xref: /netbsd-src/sys/kern/kern_sig.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: kern_sig.c,v 1.349 2018/05/28 14:07:37 kamil Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.349 2018/05/28 14:07:37 kamil Exp $");
74 
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81 
82 #define	SIGPROP		/* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107 
108 #include <uvm/uvm_extern.h>
109 
110 #define	SIGQUEUE_MAX	32
111 static pool_cache_t	sigacts_cache	__read_mostly;
112 static pool_cache_t	ksiginfo_cache	__read_mostly;
113 static callout_t	proc_stop_ch	__cacheline_aligned;
114 
115 sigset_t		contsigmask	__cacheline_aligned;
116 sigset_t		stopsigmask	__cacheline_aligned;
117 static sigset_t		vforksigmask	__cacheline_aligned;
118 sigset_t		sigcantmask	__cacheline_aligned;
119 
120 static void	ksiginfo_exechook(struct proc *, void *);
121 static void	proc_stop(struct proc *, int);
122 static void	proc_stop_done(struct proc *, int);
123 static void	proc_stop_callout(void *);
124 static int	sigchecktrace(void);
125 static int	sigpost(struct lwp *, sig_t, int, int);
126 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
127 static int	sigunwait(struct proc *, const ksiginfo_t *);
128 
129 static void	sigacts_poolpage_free(struct pool *, void *);
130 static void	*sigacts_poolpage_alloc(struct pool *, int);
131 
132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
133 int (*coredump_vec)(struct lwp *, const char *) =
134     (int (*)(struct lwp *, const char *))enosys;
135 
136 /*
137  * DTrace SDT provider definitions
138  */
139 SDT_PROVIDER_DECLARE(proc);
140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
141     "struct lwp *", 	/* target thread */
142     "struct proc *", 	/* target process */
143     "int");		/* signal */
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
145     "struct lwp *",	/* target thread */
146     "struct proc *",	/* target process */
147     "int");  		/* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
149     "int", 		/* signal */
150     "ksiginfo_t *", 	/* signal info */
151     "void (*)(void)");	/* handler address */
152 
153 
154 static struct pool_allocator sigactspool_allocator = {
155 	.pa_alloc = sigacts_poolpage_alloc,
156 	.pa_free = sigacts_poolpage_free
157 };
158 
159 #ifdef DEBUG
160 int	kern_logsigexit = 1;
161 #else
162 int	kern_logsigexit = 0;
163 #endif
164 
165 static const char logcoredump[] =
166     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
167 static const char lognocoredump[] =
168     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
169 
170 static kauth_listener_t signal_listener;
171 
172 static int
173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
174     void *arg0, void *arg1, void *arg2, void *arg3)
175 {
176 	struct proc *p;
177 	int result, signum;
178 
179 	result = KAUTH_RESULT_DEFER;
180 	p = arg0;
181 	signum = (int)(unsigned long)arg1;
182 
183 	if (action != KAUTH_PROCESS_SIGNAL)
184 		return result;
185 
186 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
187 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
188 		result = KAUTH_RESULT_ALLOW;
189 
190 	return result;
191 }
192 
193 /*
194  * signal_init:
195  *
196  *	Initialize global signal-related data structures.
197  */
198 void
199 signal_init(void)
200 {
201 
202 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
203 
204 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
205 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
206 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
207 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
208 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
209 
210 	exechook_establish(ksiginfo_exechook, NULL);
211 
212 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
213 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
214 
215 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
216 	    signal_listener_cb, NULL);
217 }
218 
219 /*
220  * sigacts_poolpage_alloc:
221  *
222  *	Allocate a page for the sigacts memory pool.
223  */
224 static void *
225 sigacts_poolpage_alloc(struct pool *pp, int flags)
226 {
227 
228 	return (void *)uvm_km_alloc(kernel_map,
229 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
230 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
231 	    | UVM_KMF_WIRED);
232 }
233 
234 /*
235  * sigacts_poolpage_free:
236  *
237  *	Free a page on behalf of the sigacts memory pool.
238  */
239 static void
240 sigacts_poolpage_free(struct pool *pp, void *v)
241 {
242 
243 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
244 }
245 
246 /*
247  * sigactsinit:
248  *
249  *	Create an initial sigacts structure, using the same signal state
250  *	as of specified process.  If 'share' is set, share the sigacts by
251  *	holding a reference, otherwise just copy it from parent.
252  */
253 struct sigacts *
254 sigactsinit(struct proc *pp, int share)
255 {
256 	struct sigacts *ps = pp->p_sigacts, *ps2;
257 
258 	if (__predict_false(share)) {
259 		atomic_inc_uint(&ps->sa_refcnt);
260 		return ps;
261 	}
262 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
263 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
264 	ps2->sa_refcnt = 1;
265 
266 	mutex_enter(&ps->sa_mutex);
267 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
268 	mutex_exit(&ps->sa_mutex);
269 	return ps2;
270 }
271 
272 /*
273  * sigactsunshare:
274  *
275  *	Make this process not share its sigacts, maintaining all signal state.
276  */
277 void
278 sigactsunshare(struct proc *p)
279 {
280 	struct sigacts *ps, *oldps = p->p_sigacts;
281 
282 	if (__predict_true(oldps->sa_refcnt == 1))
283 		return;
284 
285 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
286 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
287 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
288 	ps->sa_refcnt = 1;
289 
290 	p->p_sigacts = ps;
291 	sigactsfree(oldps);
292 }
293 
294 /*
295  * sigactsfree;
296  *
297  *	Release a sigacts structure.
298  */
299 void
300 sigactsfree(struct sigacts *ps)
301 {
302 
303 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
304 		mutex_destroy(&ps->sa_mutex);
305 		pool_cache_put(sigacts_cache, ps);
306 	}
307 }
308 
309 /*
310  * siginit:
311  *
312  *	Initialize signal state for process 0; set to ignore signals that
313  *	are ignored by default and disable the signal stack.  Locking not
314  *	required as the system is still cold.
315  */
316 void
317 siginit(struct proc *p)
318 {
319 	struct lwp *l;
320 	struct sigacts *ps;
321 	int signo, prop;
322 
323 	ps = p->p_sigacts;
324 	sigemptyset(&contsigmask);
325 	sigemptyset(&stopsigmask);
326 	sigemptyset(&vforksigmask);
327 	sigemptyset(&sigcantmask);
328 	for (signo = 1; signo < NSIG; signo++) {
329 		prop = sigprop[signo];
330 		if (prop & SA_CONT)
331 			sigaddset(&contsigmask, signo);
332 		if (prop & SA_STOP)
333 			sigaddset(&stopsigmask, signo);
334 		if (prop & SA_STOP && signo != SIGSTOP)
335 			sigaddset(&vforksigmask, signo);
336 		if (prop & SA_CANTMASK)
337 			sigaddset(&sigcantmask, signo);
338 		if (prop & SA_IGNORE && signo != SIGCONT)
339 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
340 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
341 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
342 	}
343 	sigemptyset(&p->p_sigctx.ps_sigcatch);
344 	p->p_sflag &= ~PS_NOCLDSTOP;
345 
346 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
347 	sigemptyset(&p->p_sigpend.sp_set);
348 
349 	/*
350 	 * Reset per LWP state.
351 	 */
352 	l = LIST_FIRST(&p->p_lwps);
353 	l->l_sigwaited = NULL;
354 	l->l_sigstk = SS_INIT;
355 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
356 	sigemptyset(&l->l_sigpend.sp_set);
357 
358 	/* One reference. */
359 	ps->sa_refcnt = 1;
360 }
361 
362 /*
363  * execsigs:
364  *
365  *	Reset signals for an exec of the specified process.
366  */
367 void
368 execsigs(struct proc *p)
369 {
370 	struct sigacts *ps;
371 	struct lwp *l;
372 	int signo, prop;
373 	sigset_t tset;
374 	ksiginfoq_t kq;
375 
376 	KASSERT(p->p_nlwps == 1);
377 
378 	sigactsunshare(p);
379 	ps = p->p_sigacts;
380 
381 	/*
382 	 * Reset caught signals.  Held signals remain held through
383 	 * l->l_sigmask (unless they were caught, and are now ignored
384 	 * by default).
385 	 *
386 	 * No need to lock yet, the process has only one LWP and
387 	 * at this point the sigacts are private to the process.
