1 /* $NetBSD: kern_sig.c,v 1.349 2018/05/28 14:07:37 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.349 2018/05/28 14:07:37 kamil Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_dtrace.h" 77 #include "opt_compat_sunos.h" 78 #include "opt_compat_netbsd.h" 79 #include "opt_compat_netbsd32.h" 80 #include "opt_pax.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/ptrace.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 #include <sys/ktrace.h> 90 #include <sys/syslog.h> 91 #include <sys/filedesc.h> 92 #include <sys/file.h> 93 #include <sys/pool.h> 94 #include <sys/ucontext.h> 95 #include <sys/exec.h> 96 #include <sys/kauth.h> 97 #include <sys/acct.h> 98 #include <sys/callout.h> 99 #include <sys/atomic.h> 100 #include <sys/cpu.h> 101 #include <sys/module.h> 102 #include <sys/sdt.h> 103 104 #ifdef PAX_SEGVGUARD 105 #include <sys/pax.h> 106 #endif /* PAX_SEGVGUARD */ 107 108 #include <uvm/uvm_extern.h> 109 110 #define SIGQUEUE_MAX 32 111 static pool_cache_t sigacts_cache __read_mostly; 112 static pool_cache_t ksiginfo_cache __read_mostly; 113 static callout_t proc_stop_ch __cacheline_aligned; 114 115 sigset_t contsigmask __cacheline_aligned; 116 sigset_t stopsigmask __cacheline_aligned; 117 static sigset_t vforksigmask __cacheline_aligned; 118 sigset_t sigcantmask __cacheline_aligned; 119 120 static void ksiginfo_exechook(struct proc *, void *); 121 static void proc_stop(struct proc *, int); 122 static void proc_stop_done(struct proc *, int); 123 static void proc_stop_callout(void *); 124 static int sigchecktrace(void); 125 static int sigpost(struct lwp *, sig_t, int, int); 126 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *); 127 static int sigunwait(struct proc *, const ksiginfo_t *); 128 129 static void sigacts_poolpage_free(struct pool *, void *); 130 static void *sigacts_poolpage_alloc(struct pool *, int); 131 132 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 133 int (*coredump_vec)(struct lwp *, const char *) = 134 (int (*)(struct lwp *, const char *))enosys; 135 136 /* 137 * DTrace SDT provider definitions 138 */ 139 SDT_PROVIDER_DECLARE(proc); 140 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, 141 "struct lwp *", /* target thread */ 142 "struct proc *", /* target process */ 143 "int"); /* signal */ 144 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard, 145 "struct lwp *", /* target thread */ 146 "struct proc *", /* target process */ 147 "int"); /* signal */ 148 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle, 149 "int", /* signal */ 150 "ksiginfo_t *", /* signal info */ 151 "void (*)(void)"); /* handler address */ 152 153 154 static struct pool_allocator sigactspool_allocator = { 155 .pa_alloc = sigacts_poolpage_alloc, 156 .pa_free = sigacts_poolpage_free 157 }; 158 159 #ifdef DEBUG 160 int kern_logsigexit = 1; 161 #else 162 int kern_logsigexit = 0; 163 #endif 164 165 static const char logcoredump[] = 166 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 167 static const char lognocoredump[] = 168 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 169 170 static kauth_listener_t signal_listener; 171 172 static int 173 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 174 void *arg0, void *arg1, void *arg2, void *arg3) 175 { 176 struct proc *p; 177 int result, signum; 178 179 result = KAUTH_RESULT_DEFER; 180 p = arg0; 181 signum = (int)(unsigned long)arg1; 182 183 if (action != KAUTH_PROCESS_SIGNAL) 184 return result; 185 186 if (kauth_cred_uidmatch(cred, p->p_cred) || 187 (signum == SIGCONT && (curproc->p_session == p->p_session))) 188 result = KAUTH_RESULT_ALLOW; 189 190 return result; 191 } 192 193 /* 194 * signal_init: 195 * 196 * Initialize global signal-related data structures. 197 */ 198 void 199 signal_init(void) 200 { 201 202 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 203 204 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 205 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 206 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 207 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 208 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 209 210 exechook_establish(ksiginfo_exechook, NULL); 211 212 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 213 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 214 215 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 216 signal_listener_cb, NULL); 217 } 218 219 /* 220 * sigacts_poolpage_alloc: 221 * 222 * Allocate a page for the sigacts memory pool. 223 */ 224 static void * 225 sigacts_poolpage_alloc(struct pool *pp, int flags) 226 { 227 228 return (void *)uvm_km_alloc(kernel_map, 229 PAGE_SIZE * 2, PAGE_SIZE * 2, 230 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 231 | UVM_KMF_WIRED); 232 } 233 234 /* 235 * sigacts_poolpage_free: 236 * 237 * Free a page on behalf of the sigacts memory pool. 238 */ 239 static void 240 sigacts_poolpage_free(struct pool *pp, void *v) 241 { 242 243 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 244 } 245 246 /* 247 * sigactsinit: 248 * 249 * Create an initial sigacts structure, using the same signal state 250 * as of specified process. If 'share' is set, share the sigacts by 251 * holding a reference, otherwise just copy it from parent. 252 */ 253 struct sigacts * 254 sigactsinit(struct proc *pp, int share) 255 { 256 struct sigacts *ps = pp->p_sigacts, *ps2; 257 258 if (__predict_false(share)) { 259 atomic_inc_uint(&ps->sa_refcnt); 260 return ps; 261 } 262 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 263 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 264 ps2->sa_refcnt = 1; 265 266 mutex_enter(&ps->sa_mutex); 267 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 268 mutex_exit(&ps->sa_mutex); 269 return ps2; 270 } 271 272 /* 273 * sigactsunshare: 274 * 275 * Make this process not share its sigacts, maintaining all signal state. 276 */ 277 void 278 sigactsunshare(struct proc *p) 279 { 280 struct sigacts *ps, *oldps = p->p_sigacts; 281 282 if (__predict_true(oldps->sa_refcnt == 1)) 283 return; 284 285 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 286 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 287 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 288 ps->sa_refcnt = 1; 289 290 p->p_sigacts = ps; 291 sigactsfree(oldps); 292 } 293 294 /* 295 * sigactsfree; 296 * 297 * Release a sigacts structure. 298 */ 299 void 300 sigactsfree(struct sigacts *ps) 301 { 302 303 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 304 mutex_destroy(&ps->sa_mutex); 305 pool_cache_put(sigacts_cache, ps); 306 } 307 } 308 309 /* 310 * siginit: 311 * 312 * Initialize signal state for process 0; set to ignore signals that 313 * are ignored by default and disable the signal stack. Locking not 314 * required as the system is still cold. 315 */ 316 void 317 siginit(struct proc *p) 318 { 319 struct lwp *l; 320 struct sigacts *ps; 321 int signo, prop; 322 323 ps = p->p_sigacts; 324 sigemptyset(&contsigmask); 325 sigemptyset(&stopsigmask); 326 sigemptyset(&vforksigmask); 327 sigemptyset(&sigcantmask); 328 for (signo = 1; signo < NSIG; signo++) { 329 prop = sigprop[signo]; 330 if (prop & SA_CONT) 331 sigaddset(&contsigmask, signo); 332 if (prop & SA_STOP) 333 sigaddset(&stopsigmask, signo); 334 if (prop & SA_STOP && signo != SIGSTOP) 335 sigaddset(&vforksigmask, signo); 336 if (prop & SA_CANTMASK) 337 sigaddset(&sigcantmask, signo); 338 if (prop & SA_IGNORE && signo != SIGCONT) 339 sigaddset(&p->p_sigctx.ps_sigignore, signo); 340 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 341 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 342 } 343 sigemptyset(&p->p_sigctx.ps_sigcatch); 344 p->p_sflag &= ~PS_NOCLDSTOP; 345 346 ksiginfo_queue_init(&p->p_sigpend.sp_info); 347 sigemptyset(&p->p_sigpend.sp_set); 348 349 /* 350 * Reset per LWP state. 351 */ 352 l = LIST_FIRST(&p->p_lwps); 353 l->l_sigwaited = NULL; 354 l->l_sigstk = SS_INIT; 355 ksiginfo_queue_init(&l->l_sigpend.sp_info); 356 sigemptyset(&l->l_sigpend.sp_set); 357 358 /* One reference. */ 359 ps->sa_refcnt = 1; 360 } 361 362 /* 363 * execsigs: 364 * 365 * Reset signals for an exec of the specified process. 366 */ 367 void 368 execsigs(struct proc *p) 369 { 370 struct sigacts *ps; 371 struct lwp *l; 372 int signo, prop; 373 sigset_t tset; 374 ksiginfoq_t kq; 375 376 KASSERT(p->p_nlwps == 1); 377 378 sigactsunshare(p); 379 ps = p->p_sigacts; 380 381 /* 382 * Reset caught signals. Held signals remain held through 383 * l->l_sigmask (unless they were caught, and are now ignored 384 * by default). 385 * 386 * No need to lock yet, the process has only one LWP and 387 * at this point the sigacts are private to the process. 