 1724 * XXX: support PT_TRACE_ME called after vfork(2) 1725 */ 1726 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1727 /* 1728 * Take the signal, but don't remove it from the 1729 * siginfo queue, because the debugger can send 1730 * it later. 1731 */ 1732 if (sp) 1733 sigdelset(&sp->sp_set, signo); 1734 p->p_xsig = signo; 1735 1736 /* Emulation-specific handling of signal trace */ 1737 if (p->p_emul->e_tracesig == NULL || 1738 (*p->p_emul->e_tracesig)(p, signo) == 0) 1739 sigswitch(0, signo, true); 1740 1741 /* Check for a signal from the debugger. */ 1742 if ((signo = sigchecktrace()) == 0) 1743 continue; 1744 1745 /* Signals from the debugger are "out of band". */ 1746 sp = NULL; 1747 } 1748 1749 prop = sigprop[signo]; 1750 1751 /* 1752 * Decide whether the signal should be returned. 1753 */ 1754 switch ((long)SIGACTION(p, signo).sa_handler) { 1755 case (long)SIG_DFL: 1756 /* 1757 * Don't take default actions on system processes. 1758 */ 1759 if (p->p_pid <= 1) { 1760 #ifdef DIAGNOSTIC 1761 /* 1762 * Are you sure you want to ignore SIGSEGV 1763 * in init? XXX 1764 */ 1765 printf_nolog("Process (pid %d) got sig %d\n", 1766 p->p_pid, signo); 1767 #endif 1768 continue; 1769 } 1770 1771 /* 1772 * If there is a pending stop signal to process with 1773 * default action, stop here, then clear the signal. 1774 * However, if process is member of an orphaned 1775 * process group, ignore tty stop signals. 1776 */ 1777 if (prop & SA_STOP) { 1778 /* 1779 * XXX Don't hold proc_lock for p_lflag, 1780 * but it's not a big deal. 1781 */ 1782 if (p->p_slflag & PSL_TRACED || 1783 ((p->p_lflag & PL_ORPHANPG) != 0 && 1784 prop & SA_TTYSTOP)) { 1785 /* Ignore the signal. */ 1786 continue; 1787 } 1788 /* Take the signal. */ 1789 (void)sigget(sp, NULL, signo, NULL); 1790 p->p_xsig = signo; 1791 p->p_sflag &= ~PS_CONTINUED; 1792 signo = 0; 1793 sigswitch(PS_NOCLDSTOP, p->p_xsig, true); 1794 } else if (prop & SA_IGNORE) { 1795 /* 1796 * Except for SIGCONT, shouldn't get here. 1797 * Default action is to ignore; drop it. 1798 */ 1799 continue; 1800 } 1801 break; 1802 1803 case (long)SIG_IGN: 1804 #ifdef DEBUG_ISSIGNAL 1805 /* 1806 * Masking above should prevent us ever trying 1807 * to take action on an ignored signal other 1808 * than SIGCONT, unless process is traced. 1809 */ 1810 if ((prop & SA_CONT) == 0 && 1811 (p->p_slflag & PSL_TRACED) == 0) 1812 printf_nolog("issignal\n"); 1813 #endif 1814 continue; 1815 1816 default: 1817 /* 1818 * This signal has an action, let postsig() process 1819 * it. 1820 */ 1821 break; 1822 } 1823 1824 break; 1825 } 1826 1827 l->l_sigpendset = sp; 1828 return signo; 1829 } 1830 1831 /* 1832 * Take the action for the specified signal 1833 * from the current set of pending signals. 1834 */ 1835 void 1836 postsig(int signo) 1837 { 1838 struct lwp *l; 1839 struct proc *p; 1840 struct sigacts *ps; 1841 sig_t action; 1842 sigset_t *returnmask; 1843 ksiginfo_t ksi; 1844 1845 l = curlwp; 1846 p = l->l_proc; 1847 ps = p->p_sigacts; 1848 1849 KASSERT(mutex_owned(p->p_lock)); 1850 KASSERT(signo > 0); 1851 1852 /* 1853 * Set the new mask value and also defer further occurrences of this 1854 * signal. 1855 * 1856 * Special case: user has done a sigsuspend. Here the current mask is 1857 * not of interest, but rather the mask from before the sigsuspend is 1858 * what we want restored after the signal processing is completed. 