388 	 */
389 	sigemptyset(&tset);
390 	for (signo = 1; signo < NSIG; signo++) {
391 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
392 			prop = sigprop[signo];
393 			if (prop & SA_IGNORE) {
394 				if ((prop & SA_CONT) == 0)
395 					sigaddset(&p->p_sigctx.ps_sigignore,
396 					    signo);
397 				sigaddset(&tset, signo);
398 			}
399 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
400 		}
401 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
402 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
403 	}
404 	ksiginfo_queue_init(&kq);
405 
406 	mutex_enter(p->p_lock);
407 	sigclearall(p, &tset, &kq);
408 	sigemptyset(&p->p_sigctx.ps_sigcatch);
409 
410 	/*
411 	 * Reset no zombies if child dies flag as Solaris does.
412 	 */
413 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
414 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
415 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
416 
417 	/*
418 	 * Reset per-LWP state.
419 	 */
420 	l = LIST_FIRST(&p->p_lwps);
421 	l->l_sigwaited = NULL;
422 	l->l_sigstk = SS_INIT;
423 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
424 	sigemptyset(&l->l_sigpend.sp_set);
425 	mutex_exit(p->p_lock);
426 
427 	ksiginfo_queue_drain(&kq);
428 }
429 
430 /*
431  * ksiginfo_exechook:
432  *
433  *	Free all pending ksiginfo entries from a process on exec.
434  *	Additionally, drain any unused ksiginfo structures in the
435  *	system back to the pool.
436  *
437  *	XXX This should not be a hook, every process has signals.
438  */
439 static void
440 ksiginfo_exechook(struct proc *p, void *v)
441 {
442 	ksiginfoq_t kq;
443 
444 	ksiginfo_queue_init(&kq);
445 
446 	mutex_enter(p->p_lock);
447 	sigclearall(p, NULL, &kq);
448 	mutex_exit(p->p_lock);
449 
450 	ksiginfo_queue_drain(&kq);
451 }
452 
453 /*
454  * ksiginfo_alloc:
455  *
456  *	Allocate a new ksiginfo structure from the pool, and optionally copy
457  *	an existing one.  If the existing ksiginfo_t is from the pool, and
458  *	has not been queued somewhere, then just return it.  Additionally,
459  *	if the existing ksiginfo_t does not contain any information beyond
460  *	the signal number, then just return it.
461  */
462 ksiginfo_t *
463 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
464 {
465 	ksiginfo_t *kp;
466 
467 	if (ok != NULL) {
468 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
469 		    KSI_FROMPOOL)
470 			return ok;
471 		if (KSI_EMPTY_P(ok))
472 			return ok;
473 	}
474 
475 	kp = pool_cache_get(ksiginfo_cache, flags);
476 	if (kp == NULL) {
477 #ifdef DIAGNOSTIC
478 		printf("Out of memory allocating ksiginfo for pid %d\n",
479 		    p->p_pid);
480 #endif
481 		return NULL;
482 	}
483 
484 	if (ok != NULL) {
485 		memcpy(kp, ok, sizeof(*kp));
486 		kp->ksi_flags &= ~KSI_QUEUED;
487 	} else
488 		KSI_INIT_EMPTY(kp);
489 
490 	kp->ksi_flags |= KSI_FROMPOOL;
491 
492 	return kp;
493 }
494 
495 /*
496  * ksiginfo_free:
497  *
498  *	If the given ksiginfo_t is from the pool and has not been queued,
499  *	then free it.
500  */
501 void
502 ksiginfo_free(ksiginfo_t *kp)
503 {
504 
505 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
506 		return;
507 	pool_cache_put(ksiginfo_cache, kp);
508 }
509 
510 /*
511  * ksiginfo_queue_drain:
512  *
513  *	Drain a non-empty ksiginfo_t queue.
514  */
515 void
516 ksiginfo_queue_drain0(ksiginfoq_t *kq)
517 {
518 	ksiginfo_t *ksi;
519 
520 	KASSERT(!TAILQ_EMPTY(kq));
521 
522 	while (!TAILQ_EMPTY(kq)) {
523 		ksi = TAILQ_FIRST(kq);
524 		TAILQ_REMOVE(kq, ksi, ksi_list);
525 		pool_cache_put(ksiginfo_cache, ksi);
526 	}
527 }
528 
529 static int
530 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
531 {
532 	ksiginfo_t *ksi, *nksi;
533 
534 	if (sp == NULL)
535 		goto out;
536 
537 	/* Find siginfo and copy it out. */
538 	int count = 0;
539 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
540 		if (ksi->ksi_signo != signo)
541 			continue;
542 		if (count++ > 0) /* Only remove the first, count all of them */
543 			continue;
544 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
545 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
546 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
547 		ksi->ksi_flags &= ~KSI_QUEUED;
548 		if (out != NULL) {
549 			memcpy(out, ksi, sizeof(*out));
550 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
551 		}
552 		ksiginfo_free(ksi);
553 	}
554 	if (count)
555 		return count;
556 
557 out:
558 	/* If there is no siginfo, then manufacture it. */
559 	if (out != NULL) {
560 		KSI_INIT(out);
561 		out->ksi_info._signo = signo;
562 		out->ksi_info._code = SI_NOINFO;
563 	}
564 	return 0;
565 }
566 
567 /*
568  * sigget:
569  *
570  *	Fetch the first pending signal from a set.  Optionally, also fetch
571  *	or manufacture a ksiginfo element.  Returns the number of the first
572  *	pending signal, or zero.
573  */
574 int
575 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
576 {
577 	sigset_t tset;
578 	int count;
579 
580 	/* If there's no pending set, the signal is from the debugger. */
581 	if (sp == NULL)
582 		goto out;
583 
584 	/* Construct mask from signo, and 'mask'. */
585 	if (signo == 0) {
586 		if (mask != NULL) {
587 			tset = *mask;
588 			__sigandset(&sp->sp_set, &tset);
589 		} else
590 			tset = sp->sp_set;
591 
592 		/* If there are no signals pending - return. */
593 		if ((signo = firstsig(&tset)) == 0)
594 			goto out;
595 	} else {
596 		KASSERT(sigismember(&sp->sp_set, signo));
597 	}
598 
599 	sigdelset(&sp->sp_set, signo);
600 out:
601 	count = siggetinfo(sp, out, signo);
602 	if (count > 1)
603 		sigaddset(&sp->sp_set, signo);
604 	return signo;
605 }
606 
607 /*
608  * sigput:
609  *
610  *	Append a new ksiginfo element to the list of pending ksiginfo's.
611  */
612 static int
613 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
614 {
615 	ksiginfo_t *kp;
616 
617 	KASSERT(mutex_owned(p->p_lock));
618 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
619 
620 	sigaddset(&sp->sp_set, ksi->ksi_signo);
621 
622 	/*
623 	 * If there is no siginfo, we are done.
624 	 */
625 	if (KSI_EMPTY_P(ksi))
626 		return 0;
627 
628 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
629 
630 	size_t count = 0;
631 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
632 		count++;
633 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
634 			continue;
635 		if (kp->ksi_signo == ksi->ksi_signo) {
636 			KSI_COPY(ksi, kp);
637 			kp->ksi_flags |= KSI_QUEUED;
638 			return 0;
639 		}
640 	}
641 
642 	if (count >= SIGQUEUE_MAX) {
643 #ifdef DIAGNOSTIC
644 		printf("%s(%d): Signal queue is full signal=%d\n",
645 		    p->p_comm, p->p_pid, ksi->ksi_signo);
646 #endif
647 		return EAGAIN;
648 	}
649 	ksi->ksi_flags |= KSI_QUEUED;
650 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
651 
652 	return 0;
653 }
654 
655 /*
656  * sigclear:
657  *
658  *	Clear all pending signals in the specified set.
659  */
660 void
661 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
662 {
663 	ksiginfo_t *ksi, *next;
664 
665 	if (mask == NULL)
666 		sigemptyset(&sp->sp_set);
667 	else
668 		sigminusset(mask, &sp->sp_set);
669 
670 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
671 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
672 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
673 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
674 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
675 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
676 		}
677 	}
678 }
679 
680 /*
681  * sigclearall:
682  *
683  *	Clear all pending signals in the specified set from a process and
684  *	its LWPs.
685  */
686 void
687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
688 {
689 	struct lwp *l;
690 
691 	KASSERT(mutex_owned(p->p_lock));
692 
693 	sigclear(&p->p_sigpend, mask, kq);
694 
695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
696 		sigclear(&l->l_sigpend, mask, kq);
697 	}
698 }
699 
700 /*
701  * sigispending:
702  *
703  *	Return the first signal number if there are pending signals for the
704  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
705  *	and that the signal has been posted to the appopriate queue before
706  *	LW_PENDSIG is set.
