xref: /netbsd-src/sys/kern/kern_sig.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /*	$NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $");
41 
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49 #include "opt_pax.h"
50 
51 #define	SIGPROP		/* include signal properties table */
52 #include <sys/param.h>
53 #include <sys/signalvar.h>
54 #include <sys/resourcevar.h>
55 #include <sys/namei.h>
56 #include <sys/vnode.h>
57 #include <sys/proc.h>
58 #include <sys/systm.h>
59 #include <sys/timeb.h>
60 #include <sys/times.h>
61 #include <sys/buf.h>
62 #include <sys/acct.h>
63 #include <sys/file.h>
64 #include <sys/kernel.h>
65 #include <sys/wait.h>
66 #include <sys/ktrace.h>
67 #include <sys/syslog.h>
68 #include <sys/stat.h>
69 #include <sys/core.h>
70 #include <sys/filedesc.h>
71 #include <sys/malloc.h>
72 #include <sys/pool.h>
73 #include <sys/ucontext.h>
74 #include <sys/sa.h>
75 #include <sys/savar.h>
76 #include <sys/exec.h>
77 #include <sys/sysctl.h>
78 #include <sys/kauth.h>
79 
80 #include <sys/mount.h>
81 #include <sys/syscallargs.h>
82 
83 #include <machine/cpu.h>
84 
85 #include <sys/user.h>		/* for coredump */
86 
87 #ifdef PAX_SEGVGUARD
88 #include <sys/pax.h>
89 #endif /* PAX_SEGVGUARD */
90 
91 #include <uvm/uvm.h>
92 #include <uvm/uvm_extern.h>
93 
94 #ifdef COREDUMP
95 static int	build_corename(struct proc *, char *, const char *, size_t);
96 #endif
97 static void	ksiginfo_exithook(struct proc *, void *);
98 static void	ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
99 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
100 static void	kpsignal2(struct proc *, const ksiginfo_t *);
101 
102 sigset_t	contsigmask, stopsigmask, sigcantmask;
103 
104 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
105 
106 /*
107  * struct sigacts memory pool allocator.
108  */
109 
110 static void *
111 sigacts_poolpage_alloc(struct pool *pp, int flags)
112 {
113 
114 	return (void *)uvm_km_alloc(kernel_map,
115 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
116 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
117 	    | UVM_KMF_WIRED);
118 }
119 
120 static void
121 sigacts_poolpage_free(struct pool *pp, void *v)
122 {
123         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
124 }
125 
126 static struct pool_allocator sigactspool_allocator = {
127         .pa_alloc = sigacts_poolpage_alloc,
128 	.pa_free = sigacts_poolpage_free,
129 };
130 
131 static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
132     &pool_allocator_nointr);
133 static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
134 
135 static ksiginfo_t *
136 ksiginfo_alloc(int prflags)
137 {
138 	int s;
139 	ksiginfo_t *ksi;
140 
141 	s = splsoftclock();
142 	ksi = pool_get(&ksiginfo_pool, prflags);
143 	splx(s);
144 	return ksi;
145 }
146 
147 static void
148 ksiginfo_free(ksiginfo_t *ksi)
149 {
150 	int s;
151 
152 	s = splsoftclock();
153 	pool_put(&ksiginfo_pool, ksi);
154 	splx(s);
155 }
156 
157 /*
158  * Remove and return the first ksiginfo element that matches our requested
159  * signal, or return NULL if one not found.
160  */
161 static ksiginfo_t *
162 ksiginfo_dequeue(struct proc *p, int signo)
163 {
164 	ksiginfo_t *ksi;
165 	int s;
166 
167 	s = splsoftclock();
168 	simple_lock(&p->p_sigctx.ps_silock);
169 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
170 		if (ksi->ksi_signo == signo) {
171 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
172 			goto out;
173 		}
174 	}
175 	ksi = NULL;
176 out:
177 	simple_unlock(&p->p_sigctx.ps_silock);
178 	splx(s);
179 	return ksi;
180 }
181 
182 /*
183  * Append a new ksiginfo element to the list of pending ksiginfo's, if
184  * we need to (SA_SIGINFO was requested). We replace non RT signals if
185  * they already existed in the queue and we add new entries for RT signals,
186  * or for non RT signals with non-existing entries.
187  */
188 static void
189 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
190 {
191 	ksiginfo_t *kp;
192 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
193 	int s;
194 
195 	if ((sa->sa_flags & SA_SIGINFO) == 0)
196 		return;
197 
198 	/*
199 	 * If there's no info, don't save it.
200 	 */
201 	if (KSI_EMPTY_P(ksi))
202 		return;
203 
204 	s = splsoftclock();
205 	simple_lock(&p->p_sigctx.ps_silock);
206 #ifdef notyet	/* XXX: QUEUING */
207 	if (ksi->ksi_signo < SIGRTMIN)
208 #endif
209 	{
210 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
211 			if (kp->ksi_signo == ksi->ksi_signo) {
212 				KSI_COPY(ksi, kp);
213 				goto out;
214 			}
215 		}
216 	}
217 	if (newkp && *newkp) {
218 		kp = *newkp;
219 		*newkp = NULL;
220 	} else {
221 		SCHED_ASSERT_UNLOCKED();
222 		kp = ksiginfo_alloc(PR_NOWAIT);
223 		if (kp == NULL) {
224 #ifdef DIAGNOSTIC
225 			printf("Out of memory allocating siginfo for pid %d\n",
226 			    p->p_pid);
227 #endif
228 			goto out;
229 		}
230 	}
231 	*kp = *ksi;
232 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
233 out:
234 	simple_unlock(&p->p_sigctx.ps_silock);
235 	splx(s);
236 }
237 
238 /*
239  * free all pending ksiginfo on exit
240  */
241 static void
242 ksiginfo_exithook(struct proc *p, void *v)
243 {
244 	int s;
245 
246 	s = splsoftclock();
247 	simple_lock(&p->p_sigctx.ps_silock);
248 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
249 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
250 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
251 		ksiginfo_free(ksi);
252 	}
253 	simple_unlock(&p->p_sigctx.ps_silock);
254 	splx(s);
255 }
256 
257 /*
258  * Initialize signal-related data structures.
259  */
260 void
261 signal_init(void)
262 {
263 
264 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
265 
266 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
267 	    sizeof(struct sigacts) > PAGE_SIZE ?
268 	    &sigactspool_allocator : &pool_allocator_nointr);
269 
270 	exithook_establish(ksiginfo_exithook, NULL);
271 	exechook_establish(ksiginfo_exithook, NULL);
272 }
273 
274 /*
275  * Create an initial sigctx structure, using the same signal state
276  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
277  * copy it from parent.
278  */
279 void
280 sigactsinit(struct proc *np, struct proc *pp, int share)
281 {
282 	struct sigacts *ps;
283 
284 	if (share) {
285 		np->p_sigacts = pp->p_sigacts;
286 		pp->p_sigacts->sa_refcnt++;
287 	} else {
288 		ps = pool_get(&sigacts_pool, PR_WAITOK);
289 		if (pp)
290 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
291 		else
292 			memset(ps, '\0', sizeof(struct sigacts));
293 		ps->sa_refcnt = 1;
294 		np->p_sigacts = ps;
295 	}
296 }
297 
298 /*
299  * Make this process not share its sigctx, maintaining all
300  * signal state.
301  */
302 void
303 sigactsunshare(struct proc *p)
304 {
305 	struct sigacts *oldps;
306 
307 	if (p->p_sigacts->sa_refcnt == 1)
308 		return;
309 
310 	oldps = p->p_sigacts;
311 	sigactsinit(p, NULL, 0);
312 
313 	if (--oldps->sa_refcnt == 0)
314 		pool_put(&sigacts_pool, oldps);
315 }
316 
317 /*
318  * Release a sigctx structure.
319  */
320 void
321 sigactsfree(struct sigacts *ps)
322 {
323 
324 	if (--ps->sa_refcnt > 0)
325 		return;
326 
327 	pool_put(&sigacts_pool, ps);
328 }
329 
330 int
331 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
332 	struct sigaction *osa, const void *tramp, int vers)
333 {
334 	struct sigacts	*ps;
335 	int		prop;
336 
337 	ps = p->p_sigacts;
338 	if (signum <= 0 || signum >= NSIG)
339 		return (EINVAL);
340 
341 	/*
342 	 * Trampoline ABI version 0 is reserved for the legacy
343 	 * kernel-provided on-stack trampoline.  Conversely, if we are
344 	 * using a non-0 ABI version, we must have a trampoline.  Only
345 	 * validate the vers if a new sigaction was supplied. Emulations
346 	 * use legacy kernel trampolines with version 0, alternatively
347 	 * check for that too.
348 	 */
349 	if ((vers != 0 && tramp == NULL) ||
350 #ifdef SIGTRAMP_VALID
351 	    (nsa != NULL &&
352 	    ((vers == 0) ?
353 		(p->p_emul->e_sigcode == NULL) :
354 		!SIGTRAMP_VALID(vers))) ||
355 #endif
356 	    (vers == 0 && tramp != NULL))
357 		return (EINVAL);
358 
359 	if (osa)
360 		*osa = SIGACTION_PS(ps, signum);
361 
362 	if (nsa) {
363 		if (nsa->sa_flags & ~SA_ALLBITS)
364 			return (EINVAL);
365 
366 		prop = sigprop[signum];
367 		if (prop & SA_CANTMASK)
368 			return (EINVAL);
369 
370 		(void) splsched();	/* XXXSMP */
371 		SIGACTION_PS(ps, signum) = *nsa;
372 		ps->sa_sigdesc[signum].sd_tramp = tramp;
373 		ps->sa_sigdesc[signum].sd_vers = vers;
374 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
375 		if ((prop & SA_NORESET) != 0)
376 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
377 		if (signum == SIGCHLD) {
378 			if (nsa->sa_flags & SA_NOCLDSTOP)
379 				p->p_flag |= P_NOCLDSTOP;
380 			else
381 				p->p_flag &= ~P_NOCLDSTOP;
382 			if (nsa->sa_flags & SA_NOCLDWAIT) {
383 				/*
384 				 * Paranoia: since SA_NOCLDWAIT is implemented
385 				 * by reparenting the dying child to PID 1 (and
386 				 * trust it to reap the zombie), PID 1 itself
387 				 * is forbidden to set SA_NOCLDWAIT.