1859 */ 1860 if (l->l_sigrestore) { 1861 returnmask = &l->l_sigoldmask; 1862 l->l_sigrestore = 0; 1863 } else 1864 returnmask = &l->l_sigmask; 1865 1866 /* 1867 * Commit to taking the signal before releasing the mutex. 1868 */ 1869 action = SIGACTION_PS(ps, signo).sa_handler; 1870 l->l_ru.ru_nsignals++; 1871 if (l->l_sigpendset == NULL) { 1872 /* From the debugger */ 1873 if (p->p_sigctx.ps_faked && 1874 signo == p->p_sigctx.ps_info._signo) { 1875 KSI_INIT(&ksi); 1876 ksi.ksi_info = p->p_sigctx.ps_info; 1877 ksi.ksi_lid = p->p_sigctx.ps_lwp; 1878 p->p_sigctx.ps_faked = false; 1879 } else { 1880 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 1881 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 1882 } 1883 } else 1884 sigget(l->l_sigpendset, &ksi, signo, NULL); 1885 1886 if (ktrpoint(KTR_PSIG)) { 1887 mutex_exit(p->p_lock); 1888 if (p->p_emul->e_ktrpsig) 1889 p->p_emul->e_ktrpsig(signo, action, 1890 returnmask, &ksi); 1891 else 1892 ktrpsig(signo, action, returnmask, &ksi); 1893 mutex_enter(p->p_lock); 1894 } 1895 1896 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0); 1897 1898 if (action == SIG_DFL) { 1899 /* 1900 * Default action, where the default is to kill 1901 * the process. (Other cases were ignored above.) 1902 */ 1903 sigexit(l, signo); 1904 return; 1905 } 1906 1907 /* 1908 * If we get here, the signal must be caught. 1909 */ 1910 #ifdef DIAGNOSTIC 1911 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1912 panic("postsig action"); 1913 #endif 1914 1915 kpsendsig(l, &ksi, returnmask); 1916 } 1917 1918 /* 1919 * sendsig: 1920 * 1921 * Default signal delivery method for NetBSD. 1922 */ 1923 void 1924 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1925 { 1926 struct sigacts *sa; 1927 int sig; 1928 1929 sig = ksi->ksi_signo; 1930 sa = curproc->p_sigacts; 1931 1932 switch (sa->sa_sigdesc[sig].sd_vers) { 1933 case 0: 1934 case 1: 1935 /* Compat for 1.6 and earlier. */ 1936 if (sendsig_sigcontext_vec == NULL) { 1937 break; 1938 } 1939 (*sendsig_sigcontext_vec)(ksi, mask); 1940 return; 1941 case 2: 1942 case 3: 1943 sendsig_siginfo(ksi, mask); 1944 return; 1945 default: 1946 break; 1947 } 1948 1949 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 1950 sigexit(curlwp, SIGILL); 1951 } 1952 1953 /* 1954 * sendsig_reset: 1955 * 1956 * Reset the signal action. Called from emulation specific sendsig() 1957 * before unlocking to deliver the signal. 1958 */ 1959 void 1960 sendsig_reset(struct lwp *l, int signo) 1961 { 1962 struct proc *p = l->l_proc; 1963 struct sigacts *ps = p->p_sigacts; 1964 1965 KASSERT(mutex_owned(p->p_lock)); 1966 1967 p->p_sigctx.ps_lwp = 0; 1968 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 1969 1970 mutex_enter(&ps->sa_mutex); 1971 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1972 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1973 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1974 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1975 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1976 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1977 } 1978 mutex_exit(&ps->sa_mutex); 1979 } 1980 1981 /* 1982 * Kill the current process for stated reason. 