388 */ 389 sigemptyset(&tset); 390 for (signo = 1; signo < NSIG; signo++) { 391 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 392 prop = sigprop[signo]; 393 if (prop & SA_IGNORE) { 394 if ((prop & SA_CONT) == 0) 395 sigaddset(&p->p_sigctx.ps_sigignore, 396 signo); 397 sigaddset(&tset, signo); 398 } 399 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 400 } 401 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 402 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 403 } 404 ksiginfo_queue_init(&kq); 405 406 mutex_enter(p->p_lock); 407 sigclearall(p, &tset, &kq); 408 sigemptyset(&p->p_sigctx.ps_sigcatch); 409 410 /* 411 * Reset no zombies if child dies flag as Solaris does. 412 */ 413 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 414 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 415 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 416 417 /* 418 * Reset per-LWP state. 419 */ 420 l = LIST_FIRST(&p->p_lwps); 421 l->l_sigwaited = NULL; 422 l->l_sigstk = SS_INIT; 423 ksiginfo_queue_init(&l->l_sigpend.sp_info); 424 sigemptyset(&l->l_sigpend.sp_set); 425 mutex_exit(p->p_lock); 426 427 ksiginfo_queue_drain(&kq); 428 } 429 430 /* 431 * ksiginfo_exechook: 432 * 433 * Free all pending ksiginfo entries from a process on exec. 434 * Additionally, drain any unused ksiginfo structures in the 435 * system back to the pool. 436 * 437 * XXX This should not be a hook, every process has signals. 438 */ 439 static void 440 ksiginfo_exechook(struct proc *p, void *v) 441 { 442 ksiginfoq_t kq; 443 444 ksiginfo_queue_init(&kq); 445 446 mutex_enter(p->p_lock); 447 sigclearall(p, NULL, &kq); 448 mutex_exit(p->p_lock); 449 450 ksiginfo_queue_drain(&kq); 451 } 452 453 /* 454 * ksiginfo_alloc: 455 * 456 * Allocate a new ksiginfo structure from the pool, and optionally copy 457 * an existing one. If the existing ksiginfo_t is from the pool, and 458 * has not been queued somewhere, then just return it. Additionally, 459 * if the existing ksiginfo_t does not contain any information beyond 460 * the signal number, then just return it. 461 */ 462 ksiginfo_t * 463 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 464 { 465 ksiginfo_t *kp; 466 467 if (ok != NULL) { 468 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 469 KSI_FROMPOOL) 470 return ok; 471 if (KSI_EMPTY_P(ok)) 472 return ok; 473 } 474 475 kp = pool_cache_get(ksiginfo_cache, flags); 476 if (kp == NULL) { 477 #ifdef DIAGNOSTIC 478 printf("Out of memory allocating ksiginfo for pid %d\n", 479 p->p_pid); 480 #endif 481 return NULL; 482 } 483 484 if (ok != NULL) { 485 memcpy(kp, ok, sizeof(*kp)); 486 kp->ksi_flags &= ~KSI_QUEUED; 487 } else 488 KSI_INIT_EMPTY(kp); 489 490 kp->ksi_flags |= KSI_FROMPOOL; 491 492 return kp; 493 } 494 495 /* 496 * ksiginfo_free: 497 * 498 * If the given ksiginfo_t is from the pool and has not been queued, 499 * then free it. 500 */ 501 void 502 ksiginfo_free(ksiginfo_t *kp) 503 { 504 505 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 506 return; 507 pool_cache_put(ksiginfo_cache, kp); 508 } 509 510 /* 511 * ksiginfo_queue_drain: 512 * 513 * Drain a non-empty ksiginfo_t queue. 514 */ 515 void 516 ksiginfo_queue_drain0(ksiginfoq_t *kq) 517 { 518 ksiginfo_t *ksi; 519 520 KASSERT(!TAILQ_EMPTY(kq)); 521 522 while (!TAILQ_EMPTY(kq)) { 523 ksi = TAILQ_FIRST(kq); 524 TAILQ_REMOVE(kq, ksi, ksi_list); 525 pool_cache_put(ksiginfo_cache, ksi); 526 } 527 } 528 529 static int 530 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 531 { 532 ksiginfo_t *ksi, *nksi; 533 534 if (sp == NULL) 535 goto out; 536 537 /* Find siginfo and copy it out. */ 538 int count = 0; 539 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) { 540 if (ksi->ksi_signo != signo) 541 continue; 542 if (count++ > 0) /* Only remove the first, count all of them */ 543 continue; 544 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 545 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 546 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 547 ksi->ksi_flags &= ~KSI_QUEUED; 548 if (out != NULL) { 549 memcpy(out, ksi, sizeof(*out)); 550 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 551 } 552 ksiginfo_free(ksi); 553 } 554 if (count) 555 return count; 556 557 out: 558 /* If there is no siginfo, then manufacture it. */ 559 if (out != NULL) { 560 KSI_INIT(out); 561 out->ksi_info._signo = signo; 562 out->ksi_info._code = SI_NOINFO; 563 } 564 return 0; 565 } 566 567 /* 568 * sigget: 569 * 570 * Fetch the first pending signal from a set. Optionally, also fetch 571 * or manufacture a ksiginfo element. Returns the