707  */
708 int
709 sigispending(struct lwp *l, int signo)
710 {
711 	struct proc *p = l->l_proc;
712 	sigset_t tset;
713 
714 	membar_consumer();
715 
716 	tset = l->l_sigpend.sp_set;
717 	sigplusset(&p->p_sigpend.sp_set, &tset);
718 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
719 	sigminusset(&l->l_sigmask, &tset);
720 
721 	if (signo == 0) {
722 		return firstsig(&tset);
723 	}
724 	return sigismember(&tset, signo) ? signo : 0;
725 }
726 
727 void
728 getucontext(struct lwp *l, ucontext_t *ucp)
729 {
730 	struct proc *p = l->l_proc;
731 
732 	KASSERT(mutex_owned(p->p_lock));
733 
734 	ucp->uc_flags = 0;
735 	ucp->uc_link = l->l_ctxlink;
736 	ucp->uc_sigmask = l->l_sigmask;
737 	ucp->uc_flags |= _UC_SIGMASK;
738 
739 	/*
740 	 * The (unsupplied) definition of the `current execution stack'
741 	 * in the System V Interface Definition appears to allow returning
742 	 * the main context stack.
743 	 */
744 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
745 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
746 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
747 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
748 	} else {
749 		/* Simply copy alternate signal execution stack. */
750 		ucp->uc_stack = l->l_sigstk;
751 	}
752 	ucp->uc_flags |= _UC_STACK;
753 	mutex_exit(p->p_lock);
754 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
755 	mutex_enter(p->p_lock);
756 }
757 
758 int
759 setucontext(struct lwp *l, const ucontext_t *ucp)
760 {
761 	struct proc *p = l->l_proc;
762 	int error;
763 
764 	KASSERT(mutex_owned(p->p_lock));
765 
766 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
767 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
768 		if (error != 0)
769 			return error;
770 	}
771 
772 	mutex_exit(p->p_lock);
773 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
774 	mutex_enter(p->p_lock);
775 	if (error != 0)
776 		return (error);
777 
778 	l->l_ctxlink = ucp->uc_link;
779 
780 	/*
781 	 * If there was stack information, update whether or not we are
782 	 * still running on an alternate signal stack.
783 	 */
784 	if ((ucp->uc_flags & _UC_STACK) != 0) {
785 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
786 			l->l_sigstk.ss_flags |= SS_ONSTACK;
787 		else
788 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
789 	}
790 
791 	return 0;
792 }
793 
794 /*
795  * killpg1: common code for kill process group/broadcast kill.
796  */
797 int
798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
799 {
800 	struct proc	*p, *cp;
801 	kauth_cred_t	pc;
802 	struct pgrp	*pgrp;
803 	int		nfound;
804 	int		signo = ksi->ksi_signo;
805 
806 	cp = l->l_proc;
807 	pc = l->l_cred;
808 	nfound = 0;
809 
810 	mutex_enter(proc_lock);
811 	if (all) {
812 		/*
813 		 * Broadcast.
814 		 */
815 		PROCLIST_FOREACH(p, &allproc) {
816 			if (p->p_pid <= 1 || p == cp ||
817 			    (p->p_flag & PK_SYSTEM) != 0)
818 				continue;
819 			mutex_enter(p->p_lock);
820 			if (kauth_authorize_process(pc,
821 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
822 			    NULL) == 0) {
823 				nfound++;
824 				if (signo)
825 					kpsignal2(p, ksi);
826 			}
827 			mutex_exit(p->p_lock);
828 		}
829 	} else {
830 		if (pgid == 0)
831 			/* Zero pgid means send to my process group. */
832 			pgrp = cp->p_pgrp;
833 		else {
834 			pgrp = pgrp_find(pgid);
835 			if (pgrp == NULL)
836 				goto out;
837 		}
838 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
839 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
840 				continue;
841 			mutex_enter(p->p_lock);
842 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
843 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
844 				nfound++;
845 				if (signo && P_ZOMBIE(p) == 0)
846 					kpsignal2(p, ksi);
847 			}
848 			mutex_exit(p->p_lock);
849 		}
850 	}
851 out:
852 	mutex_exit(proc_lock);
853 	return nfound ? 0 : ESRCH;
854 }
855 
856 /*
857  * Send a signal to a process group.  If checktty is set, limit to members
858  * which have a controlling terminal.
859  */
860 void
861 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
862 {
863 	ksiginfo_t ksi;
864 
865 	KASSERT(!cpu_intr_p());
866 	KASSERT(mutex_owned(proc_lock));
867 
868 	KSI_INIT_EMPTY(&ksi);
869 	ksi.ksi_signo = sig;
870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
871 }
872 
873 void
874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
875 {
876 	struct proc *p;
877 
878 	KASSERT(!cpu_intr_p());
879 	KASSERT(mutex_owned(proc_lock));
880 	KASSERT(pgrp != NULL);
881 
882 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
883 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
884 			kpsignal(p, ksi, data);
885 }
886 
887 /*
888  * Send a signal caused by a trap to the current LWP.  If it will be caught
889  * immediately, deliver it with correct code.  Otherwise, post it normally.
890  */
891 void
892 trapsignal(struct lwp *l, ksiginfo_t *ksi)
893 {
894 	struct proc	*p;
895 	struct sigacts	*ps;
896 	int signo = ksi->ksi_signo;
897 	sigset_t *mask;
898 
899 	KASSERT(KSI_TRAP_P(ksi));
900 
901 	ksi->ksi_lid = l->l_lid;
902 	p = l->l_proc;
903 
904 	KASSERT(!cpu_intr_p());
905 	mutex_enter(proc_lock);
906 	mutex_enter(p->p_lock);
907 	mask = &l->l_sigmask;
908 	ps = p->p_sigacts;
909 
910 	const bool traced = (p->p_slflag & PSL_TRACED) != 0;
911 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
912 	const bool masked = sigismember(mask, signo);
913 	if (!traced && caught && !masked) {
914 		mutex_exit(proc_lock);
915 		l->l_ru.ru_nsignals++;
916 		kpsendsig(l, ksi, mask);
917 		mutex_exit(p->p_lock);
918 		if (ktrpoint(KTR_PSIG)) {
919 			if (p->p_emul->e_ktrpsig)
920 				p->p_emul->e_ktrpsig(signo,
921 				    SIGACTION_PS(ps, signo).sa_handler,
922 				    mask, ksi);
923 			else
924 				ktrpsig(signo,
925 				    SIGACTION_PS(ps, signo).sa_handler,
926 				    mask, ksi);
927 		}
928 		return;
929 	}
930 
931 	/*
932 	 * If the signal is masked or ignored, then unmask it and
933 	 * reset it to the default action so that the process or
934 	 * its tracer will be notified.
935 	 */
936 	const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN;
937 	if (masked || ignored) {
938 		mutex_enter(&ps->sa_mutex);
939 		sigdelset(mask, signo);
940 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
941 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
942 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
943 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
944 		mutex_exit(&ps->sa_mutex);
945 	}
946 
947 	kpsignal2(p, ksi);
948 	mutex_exit(p->p_lock);
949 	mutex_exit(proc_lock);
950 }
951 
952 /*
953  * Fill in signal information and signal the parent for a child status change.
954  */
955 void
956 child_psignal(struct proc *p, int mask)
957 {
958 	ksiginfo_t ksi;
959 	struct proc *q;
960 	int xsig;
961 
962 	KASSERT(mutex_owned(proc_lock));
963 	KASSERT(mutex_owned(p->p_lock));
964 
965 	xsig = p->p_xsig;
966 
967 	KSI_INIT(&ksi);
968 	ksi.ksi_signo = SIGCHLD;
969 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
970 	ksi.ksi_pid = p->p_pid;
971 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
972 	ksi.ksi_status = xsig;
973 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
974 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
975 
976 	q = p->p_pptr;
977 
978 	mutex_exit(p->p_lock);
979 	mutex_enter(q->p_lock);
980 
981 	if ((q->p_sflag & mask) == 0)
982 		kpsignal2(q, &ksi);
983 
984 	mutex_exit(q->p_lock);
985 	mutex_enter(p->p_lock);
986 }
987 
988 void
989 psignal(struct proc *p, int signo)
990 {
991 	ksiginfo_t ksi;
992 
993 	KASSERT(!cpu_intr_p());
994 	KASSERT(mutex_owned(proc_lock));
995 
996 	KSI_INIT_EMPTY(&ksi);
997 	ksi.ksi_signo = signo;
998 	mutex_enter(p->p_lock);
999 	kpsignal2(p, &ksi);
1000 	mutex_exit(p->p_lock);
1001 }
1002 
1003 void
1004 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1005 {
1006 	fdfile_t *ff;
1007 	file_t *fp;
1008 	fdtab_t *dt;
1009 
1010 	KASSERT(!cpu_intr_p());
1011 	KASSERT(mutex_owned(proc_lock));
1012 
1013 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1014 		size_t fd;
1015 		filedesc_t *fdp = p->p_fd;
1016 
1017 		/* XXXSMP locking */
1018 		ksi->ksi_fd = -1;
1019 		dt = fdp->fd_dt;
1020 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1021 			if ((ff = dt->dt_ff[fd]) == NULL)
1022 				continue;
1023 			if ((fp = ff->ff_file) == NULL)
1024 				continue;
1025 			if (fp->f_data == data) {
1026 				ksi->ksi_fd = fd;
1027 				break;
1028 			}
1029 		}
1030 	}
1031 	mutex_enter(p->p_lock);
1032 	kpsignal2(p, ksi);
1033 	mutex_exit(p->p_lock);
1034 }
1035 
1036 /*
1037  * sigismasked:
1038  *
1039  *	Returns true if signal is ignored or masked for the specified LWP.