1983 */ 1984 void 1985 killproc(struct proc *p, const char *why) 1986 { 1987 1988 KASSERT(mutex_owned(proc_lock)); 1989 1990 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1991 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1992 psignal(p, SIGKILL); 1993 } 1994 1995 /* 1996 * Force the current process to exit with the specified signal, dumping core 1997 * if appropriate. We bypass the normal tests for masked and caught 1998 * signals, allowing unrecoverable failures to terminate the process without 1999 * changing signal state. Mark the accounting record with the signal 2000 * termination. If dumping core, save the signal number for the debugger. 2001 * Calls exit and does not return. 2002 */ 2003 void 2004 sigexit(struct lwp *l, int signo) 2005 { 2006 int exitsig, error, docore; 2007 struct proc *p; 2008 struct lwp *t; 2009 2010 p = l->l_proc; 2011 2012 KASSERT(mutex_owned(p->p_lock)); 2013 KERNEL_UNLOCK_ALL(l, NULL); 2014 2015 /* 2016 * Don't permit coredump() multiple times in the same process. 2017 * Call back into sigexit, where we will be suspended until 2018 * the deed is done. Note that this is a recursive call, but 2019 * LW_WCORE will prevent us from coming back this way. 2020 */ 2021 if ((p->p_sflag & PS_WCORE) != 0) { 2022 lwp_lock(l); 2023 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2024 lwp_unlock(l); 2025 mutex_exit(p->p_lock); 2026 lwp_userret(l); 2027 panic("sigexit 1"); 2028 /* NOTREACHED */ 2029 } 2030 2031 /* If process is already on the way out, then bail now. */ 2032 if ((p->p_sflag & PS_WEXIT) != 0) { 2033 mutex_exit(p->p_lock); 2034 lwp_exit(l); 2035 panic("sigexit 2"); 2036 /* NOTREACHED */ 2037 } 2038 2039 /* 2040 * Prepare all other LWPs for exit. If dumping core, suspend them 2041 * so that their registers are available long enough to be dumped. 2042 */ 2043 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2044 p->p_sflag |= PS_WCORE; 2045 for (;;) { 2046 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2047 lwp_lock(t); 2048 if (t == l) { 2049 t->l_flag &= ~LW_WSUSPEND; 2050 lwp_unlock(t); 2051 continue; 2052 } 2053 t->l_flag |= (LW_WCORE | LW_WEXIT); 2054 lwp_suspend(l, t); 2055 } 2056 2057 if (p->p_nrlwps == 1) 2058 break; 2059 2060 /* 2061 * Kick any LWPs sitting in lwp_wait1(), and wait 2062 * for everyone else to stop before proceeding. 2063 */ 2064 p->p_nlwpwait++; 2065 cv_broadcast(&p->p_lwpcv); 2066 cv_wait(&p->p_lwpcv, p->p_lock); 2067 p->p_nlwpwait--; 2068 } 2069 } 2070 2071 exitsig = signo; 2072 p->p_acflag |= AXSIG; 2073 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2074 p->p_sigctx.ps_info._signo = signo; 2075 p->p_sigctx.ps_info._code = SI_NOINFO; 2076 2077 if (docore) { 2078 mutex_exit(p->p_lock); 2079 error = (*coredump_vec)(l, NULL); 2080 2081 if (kern_logsigexit) { 2082 int uid = l->l_cred ? 2083 (int)kauth_cred_geteuid(l->l_cred) : -1; 2084 2085 if (error) 2086 log(LOG_INFO, lognocoredump, p->p_pid, 2087 p->p_comm, uid, signo, error); 2088 else 2089 log(LOG_INFO, logcoredump, p->p_pid, 2090 p->p_comm, uid, signo); 2091 } 2092 2093 #ifdef PAX_SEGVGUARD 2094 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2095 #endif /* PAX_SEGVGUARD */ 2096 /* Acquire the sched state mutex. exit1() will release it. */ 2097 mutex_enter(p->p_lock); 2098 if (error == 0) 2099 p->p_sflag |= PS_COREDUMP; 2100 } 2101 2102 /* No longer dumping core. */ 2103 p->p_sflag &= ~PS_WCORE; 2104 2105 exit1(l, 0, exitsig); 2106 /* NOTREACHED */ 2107 } 2108 2109 /* 2110 * Put process 'p' into the stopped state and optionally, notify the parent. 