388 				 */
389 				if (p->p_pid == 1)
390 					p->p_flag &= ~P_NOCLDWAIT;
391 				else
392 					p->p_flag |= P_NOCLDWAIT;
393 			} else
394 				p->p_flag &= ~P_NOCLDWAIT;
395 
396 			if (nsa->sa_handler == SIG_IGN) {
397 				/*
398 				 * Paranoia: same as above.
399 				 */
400 				if (p->p_pid == 1)
401 					p->p_flag &= ~P_CLDSIGIGN;
402 				else
403 					p->p_flag |= P_CLDSIGIGN;
404 			} else
405 				p->p_flag &= ~P_CLDSIGIGN;
406 
407 		}
408 		if ((nsa->sa_flags & SA_NODEFER) == 0)
409 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
410 		else
411 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
412 		/*
413 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
414 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
415 		 * to ignore. However, don't put SIGCONT in
416 		 * p_sigctx.ps_sigignore, as we have to restart the process.
417 	 	 */
418 		if (nsa->sa_handler == SIG_IGN ||
419 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
420 						/* never to be seen again */
421 			sigdelset(&p->p_sigctx.ps_siglist, signum);
422 			if (signum != SIGCONT) {
423 						/* easier in psignal */
424 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
425 			}
426 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
427 		} else {
428 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
429 			if (nsa->sa_handler == SIG_DFL)
430 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
431 			else
432 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
433 		}
434 		(void) spl0();
435 	}
436 
437 	return (0);
438 }
439 
440 #ifdef COMPAT_16
441 /* ARGSUSED */
442 int
443 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
444 {
445 	struct compat_16_sys___sigaction14_args /* {
446 		syscallarg(int)				signum;
447 		syscallarg(const struct sigaction *)	nsa;
448 		syscallarg(struct sigaction *)		osa;
449 	} */ *uap = v;
450 	struct proc		*p;
451 	struct sigaction	nsa, osa;
452 	int			error;
453 
454 	if (SCARG(uap, nsa)) {
455 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
456 		if (error)
457 			return (error);
458 	}
459 	p = l->l_proc;
460 	error = sigaction1(p, SCARG(uap, signum),
461 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
462 	    NULL, 0);
463 	if (error)
464 		return (error);
465 	if (SCARG(uap, osa)) {
466 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
467 		if (error)
468 			return (error);
469 	}
470 	return (0);
471 }
472 #endif
473 
474 /* ARGSUSED */
475 int
476 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
477 {
478 	struct sys___sigaction_sigtramp_args /* {
479 		syscallarg(int)				signum;
480 		syscallarg(const struct sigaction *)	nsa;
481 		syscallarg(struct sigaction *)		osa;
482 		syscallarg(void *)			tramp;
483 		syscallarg(int)				vers;
484 	} */ *uap = v;
485 	struct proc *p = l->l_proc;
486 	struct sigaction nsa, osa;
487 	int error;
488 
489 	if (SCARG(uap, nsa)) {
490 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
491 		if (error)
492 			return (error);
493 	}
494 	error = sigaction1(p, SCARG(uap, signum),
495 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
496 	    SCARG(uap, tramp), SCARG(uap, vers));
497 	if (error)
498 		return (error);
499 	if (SCARG(uap, osa)) {
500 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
501 		if (error)
502 			return (error);
503 	}
504 	return (0);
505 }
506 
507 /*
508  * Initialize signal state for process 0;
509  * set to ignore signals that are ignored by default and disable the signal
510  * stack.
511  */
512 void
513 siginit(struct proc *p)
514 {
515 	struct sigacts	*ps;
516 	int		signum, prop;
517 
518 	ps = p->p_sigacts;
519 	sigemptyset(&contsigmask);
520 	sigemptyset(&stopsigmask);
521 	sigemptyset(&sigcantmask);
522 	for (signum = 1; signum < NSIG; signum++) {
523 		prop = sigprop[signum];
524 		if (prop & SA_CONT)
525 			sigaddset(&contsigmask, signum);
526 		if (prop & SA_STOP)
527 			sigaddset(&stopsigmask, signum);
528 		if (prop & SA_CANTMASK)
529 			sigaddset(&sigcantmask, signum);
530 		if (prop & SA_IGNORE && signum != SIGCONT)
531 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
532 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
533 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
534 	}
535 	sigemptyset(&p->p_sigctx.ps_sigcatch);
536 	p->p_sigctx.ps_sigwaited = NULL;
537 	p->p_flag &= ~P_NOCLDSTOP;
538 
539 	/*
540 	 * Reset stack state to the user stack.
541 	 */
542 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
543 	p->p_sigctx.ps_sigstk.ss_size = 0;
544 	p->p_sigctx.ps_sigstk.ss_sp = 0;
545 
546 	/* One reference. */
547 	ps->sa_refcnt = 1;
548 }
549 
550 /*
551  * Reset signals for an exec of the specified process.
552  */
553 void
554 execsigs(struct proc *p)
555 {
556 	struct sigacts	*ps;
557 	int		signum, prop;
558 
559 	sigactsunshare(p);
560 
561 	ps = p->p_sigacts;
562 
563 	/*
564 	 * Reset caught signals.  Held signals remain held
565 	 * through p_sigctx.ps_sigmask (unless they were caught,
566 	 * and are now ignored by default).
567 	 */
568 	for (signum = 1; signum < NSIG; signum++) {
569 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
570 			prop = sigprop[signum];
571 			if (prop & SA_IGNORE) {
572 				if ((prop & SA_CONT) == 0)
573 					sigaddset(&p->p_sigctx.ps_sigignore,
574 					    signum);
575 				sigdelset(&p->p_sigctx.ps_siglist, signum);
576 			}
577 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
578 		}
579 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
580 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
581 	}
582 	sigemptyset(&p->p_sigctx.ps_sigcatch);
583 	p->p_sigctx.ps_sigwaited = NULL;
584 
585 	/*
586 	 * Reset no zombies if child dies flag as Solaris does.
587 	 */
588 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
589 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
590 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
591 
592 	/*
593 	 * Reset stack state to the user stack.
594 	 */
595 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
596 	p->p_sigctx.ps_sigstk.ss_size = 0;
597 	p->p_sigctx.ps_sigstk.ss_sp = 0;
598 }
599 
600 int
601 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
602 {
603 
604 	if (oss)
605 		*oss = p->p_sigctx.ps_sigmask;
606 
607 	if (nss) {
608 		(void)splsched();	/* XXXSMP */
609 		switch (how) {
610 		case SIG_BLOCK:
611 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
612 			break;
613 		case SIG_UNBLOCK:
614 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
615 			CHECKSIGS(p);
616 			break;
617 		case SIG_SETMASK:
618 			p->p_sigctx.ps_sigmask = *nss;
619 			CHECKSIGS(p);
620 			break;
621 		default:
622 			(void)spl0();	/* XXXSMP */
623 			return (EINVAL);
624 		}
625 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
626 		(void)spl0();		/* XXXSMP */
627 	}
628 
629 	return (0);
630 }
631 
632 /*
633  * Manipulate signal mask.
634  * Note that we receive new mask, not pointer,
635  * and return old mask as return value;
636  * the library stub does the rest.
637  */
638 int
639 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
640 {
641 	struct sys___sigprocmask14_args /* {
642 		syscallarg(int)			how;
643 		syscallarg(const sigset_t *)	set;
644 		syscallarg(sigset_t *)		oset;
645 	} */ *uap = v;
646 	struct proc	*p;
647 	sigset_t	nss, oss;
648 	int		error;
649 
650 	if (SCARG(uap, set)) {
651 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
652 		if (error)
653 			return (error);
654 	}
655 	p = l->l_proc;
656 	error = sigprocmask1(p, SCARG(uap, how),
657 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
658 	if (error)
659 		return (error);
660 	if (SCARG(uap, oset)) {
661 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
662 		if (error)
663 			return (error);
664 	}
665 	return (0);
666 }
667 
668 void
669 sigpending1(struct proc *p, sigset_t *ss)
670 {
671 
672 	*ss = p->p_sigctx.ps_siglist;
673 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
674 }
675 
676 /* ARGSUSED */
677 int
678 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
679 {
680 	struct sys___sigpending14_args /* {
681 		syscallarg(sigset_t *)	set;
682 	} */ *uap = v;
683 	struct proc	*p;
684 	sigset_t	ss;
685 
686 	p = l->l_proc;
687 	sigpending1(p, &ss);
688 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
689 }
690 
691 int
692 sigsuspend1(struct proc *p, const sigset_t *ss)
693 {
694 	struct sigacts *ps;
695 
696 	ps = p->p_sigacts;
697 	if (ss) {
698 		/*
699 		 * When returning from sigpause, we want
700 		 * the old mask to be restored after the
701 		 * signal handler has finished.  Thus, we
702 		 * save it here and mark the sigctx structure
703 		 * to indicate this.
704 		 */
705 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
706 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
707 		(void) splsched();	/* XXXSMP */
708 		p->p_sigctx.ps_sigmask = *ss;
709 		CHECKSIGS(p);
710 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
711 		(void) spl0();		/* XXXSMP */
712 	}
713 
714 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
715 		/* void */;
716 
717 	/* always return EINTR rather than ERESTART... */
718 	return (EINTR);
719 }
720 
721 /*
722  * Suspend process until signal, providing mask to be set
723  * in the meantime.  Note nonstandard calling convention:
724  * libc stub passes mask, not pointer, to save a copyin.