1040  */
1041 int
1042 sigismasked(struct lwp *l, int sig)
1043 {
1044 	struct proc *p = l->l_proc;
1045 
1046 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1047 	    sigismember(&l->l_sigmask, sig);
1048 }
1049 
1050 /*
1051  * sigpost:
1052  *
1053  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1054  *	be able to take the signal.
1055  */
1056 static int
1057 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1058 {
1059 	int rv, masked;
1060 	struct proc *p = l->l_proc;
1061 
1062 	KASSERT(mutex_owned(p->p_lock));
1063 
1064 	/*
1065 	 * If the LWP is on the way out, sigclear() will be busy draining all
1066 	 * pending signals.  Don't give it more.
1067 	 */
1068 	if (l->l_refcnt == 0)
1069 		return 0;
1070 
1071 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1072 
1073 	/*
1074 	 * Have the LWP check for signals.  This ensures that even if no LWP
1075 	 * is found to take the signal immediately, it should be taken soon.
1076 	 */
1077 	lwp_lock(l);
1078 	l->l_flag |= LW_PENDSIG;
1079 
1080 	/*
1081 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1082 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1083 	 */
1084 	masked = sigismember(&l->l_sigmask, sig);
1085 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1086 		lwp_unlock(l);
1087 		return 0;
1088 	}
1089 
1090 	/*
1091 	 * If killing the process, make it run fast.
1092 	 */
1093 	if (__predict_false((prop & SA_KILL) != 0) &&
1094 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1095 		KASSERT(l->l_class == SCHED_OTHER);
1096 		lwp_changepri(l, MAXPRI_USER);
1097 	}
1098 
1099 	/*
1100 	 * If the LWP is running or on a run queue, then we win.  If it's
1101 	 * sleeping interruptably, wake it and make it take the signal.  If
1102 	 * the sleep isn't interruptable, then the chances are it will get
1103 	 * to see the signal soon anyhow.  If suspended, it can't take the
1104 	 * signal right now.  If it's LWP private or for all LWPs, save it
1105 	 * for later; otherwise punt.
1106 	 */
1107 	rv = 0;
1108 
1109 	switch (l->l_stat) {
1110 	case LSRUN:
1111 	case LSONPROC:
1112 		lwp_need_userret(l);
1113 		rv = 1;
1114 		break;
1115 
1116 	case LSSLEEP:
1117 		if ((l->l_flag & LW_SINTR) != 0) {
1118 			/* setrunnable() will release the lock. */
1119 			setrunnable(l);
1120 			return 1;
1121 		}
1122 		break;
1123 
1124 	case LSSUSPENDED:
1125 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1126 			/* lwp_continue() will release the lock. */
1127 			lwp_continue(l);
1128 			return 1;
1129 		}
1130 		break;
1131 
1132 	case LSSTOP:
1133 		if ((prop & SA_STOP) != 0)
1134 			break;
1135 
1136 		/*
1137 		 * If the LWP is stopped and we are sending a continue
1138 		 * signal, then start it again.
1139 		 */
1140 		if ((prop & SA_CONT) != 0) {
1141 			if (l->l_wchan != NULL) {
1142 				l->l_stat = LSSLEEP;
1143 				p->p_nrlwps++;
1144 				rv = 1;
1145 				break;
1146 			}
1147 			/* setrunnable() will release the lock. */
1148 			setrunnable(l);
1149 			return 1;
1150 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1151 			/* setrunnable() will release the lock. */
1152 			setrunnable(l);
1153 			return 1;
1154 		}
1155 		break;
1156 
1157 	default:
1158 		break;
1159 	}
1160 
1161 	lwp_unlock(l);
1162 	return rv;
1163 }
1164 
1165 /*
1166  * Notify an LWP that it has a pending signal.
1167  */
1168 void
1169 signotify(struct lwp *l)
1170 {
1171 	KASSERT(lwp_locked(l, NULL));
1172 
1173 	l->l_flag |= LW_PENDSIG;
1174 	lwp_need_userret(l);
1175 }
1176 
1177 /*
1178  * Find an LWP within process p that is waiting on signal ksi, and hand
1179  * it on.
1180  */
1181 static int
1182 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1183 {
1184 	struct lwp *l;
1185 	int signo;
1186 
1187 	KASSERT(mutex_owned(p->p_lock));
1188 
1189 	signo = ksi->ksi_signo;
1190 
1191 	if (ksi->ksi_lid != 0) {
1192 		/*
1193 		 * Signal came via _lwp_kill().  Find the LWP and see if
1194 		 * it's interested.
1195 		 */
1196 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1197 			return 0;
1198 		if (l->l_sigwaited == NULL ||
1199 		    !sigismember(&l->l_sigwaitset, signo))
1200 			return 0;
1201 	} else {
1202 		/*
1203 		 * Look for any LWP that may be interested.
1204 		 */
1205 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1206 			KASSERT(l->l_sigwaited != NULL);
1207 			if (sigismember(&l->l_sigwaitset, signo))
1208 				break;
1209 		}
1210 	}
1211 
1212 	if (l != NULL) {
1213 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1214 		l->l_sigwaited = NULL;
1215 		LIST_REMOVE(l, l_sigwaiter);
1216 		cv_signal(&l->l_sigcv);
1217 		return 1;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Send the signal to the process.  If the signal has an action, the action
1225  * is usually performed by the target process rather than the caller; we add
1226  * the signal to the set of pending signals for the process.
1227  *
1228  * Exceptions:
1229  *   o When a stop signal is sent to a sleeping process that takes the
1230  *     default action, the process is stopped without awakening it.
1231  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1232  *     regardless of the signal action (eg, blocked or ignored).
1233  *
1234  * Other ignored signals are discarded immediately.
1235  */
1236 int
1237 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1238 {
1239 	int prop, signo = ksi->ksi_signo;
1240 	struct lwp *l = NULL;
1241 	ksiginfo_t *kp;
1242 	lwpid_t lid;
1243 	sig_t action;
1244 	bool toall, debtrap = false;
1245 	int error = 0;
1246 
1247 	KASSERT(!cpu_intr_p());
1248 	KASSERT(mutex_owned(proc_lock));
1249 	KASSERT(mutex_owned(p->p_lock));
1250 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1251 	KASSERT(signo > 0 && signo < NSIG);
1252 
1253 	/*
1254 	 * If the process is being created by fork, is a zombie or is
1255 	 * exiting, then just drop the signal here and bail out.
1256 	 */
1257 	if (p->p_stat == SIDL && signo == SIGTRAP
1258 	    && (p->p_slflag & PSL_TRACED)) {
1259 		/* allow an initial SIGTRAP for traced processes */
1260 		debtrap = true;
1261 	} else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1262 		return 0;
1263 	}
1264 
1265 	/* XXX for core dump/debugger */
1266 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
1267 	p->p_sigctx.ps_info = ksi->ksi_info;
1268 
1269 	/*
1270 	 * Notify any interested parties of the signal.
1271 	 */
1272 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1273 
1274 	/*
1275 	 * Some signals including SIGKILL must act on the entire process.
1276 	 */
1277 	kp = NULL;
1278 	prop = sigprop[signo];
1279 	toall = ((prop & SA_TOALL) != 0);
1280 	lid = toall ? 0 : ksi->ksi_lid;
1281 
1282 	/*
1283 	 * If proc is traced, always give parent a chance.