2111 */ 2112 void 2113 proc_stop(struct proc *p, int signo) 2114 { 2115 struct lwp *l; 2116 2117 KASSERT(mutex_owned(p->p_lock)); 2118 2119 /* 2120 * First off, set the stopping indicator and bring all sleeping 2121 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2122 * unlock between here and the p->p_nrlwps check below. 2123 */ 2124 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP; 2125 membar_producer(); 2126 2127 proc_stop_lwps(p); 2128 2129 /* 2130 * If there are no LWPs available to take the signal, then we 2131 * signal the parent process immediately. Otherwise, the last 2132 * LWP to stop will take care of it. 2133 */ 2134 2135 if (p->p_nrlwps == 0) { 2136 proc_stop_done(p, PS_NOCLDSTOP); 2137 } else { 2138 /* 2139 * Have the remaining LWPs come to a halt, and trigger 2140 * proc_stop_callout() to ensure that they do. 2141 */ 2142 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2143 sigpost(l, SIG_DFL, SA_STOP, signo); 2144 } 2145 callout_schedule(&proc_stop_ch, 1); 2146 } 2147 } 2148 2149 /* 2150 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2151 * but wait for them to come to a halt at the kernel-user boundary. This is 2152 * to allow LWPs to release any locks that they may hold before stopping. 2153 * 2154 * Non-interruptable sleeps can be long, and there is the potential for an 2155 * LWP to begin sleeping interruptably soon after the process has been set 2156 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2157 * stopping, and so complete halt of the process and the return of status 2158 * information to the parent could be delayed indefinitely. 2159 * 2160 * To handle this race, proc_stop_callout() runs once per tick while there 2161 * are stopping processes in the system. It sets LWPs that are sleeping 2162 * interruptably into the LSSTOP state. 2163 * 2164 * Note that we are not concerned about keeping all LWPs stopped while the 2165 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2166 * What we do need to ensure is that all LWPs in a stopping process have 2167 * stopped at least once, so that notification can be sent to the parent 2168 * process. 2169 */ 2170 static void 2171 proc_stop_callout(void *cookie) 2172 { 2173 bool more, restart; 2174 struct proc *p; 2175 2176 (void)cookie; 2177 2178 do { 2179 restart = false; 2180 more = false; 2181 2182 mutex_enter(proc_lock); 2183 PROCLIST_FOREACH(p, &allproc) { 2184 mutex_enter(p->p_lock); 2185 2186 if ((p->p_sflag & PS_STOPPING) == 0) { 2187 mutex_exit(p->p_lock); 2188 continue; 2189 } 2190 2191 /* Stop any LWPs sleeping interruptably. */ 2192 proc_stop_lwps(p); 2193 if (p->p_nrlwps == 0) { 2194 /* 2195 * We brought the process to a halt. 2196 * Mark it as stopped and notify the 2197 * parent. 2198 */ 2199 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2200 /* 2201 * Note that proc_stop_done() will 2202 * drop p->p_lock briefly. 2203 * Arrange to restart and check 2204 * all processes again. 