number of the first 572 * pending signal, or zero. 573 */ 574 int 575 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 576 { 577 sigset_t tset; 578 int count; 579 580 /* If there's no pending set, the signal is from the debugger. */ 581 if (sp == NULL) 582 goto out; 583 584 /* Construct mask from signo, and 'mask'. */ 585 if (signo == 0) { 586 if (mask != NULL) { 587 tset = *mask; 588 __sigandset(&sp->sp_set, &tset); 589 } else 590 tset = sp->sp_set; 591 592 /* If there are no signals pending - return. */ 593 if ((signo = firstsig(&tset)) == 0) 594 goto out; 595 } else { 596 KASSERT(sigismember(&sp->sp_set, signo)); 597 } 598 599 sigdelset(&sp->sp_set, signo); 600 out: 601 count = siggetinfo(sp, out, signo); 602 if (count > 1) 603 sigaddset(&sp->sp_set, signo); 604 return signo; 605 } 606 607 /* 608 * sigput: 609 * 610 * Append a new ksiginfo element to the list of pending ksiginfo's. 611 */ 612 static int 613 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 614 { 615 ksiginfo_t *kp; 616 617 KASSERT(mutex_owned(p->p_lock)); 618 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 619 620 sigaddset(&sp->sp_set, ksi->ksi_signo); 621 622 /* 623 * If there is no siginfo, we are done. 624 */ 625 if (KSI_EMPTY_P(ksi)) 626 return 0; 627 628 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 629 630 size_t count = 0; 631 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 632 count++; 633 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX) 634 continue; 635 if (kp->ksi_signo == ksi->ksi_signo) { 636 KSI_COPY(ksi, kp); 637 kp->ksi_flags |= KSI_QUEUED; 638 return 0; 639 } 640 } 641 642 if (count >= SIGQUEUE_MAX) { 643 #ifdef DIAGNOSTIC 644 printf("%s(%d): Signal queue is full signal=%d\n", 645 p->p_comm, p->p_pid, ksi->ksi_signo); 646 #endif 647 return EAGAIN; 648 } 649 ksi->ksi_flags |= KSI_QUEUED; 650 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 651 652 return 0; 653 } 654 655 /* 656 * sigclear: 657 * 658 * Clear all pending signals in the specified set. 659 */ 660 void 661 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 662 { 663 ksiginfo_t *ksi, *next; 664 665 if (mask == NULL) 666 sigemptyset(&sp->sp_set); 667 else 668 sigminusset(mask, &sp->sp_set); 669 670 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 671 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 672 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 673 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 674 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 675 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 676 } 677 } 678 } 679 680 /* 681 * sigclearall: 682 * 683 * Clear all pending signals in the specified set from a process and 684 * its LWPs. 685 */ 686 void 687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 688 { 689 struct lwp *l; 690 691 KASSERT(mutex_owned(p->p_lock)); 692 693 sigclear(&p->p_sigpend, mask, kq); 694 695 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 696 sigclear(&l->l_sigpend, mask, kq); 697 } 698 } 699 700 /* 701 * sigispending: 702 * 703 * Return the first signal number if there are pending signals for the 704 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 705 * and that the signal has been posted to the appopriate queue before 706 * LW_PENDSIG is set. 707 */ 708 int 709 sigispending(struct lwp *l, int signo) 710 { 711 struct proc *p = l->l_proc; 712 sigset_t tset; 713 714 membar_consumer(); 715 716 tset = l->l_sigpend.sp_set; 717 sigplusset(&p->p_sigpend.sp_set, &tset); 718 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 719 sigminusset(&l->l_sigmask, &tset); 720 721 if (signo == 0) { 722 return firstsig(&tset); 723 } 724 return sigismember(&tset, signo) ? signo : 0; 725 } 726 727 void 728 getucontext(struct lwp *l, ucontext_t *ucp) 729 { 730 struct proc *p = l->l_proc; 731 732 KASSERT(mutex_owned(p->p_lock)); 733 734 ucp->uc_flags = 0; 735 ucp->uc_link = l->l_ctxlink; 736 ucp->uc_sigmask = l->l_sigmask; 737 ucp->uc_flags |= _UC_SIGMASK; 738 739 /* 740 * The (unsupplied) definition of the `current execution stack' 741 * in the System V Interface Definition appears to allow returning 742 * the main context stack. 