1284 	 */
1285 	if (p->p_slflag & PSL_TRACED) {
1286 		action = SIG_DFL;
1287 
1288 		if (lid == 0) {
1289 			/*
1290 			 * If the process is being traced and the signal
1291 			 * is being caught, make sure to save any ksiginfo.
1292 			 */
1293 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1294 				goto discard;
1295 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1296 				goto out;
1297 		}
1298 	} else {
1299 
1300 		/*
1301 		 * If the signal is being ignored, then drop it.  Note: we
1302 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1303 		 * SIG_IGN, action will be SIG_DFL here.
1304 		 */
1305 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1306 			goto discard;
1307 
1308 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1309 			action = SIG_CATCH;
1310 		else {
1311 			action = SIG_DFL;
1312 
1313 			/*
1314 			 * If sending a tty stop signal to a member of an
1315 			 * orphaned process group, discard the signal here if
1316 			 * the action is default; don't stop the process below
1317 			 * if sleeping, and don't clear any pending SIGCONT.
1318 			 */
1319 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1320 				goto discard;
1321 
1322 			if (prop & SA_KILL && p->p_nice > NZERO)
1323 				p->p_nice = NZERO;
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * If stopping or continuing a process, discard any pending
1329 	 * signals that would do the inverse.
1330 	 */
1331 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1332 		ksiginfoq_t kq;
1333 
1334 		ksiginfo_queue_init(&kq);
1335 		if ((prop & SA_CONT) != 0)
1336 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1337 		if ((prop & SA_STOP) != 0)
1338 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1339 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1340 	}
1341 
1342 	/*
1343 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1344 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1345 	 * the signal info.  The signal won't be processed further here.
1346 	 */
1347 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1348 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1349 	    sigunwait(p, ksi))
1350 		goto discard;
1351 
1352 	/*
1353 	 * XXXSMP Should be allocated by the caller, we're holding locks
1354 	 * here.
1355 	 */
1356 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1357 		goto discard;
1358 
1359 	/*
1360 	 * LWP private signals are easy - just find the LWP and post
1361 	 * the signal to it.
1362 	 */
1363 	if (lid != 0) {
1364 		if (__predict_false(debtrap)) {
1365 			l = LIST_FIRST(&p->p_lwps);
1366 			if (l->l_lid != lid)
1367 				l = NULL;
1368 		} else {
1369 			l = lwp_find(p, lid);
1370 		}
1371 		if (l != NULL) {
1372 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1373 				goto out;
1374 			membar_producer();
1375 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1376 				signo = -1;
1377 		}
1378 		goto out;
1379 	}
1380 
1381 	/*
1382 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1383 	 * or for an SA process.
1384 	 */
1385 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1386 		if ((p->p_slflag & PSL_TRACED) != 0)
1387 			goto deliver;
1388 
1389 		/*
1390 		 * If SIGCONT is default (or ignored) and process is
1391 		 * asleep, we are finished; the process should not
1392 		 * be awakened.
1393 		 */
1394 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1395 			goto out;
1396 	} else {
1397 		/*
1398 		 * Process is stopped or stopping.
1399 		 * - If traced, then no action is needed, unless killing.
1400 		 * - Run the process only if sending SIGCONT or SIGKILL.
1401 		 */
1402 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1403 			goto out;
1404 		}
1405 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1406 			/*
1407 			 * Re-adjust p_nstopchild if the process was
1408 			 * stopped but not yet collected by its parent.
1409 			 */
1410 			if (p->p_stat == SSTOP && !p->p_waited)
1411 				p->p_pptr->p_nstopchild--;
1412 			p->p_stat = SACTIVE;
1413 			p->p_sflag &= ~PS_STOPPING;
1414 			if (p->p_slflag & PSL_TRACED) {
1415 				KASSERT(signo == SIGKILL);
1416 				goto deliver;
1417 			}
1418 			/*
1419 			 * Do not make signal pending if SIGCONT is default.
1420 			 *
1421 			 * If the process catches SIGCONT, let it handle the
1422 			 * signal itself (if waiting on event - process runs,
1423 			 * otherwise continues sleeping).
1424 			 */
1425 			if ((prop & SA_CONT) != 0) {
1426 				p->p_xsig = SIGCONT;
1427 				p->p_sflag |= PS_CONTINUED;
1428 				child_psignal(p, 0);
1429 				if (action == SIG_DFL) {
1430 					KASSERT(signo != SIGKILL);
1431 					goto deliver;
1432 				}
1433 			}
1434 		} else if ((prop & SA_STOP) != 0) {
1435 			/*
1436 			 * Already stopped, don't need to stop again.
1437 			 * (If we did the shell could get confused.)
1438 			 */
1439 			goto out;
1440 		}
1441 	}
1442 	/*
1443 	 * Make signal pending.
1444 	 */
1445 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1446 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1447 		goto out;
1448 deliver:
1449 	/*
1450 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1451 	 * visible on the per process list (for sigispending()).  This
1452 	 * is unlikely to be needed in practice, but...
1453 	 */
1454 	membar_producer();
1455 
1456 	/*
1457 	 * Try to find an LWP that can take the signal.
1458 	 */
1459 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1460 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1461 			break;
1462 	}
1463 	signo = -1;
1464 out:
1465 	/*
1466 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1467 	 * with locks held.  The caller should take care of this.
1468 	 */
1469 	ksiginfo_free(kp);
1470 	if (signo == -1)
1471 		return error;
1472 discard:
1473 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1474 	return error;
1475 }
1476 
1477 void
1478 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1479 {
1480 	struct proc *p = l->l_proc;
1481 
1482 	KASSERT(mutex_owned(p->p_lock));
1483 	(*p->p_emul->e_sendsig)(ksi, mask);
1484 }
1485 
1486 /*
1487  * Stop any LWPs sleeping interruptably.
1488  */
1489 static void
1490 proc_stop_lwps(struct proc *p)
1491 {
1492 	struct lwp *l;
1493 
1494 	KASSERT(mutex_owned(p->p_lock));
1495 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1496 
1497 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1498 		lwp_lock(l);
1499 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1500 			l->l_stat = LSSTOP;
1501 			p->p_nrlwps--;
1502 		}
1503 		lwp_unlock(l);
1504 	}
1505 }
1506 
1507 /*
1508  * Finish stopping of a process.  Mark it stopped and notify the parent.
1509  *
1510  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1511  */
1512 static void
1513 proc_stop_done(struct proc *p, int ppmask)
1514 {
1515 
1516 	KASSERT(mutex_owned(proc_lock));
1517 	KASSERT(mutex_owned(p->p_lock));
1518 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1519 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1520 
1521 	p->p_sflag &= ~PS_STOPPING;
1522 	p->p_stat = SSTOP;
1523 	p->p_waited = 0;
1524 	p->p_pptr->p_nstopchild++;
1525 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1526 		/* child_psignal drops p_lock briefly. */
1527 		child_psignal(p, ppmask);
1528 		cv_broadcast(&p->p_pptr->p_waitcv);
1529 	}
1530 }
1531 
1532 /*
1533  * Stop the current process and switch away when being stopped or traced.
1534  */
1535 void
1536 sigswitch(int ppmask, int signo, bool relock)
1537 {
1538 	struct lwp *l = curlwp;
1539 	struct proc *p = l->l_proc;
1540 	int biglocks;
1541 
1542 	KASSERT(mutex_owned(p->p_lock));
1543 	KASSERT(l->l_stat == LSONPROC);
1544 	KASSERT(p->p_nrlwps > 0);
1545 
1546 	/*
1547 	 * On entry we know that the process needs to stop.  If it's
1548 	 * the result of a 'sideways' stop signal that has been sourced
1549 	 * through issignal(), then stop other LWPs in the process too.
1550 	 */
1551 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1552 		KASSERT(signo != 0);
1553 		proc_stop(p, signo);
1554 		KASSERT(p->p_nrlwps > 0);
1555 	}
1556 
1557 	/*
1558 	 * If we are the last live LWP, and the stop was a result of
1559 	 * a new signal, then signal the parent.
1560 	 */
1561 	if ((p->p_sflag & PS_STOPPING) != 0) {
1562 		if (relock && !mutex_tryenter(proc_lock)) {
1563 			mutex_exit(p->p_lock);
1564 			mutex_enter(proc_lock);
1565 			mutex_enter(p->p_lock);
1566 		}
1567 
1568 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1569 			/*
1570 			 * Note that proc_stop_done() can drop
1571 			 * p->p_lock briefly.