725  */
726 /* ARGSUSED */
727 int
728 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
729 {
730 	struct sys___sigsuspend14_args /* {
731 		syscallarg(const sigset_t *)	set;
732 	} */ *uap = v;
733 	struct proc	*p;
734 	sigset_t	ss;
735 	int		error;
736 
737 	if (SCARG(uap, set)) {
738 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
739 		if (error)
740 			return (error);
741 	}
742 
743 	p = l->l_proc;
744 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
745 }
746 
747 int
748 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
749 	struct sigaltstack *oss)
750 {
751 
752 	if (oss)
753 		*oss = p->p_sigctx.ps_sigstk;
754 
755 	if (nss) {
756 		if (nss->ss_flags & ~SS_ALLBITS)
757 			return (EINVAL);
758 
759 		if (nss->ss_flags & SS_DISABLE) {
760 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
761 				return (EINVAL);
762 		} else {
763 			if (nss->ss_size < MINSIGSTKSZ)
764 				return (ENOMEM);
765 		}
766 		p->p_sigctx.ps_sigstk = *nss;
767 	}
768 
769 	return (0);
770 }
771 
772 /* ARGSUSED */
773 int
774 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
775 {
776 	struct sys___sigaltstack14_args /* {
777 		syscallarg(const struct sigaltstack *)	nss;
778 		syscallarg(struct sigaltstack *)	oss;
779 	} */ *uap = v;
780 	struct proc		*p;
781 	struct sigaltstack	nss, oss;
782 	int			error;
783 
784 	if (SCARG(uap, nss)) {
785 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
786 		if (error)
787 			return (error);
788 	}
789 	p = l->l_proc;
790 	error = sigaltstack1(p,
791 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
792 	if (error)
793 		return (error);
794 	if (SCARG(uap, oss)) {
795 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
796 		if (error)
797 			return (error);
798 	}
799 	return (0);
800 }
801 
802 /* ARGSUSED */
803 int
804 sys_kill(struct lwp *l, void *v, register_t *retval)
805 {
806 	struct sys_kill_args /* {
807 		syscallarg(int)	pid;
808 		syscallarg(int)	signum;
809 	} */ *uap = v;
810 	struct proc	*p;
811 	ksiginfo_t	ksi;
812 	int signum = SCARG(uap, signum);
813 	int error;
814 
815 	if ((u_int)signum >= NSIG)
816 		return (EINVAL);
817 	KSI_INIT(&ksi);
818 	ksi.ksi_signo = signum;
819 	ksi.ksi_code = SI_USER;
820 	ksi.ksi_pid = l->l_proc->p_pid;
821 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
822 	if (SCARG(uap, pid) > 0) {
823 		/* kill single process */
824 		if ((p = pfind(SCARG(uap, pid))) == NULL)
825 			return (ESRCH);
826 		error = kauth_authorize_process(l->l_cred,
827 		    KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
828 		    NULL, NULL);
829 		if (error)
830 			return error;
831 		if (signum)
832 			kpsignal2(p, &ksi);
833 		return (0);
834 	}
835 	switch (SCARG(uap, pid)) {
836 	case -1:		/* broadcast signal */
837 		return (killpg1(l, &ksi, 0, 1));
838 	case 0:			/* signal own process group */
839 		return (killpg1(l, &ksi, 0, 0));
840 	default:		/* negative explicit process group */
841 		return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
842 	}
843 	/* NOTREACHED */
844 }
845 
846 /*
847  * Common code for kill process group/broadcast kill.
848  * cp is calling process.
849  */
850 int
851 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
852 {
853 	struct proc	*p, *cp;
854 	kauth_cred_t	pc;
855 	struct pgrp	*pgrp;
856 	int		nfound;
857 	int		signum = ksi->ksi_signo;
858 
859 	cp = l->l_proc;
860 	pc = l->l_cred;
861 	nfound = 0;
862 	if (all) {
863 		/*
864 		 * broadcast
865 		 */
866 		proclist_lock_read();
867 		PROCLIST_FOREACH(p, &allproc) {
868 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
869 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
870 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
871 				continue;
872 			nfound++;
873 			if (signum)
874 				kpsignal2(p, ksi);
875 		}
876 		proclist_unlock_read();
877 	} else {
878 		if (pgid == 0)
879 			/*
880 			 * zero pgid means send to my process group.
881 			 */
882 			pgrp = cp->p_pgrp;
883 		else {
884 			pgrp = pgfind(pgid);
885 			if (pgrp == NULL)
886 				return (ESRCH);
887 		}
888 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
889 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
890 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
891 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
892 				continue;
893 			nfound++;
894 			if (signum && P_ZOMBIE(p) == 0)
895 				kpsignal2(p, ksi);
896 		}
897 	}
898 	return (nfound ? 0 : ESRCH);
899 }
900 
901 /*
902  * Send a signal to a process group.
903  */
904 void
905 gsignal(int pgid, int signum)
906 {
907 	ksiginfo_t ksi;
908 	KSI_INIT_EMPTY(&ksi);
909 	ksi.ksi_signo = signum;
910 	kgsignal(pgid, &ksi, NULL);
911 }
912 
913 void
914 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
915 {
916 	struct pgrp *pgrp;
917 
918 	if (pgid && (pgrp = pgfind(pgid)))
919 		kpgsignal(pgrp, ksi, data, 0);
920 }
921 
922 /*
923  * Send a signal to a process group. If checktty is 1,
924  * limit to members which have a controlling terminal.
925  */
926 void
927 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
928 {
929 	ksiginfo_t ksi;
930 	KSI_INIT_EMPTY(&ksi);
931 	ksi.ksi_signo = sig;
932 	kpgsignal(pgrp, &ksi, NULL, checkctty);
933 }
934 
935 void
936 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
937 {
938 	struct proc *p;
939 
940 	if (pgrp)
941 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
942 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
943 				kpsignal(p, ksi, data);
944 }
945 
946 /*
947  * Send a signal caused by a trap to the current process.
948  * If it will be caught immediately, deliver it with correct code.
949  * Otherwise, post it normally.
950  */
951 void
952 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
953 {
954 	struct proc	*p;
955 	struct sigacts	*ps;
956 	int signum = ksi->ksi_signo;
957 
958 	KASSERT(KSI_TRAP_P(ksi));
959 
960 	p = l->l_proc;
961 	ps = p->p_sigacts;
962 	if ((p->p_flag & P_TRACED) == 0 &&
963 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
964 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
965 		p->p_stats->p_ru.ru_nsignals++;
966 #ifdef KTRACE
967 		if (KTRPOINT(p, KTR_PSIG))
968 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
969 			    &p->p_sigctx.ps_sigmask, ksi);
970 #endif
971 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
972 		(void) splsched();	/* XXXSMP */
973 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
974 		    &p->p_sigctx.ps_sigmask);
975 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
976 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
977 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
978 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
979 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
980 		}
981 		(void) spl0();		/* XXXSMP */
982 	} else {
983 		p->p_sigctx.ps_lwp = l->l_lid;
984 		/* XXX for core dump/debugger */
985 		p->p_sigctx.ps_signo = ksi->ksi_signo;
986 		p->p_sigctx.ps_code = ksi->ksi_trap;
987 		kpsignal2(p, ksi);
988 	}
989 }
990 
991 /*
992  * Fill in signal information and signal the parent for a child status change.
993  */
994 void
995 child_psignal(struct proc *p)
996 {
997 	ksiginfo_t ksi;
998 
999 	KSI_INIT(&ksi);
1000 	ksi.ksi_signo = SIGCHLD;
1001 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
1002 	ksi.ksi_pid = p->p_pid;
1003 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1004 	ksi.ksi_status = p->p_xstat;
1005 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1006 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1007 	kpsignal2(p->p_pptr, &ksi);
1008 }
1009 
1010 /*
1011  * Send the signal to the process.  If the signal has an action, the action
1012  * is usually performed by the target process rather than the caller; we add
1013  * the signal to the set of pending signals for the process.
1014  *
1015  * Exceptions:
1016  *   o When a stop signal is sent to a sleeping process that takes the
1017  *     default action, the process is stopped without awakening it.
1018  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1019  *     regardless of the signal action (eg, blocked or ignored).
1020  *
1021  * Other ignored signals are discarded immediately.
1022  */
1023 void
1024 psignal(struct proc *p, int signum)
1025 {
1026 	ksiginfo_t ksi;
1027 
1028 	KSI_INIT_EMPTY(&ksi);
1029 	ksi.ksi_signo = signum;
1030 	kpsignal2(p, &ksi);
1031 }
1032 
1033 void
1034 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1035 {
1036 
1037 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1038 		size_t fd;
1039 		struct filedesc *fdp = p->p_fd;
1040 
1041 		ksi->ksi_fd = -1;
1042 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1043 			struct file *fp = fdp->fd_ofiles[fd];
1044 			/* XXX: lock? */
1045 			if (fp && fp->f_data == data) {
1046 				ksi->ksi_fd = fd;
1047 				break;
1048 			}
1049 		}
1050 	}
1051 	kpsignal2(p, ksi);
1052 }
1053 
1054 static void
1055 kpsignal2(struct proc *p, const ksiginfo_t *ksi)
1056 {
1057 	struct lwp *l, *suspended = NULL;
1058 	struct sadata_vp *vp;
1059 	ksiginfo_t *newkp;
1060 	int	s = 0, prop, allsusp;
1061 	sig_t	action;
1062 	int	signum = ksi->ksi_signo;
1063 
1064 #ifdef DIAGNOSTIC
1065 	if (signum <= 0 || signum >= NSIG)
1066 		panic("psignal signal number %d", signum);
1067 
1068 	SCHED_ASSERT_UNLOCKED();
1069 #endif
1070 
1071 	/*
1072 	 * Notify any interested parties in the signal.