743 */ 744 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 745 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 746 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 747 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 748 } else { 749 /* Simply copy alternate signal execution stack. */ 750 ucp->uc_stack = l->l_sigstk; 751 } 752 ucp->uc_flags |= _UC_STACK; 753 mutex_exit(p->p_lock); 754 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 755 mutex_enter(p->p_lock); 756 } 757 758 int 759 setucontext(struct lwp *l, const ucontext_t *ucp) 760 { 761 struct proc *p = l->l_proc; 762 int error; 763 764 KASSERT(mutex_owned(p->p_lock)); 765 766 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 767 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 768 if (error != 0) 769 return error; 770 } 771 772 mutex_exit(p->p_lock); 773 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 774 mutex_enter(p->p_lock); 775 if (error != 0) 776 return (error); 777 778 l->l_ctxlink = ucp->uc_link; 779 780 /* 781 * If there was stack information, update whether or not we are 782 * still running on an alternate signal stack. 783 */ 784 if ((ucp->uc_flags & _UC_STACK) != 0) { 785 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 786 l->l_sigstk.ss_flags |= SS_ONSTACK; 787 else 788 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 789 } 790 791 return 0; 792 } 793 794 /* 795 * killpg1: common code for kill process group/broadcast kill. 796 */ 797 int 798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 799 { 800 struct proc *p, *cp; 801 kauth_cred_t pc; 802 struct pgrp *pgrp; 803 int nfound; 804 int signo = ksi->ksi_signo; 805 806 cp = l->l_proc; 807 pc = l->l_cred; 808 nfound = 0; 809 810 mutex_enter(proc_lock); 811 if (all) { 812 /* 813 * Broadcast. 814 */ 815 PROCLIST_FOREACH(p, &allproc) { 816 if (p->p_pid <= 1 || p == cp || 817 (p->p_flag & PK_SYSTEM) != 0) 818 continue; 819 mutex_enter(p->p_lock); 820 if (kauth_authorize_process(pc, 821 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 822 NULL) == 0) { 823 nfound++; 824 if (signo) 825 kpsignal2(p, ksi); 826 } 827 mutex_exit(p->p_lock); 828 } 829 } else { 830 if (pgid == 0) 831 /* Zero pgid means send to my process group. */ 832 pgrp = cp->p_pgrp; 833 else { 834 pgrp = pgrp_find(pgid); 835 if (pgrp == NULL) 836 goto out; 837 } 838 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 839 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 840 continue; 841 mutex_enter(p->p_lock); 842 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 843 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 844 nfound++; 845 if (signo && P_ZOMBIE(p) == 0) 846 kpsignal2(p, ksi); 847 } 848 mutex_exit(p->p_lock); 849 } 850 } 851 out: 852 mutex_exit(proc_lock); 853 return nfound ? 0 : ESRCH; 854 } 855 856 /* 857 * Send a signal to a process group. If checktty is set, limit to members 858 * which have a controlling terminal. 859 */ 860 void 861 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 862 { 863 ksiginfo_t ksi; 864 865 KASSERT(!cpu_intr_p()); 866 KASSERT(mutex_owned(proc_lock)); 867 868 KSI_INIT_EMPTY(&ksi); 869 ksi.ksi_signo = sig; 870 kpgsignal(pgrp, &ksi, NULL, checkctty); 871 } 872 873 void 874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 875 { 876 struct proc *p; 877 878 KASSERT(!cpu_intr_p()); 879 KASSERT(mutex_owned(proc_lock)); 880 KASSERT(pgrp != NULL); 881 882 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 883 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 884 kpsignal(p, ksi, data); 885 } 886 887 /* 888 * Send a signal caused by a trap to the current LWP. If it will be caught 889 * immediately, deliver it with correct code. Otherwise, post it normally. 890 */ 891 void 892 trapsignal(struct lwp *l, ksiginfo_t *ksi) 893 { 894 struct proc *p; 895 struct sigacts *ps; 896 int signo = ksi->ksi_signo; 897 sigset_t *mask; 898 899 KASSERT(KSI_TRAP_P(ksi)); 900 901 ksi->ksi_lid = l->l_lid; 902 p = l->l_proc; 903 904 KASSERT(!cpu_intr_p()); 905 mutex_enter(proc_lock); 906 mutex_enter(p->p_lock); 907 mask = &l->l_sigmask; 908 ps = p->p_sigacts; 909 910 const bool traced = (p->p_slflag & PSL_TRACED) != 0; 911 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo); 912 const bool masked = sigismember(mask, signo); 913 if (!traced && caught && !masked) { 914 mutex_exit(proc_lock); 915 l->l_ru.ru_nsignals++; 916 kpsendsig(l, ksi, mask); 917 mutex_exit(p->p_lock); 918 if (ktrpoint(KTR_PSIG)) { 919 if (p->p_emul->e_ktrpsig) 920 p->p_emul->e_ktrpsig(signo, 921 SIGACTION_PS(ps, signo).sa_handler, 922 mask, ksi); 923 else 924 ktrpsig(signo, 925 SIGACTION_PS(ps, signo).sa_handler, 926 mask, ksi); 927 } 928 return; 929 } 930 931 /* 932 * If the signal is masked or ignored, then unmask it and 933 * reset it to the default action so that the process or 934 * its tracer will be notified. 