1572 			 */
1573 			proc_stop_done(p, ppmask);
1574 		}
1575 
1576 		mutex_exit(proc_lock);
1577 	}
1578 
1579 	/*
1580 	 * Unlock and switch away.
1581 	 */
1582 	KERNEL_UNLOCK_ALL(l, &biglocks);
1583 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1584 		p->p_nrlwps--;
1585 		lwp_lock(l);
1586 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1587 		l->l_stat = LSSTOP;
1588 		lwp_unlock(l);
1589 	}
1590 
1591 	mutex_exit(p->p_lock);
1592 	lwp_lock(l);
1593 	mi_switch(l);
1594 	KERNEL_LOCK(biglocks, l);
1595 	mutex_enter(p->p_lock);
1596 }
1597 
1598 /*
1599  * Check for a signal from the debugger.
1600  */
1601 static int
1602 sigchecktrace(void)
1603 {
1604 	struct lwp *l = curlwp;
1605 	struct proc *p = l->l_proc;
1606 	int signo;
1607 
1608 	KASSERT(mutex_owned(p->p_lock));
1609 
1610 	/* If there's a pending SIGKILL, process it immediately. */
1611 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1612 		return 0;
1613 
1614 	/*
1615 	 * If we are no longer being traced, or the parent didn't
1616 	 * give us a signal, or we're stopping, look for more signals.
1617 	 */
1618 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1619 	    (p->p_sflag & PS_STOPPING) != 0)
1620 		return 0;
1621 
1622 	/*
1623 	 * If the new signal is being masked, look for other signals.
1624 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1625 	 */
1626 	signo = p->p_xsig;
1627 	p->p_xsig = 0;
1628 	if (sigismember(&l->l_sigmask, signo)) {
1629 		signo = 0;
1630 	}
1631 	return signo;
1632 }
1633 
1634 /*
1635  * If the current process has received a signal (should be caught or cause
1636  * termination, should interrupt current syscall), return the signal number.
1637  *
1638  * Stop signals with default action are processed immediately, then cleared;
1639  * they aren't returned.  This is checked after each entry to the system for
1640  * a syscall or trap.
1641  *
1642  * We will also return -1 if the process is exiting and the current LWP must
1643  * follow suit.
1644  */
1645 int
1646 issignal(struct lwp *l)
1647 {
1648 	struct proc *p;
1649 	int signo, prop;
1650 	sigpend_t *sp;
1651 	sigset_t ss;
1652 
1653 	p = l->l_proc;
1654 	sp = NULL;
1655 	signo = 0;
1656 
1657 	KASSERT(p == curproc);
1658 	KASSERT(mutex_owned(p->p_lock));
1659 
1660 	for (;;) {
1661 		/* Discard any signals that we have decided not to take. */
1662 		if (signo != 0) {
1663 			(void)sigget(sp, NULL, signo, NULL);
1664 		}
1665 
1666 		/*
1667 		 * If the process is stopped/stopping, then stop ourselves
1668 		 * now that we're on the kernel/userspace boundary.  When
1669 		 * we awaken, check for a signal from the debugger.
1670 		 */
1671 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1672 			sigswitch(PS_NOCLDSTOP, 0, true);
1673 			signo = sigchecktrace();
1674 		} else
1675 			signo = 0;
1676 
1677 		/* Signals from the debugger are "out of band". */
1678 		sp = NULL;
1679 
1680 		/*
1681 		 * If the debugger didn't provide a signal, find a pending
1682 		 * signal from our set.  Check per-LWP signals first, and
1683 		 * then per-process.
1684 		 */
1685 		if (signo == 0) {
1686 			sp = &l->l_sigpend;
1687 			ss = sp->sp_set;
1688 			if ((p->p_lflag & PL_PPWAIT) != 0)
1689 				sigminusset(&vforksigmask, &ss);
1690 			sigminusset(&l->l_sigmask, &ss);
1691 
1692 			if ((signo = firstsig(&ss)) == 0) {
1693 				sp = &p->p_sigpend;
1694 				ss = sp->sp_set;
1695 				if ((p->p_lflag & PL_PPWAIT) != 0)
1696 					sigminusset(&vforksigmask, &ss);
1697 				sigminusset(&l->l_sigmask, &ss);
1698 
1699 				if ((signo = firstsig(&ss)) == 0) {
1700 					/*
1701 					 * No signal pending - clear the
1702 					 * indicator and bail out.
1703 					 */
1704 					lwp_lock(l);
1705 					l->l_flag &= ~LW_PENDSIG;
1706 					lwp_unlock(l);
1707 					sp = NULL;
1708 					break;
1709 				}
1710 			}
1711 		}
1712 
1713 		/*
1714 		 * We should see pending but ignored signals only if
1715 		 * we are being traced.
1716 		 */
1717 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1718 		    (p->p_slflag & PSL_TRACED) == 0) {
1719 			/* Discard the signal. */
1720 			continue;
1721 		}
1722 
1723 		/*
1724 		 * If traced, always stop, and stay stopped until released
1725 		 * by the debugger.  If the our parent is our debugger waiting
1726 		 * for us and we vforked, don't hang as we could deadlock.
1727 		 */
1728 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1729 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
1730 		     (p->p_pptr == p->p_opptr))) {
1731 			/*
1732 			 * Take the signal, but don't remove it from the
1733 			 * siginfo queue, because the debugger can send
1734 			 * it later.
1735 			 */
1736 			if (sp)
1737 				sigdelset(&sp->sp_set, signo);
1738 			p->p_xsig = signo;
1739 
1740 			/* Handling of signal trace */
1741 			sigswitch(0, signo, true);
1742 
1743 			/* Check for a signal from the debugger. */
1744 			if ((signo = sigchecktrace()) == 0)
1745 				continue;
1746 
1747 			/* Signals from the debugger are "out of band". */
1748 			sp = NULL;
1749 		}
1750 
1751 		prop = sigprop[signo];
1752 
1753 		/*
1754 		 * Decide whether the signal should be returned.
1755 		 */
1756 		switch ((long)SIGACTION(p, signo).sa_handler) {
1757 		case (long)SIG_DFL:
1758 			/*
1759 			 * Don't take default actions on system processes.
1760 			 */
1761 			if (p->p_pid <= 1) {
1762 #ifdef DIAGNOSTIC
1763 				/*
1764 				 * Are you sure you want to ignore SIGSEGV
1765 				 * in init? XXX
1766 				 */
1767 				printf_nolog("Process (pid %d) got sig %d\n",
1768 				    p->p_pid, signo);
1769 #endif
1770 				continue;
1771 			}
1772 
1773 			/*
1774 			 * If there is a pending stop signal to process with
1775 			 * default action, stop here, then clear the signal.
1776 			 * However, if process is member of an orphaned
1777 			 * process group, ignore tty stop signals.
1778 			 */
1779 			if (prop & SA_STOP) {
1780 				/*
1781 				 * XXX Don't hold proc_lock for p_lflag,
1782 				 * but it's not a big deal.
1783 				 */
1784 				if ((ISSET(p->p_slflag, PSL_TRACED) &&
1785 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
1786 				     (p->p_pptr == p->p_opptr))) ||
1787 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1788 				    prop & SA_TTYSTOP)) {
1789 					/* Ignore the signal. */
1790 					continue;
1791 				}
1792 				/* Take the signal. */
1793 				(void)sigget(sp, NULL, signo, NULL);
1794 				p->p_xsig = signo;
1795 				p->p_sflag &= ~PS_CONTINUED;
1796 				signo = 0;
1797 				sigswitch(PS_NOCLDSTOP, p->p_xsig, true);
1798 			} else if (prop & SA_IGNORE) {
1799 				/*
1800 				 * Except for SIGCONT, shouldn't get here.
1801 				 * Default action is to ignore; drop it.
1802 				 */
1803 				continue;
1804 			}
1805 			break;
1806 
1807 		case (long)SIG_IGN:
1808 #ifdef DEBUG_ISSIGNAL
1809 			/*
1810 			 * Masking above should prevent us ever trying
1811 			 * to take action on an ignored signal other
1812 			 * than SIGCONT, unless process is traced.
1813 			 */
1814 			if ((prop & SA_CONT) == 0 &&
1815 			    (p->p_slflag & PSL_TRACED) == 0)
1816 				printf_nolog("issignal\n");
1817 #endif
1818 			continue;
1819 
1820 		default:
1821 			/*
1822 			 * This signal has an action, let postsig() process
1823 			 * it.