1073 	 */
1074 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1075 
1076 	prop = sigprop[signum];
1077 
1078 	/*
1079 	 * If proc is traced, always give parent a chance.
1080 	 */
1081 	if (p->p_flag & P_TRACED) {
1082 		action = SIG_DFL;
1083 
1084 		/*
1085 		 * If the process is being traced and the signal is being
1086 		 * caught, make sure to save any ksiginfo.
1087 		 */
1088 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1089 			SCHED_ASSERT_UNLOCKED();
1090 			ksiginfo_queue(p, ksi, NULL);
1091 		}
1092 	} else {
1093 		/*
1094 		 * If the signal was the result of a trap, reset it
1095 		 * to default action if it's currently masked, so that it would
1096 		 * coredump immediatelly instead of spinning repeatedly
1097 		 * taking the signal.
1098 		 */
1099 		if (KSI_TRAP_P(ksi)
1100 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1101 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1102 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1103 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1104 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1105 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1106 		}
1107 
1108 		/*
1109 		 * If the signal is being ignored,
1110 		 * then we forget about it immediately.
1111 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1112 		 * and if it is set to SIG_IGN,
1113 		 * action will be SIG_DFL here.)
1114 		 */
1115 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1116 			return;
1117 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1118 			action = SIG_HOLD;
1119 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1120 			action = SIG_CATCH;
1121 		else {
1122 			action = SIG_DFL;
1123 
1124 			if (prop & SA_KILL && p->p_nice > NZERO)
1125 				p->p_nice = NZERO;
1126 
1127 			/*
1128 			 * If sending a tty stop signal to a member of an
1129 			 * orphaned process group, discard the signal here if
1130 			 * the action is default; don't stop the process below
1131 			 * if sleeping, and don't clear any pending SIGCONT.
1132 			 */
1133 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1134 				return;
1135 		}
1136 	}
1137 
1138 	if (prop & SA_CONT)
1139 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1140 
1141 	if (prop & SA_STOP)
1142 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1143 
1144 	/*
1145 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1146 	 * please!), check if anything waits on it. If yes, save the
1147 	 * info into provided ps_sigwaited, and wake-up the waiter.
1148 	 * The signal won't be processed further here.
1149 	 */
1150 	if ((prop & SA_CANTMASK) == 0
1151 	    && p->p_sigctx.ps_sigwaited
1152 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1153 	    && p->p_stat != SSTOP) {
1154 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1155 		p->p_sigctx.ps_sigwaited = NULL;
1156 		wakeup_one(&p->p_sigctx.ps_sigwait);
1157 		return;
1158 	}
1159 
1160 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1161 
1162 	/* CHECKSIGS() is "inlined" here. */
1163 	p->p_sigctx.ps_sigcheck = 1;
1164 
1165 	/*
1166 	 * Defer further processing for signals which are held,
1167 	 * except that stopped processes must be continued by SIGCONT.
1168 	 */
1169 	if (action == SIG_HOLD &&
1170 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1171 		SCHED_ASSERT_UNLOCKED();
1172 		ksiginfo_queue(p, ksi, NULL);
1173 		return;
1174 	}
1175 
1176 	/*
1177 	 * Allocate a ksiginfo_t incase we need to insert it with the
1178 	 * scheduler lock held, but only if this ksiginfo_t isn't empty.
1179 	 */
1180 	if (!KSI_EMPTY_P(ksi)) {
1181 		newkp = ksiginfo_alloc(PR_NOWAIT);
1182 		if (newkp == NULL) {
1183 #ifdef DIAGNOSTIC
1184 			printf("kpsignal2: couldn't allocated ksiginfo\n");
1185 #endif
1186 			return;
1187 		}
1188 	} else
1189 		newkp = NULL;
1190 
1191 	SCHED_LOCK(s);
1192 
1193 	if (p->p_flag & P_SA) {
1194 		allsusp = 0;
1195 		l = NULL;
1196 		if (p->p_stat == SACTIVE) {
1197 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1198 				l = vp->savp_lwp;
1199 				KDASSERT(l != NULL);
1200 				if (l->l_flag & L_SA_IDLE) {
1201 					/* wakeup idle LWP */
1202 					goto found;
1203 					/*NOTREACHED*/
1204 				} else if (l->l_flag & L_SA_YIELD) {
1205 					/* idle LWP is already waking up */
1206 					goto out;
1207 					/*NOTREACHED*/
1208 				}
1209 			}
1210 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1211 				l = vp->savp_lwp;
1212 				if (l->l_stat == LSRUN ||
1213 				    l->l_stat == LSONPROC) {
1214 					signotify(p);
1215 					goto out;
1216 					/*NOTREACHED*/
1217 				}
1218 				if (l->l_stat == LSSLEEP &&
1219 				    l->l_flag & L_SINTR) {
1220 					/* ok to signal vp lwp */
1221 					break;
1222 				} else
1223 					l = NULL;
1224 			}
1225 		} else if (p->p_stat == SSTOP) {
1226 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1227 				l = vp->savp_lwp;
1228 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1229 					break;
1230 				l = NULL;
1231 			}
1232 		}
1233 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1234 		/*
1235 		 * At least one LWP is running or on a run queue.
1236 		 * The signal will be noticed when one of them returns
1237 		 * to userspace.
1238 		 */
1239 		signotify(p);
1240 		/*
1241 		 * The signal will be noticed very soon.
1242 		 */
1243 		goto out;
1244 		/*NOTREACHED*/
1245 	} else {
1246 		/*
1247 		 * Find out if any of the sleeps are interruptable,
1248 		 * and if all the live LWPs remaining are suspended.
1249 		 */
1250 		allsusp = 1;
1251 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1252 			if (l->l_stat == LSSLEEP &&
1253 			    l->l_flag & L_SINTR)
1254 				break;
1255 			if (l->l_stat == LSSUSPENDED)
1256 				suspended = l;
1257 			else if ((l->l_stat != LSZOMB) &&
1258 			    (l->l_stat != LSDEAD))
1259 				allsusp = 0;
1260 		}
1261 	}
1262 
1263  found:
1264 	switch (p->p_stat) {
1265 	case SACTIVE:
1266 
1267 		if (l != NULL && (p->p_flag & P_TRACED))
1268 			goto run;
1269 
1270 		/*
1271 		 * If SIGCONT is default (or ignored) and process is
1272 		 * asleep, we are finished; the process should not
1273 		 * be awakened.
1274 		 */
1275 		if ((prop & SA_CONT) && action == SIG_DFL) {
1276 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1277 			goto done;
1278 		}
1279 
1280 		/*
1281 		 * When a sleeping process receives a stop
1282 		 * signal, process immediately if possible.
1283 		 */
1284 		if ((prop & SA_STOP) && action == SIG_DFL) {
1285 			/*
1286 			 * If a child holding parent blocked,
1287 			 * stopping could cause deadlock.
1288 			 */
1289 			if (p->p_flag & P_PPWAIT) {
1290 				goto out;
1291 			}
1292 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1293 			p->p_xstat = signum;
1294 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1295 			SCHED_UNLOCK(s);
1296 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1297 				child_psignal(p);
1298 			}
1299 			goto done_unlocked;
1300 		}
1301 
1302 		if (l == NULL) {
1303 			/*
1304 			 * Special case: SIGKILL of a process
1305 			 * which is entirely composed of
1306 			 * suspended LWPs should succeed. We
1307 			 * make this happen by unsuspending one of
1308 			 * them.
1309 			 */
1310 			if (allsusp && (signum == SIGKILL)) {
1311 				lwp_continue(suspended);
1312 			}
1313 			goto done;
1314 		}
1315 		/*
1316 		 * All other (caught or default) signals
1317 		 * cause the process to run.
1318 		 */
1319 		goto runfast;
1320 		/*NOTREACHED*/
1321 	case SSTOP:
1322 		/* Process is stopped */
1323 		/*
1324 		 * If traced process is already stopped,
1325 		 * then no further action is necessary.
1326 		 */
1327 		if (p->p_flag & P_TRACED)
1328 			goto done;
1329 
1330 		/*
1331 		 * Kill signal always sets processes running,
1332 		 * if possible.
1333 		 */
1334 		if (signum == SIGKILL) {
1335 			l = proc_unstop(p);
1336 			if (l)
1337 				goto runfast;
1338 			goto done;
1339 		}
1340 
1341 		if (prop & SA_CONT) {
1342 			/*
1343 			 * If SIGCONT is default (or ignored),
1344 			 * we continue the process but don't
1345 			 * leave the signal in ps_siglist, as
1346 			 * it has no further action.  If
1347 			 * SIGCONT is held, we continue the
1348 			 * process and leave the signal in
1349 			 * ps_siglist.  If the process catches
1350 			 * SIGCONT, let it handle the signal
1351 			 * itself.  If it isn't waiting on an
1352 			 * event, then it goes back to run
1353 			 * state.  Otherwise, process goes
1354 			 * back to sleep state.
1355 			 */
1356 			if (action == SIG_DFL)
1357 				sigdelset(&p->p_sigctx.ps_siglist,
1358 				    signum);
1359 			l = proc_unstop(p);
1360 			if (l && (action == SIG_CATCH))
1361 				goto runfast;
1362 			goto out;
1363 		}
1364 
1365 		if (prop & SA_STOP) {
1366 			/*
1367 			 * Already stopped, don't need to stop again.
1368 			 * (If we did the shell could get confused.)
1369 			 */
1370 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1371 			goto done;
1372 		}
1373 
1374 		/*
1375 		 * If a lwp is sleeping interruptibly, then
1376 		 * wake it up; it will run until the kernel
1377 		 * boundary, where it will stop in issignal(),
1378 		 * since p->p_stat is still SSTOP. When the
1379 		 * process is continued, it will be made
1380 		 * runnable and can look at the signal.