935 */ 936 const bool ignored = SIGACTION_PS(ps, signo).sa_handler == SIG_IGN; 937 if (masked || ignored) { 938 mutex_enter(&ps->sa_mutex); 939 sigdelset(mask, signo); 940 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 941 sigdelset(&p->p_sigctx.ps_sigignore, signo); 942 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo); 943 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 944 mutex_exit(&ps->sa_mutex); 945 } 946 947 kpsignal2(p, ksi); 948 mutex_exit(p->p_lock); 949 mutex_exit(proc_lock); 950 } 951 952 /* 953 * Fill in signal information and signal the parent for a child status change. 954 */ 955 void 956 child_psignal(struct proc *p, int mask) 957 { 958 ksiginfo_t ksi; 959 struct proc *q; 960 int xsig; 961 962 KASSERT(mutex_owned(proc_lock)); 963 KASSERT(mutex_owned(p->p_lock)); 964 965 xsig = p->p_xsig; 966 967 KSI_INIT(&ksi); 968 ksi.ksi_signo = SIGCHLD; 969 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 970 ksi.ksi_pid = p->p_pid; 971 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 972 ksi.ksi_status = xsig; 973 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 974 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 975 976 q = p->p_pptr; 977 978 mutex_exit(p->p_lock); 979 mutex_enter(q->p_lock); 980 981 if ((q->p_sflag & mask) == 0) 982 kpsignal2(q, &ksi); 983 984 mutex_exit(q->p_lock); 985 mutex_enter(p->p_lock); 986 } 987 988 void 989 psignal(struct proc *p, int signo) 990 { 991 ksiginfo_t ksi; 992 993 KASSERT(!cpu_intr_p()); 994 KASSERT(mutex_owned(proc_lock)); 995 996 KSI_INIT_EMPTY(&ksi); 997 ksi.ksi_signo = signo; 998 mutex_enter(p->p_lock); 999 kpsignal2(p, &ksi); 1000 mutex_exit(p->p_lock); 1001 } 1002 1003 void 1004 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1005 { 1006 fdfile_t *ff; 1007 file_t *fp; 1008 fdtab_t *dt; 1009 1010 KASSERT(!cpu_intr_p()); 1011 KASSERT(mutex_owned(proc_lock)); 1012 1013 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1014 size_t fd; 1015 filedesc_t *fdp = p->p_fd; 1016 1017 /* XXXSMP locking */ 1018 ksi->ksi_fd = -1; 1019 dt = fdp->fd_dt; 1020 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1021 if ((ff = dt->dt_ff[fd]) == NULL) 1022 continue; 1023 if ((fp = ff->ff_file) == NULL) 1024 continue; 1025 if (fp->f_data == data) { 1026 ksi->ksi_fd = fd; 1027 break; 1028 } 1029 } 1030 } 1031 mutex_enter(p->p_lock); 1032 kpsignal2(p, ksi); 1033 mutex_exit(p->p_lock); 1034 } 1035 1036 /* 1037 * sigismasked: 1038 * 1039 * Returns true if signal is ignored or masked for the specified LWP. 1040 */ 1041 int 1042 sigismasked(struct lwp *l, int sig) 1043 { 1044 struct proc *p = l->l_proc; 1045 1046 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1047 sigismember(&l->l_sigmask, sig); 1048 } 1049 1050 /* 1051 * sigpost: 1052 * 1053 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1054 * be able to take the signal. 1055 */ 1056 static int 1057 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1058 { 1059 int rv, masked; 1060 struct proc *p = l->l_proc; 1061 1062 KASSERT(mutex_owned(p->p_lock)); 1063 1064 /* 1065 * If the LWP is on the way out, sigclear() will be busy draining all 1066 * pending signals. Don't give it more. 1067 */ 1068 if (l->l_refcnt == 0) 1069 return 0; 1070 1071 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0); 1072 1073 /* 1074 * Have the LWP check for signals. This ensures that even if no LWP 1075 * is found to take the signal immediately, it should be taken soon. 1076 */ 1077 lwp_lock(l); 1078 l->l_flag |= LW_PENDSIG; 1079 1080 /* 1081 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1082 * Note: SIGKILL and SIGSTOP cannot be masked. 