1824 			 */
1825 			break;
1826 		}
1827 
1828 		break;
1829 	}
1830 
1831 	l->l_sigpendset = sp;
1832 	return signo;
1833 }
1834 
1835 /*
1836  * Take the action for the specified signal
1837  * from the current set of pending signals.
1838  */
1839 void
1840 postsig(int signo)
1841 {
1842 	struct lwp	*l;
1843 	struct proc	*p;
1844 	struct sigacts	*ps;
1845 	sig_t		action;
1846 	sigset_t	*returnmask;
1847 	ksiginfo_t	ksi;
1848 
1849 	l = curlwp;
1850 	p = l->l_proc;
1851 	ps = p->p_sigacts;
1852 
1853 	KASSERT(mutex_owned(p->p_lock));
1854 	KASSERT(signo > 0);
1855 
1856 	/*
1857 	 * Set the new mask value and also defer further occurrences of this
1858 	 * signal.
1859 	 *
1860 	 * Special case: user has done a sigsuspend.  Here the current mask is
1861 	 * not of interest, but rather the mask from before the sigsuspend is
1862 	 * what we want restored after the signal processing is completed.
1863 	 */
1864 	if (l->l_sigrestore) {
1865 		returnmask = &l->l_sigoldmask;
1866 		l->l_sigrestore = 0;
1867 	} else
1868 		returnmask = &l->l_sigmask;
1869 
1870 	/*
1871 	 * Commit to taking the signal before releasing the mutex.
1872 	 */
1873 	action = SIGACTION_PS(ps, signo).sa_handler;
1874 	l->l_ru.ru_nsignals++;
1875 	if (l->l_sigpendset == NULL) {
1876 		/* From the debugger */
1877 		if (p->p_sigctx.ps_faked &&
1878 		    signo == p->p_sigctx.ps_info._signo) {
1879 			KSI_INIT(&ksi);
1880 			ksi.ksi_info = p->p_sigctx.ps_info;
1881 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
1882 			p->p_sigctx.ps_faked = false;
1883 		} else {
1884 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1885 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
1886 		}
1887 	} else
1888 		sigget(l->l_sigpendset, &ksi, signo, NULL);
1889 
1890 	if (ktrpoint(KTR_PSIG)) {
1891 		mutex_exit(p->p_lock);
1892 		if (p->p_emul->e_ktrpsig)
1893 			p->p_emul->e_ktrpsig(signo, action,
1894 			    returnmask, &ksi);
1895 		else
1896 			ktrpsig(signo, action, returnmask, &ksi);
1897 		mutex_enter(p->p_lock);
1898 	}
1899 
1900 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1901 
1902 	if (action == SIG_DFL) {
1903 		/*
1904 		 * Default action, where the default is to kill
1905 		 * the process.  (Other cases were ignored above.)
1906 		 */
1907 		sigexit(l, signo);
1908 		return;
1909 	}
1910 
1911 	/*
1912 	 * If we get here, the signal must be caught.
1913 	 */
1914 #ifdef DIAGNOSTIC
1915 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1916 		panic("postsig action");
1917 #endif
1918 
1919 	kpsendsig(l, &ksi, returnmask);
1920 }
1921 
1922 /*
1923  * sendsig:
1924  *
1925  *	Default signal delivery method for NetBSD.
1926  */
1927 void
1928 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1929 {
1930 	struct sigacts *sa;
1931 	int sig;
1932 
1933 	sig = ksi->ksi_signo;
1934 	sa = curproc->p_sigacts;
1935 
1936 	switch (sa->sa_sigdesc[sig].sd_vers)  {
1937 	case 0:
1938 	case 1:
1939 		/* Compat for 1.6 and earlier. */
1940 		if (sendsig_sigcontext_vec == NULL) {
1941 			break;
1942 		}
1943 		(*sendsig_sigcontext_vec)(ksi, mask);
1944 		return;
1945 	case 2:
1946 	case 3:
1947 		sendsig_siginfo(ksi, mask);
1948 		return;
1949 	default:
1950 		break;
1951 	}
1952 
1953 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1954 	sigexit(curlwp, SIGILL);
1955 }
1956 
1957 /*
1958  * sendsig_reset:
1959  *
1960  *	Reset the signal action.  Called from emulation specific sendsig()
1961  *	before unlocking to deliver the signal.
1962  */
1963 void
1964 sendsig_reset(struct lwp *l, int signo)
1965 {
1966 	struct proc *p = l->l_proc;
1967 	struct sigacts *ps = p->p_sigacts;
1968 
1969 	KASSERT(mutex_owned(p->p_lock));
1970 
1971 	p->p_sigctx.ps_lwp = 0;
1972 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1973 
1974 	mutex_enter(&ps->sa_mutex);
1975 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1976 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1977 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1978 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1979 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1980 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1981 	}
1982 	mutex_exit(&ps->sa_mutex);
1983 }
1984 
1985 /*
1986  * Kill the current process for stated reason.
1987  */
1988 void
1989 killproc(struct proc *p, const char *why)
1990 {
1991 
1992 	KASSERT(mutex_owned(proc_lock));
1993 
1994 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1995 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1996 	psignal(p, SIGKILL);
1997 }
1998 
1999 /*
2000  * Force the current process to exit with the specified signal, dumping core
2001  * if appropriate.  We bypass the normal tests for masked and caught
2002  * signals, allowing unrecoverable failures to terminate the process without
2003  * changing signal state.  Mark the accounting record with the signal
2004  * termination.  If dumping core, save the signal number for the debugger.
2005  * Calls exit and does not return.
2006  */
2007 void
2008 sigexit(struct lwp *l, int signo)
2009 {
2010 	int exitsig, error, docore;
2011 	struct proc *p;
2012 	struct lwp *t;
2013 
2014 	p = l->l_proc;
2015 
2016 	KASSERT(mutex_owned(p->p_lock));
2017 	KERNEL_UNLOCK_ALL(l, NULL);
2018 
2019 	/*
2020 	 * Don't permit coredump() multiple times in the same process.
2021 	 * Call back into sigexit, where we will be suspended until
2022 	 * the deed is done.  Note that this is a recursive call, but
2023 	 * LW_WCORE will prevent us from coming back this way.
2024 	 */
2025 	if ((p->p_sflag & PS_WCORE) != 0) {
2026 		lwp_lock(l);
2027 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2028 		lwp_unlock(l);
2029 		mutex_exit(p->p_lock);
2030 		lwp_userret(l);
2031 		panic("sigexit 1");
2032 		/* NOTREACHED */
2033 	}
2034 
2035 	/* If process is already on the way out, then bail now. */
2036 	if ((p->p_sflag & PS_WEXIT) != 0) {
2037 		mutex_exit(p->p_lock);
2038 		lwp_exit(l);
2039 		panic("sigexit 2");
2040 		/* NOTREACHED */
2041 	}
2042 
2043 	/*
2044 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2045 	 * so that their registers are available long enough to be dumped.
2046  	 */
2047 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2048 		p->p_sflag |= PS_WCORE;
2049 		for (;;) {
2050 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2051 				lwp_lock(t);
2052 				if (t == l) {
2053 					t->l_flag &= ~LW_WSUSPEND;
2054 					lwp_unlock(t);
2055 					continue;
2056 				}
2057 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2058 				lwp_suspend(l, t);
2059 			}
2060 
2061 			if (p->p_nrlwps == 1)
2062 				break;
2063 
2064 			/*
2065 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2066 			 * for everyone else to stop before proceeding.
2067 			 */
2068 			p->p_nlwpwait++;
2069 			cv_broadcast(&p->p_lwpcv);
2070 			cv_wait(&p->p_lwpcv, p->p_lock);
2071 			p->p_nlwpwait--;
2072 		}
2073 	}
2074 
2075 	exitsig = signo;
2076 	p->p_acflag |= AXSIG;
2077 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2078 	p->p_sigctx.ps_info._signo = signo;
2079 	p->p_sigctx.ps_info._code = SI_NOINFO;
2080 
2081 	if (docore) {
2082 		mutex_exit(p->p_lock);
2083 		error = (*coredump_vec)(l, NULL);
2084 
2085 		if (kern_logsigexit) {
2086 			int uid = l->l_cred ?