1381 		 */
1382 		if (l)
1383 			goto run;
1384 		goto out;
1385 	case SIDL:
1386 		/* Process is being created by fork */
1387 		/* XXX: We are not ready to receive signals yet */
1388 		goto done;
1389 	default:
1390 		/* Else what? */
1391 		panic("psignal: Invalid process state %d.", p->p_stat);
1392 	}
1393 	/*NOTREACHED*/
1394 
1395  runfast:
1396 	if (action == SIG_CATCH) {
1397 		ksiginfo_queue(p, ksi, &newkp);
1398 		action = SIG_HOLD;
1399 	}
1400 	/*
1401 	 * Raise priority to at least PUSER.
1402 	 */
1403 	if (l->l_priority > PUSER)
1404 		l->l_priority = PUSER;
1405  run:
1406 	if (action == SIG_CATCH) {
1407 		ksiginfo_queue(p, ksi, &newkp);
1408 		action = SIG_HOLD;
1409 	}
1410 
1411 	setrunnable(l);		/* XXXSMP: recurse? */
1412  out:
1413 	if (action == SIG_CATCH)
1414 		ksiginfo_queue(p, ksi, &newkp);
1415  done:
1416 	SCHED_UNLOCK(s);
1417 
1418  done_unlocked:
1419 	if (newkp)
1420 		ksiginfo_free(newkp);
1421 }
1422 
1423 siginfo_t *
1424 siginfo_alloc(int flags)
1425 {
1426 
1427 	return pool_get(&siginfo_pool, flags);
1428 }
1429 
1430 void
1431 siginfo_free(void *arg)
1432 {
1433 
1434 	pool_put(&siginfo_pool, arg);
1435 }
1436 
1437 void
1438 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1439 {
1440 	struct proc *p = l->l_proc;
1441 	struct lwp *le, *li;
1442 	siginfo_t *si;
1443 	int f;
1444 
1445 	if (p->p_flag & P_SA) {
1446 
1447 		/* XXXUPSXXX What if not on sa_vp ? */
1448 
1449 		f = l->l_flag & L_SA;
1450 		l->l_flag &= ~L_SA;
1451 		si = siginfo_alloc(PR_WAITOK);
1452 		si->_info = ksi->ksi_info;
1453 		le = li = NULL;
1454 		if (KSI_TRAP_P(ksi))
1455 			le = l;
1456 		else
1457 			li = l;
1458 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1459 		    sizeof(*si), si, siginfo_free) != 0) {
1460 			siginfo_free(si);
1461 #if 0
1462 			if (KSI_TRAP_P(ksi))
1463 				/* XXX What do we do here?? */;
1464 #endif
1465 		}
1466 		l->l_flag |= f;
1467 		return;
1468 	}
1469 
1470 	(*p->p_emul->e_sendsig)(ksi, mask);
1471 }
1472 
1473 static inline int firstsig(const sigset_t *);
1474 
1475 static inline int
1476 firstsig(const sigset_t *ss)
1477 {
1478 	int sig;
1479 
1480 	sig = ffs(ss->__bits[0]);
1481 	if (sig != 0)
1482 		return (sig);
1483 #if NSIG > 33
1484 	sig = ffs(ss->__bits[1]);
1485 	if (sig != 0)
1486 		return (sig + 32);
1487 #endif
1488 #if NSIG > 65
1489 	sig = ffs(ss->__bits[2]);
1490 	if (sig != 0)
1491 		return (sig + 64);
1492 #endif
1493 #if NSIG > 97
1494 	sig = ffs(ss->__bits[3]);
1495 	if (sig != 0)
1496 		return (sig + 96);
1497 #endif
1498 	return (0);
1499 }
1500 
1501 /*
1502  * If the current process has received a signal (should be caught or cause
1503  * termination, should interrupt current syscall), return the signal number.
1504  * Stop signals with default action are processed immediately, then cleared;
1505  * they aren't returned.  This is checked after each entry to the system for
1506  * a syscall or trap (though this can usually be done without calling issignal
1507  * by checking the pending signal masks in the CURSIG macro.) The normal call
1508  * sequence is
1509  *
1510  *	while (signum = CURSIG(curlwp))
1511  *		postsig(signum);
1512  */
1513 int
1514 issignal(struct lwp *l)
1515 {
1516 	struct proc	*p = l->l_proc;
1517 	int		s, signum, prop;
1518 	sigset_t	ss;
1519 
1520 	/* Bail out if we do not own the virtual processor */
1521 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1522 		return 0;
1523 
1524 	KERNEL_PROC_LOCK(l);
1525 
1526 	if (p->p_stat == SSTOP) {
1527 		/*
1528 		 * The process is stopped/stopping. Stop ourselves now that
1529 		 * we're on the kernel/userspace boundary.
1530 		 */
1531 		SCHED_LOCK(s);
1532 		l->l_stat = LSSTOP;
1533 		p->p_nrlwps--;
1534 		if (p->p_flag & P_TRACED)
1535 			goto sigtraceswitch;
1536 		else
1537 			goto sigswitch;
1538 	}
1539 	for (;;) {
1540 		sigpending1(p, &ss);
1541 		if (p->p_flag & P_PPWAIT)
1542 			sigminusset(&stopsigmask, &ss);
1543 		signum = firstsig(&ss);
1544 		if (signum == 0) {		 	/* no signal to send */
1545 			p->p_sigctx.ps_sigcheck = 0;
1546 			KERNEL_PROC_UNLOCK(l);
1547 			return (0);
1548 		}
1549 							/* take the signal! */
1550 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1551 
1552 		/*
1553 		 * We should see pending but ignored signals
1554 		 * only if P_TRACED was on when they were posted.
1555 		 */
1556 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1557 		    (p->p_flag & P_TRACED) == 0)
1558 			continue;
1559 
1560 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1561 			/*
1562 			 * If traced, always stop, and stay
1563 			 * stopped until released by the debugger.
1564 			 */
1565 			p->p_xstat = signum;
1566 
1567 			/* Emulation-specific handling of signal trace */
1568 			if ((p->p_emul->e_tracesig != NULL) &&
1569 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1570 				goto childresumed;
1571 
1572 			if ((p->p_flag & P_FSTRACE) == 0)
1573 				child_psignal(p);
1574 			SCHED_LOCK(s);
1575 			proc_stop(p, 1);
1576 		sigtraceswitch:
1577 			mi_switch(l, NULL);
1578 			SCHED_ASSERT_UNLOCKED();
1579 			splx(s);
1580 
1581 		childresumed:
1582 			/*
1583 			 * If we are no longer being traced, or the parent
1584 			 * didn't give us a signal, look for more signals.
1585 			 */
1586 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1587 				continue;
1588 
1589 			/*
1590 			 * If the new signal is being masked, look for other
1591 			 * signals.
1592 			 */
1593 			signum = p->p_xstat;
1594 			p->p_xstat = 0;
1595 			/*
1596 			 * `p->p_sigctx.ps_siglist |= mask' is done
1597 			 * in setrunnable().
1598 			 */
1599 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1600 				continue;
1601 							/* take the signal! */
1602 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1603 		}
1604 
1605 		prop = sigprop[signum];
1606 
1607 		/*
1608 		 * Decide whether the signal should be returned.
1609 		 * Return the signal's number, or fall through
1610 		 * to clear it from the pending mask.
1611 		 */
1612 		switch ((long)SIGACTION(p, signum).sa_handler) {
1613 
1614 		case (long)SIG_DFL:
1615 			/*
1616 			 * Don't take default actions on system processes.
1617 			 */
1618 			if (p->p_pid <= 1) {
1619 #ifdef DIAGNOSTIC
1620 				/*
1621 				 * Are you sure you want to ignore SIGSEGV
1622 				 * in init? XXX
1623 				 */
1624 				printf("Process (pid %d) got signal %d\n",
1625 				    p->p_pid, signum);
1626 #endif
1627 				break;		/* == ignore */
1628 			}
1629 			/*
1630 			 * If there is a pending stop signal to process
1631 			 * with default action, stop here,
1632 			 * then clear the signal.  However,
1633 			 * if process is member of an orphaned
1634 			 * process group, ignore tty stop signals.
1635 			 */
1636 			if (prop & SA_STOP) {
1637 				if (p->p_flag & P_TRACED ||
1638 		    		    (p->p_pgrp->pg_jobc == 0 &&
1639 				    prop & SA_TTYSTOP))
1640 					break;	/* == ignore */
1641 				p->p_xstat = signum;
1642 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1643 					child_psignal(p);
1644 				SCHED_LOCK(s);
1645 				proc_stop(p, 1);
1646 			sigswitch:
1647 				mi_switch(l, NULL);
1648 				SCHED_ASSERT_UNLOCKED();
1649 				splx(s);
1650 				break;
1651 			} else if (prop & SA_IGNORE) {
1652 				/*
1653 				 * Except for SIGCONT, shouldn't get here.
1654 				 * Default action is to ignore; drop it.
1655 				 */
1656 				break;		/* == ignore */
1657 			} else
1658 				goto keep;
1659 			/*NOTREACHED*/
1660 
1661 		case (long)SIG_IGN:
1662 			/*
1663 			 * Masking above should prevent us ever trying
1664 			 * to take action on an ignored signal other
1665 			 * than SIGCONT, unless process is traced.
1666 			 */
1667 #ifdef DEBUG_ISSIGNAL
1668 			if ((prop & SA_CONT) == 0 &&
1669 			    (p->p_flag & P_TRACED) == 0)
1670 				printf("issignal\n");
1671 #endif
1672 			break;		/* == ignore */
1673 
1674 		default:
1675 			/*
1676 			 * This signal has an action, let
1677 			 * postsig() process it.