1083 */ 1084 masked = sigismember(&l->l_sigmask, sig); 1085 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1086 lwp_unlock(l); 1087 return 0; 1088 } 1089 1090 /* 1091 * If killing the process, make it run fast. 1092 */ 1093 if (__predict_false((prop & SA_KILL) != 0) && 1094 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1095 KASSERT(l->l_class == SCHED_OTHER); 1096 lwp_changepri(l, MAXPRI_USER); 1097 } 1098 1099 /* 1100 * If the LWP is running or on a run queue, then we win. If it's 1101 * sleeping interruptably, wake it and make it take the signal. If 1102 * the sleep isn't interruptable, then the chances are it will get 1103 * to see the signal soon anyhow. If suspended, it can't take the 1104 * signal right now. If it's LWP private or for all LWPs, save it 1105 * for later; otherwise punt. 1106 */ 1107 rv = 0; 1108 1109 switch (l->l_stat) { 1110 case LSRUN: 1111 case LSONPROC: 1112 lwp_need_userret(l); 1113 rv = 1; 1114 break; 1115 1116 case LSSLEEP: 1117 if ((l->l_flag & LW_SINTR) != 0) { 1118 /* setrunnable() will release the lock. */ 1119 setrunnable(l); 1120 return 1; 1121 } 1122 break; 1123 1124 case LSSUSPENDED: 1125 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1126 /* lwp_continue() will release the lock. */ 1127 lwp_continue(l); 1128 return 1; 1129 } 1130 break; 1131 1132 case LSSTOP: 1133 if ((prop & SA_STOP) != 0) 1134 break; 1135 1136 /* 1137 * If the LWP is stopped and we are sending a continue 1138 * signal, then start it again. 1139 */ 1140 if ((prop & SA_CONT) != 0) { 1141 if (l->l_wchan != NULL) { 1142 l->l_stat = LSSLEEP; 1143 p->p_nrlwps++; 1144 rv = 1; 1145 break; 1146 } 1147 /* setrunnable() will release the lock. */ 1148 setrunnable(l); 1149 return 1; 1150 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1151 /* setrunnable() will release the lock. */ 1152 setrunnable(l); 1153 return 1; 1154 } 1155 break; 1156 1157 default: 1158 break; 1159 } 1160 1161 lwp_unlock(l); 1162 return rv; 1163 } 1164 1165 /* 1166 * Notify an LWP that it has a pending signal. 1167 */ 1168 void 1169 signotify(struct lwp *l) 1170 { 1171 KASSERT(lwp_locked(l, NULL)); 1172 1173 l->l_flag |= LW_PENDSIG; 1174 lwp_need_userret(l); 1175 } 1176 1177 /* 1178 * Find an LWP within process p that is waiting on signal ksi, and hand 1179 * it on. 1180 */ 1181 static int 1182 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1183 { 1184 struct lwp *l; 1185 int signo; 1186 1187 KASSERT(mutex_owned(p->p_lock)); 1188 1189 signo = ksi->ksi_signo; 1190 1191 if (ksi->ksi_lid != 0) { 1192 /* 1193 * Signal came via _lwp_kill(). Find the LWP and see if 1194 * it's interested. 1195 */ 1196 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1197 return 0; 1198 if (l->l_sigwaited == NULL || 1199 !sigismember(&l->l_sigwaitset, signo)) 1200 return 0; 1201 } else { 1202 /* 1203 * Look for any LWP that may be interested. 1204 */ 1205 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1206 KASSERT(l->l_sigwaited != NULL); 1207 if (sigismember(&l->l_sigwaitset, signo)) 1208 break; 1209 } 1210 } 1211 1212 if (l != NULL) { 1213 l->l_sigwaited->ksi_info = ksi->ksi_info; 1214 l->l_sigwaited = NULL; 1215 LIST_REMOVE(l, l_sigwaiter); 1216 cv_signal(&l->l_sigcv); 1217 return 1; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * Send the signal to the process. If the signal has an action, the action 1225 * is usually performed by the target process rather than the caller; we add 1226 * the signal to the set of pending signals for the process. 1227 * 1228 * Exceptions: 1229 * o When a stop signal is sent to a sleeping process that takes the 1230 * default action, the process is stopped without awakening it. 1231 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1232 * regardless of the signal action (eg, blocked or ignored). 1233 * 1234 * Other ignored signals are discarded immediately. 1235 */ 1236 int 1237 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1238 { 1239 int prop, signo = ksi->ksi_signo; 1240 struct lwp *l = NULL; 1241 ksiginfo_t *kp; 1242 lwpid_t lid; 1243 sig_t action; 1244 bool toall, debtrap = false; 1245 int error = 0; 1246 1247 KASSERT(!cpu_intr_p()); 1248 KASSERT(mutex_owned(proc_lock)); 1249 KASSERT(mutex_owned(p->p_lock)); 1250 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1251 KASSERT(signo > 0 && signo < NSIG); 1252 1253 /* 1254 * If the process is being created by fork, is a zombie or is 1255 * exiting, then just drop the signal here and bail out. 1256 */ 1257 if (p->p_stat == SIDL && signo == SIGTRAP 1258 && (p->p_slflag & PSL_TRACED)) { 1259 /* allow an initial SIGTRAP for traced processes */ 1260 debtrap = true; 1261 } else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) { 1262 return 0; 1263 } 1264 1265 /* XXX for core dump/debugger */ 1266 p->p_sigctx.ps_lwp = ksi->ksi_lid; 1267 p->p_sigctx.ps_info = ksi->ksi_info; 1268 1269 /* 1270 * Notify any interested parties of the signal. 1271 */ 1272 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1273 1274 /* 1275 * Some signals including SIGKILL must act on the entire process. 