2087 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2088 
2089 			if (error)
2090 				log(LOG_INFO, lognocoredump, p->p_pid,
2091 				    p->p_comm, uid, signo, error);
2092 			else
2093 				log(LOG_INFO, logcoredump, p->p_pid,
2094 				    p->p_comm, uid, signo);
2095 		}
2096 
2097 #ifdef PAX_SEGVGUARD
2098 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2099 #endif /* PAX_SEGVGUARD */
2100 		/* Acquire the sched state mutex.  exit1() will release it. */
2101 		mutex_enter(p->p_lock);
2102 		if (error == 0)
2103 			p->p_sflag |= PS_COREDUMP;
2104 	}
2105 
2106 	/* No longer dumping core. */
2107 	p->p_sflag &= ~PS_WCORE;
2108 
2109 	exit1(l, 0, exitsig);
2110 	/* NOTREACHED */
2111 }
2112 
2113 /*
2114  * Put process 'p' into the stopped state and optionally, notify the parent.
2115  */
2116 void
2117 proc_stop(struct proc *p, int signo)
2118 {
2119 	struct lwp *l;
2120 
2121 	KASSERT(mutex_owned(p->p_lock));
2122 
2123 	/*
2124 	 * First off, set the stopping indicator and bring all sleeping
2125 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2126 	 * unlock between here and the p->p_nrlwps check below.
2127 	 */
2128 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2129 	membar_producer();
2130 
2131 	proc_stop_lwps(p);
2132 
2133 	/*
2134 	 * If there are no LWPs available to take the signal, then we
2135 	 * signal the parent process immediately.  Otherwise, the last
2136 	 * LWP to stop will take care of it.
2137 	 */
2138 
2139 	if (p->p_nrlwps == 0) {
2140 		proc_stop_done(p, PS_NOCLDSTOP);
2141 	} else {
2142 		/*
2143 		 * Have the remaining LWPs come to a halt, and trigger
2144 		 * proc_stop_callout() to ensure that they do.
2145 		 */
2146 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2147 			sigpost(l, SIG_DFL, SA_STOP, signo);
2148 		}
2149 		callout_schedule(&proc_stop_ch, 1);
2150 	}
2151 }
2152 
2153 /*
2154  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2155  * but wait for them to come to a halt at the kernel-user boundary.  This is
2156  * to allow LWPs to release any locks that they may hold before stopping.
2157  *
2158  * Non-interruptable sleeps can be long, and there is the potential for an
2159  * LWP to begin sleeping interruptably soon after the process has been set
2160  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2161  * stopping, and so complete halt of the process and the return of status
2162  * information to the parent could be delayed indefinitely.
2163  *
2164  * To handle this race, proc_stop_callout() runs once per tick while there
2165  * are stopping processes in the system.  It sets LWPs that are sleeping
2166  * interruptably into the LSSTOP state.
2167  *
2168  * Note that we are not concerned about keeping all LWPs stopped while the
2169  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2170  * What we do need to ensure is that all LWPs in a stopping process have
2171  * stopped at least once, so that notification can be sent to the parent
2172  * process.
2173  */
2174 static void
2175 proc_stop_callout(void *cookie)
2176 {
2177 	bool more, restart;
2178 	struct proc *p;
2179 
2180 	(void)cookie;
2181 
2182 	do {
2183 		restart = false;
2184 		more = false;
2185 
2186 		mutex_enter(proc_lock);
2187 		PROCLIST_FOREACH(p, &allproc) {
2188 			mutex_enter(p->p_lock);
2189 
2190 			if ((p->p_sflag & PS_STOPPING) == 0) {
2191 				mutex_exit(p->p_lock);
2192 				continue;
2193 			}
2194 
2195 			/* Stop any LWPs sleeping interruptably. */
2196 			proc_stop_lwps(p);
2197 			if (p->p_nrlwps == 0) {
2198 				/*
2199 				 * We brought the process to a halt.
2200 				 * Mark it as stopped and notify the
2201 				 * parent.
2202 				 */
2203 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2204 					/*
2205 					 * Note that proc_stop_done() will
2206 					 * drop p->p_lock briefly.
2207 					 * Arrange to restart and check
2208 					 * all processes again.
2209 					 */
2210 					restart = true;
2211 				}
2212 				proc_stop_done(p, PS_NOCLDSTOP);
2213 			} else
2214 				more = true;
2215 
2216 			mutex_exit(p->p_lock);
2217 			if (restart)
2218 				break;
2219 		}
2220 		mutex_exit(proc_lock);
2221 	} while (restart);
2222 
2223 	/*
2224 	 * If we noted processes that are stopping but still have
2225 	 * running LWPs, then arrange to check again in 1 tick.
2226 	 */
2227 	if (more)
2228 		callout_schedule(&proc_stop_ch, 1);
2229 }
2230 
2231 /*
2232  * Given a process in state SSTOP, set the state back to SACTIVE and
2233  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2234  */
2235 void
2236 proc_unstop(struct proc *p)
2237 {
2238 	struct lwp *l;
2239 	int sig;
2240 
2241 	KASSERT(mutex_owned(proc_lock));
2242 	KASSERT(mutex_owned(p->p_lock));
2243 
2244 	p->p_stat = SACTIVE;
2245 	p->p_sflag &= ~PS_STOPPING;
2246 	sig = p->p_xsig;
2247 
2248 	if (!p->p_waited)
2249 		p->p_pptr->p_nstopchild--;
2250 
2251 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2252 		lwp_lock(l);
2253 		if (l->l_stat != LSSTOP) {
2254 			lwp_unlock(l);
2255 			continue;
2256 		}
2257 		if (l->l_wchan == NULL) {
2258 			setrunnable(l);
2259 			continue;
2260 		}
2261 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2262 			setrunnable(l);
2263 			sig = 0;
2264 		} else {
2265 			l->l_stat = LSSLEEP;
2266 			p->p_nrlwps++;
2267 			lwp_unlock(l);
2268 		}
2269 	}
2270 }
2271 
2272 void
2273 proc_stoptrace(int trapno)
2274 {
2275 	struct lwp *l = curlwp;
2276 	struct proc *p = l->l_proc;
2277 	struct sigacts *ps;
2278 	sigset_t *mask;
2279 	sig_t action;
2280 	ksiginfo_t ksi;
2281 	const int signo = SIGTRAP;
2282 
2283 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2284 
2285 	KSI_INIT_TRAP(&ksi);
2286 	ksi.ksi_lid = l->l_lid;
2287 	ksi.ksi_info._signo = signo;
2288 	ksi.ksi_info._code = trapno;
2289 
2290 	mutex_enter(p->p_lock);
2291 
2292 	/* Needed for ktrace */
2293 	ps = p->p_sigacts;
2294 	action = SIGACTION_PS(ps, signo).sa_handler;
2295 	mask = &l->l_sigmask;
2296 
2297 	/* initproc (PID1) cannot became a debugger */
2298 	KASSERT(p->p_pptr != initproc);
2299 
2300 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2301 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2302 
2303 	p->p_xsig = signo;
2304 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
2305 	p->p_sigctx.ps_info = ksi.ksi_info;
2306 	sigswitch(0, signo, true);
2307 	mutex_exit(p->p_lock);
2308 
2309 	if (ktrpoint(KTR_PSIG)) {
2310 		if (p->p_emul->e_ktrpsig)
2311 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2312 		else
2313 			ktrpsig(signo, action, mask, &ksi);
2314 	}
2315 }
2316 
2317 static int
2318 filt_sigattach(struct knote *kn)
2319 {
2320 	struct proc *p = curproc;
2321 
2322 	kn->kn_obj = p;
2323 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2324 
2325 	mutex_enter(p->p_lock);
2326 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2327 	mutex_exit(p->p_lock);
2328 
2329 	return 0;
2330 }
2331 
2332 static void
2333 filt_sigdetach(struct knote *kn)
2334 {
2335 	struct proc *p = kn->kn_obj;
2336 
2337 	mutex_enter(p->p_lock);
2338 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2339 	mutex_exit(p->p_lock);
2340 }
2341 
2342 /*
2343  * Signal knotes are shared with proc knotes, so we apply a mask to
2344  * the hint in order to differentiate them from process hints.  This
2345  * could be avoided by using a signal-specific knote list, but probably
2346  * isn't worth the trouble.
2347  */
2348 static int
2349 filt_signal(struct knote *kn, long hint)
2350 {
2351 
2352 	if (hint & NOTE_SIGNAL) {
2353 		hint &= ~NOTE_SIGNAL;
2354 
2355 		if (kn->kn_id == hint)
2356 			kn->kn_data++;
2357 	}
2358 	return (kn->kn_data != 0);
2359 }
2360 
2361 const struct filterops sig_filtops = {
2362 		.f_isfd = 0,
2363 		.f_attach = filt_sigattach,
2364 		.f_detach = filt_sigdetach,
2365 		.f_event = filt_signal,
2366 };
2367