1678 			 */
1679 			goto keep;
1680 		}
1681 	}
1682 	/* NOTREACHED */
1683 
1684  keep:
1685 						/* leave the signal for later */
1686 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1687 	CHECKSIGS(p);
1688 	KERNEL_PROC_UNLOCK(l);
1689 	return (signum);
1690 }
1691 
1692 /*
1693  * Put the argument process into the stopped state and notify the parent
1694  * via wakeup.  Signals are handled elsewhere.  The process must not be
1695  * on the run queue.
1696  */
1697 void
1698 proc_stop(struct proc *p, int dowakeup)
1699 {
1700 	struct lwp *l;
1701 	struct proc *parent;
1702 	struct sadata_vp *vp;
1703 
1704 	SCHED_ASSERT_LOCKED();
1705 
1706 	/* XXX lock process LWP state */
1707 	p->p_flag &= ~P_WAITED;
1708 	p->p_stat = SSTOP;
1709 	parent = p->p_pptr;
1710 	parent->p_nstopchild++;
1711 
1712 	if (p->p_flag & P_SA) {
1713 		/*
1714 		 * Only (try to) put the LWP on the VP in stopped
1715 		 * state.
1716 		 * All other LWPs will suspend in sa_setwoken()
1717 		 * because the VP-LWP in stopped state cannot be
1718 		 * repossessed.
1719 		 */
1720 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1721 			l = vp->savp_lwp;
1722 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1723 				l->l_stat = LSSTOP;
1724 				p->p_nrlwps--;
1725 			} else if (l->l_stat == LSRUN) {
1726 				/* Remove LWP from the run queue */
1727 				remrunqueue(l);
1728 				l->l_stat = LSSTOP;
1729 				p->p_nrlwps--;
1730 			} else if (l->l_stat == LSSLEEP &&
1731 			    l->l_flag & L_SA_IDLE) {
1732 				l->l_flag &= ~L_SA_IDLE;
1733 				l->l_stat = LSSTOP;
1734 			}
1735 		}
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * Put as many LWP's as possible in stopped state.
1741 	 * Sleeping ones will notice the stopped state as they try to
1742 	 * return to userspace.
1743 	 */
1744 
1745 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1746 		if (l->l_stat == LSONPROC) {
1747 			/* XXX SMP this assumes that a LWP that is LSONPROC
1748 			 * is curlwp and hence is about to be mi_switched
1749 			 * away; the only callers of proc_stop() are:
1750 			 * - psignal
1751 			 * - issignal()
1752 			 * For the former, proc_stop() is only called when
1753 			 * no processes are running, so we don't worry.
1754 			 * For the latter, proc_stop() is called right
1755 			 * before mi_switch().
1756 			 */
1757 			l->l_stat = LSSTOP;
1758 			p->p_nrlwps--;
1759 		} else if (l->l_stat == LSRUN) {
1760 			/* Remove LWP from the run queue */
1761 			remrunqueue(l);
1762 			l->l_stat = LSSTOP;
1763 			p->p_nrlwps--;
1764 		} else if ((l->l_stat == LSSLEEP) ||
1765 		    (l->l_stat == LSSUSPENDED) ||
1766 		    (l->l_stat == LSZOMB) ||
1767 		    (l->l_stat == LSDEAD)) {
1768 			/*
1769 			 * Don't do anything; let sleeping LWPs
1770 			 * discover the stopped state of the process
1771 			 * on their way out of the kernel; otherwise,
1772 			 * things like NFS threads that sleep with
1773 			 * locks will block the rest of the system
1774 			 * from getting any work done.
1775 			 *
1776 			 * Suspended/dead/zombie LWPs aren't going
1777 			 * anywhere, so we don't need to touch them.
1778 			 */
1779 		}
1780 #ifdef DIAGNOSTIC
1781 		else {
1782 			panic("proc_stop: process %d lwp %d "
1783 			      "in unstoppable state %d.\n",
1784 			    p->p_pid, l->l_lid, l->l_stat);
1785 		}
1786 #endif
1787 	}
1788 
1789  out:
1790 	/* XXX unlock process LWP state */
1791 
1792 	if (dowakeup)
1793 		sched_wakeup((caddr_t)p->p_pptr);
1794 }
1795 
1796 /*
1797  * Given a process in state SSTOP, set the state back to SACTIVE and
1798  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1799  *
1800  * If no LWPs ended up runnable (and therefore able to take a signal),
1801  * return a LWP that is sleeping interruptably. The caller can wake
1802  * that LWP up to take a signal.
1803  */
1804 struct lwp *
1805 proc_unstop(struct proc *p)
1806 {
1807 	struct lwp *l, *lr = NULL;
1808 	struct sadata_vp *vp;
1809 	int cantake = 0;
1810 
1811 	SCHED_ASSERT_LOCKED();
1812 
1813 	/*
1814 	 * Our caller wants to be informed if there are only sleeping
1815 	 * and interruptable LWPs left after we have run so that it
1816 	 * can invoke setrunnable() if required - return one of the
1817 	 * interruptable LWPs if this is the case.
1818 	 */
1819 
1820 	if (!(p->p_flag & P_WAITED))
1821 		p->p_pptr->p_nstopchild--;
1822 	p->p_stat = SACTIVE;
1823 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1824 		if (l->l_stat == LSRUN) {
1825 			lr = NULL;
1826 			cantake = 1;
1827 		}
1828 		if (l->l_stat != LSSTOP)
1829 			continue;
1830 
1831 		if (l->l_wchan != NULL) {
1832 			l->l_stat = LSSLEEP;
1833 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1834 				lr = l;
1835 				cantake = 1;
1836 			}
1837 		} else {
1838 			setrunnable(l);
1839 			lr = NULL;
1840 			cantake = 1;
1841 		}
1842 	}
1843 	if (p->p_flag & P_SA) {
1844 		/* Only consider returning the LWP on the VP. */
1845 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1846 			lr = vp->savp_lwp;
1847 			if (lr->l_stat == LSSLEEP) {
1848 				if (lr->l_flag & L_SA_YIELD) {
1849 					setrunnable(lr);
1850 					break;
1851 				} else if (lr->l_flag & L_SINTR)
1852 					return lr;
1853 			}
1854 		}
1855 		return NULL;
1856 	}
1857 	return lr;
1858 }
1859 
1860 /*
1861  * Take the action for the specified signal
1862  * from the current set of pending signals.
1863  */
1864 void
1865 postsig(int signum)
1866 {
1867 	struct lwp *l;
1868 	struct proc	*p;
1869 	struct sigacts	*ps;
1870 	sig_t		action;
1871 	sigset_t	*returnmask;
1872 
1873 	l = curlwp;
1874 	p = l->l_proc;
1875 	ps = p->p_sigacts;
1876 #ifdef DIAGNOSTIC
1877 	if (signum == 0)
1878 		panic("postsig");
1879 #endif
1880 
1881 	KERNEL_PROC_LOCK(l);
1882 
1883 #ifdef MULTIPROCESSOR
1884 	/*
1885 	 * On MP, issignal() can return the same signal to multiple
1886 	 * LWPs.  The LWPs will block above waiting for the kernel
1887 	 * lock and the first LWP which gets through will then remove
1888 	 * the signal from ps_siglist.  All other LWPs exit here.
1889 	 */
1890 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1891 		KERNEL_PROC_UNLOCK(l);
1892 		return;
1893 	}
1894 #endif
1895 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1896 	action = SIGACTION_PS(ps, signum).sa_handler;
1897 	if (action == SIG_DFL) {
1898 #ifdef KTRACE
1899 		if (KTRPOINT(p, KTR_PSIG))
1900 			ktrpsig(l, signum, action,
1901 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1902 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1903 			    NULL);
1904 #endif
1905 		/*
1906 		 * Default action, where the default is to kill
1907 		 * the process.  (Other cases were ignored above.)
1908 		 */
1909 		sigexit(l, signum);
1910 		/* NOTREACHED */
1911 	} else {
1912 		ksiginfo_t *ksi;
1913 		/*
1914 		 * If we get here, the signal must be caught.
1915 		 */
1916 #ifdef DIAGNOSTIC
1917 		if (action == SIG_IGN ||
1918 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1919 			panic("postsig action");
1920 #endif
1921 		/*
1922 		 * Set the new mask value and also defer further
1923 		 * occurrences of this signal.
1924 		 *
1925 		 * Special case: user has done a sigpause.  Here the
1926 		 * current mask is not of interest, but rather the
1927 		 * mask from before the sigpause is what we want
1928 		 * restored after the signal processing is completed.
1929 		 */
1930 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1931 			returnmask = &p->p_sigctx.ps_oldmask;
1932 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1933 		} else
1934 			returnmask = &p->p_sigctx.ps_sigmask;
1935 		p->p_stats->p_ru.ru_nsignals++;
1936 		ksi = ksiginfo_dequeue(p, signum);
1937 #ifdef KTRACE
1938 		if (KTRPOINT(p, KTR_PSIG))
1939 			ktrpsig(l, signum, action,
1940 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1941 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1942 			    ksi);
1943 #endif
1944 		if (ksi == NULL) {
1945 			ksiginfo_t ksi1;
1946 			/*
1947 			 * we did not save any siginfo for this, either
1948 			 * because the signal was not caught, or because the
1949 			 * user did not request SA_SIGINFO
1950 			 */
1951 			KSI_INIT_EMPTY(&ksi1);
1952 			ksi1.ksi_signo = signum;
1953 			kpsendsig(l, &ksi1, returnmask);
1954 		} else {
1955 			kpsendsig(l, ksi, returnmask);
1956 			ksiginfo_free(ksi);
1957 		}
1958 		p->p_sigctx.ps_lwp = 0;
1959 		p->p_sigctx.ps_code = 0;
1960 		p->p_sigctx.ps_signo = 0;
1961 		(void) splsched();	/* XXXSMP */
1962 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1963 		    &p->p_sigctx.ps_sigmask);
1964 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1965 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1966 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1967 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1968 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1969 		}
1970 		(void) spl0();		/* XXXSMP */
1971 	}
1972 
1973 	KERNEL_PROC_UNLOCK(l);
1974 }
1975 
1976 /*
1977  * Kill the current process for stated reason.