2205 */ 2206 restart = true; 2207 } 2208 proc_stop_done(p, PS_NOCLDSTOP); 2209 } else 2210 more = true; 2211 2212 mutex_exit(p->p_lock); 2213 if (restart) 2214 break; 2215 } 2216 mutex_exit(proc_lock); 2217 } while (restart); 2218 2219 /* 2220 * If we noted processes that are stopping but still have 2221 * running LWPs, then arrange to check again in 1 tick. 2222 */ 2223 if (more) 2224 callout_schedule(&proc_stop_ch, 1); 2225 } 2226 2227 /* 2228 * Given a process in state SSTOP, set the state back to SACTIVE and 2229 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2230 */ 2231 void 2232 proc_unstop(struct proc *p) 2233 { 2234 struct lwp *l; 2235 int sig; 2236 2237 KASSERT(mutex_owned(proc_lock)); 2238 KASSERT(mutex_owned(p->p_lock)); 2239 2240 p->p_stat = SACTIVE; 2241 p->p_sflag &= ~PS_STOPPING; 2242 sig = p->p_xsig; 2243 2244 if (!p->p_waited) 2245 p->p_pptr->p_nstopchild--; 2246 2247 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2248 lwp_lock(l); 2249 if (l->l_stat != LSSTOP) { 2250 lwp_unlock(l); 2251 continue; 2252 } 2253 if (l->l_wchan == NULL) { 2254 setrunnable(l); 2255 continue; 2256 } 2257 if (sig && (l->l_flag & LW_SINTR) != 0) { 2258 setrunnable(l); 2259 sig = 0; 2260 } else { 2261 l->l_stat = LSSLEEP; 2262 p->p_nrlwps++; 2263 lwp_unlock(l); 2264 } 2265 } 2266 } 2267 2268 void 2269 proc_stoptrace(int trapno) 2270 { 2271 struct lwp *l = curlwp; 2272 struct proc *p = l->l_proc; 2273 struct sigacts *ps; 2274 sigset_t *mask; 2275 sig_t action; 2276 ksiginfo_t ksi; 2277 const int signo = SIGTRAP; 2278 2279 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX)); 2280 2281 KSI_INIT_TRAP(&ksi); 2282 ksi.ksi_lid = l->l_lid; 2283 ksi.ksi_info._signo = signo; 2284 ksi.ksi_info._code = trapno; 2285 2286 mutex_enter(p->p_lock); 2287 2288 /* Needed for ktrace */ 2289 ps = p->p_sigacts; 2290 action = SIGACTION_PS(ps, signo).sa_handler; 2291 mask = &l->l_sigmask; 2292 2293 /* initproc (PID1) cannot became a debugger */ 2294 KASSERT(p->p_pptr != initproc); 2295 2296 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 2297 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL)); 2298 2299 p->p_xsig = signo; 2300 p->p_sigctx.ps_lwp = ksi.ksi_lid; 2301 p->p_sigctx.ps_info = ksi.ksi_info; 2302 sigswitch(0, signo, true); 2303 mutex_exit(p->p_lock); 2304 2305 if (ktrpoint(KTR_PSIG)) { 2306 if (p->p_emul->e_ktrpsig) 2307 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 2308 else 2309 ktrpsig(signo, action, mask, &ksi); 2310 } 2311 } 2312 2313 static int 2314 filt_sigattach(struct knote *kn) 2315 { 2316 struct proc *p = curproc; 2317 2318 kn->kn_obj = p; 2319 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2320 2321 mutex_enter(p->p_lock); 2322 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2323 mutex_exit(p->p_lock); 2324 2325 return 0; 2326 } 2327 2328 static void 2329 filt_sigdetach(struct knote *kn) 2330 { 2331 struct proc *p = kn->kn_obj; 2332 2333 mutex_enter(p->p_lock); 2334 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2335 mutex_exit(p->p_lock); 2336 } 2337 2338 /* 2339 * Signal knotes are shared with proc knotes, so we apply a mask to 2340 * the hint in order to differentiate them from process hints. This 2341 * could be avoided by using a signal-specific knote list, but probably 2342 * isn't worth the trouble. 2343 */ 2344 static int 2345 filt_signal(struct knote *kn, long hint) 2346 { 2347 2348 if (hint & NOTE_SIGNAL) { 2349 hint &= ~NOTE_SIGNAL; 2350 2351 if (kn->kn_id == hint) 2352 kn->kn_data++; 2353 } 2354 return (kn->kn_data != 0); 2355 } 2356 2357 const struct filterops sig_filtops = { 2358 .f_isfd = 0, 2359 .f_attach = filt_sigattach, 2360 .f_detach = filt_sigdetach, 2361 .f_event = filt_signal, 2362 }; 2363