1978  */
1979 void
1980 killproc(struct proc *p, const char *why)
1981 {
1982 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1983 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1984 	psignal(p, SIGKILL);
1985 }
1986 
1987 /*
1988  * Force the current process to exit with the specified signal, dumping core
1989  * if appropriate.  We bypass the normal tests for masked and caught signals,
1990  * allowing unrecoverable failures to terminate the process without changing
1991  * signal state.  Mark the accounting record with the signal termination.
1992  * If dumping core, save the signal number for the debugger.  Calls exit and
1993  * does not return.
1994  */
1995 
1996 #if defined(DEBUG)
1997 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1998 #else
1999 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
2000 #endif
2001 
2002 static	const char logcoredump[] =
2003 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
2004 static	const char lognocoredump[] =
2005 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
2006 
2007 /* Wrapper function for use in p_userret */
2008 static void
2009 lwp_coredump_hook(struct lwp *l, void *arg)
2010 {
2011 	int s;
2012 
2013 	/*
2014 	 * Suspend ourselves, so that the kernel stack and therefore
2015 	 * the userland registers saved in the trapframe are around
2016 	 * for coredump() to write them out.
2017 	 */
2018 	KERNEL_PROC_LOCK(l);
2019 	l->l_flag &= ~L_DETACHED;
2020 	SCHED_LOCK(s);
2021 	l->l_stat = LSSUSPENDED;
2022 	l->l_proc->p_nrlwps--;
2023 	/* XXX NJWLWP check if this makes sense here: */
2024 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
2025 	mi_switch(l, NULL);
2026 	SCHED_ASSERT_UNLOCKED();
2027 	splx(s);
2028 
2029 	lwp_exit(l);
2030 }
2031 
2032 void
2033 sigexit(struct lwp *l, int signum)
2034 {
2035 	struct proc	*p;
2036 #if 0
2037 	struct lwp	*l2;
2038 #endif
2039 	int		exitsig;
2040 #ifdef COREDUMP
2041 	int		error;
2042 #endif
2043 
2044 	p = l->l_proc;
2045 
2046 	/*
2047 	 * Don't permit coredump() or exit1() multiple times
2048 	 * in the same process.
2049 	 */
2050 	if (p->p_flag & P_WEXIT) {
2051 		KERNEL_PROC_UNLOCK(l);
2052 		(*p->p_userret)(l, p->p_userret_arg);
2053 	}
2054 	p->p_flag |= P_WEXIT;
2055 	/* We don't want to switch away from exiting. */
2056 	/* XXX multiprocessor: stop LWPs on other processors. */
2057 #if 0
2058 	if (p->p_flag & P_SA) {
2059 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2060 		    l2->l_flag &= ~L_SA;
2061 		p->p_flag &= ~P_SA;
2062 	}
2063 #endif
2064 
2065 	/* Make other LWPs stick around long enough to be dumped */
2066 	p->p_userret = lwp_coredump_hook;
2067 	p->p_userret_arg = NULL;
2068 
2069 	exitsig = signum;
2070 	p->p_acflag |= AXSIG;
2071 	if (sigprop[signum] & SA_CORE) {
2072 		p->p_sigctx.ps_signo = signum;
2073 #ifdef COREDUMP
2074 		if ((error = coredump(l, NULL)) == 0)
2075 			exitsig |= WCOREFLAG;
2076 #endif
2077 
2078 		if (kern_logsigexit) {
2079 			/* XXX What if we ever have really large UIDs? */
2080 			int uid = l->l_cred ?
2081 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2082 
2083 #ifdef COREDUMP
2084 			if (error)
2085 				log(LOG_INFO, lognocoredump, p->p_pid,
2086 				    p->p_comm, uid, signum, error);
2087 			else
2088 #endif
2089 				log(LOG_INFO, logcoredump, p->p_pid,
2090 				    p->p_comm, uid, signum);
2091 		}
2092 
2093 #ifdef PAX_SEGVGUARD
2094 		pax_segvguard(l, p->p_textvp, p->p_comm, TRUE);
2095 #endif /* PAX_SEGVGUARD */
2096 	}
2097 
2098 	exit1(l, W_EXITCODE(0, exitsig));
2099 	/* NOTREACHED */
2100 }
2101 
2102 #ifdef COREDUMP
2103 struct coredump_iostate {
2104 	struct lwp *io_lwp;
2105 	struct vnode *io_vp;
2106 	kauth_cred_t io_cred;
2107 	off_t io_offset;
2108 };
2109 
2110 int
2111 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2112 {
2113 	struct coredump_iostate *io = cookie;
2114 	int error;
2115 
2116 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2117 	    io->io_offset, segflg,
2118 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2119 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2120 	if (error) {
2121 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2122 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2123 		    segflg == UIO_USERSPACE ? "user" : "system",
2124 		    len, data, (long long) io->io_offset, error);
2125 		return (error);
2126 	}
2127 
2128 	io->io_offset += len;
2129 	return (0);
2130 }
2131 
2132 /*
2133  * Dump core, into a file named "progname.core" or "core" (depending on the
2134  * value of shortcorename), unless the process was setuid/setgid.
2135  */
2136 int
2137 coredump(struct lwp *l, const char *pattern)
2138 {
2139 	struct vnode		*vp;
2140 	struct proc		*p;
2141 	struct vmspace		*vm;
2142 	kauth_cred_t		cred;
2143 	struct nameidata	nd;
2144 	struct vattr		vattr;
2145 	struct mount		*mp;
2146 	struct coredump_iostate	io;
2147 	int			error, error1;
2148 	char			*name = NULL;
2149 
2150 	p = l->l_proc;
2151 	vm = p->p_vmspace;
2152 	cred = l->l_cred;
2153 
2154 	/*
2155 	 * Make sure the process has not set-id, to prevent data leaks,
2156 	 * unless it was specifically requested to allow set-id coredumps.
2157 	 */
2158 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2159 		return EPERM;
2160 
2161 	/*
2162 	 * Refuse to core if the data + stack + user size is larger than
2163 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2164 	 * data.
2165 	 */
2166 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2167 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2168 		return EFBIG;		/* better error code? */
2169 
2170 restart:
2171 	/*
2172 	 * The core dump will go in the current working directory.  Make
2173 	 * sure that the directory is still there and that the mount flags
2174 	 * allow us to write core dumps there.
2175 	 */
2176 	vp = p->p_cwdi->cwdi_cdir;
2177 	if (vp->v_mount == NULL ||
2178 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2179 		error = EPERM;
2180 		goto done;
2181 	}
2182 
2183 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2184 		pattern = security_setidcore_path;
2185 
2186 	if (pattern == NULL)
2187 		pattern = p->p_limit->pl_corename;
2188 	if (name == NULL) {
2189 		name = PNBUF_GET();
2190 	}
2191 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2192 		goto done;
2193 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2194 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2195 	    S_IRUSR | S_IWUSR)) != 0)
2196 		goto done;
2197 	vp = nd.ni_vp;
2198 
2199 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2200 		VOP_UNLOCK(vp, 0);
2201 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2202 			goto done;
2203 		if ((error = vn_start_write(NULL, &mp,
2204 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2205 			goto done;
2206 		goto restart;
2207 	}
2208 
2209 	/* Don't dump to non-regular files or files with links. */
2210 	if (vp->v_type != VREG ||
2211 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2212 		error = EINVAL;
2213 		goto out;
2214 	}
2215 	VATTR_NULL(&vattr);
2216 	vattr.va_size = 0;
2217 
2218 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2219 		vattr.va_uid = security_setidcore_owner;
2220 		vattr.va_gid = security_setidcore_group;
2221 		vattr.va_mode = security_setidcore_mode;
2222 	}
2223 
2224 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
2225 	VOP_SETATTR(vp, &vattr, cred, l);
2226 	p->p_acflag |= ACORE;
2227 
2228 	io.io_lwp = l;
2229 	io.io_vp = vp;
2230 	io.io_cred = cred;
2231 	io.io_offset = 0;
2232 
2233 	/* Now dump the actual core file. */
2234 	error = (*p->p_execsw->es_coredump)(l, &io);
2235  out:
2236 	VOP_UNLOCK(vp, 0);
2237 	vn_finished_write(mp, 0);
2238 	error1 = vn_close(vp, FWRITE, cred, l);
2239 	if (error == 0)
2240 		error = error1;
2241 done:
2242 	if (name != NULL)
2243 		PNBUF_PUT(name);
2244 	return error;
2245 }
2246 #endif /* COREDUMP */
2247 
2248 /*
2249  * Nonexistent system call-- signal process (may want to handle it).
2250  * Flag error in case process won't see signal immediately (blocked or ignored).
2251  */
2252 #ifndef PTRACE
2253 __weak_alias(sys_ptrace, sys_nosys);
2254 #endif
2255 
2256 /* ARGSUSED */
2257 int
2258 sys_nosys(struct lwp *l, void *v, register_t *retval)
2259 {
2260 	struct proc 	*p;
2261 
2262 	p = l->l_proc;
2263 	psignal(p, SIGSYS);
2264 	return (ENOSYS);
2265 }
2266 
2267 #ifdef COREDUMP
2268 static int
2269 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2270 {
2271 	const char	*s;
2272 	char		*d, *end;
2273 	int		i;
2274 
2275 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2276 		if (*s == '%') {
2277 			switch (*(s + 1)) {
2278 			case 'n':
2279 				i = snprintf(d, end - d, "%s", p->p_comm);
2280 				break;
2281 			case 'p':
2282 				i = snprintf(d, end - d, "%d", p->p_pid);
2283 				break;
2284 			case 'u':
2285 				i = snprintf(d, end - d, "%.*s",
2286 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2287 				    p->p_pgrp->pg_session->s_login);
2288 				break;
2289 			case 't':
2290 				i = snprintf(d, end - d, "%ld",
2291 				    p->p_stats->p_start.tv_sec);
2292 				break;
2293 			default:
2294 				goto copy;
2295 			}
2296 			d += i;
2297 			s++;
2298 		} else {
2299  copy:			*d = *s;
2300 			d++;
2301 		}
2302 		if (d >= end)
2303 			return (ENAMETOOLONG);
2304 	}
2305 	*d = '\0';
2306 	return 0;
2307 }
2308 #endif /* COREDUMP */
2309 
2310 void
2311 getucontext(struct lwp *l, ucontext_t *ucp)
2312 {
2313 	struct proc	*p;
2314 
2315 	p = l->l_proc;
2316 
2317 	ucp->uc_flags = 0;
2318 	ucp->uc_link = l->l_ctxlink;
2319 
2320 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2321 	ucp->uc_flags |= _UC_SIGMASK;
2322 
2323 	/*
2324 	 * The (unsupplied) definition of the `current execution stack'
2325 	 * in the System V Interface Definition appears to allow returning
2326 	 * the main context stack.
2327 	 */
2328 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2329 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2330 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2331 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2332 	} else {
2333 		/* Simply copy alternate signal execution stack. */
2334 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2335 	}
2336 	ucp->uc_flags |= _UC_STACK;
2337 
2338 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2339 }
2340 
2341 /* ARGSUSED */
2342 int
2343 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2344 {
2345 	struct sys_getcontext_args /* {
2346 		syscallarg(struct __ucontext *) ucp;
2347 	} */ *uap = v;
2348 	ucontext_t uc;
2349 
2350 	getucontext(l, &uc);
2351 
2352 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2353 }
2354 
2355 int
2356 setucontext(struct lwp *l, const ucontext_t *ucp)
2357 {
2358 	struct proc	*p;
2359 	int		error;
2360 
2361 	p = l->l_proc;
2362 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2363 		return (error);
2364 	l->l_ctxlink = ucp->uc_link;
2365 
2366 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2367 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2368 
2369 	/*
2370 	 * If there was stack information, update whether or not we are
2371 	 * still running on an alternate signal stack.
2372 	 */
2373 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2374 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2375 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2376 		else
2377 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2378 	}
2379 
2380 	return 0;
2381 }
2382 
2383 /* ARGSUSED */
2384 int
2385 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2386 {
2387 	struct sys_setcontext_args /* {
2388 		syscallarg(const ucontext_t *) ucp;
2389 	} */ *uap = v;
2390 	ucontext_t uc;
2391 	int error;
2392 
2393 	error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
2394 	if (error)
2395 		return (error);
2396 	if (!(uc.uc_flags & _UC_CPU))
2397 		return (EINVAL);
2398 	error = setucontext(l, &uc);
2399 	if (error)
2400 		return (error);
2401 
2402 	return (EJUSTRETURN);
2403 }
2404 
2405 /*
2406  * sigtimedwait(2) system call, used also for implementation
2407  * of sigwaitinfo() and sigwait().
2408  *
2409  * This only handles single LWP in signal wait. libpthread provides
2410  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2411  */
2412 int
2413 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2414 {
2415 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2416 }
2417 
2418 int
2419 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2420     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2421 {
2422 	struct sys___sigtimedwait_args /* {
2423 		syscallarg(const sigset_t *) set;
2424 		syscallarg(siginfo_t *) info;
2425 		syscallarg(struct timespec *) timeout;
2426 	} */ *uap = v;
2427 	sigset_t *waitset, twaitset;
2428 	struct proc *p = l->l_proc;
2429 	int error, signum;
2430 	int timo = 0;
2431 	struct timespec ts, tsstart;
2432 	ksiginfo_t *ksi;
2433 
2434 	memset(&tsstart, 0, sizeof tsstart);	 /* XXX gcc */
2435 
2436 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2437 
2438 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2439 		FREE(waitset, M_TEMP);
2440 		return (error);
2441 	}
2442 
2443 	/*
2444 	 * Silently ignore SA_CANTMASK signals. psignal() would
2445 	 * ignore SA_CANTMASK signals in waitset, we do this
2446 	 * only for the below siglist check.
2447 	 */
2448 	sigminusset(&sigcantmask, waitset);
2449 
2450 	/*
2451 	 * First scan siglist and check if there is signal from
2452 	 * our waitset already pending.
2453 	 */
2454 	twaitset = *waitset;
2455 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2456 	if ((signum = firstsig(&twaitset))) {
2457 		/* found pending signal */
2458 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2459 		ksi = ksiginfo_dequeue(p, signum);
2460 		if (!ksi) {
2461 			/* No queued siginfo, manufacture one */
2462 			ksi = ksiginfo_alloc(PR_WAITOK);
2463 			KSI_INIT(ksi);
2464 			ksi->ksi_info._signo = signum;
2465 			ksi->ksi_info._code = SI_USER;
2466 		}
2467 
2468 		goto sig;
2469 	}
2470 
2471 	/*
2472 	 * Calculate timeout, if it was specified.
2473 	 */
2474 	if (SCARG(uap, timeout)) {
2475 		uint64_t ms;
2476 
2477 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2478 			return (error);
2479 
2480 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2481 		timo = mstohz(ms);
2482 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2483 			timo = 1;
2484 		if (timo <= 0)
2485 			return (EAGAIN);
2486 
2487 		/*
2488 		 * Remember current uptime, it would be used in
2489 		 * ECANCELED/ERESTART case.
2490 		 */
2491 		getnanouptime(&tsstart);
2492 	}
2493 
2494 	/*
2495 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2496 	 * here; it's not possible to pass pointer to a structure
2497 	 * on current process's stack, the current process might
2498 	 * be swapped out at the time the signal would get delivered.
2499 	 */
2500 	ksi = ksiginfo_alloc(PR_WAITOK);
2501 	p->p_sigctx.ps_sigwaited = ksi;
2502 	p->p_sigctx.ps_sigwait = waitset;
2503 
2504 	/*
2505 	 * Wait for signal to arrive. We can either be woken up or
2506 	 * time out.
2507 	 */
2508 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2509 
2510 	/*
2511 	 * Need to find out if we woke as a result of lwp_wakeup()
2512 	 * or a signal outside our wait set.
2513 	 */
2514 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2515 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2516 		/* wakeup via _lwp_wakeup() */
2517 		error = ECANCELED;
2518 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2519 		/* spurious wakeup - arrange for syscall restart */
2520 		error = ERESTART;
2521 		goto fail;
2522 	}
2523 
2524 	/*
2525 	 * On error, clear sigwait indication. psignal() clears it
2526 	 * in !error case.
2527 	 */
2528 	if (error) {
2529 		p->p_sigctx.ps_sigwaited = NULL;
2530 
2531 		/*
2532 		 * If the sleep was interrupted (either by signal or wakeup),
2533 		 * update the timeout and copyout new value back.
2534 		 * It would be used when the syscall would be restarted
2535 		 * or called again.
2536 		 */
2537 		if (timo && (error == ERESTART || error == ECANCELED)) {
2538 			struct timespec tsnow;
2539 			int err;
2540 
2541 /* XXX double check the following change */
2542 			getnanouptime(&tsnow);
2543 
2544 			/* compute how much time has passed since start */
2545 			timespecsub(&tsnow, &tsstart, &tsnow);
2546 			/* substract passed time from timeout */
2547 			timespecsub(&ts, &tsnow, &ts);
2548 
2549 			if (ts.tv_sec < 0) {
2550 				error = EAGAIN;
2551 				goto fail;
2552 			}
2553 /* XXX double check the previous change */
2554 
2555 			/* copy updated timeout to userland */
2556 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2557 			    sizeof(ts)))) {
2558 				error = err;
2559 				goto fail;
2560 			}
2561 		}
2562 
2563 		goto fail;
2564 	}
2565 
2566 	/*
2567 	 * If a signal from the wait set arrived, copy it to userland.
2568 	 * Copy only the used part of siginfo, the padding part is
2569 	 * left unchanged (userland is not supposed to touch it anyway).
2570 	 */
2571  sig:
2572 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2573 
2574  fail:
2575 	FREE(waitset, M_TEMP);
2576 	ksiginfo_free(ksi);
2577 	p->p_sigctx.ps_sigwait = NULL;
2578 
2579 	return (error);
2580 }
2581 
2582 /*
2583  * Returns true if signal is ignored or masked for passed process.
2584  */
2585 int
2586 sigismasked(struct proc *p, int sig)
2587 {
2588 
2589 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2590 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2591 }
2592 
2593 static int
2594 filt_sigattach(struct knote *kn)
2595 {
2596 	struct proc *p = curproc;
2597 
2598 	kn->kn_ptr.p_proc = p;
2599 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2600 
2601 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2602 
2603 	return (0);
2604 }
2605 
2606 static void
2607 filt_sigdetach(struct knote *kn)
2608 {
2609 	struct proc *p = kn->kn_ptr.p_proc;
2610 
2611 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2612 }
2613 
2614 /*
2615  * signal knotes are shared with proc knotes, so we apply a mask to
2616  * the hint in order to differentiate them from process hints.  This
2617  * could be avoided by using a signal-specific knote list, but probably
2618  * isn't worth the trouble.
2619  */
2620 static int
2621 filt_signal(struct knote *kn, long hint)
2622 {
2623 
2624 	if (hint & NOTE_SIGNAL) {
2625 		hint &= ~NOTE_SIGNAL;
2626 
2627 		if (kn->kn_id == hint)
2628 			kn->kn_data++;
2629 	}
2630 	return (kn->kn_data != 0);
2631 }
2632 
2633 const struct filterops sig_filtops = {
2634 	0, filt_sigattach, filt_sigdetach, filt_signal
2635 };
2636