1276 */ 1277 kp = NULL; 1278 prop = sigprop[signo]; 1279 toall = ((prop & SA_TOALL) != 0); 1280 lid = toall ? 0 : ksi->ksi_lid; 1281 1282 /* 1283 * If proc is traced, always give parent a chance. 1284 */ 1285 if (p->p_slflag & PSL_TRACED) { 1286 action = SIG_DFL; 1287 1288 if (lid == 0) { 1289 /* 1290 * If the process is being traced and the signal 1291 * is being caught, make sure to save any ksiginfo. 1292 */ 1293 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1294 goto discard; 1295 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1296 goto out; 1297 } 1298 } else { 1299 1300 /* 1301 * If the signal is being ignored, then drop it. Note: we 1302 * don't set SIGCONT in ps_sigignore, and if it is set to 1303 * SIG_IGN, action will be SIG_DFL here. 1304 */ 1305 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1306 goto discard; 1307 1308 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1309 action = SIG_CATCH; 1310 else { 1311 action = SIG_DFL; 1312 1313 /* 1314 * If sending a tty stop signal to a member of an 1315 * orphaned process group, discard the signal here if 1316 * the action is default; don't stop the process below 1317 * if sleeping, and don't clear any pending SIGCONT. 1318 */ 1319 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1320 goto discard; 1321 1322 if (prop & SA_KILL && p->p_nice > NZERO) 1323 p->p_nice = NZERO; 1324 } 1325 } 1326 1327 /* 1328 * If stopping or continuing a process, discard any pending 1329 * signals that would do the inverse. 1330 */ 1331 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1332 ksiginfoq_t kq; 1333 1334 ksiginfo_queue_init(&kq); 1335 if ((prop & SA_CONT) != 0) 1336 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1337 if ((prop & SA_STOP) != 0) 1338 sigclear(&p->p_sigpend, &contsigmask, &kq); 1339 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1340 } 1341 1342 /* 1343 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1344 * please!), check if any LWPs are waiting on it. If yes, pass on 1345 * the signal info. The signal won't be processed further here. 1346 */ 1347 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1348 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1349 sigunwait(p, ksi)) 1350 goto discard; 1351 1352 /* 1353 * XXXSMP Should be allocated by the caller, we're holding locks 1354 * here. 1355 */ 1356 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1357 goto discard; 1358 1359 /* 1360 * LWP private signals are easy - just find the LWP and post 1361 * the signal to it. 1362 */ 1363 if (lid != 0) { 1364 if (__predict_false(debtrap)) { 1365 l = LIST_FIRST(&p->p_lwps); 1366 if (l->l_lid != lid) 1367 l = NULL; 1368 } else { 1369 l = lwp_find(p, lid); 1370 } 1371 if (l != NULL) { 1372 if ((error = sigput(&l->l_sigpend, p, kp)) != 0) 1373 goto out; 1374 membar_producer(); 1375 if (sigpost(l, action, prop, kp->ksi_signo) != 0) 1376 signo = -1; 1377 } 1378 goto out; 1379 } 1380 1381 /* 1382 * Some signals go to all LWPs, even if posted with _lwp_kill() 1383 * or for an SA process. 1384 */ 1385 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1386 if ((p->p_slflag & PSL_TRACED) != 0) 1387 goto deliver; 1388 1389 /* 1390 * If SIGCONT is default (or ignored) and process is 1391 * asleep, we are finished; the process should not 1392 * be awakened. 1393 */ 1394 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1395 goto out; 1396 } else { 1397 /* 1398 * Process is stopped or stopping. 1399 * - If traced, then no action is needed, unless killing. 1400 * - Run the process only if sending SIGCONT or SIGKILL. 1401 */ 1402 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1403 goto out; 1404 } 1405 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1406 /* 1407 * Re-adjust p_nstopchild if the process was 1408 * stopped but not yet collected by its parent. 1409 */ 1410 if (p->p_stat == SSTOP && !p->p_waited) 1411 p->p_pptr->p_nstopchild--; 1412 p->p_stat = SACTIVE; 1413 p->p_sflag &= ~PS_STOPPING; 1414 if (p->p_slflag & PSL_TRACED) { 1415 KASSERT(signo == SIGKILL); 1416 goto deliver; 1417 } 1418 /* 1419 * Do not make signal pending if SIGCONT is default. 1420 * 1421 * If the process catches SIGCONT, let it handle the 1422 * signal itself (if waiting on event - process runs, 1423 * otherwise continues sleeping). 1424 */ 1425 if ((prop & SA_CONT) != 0) { 1426 p->p_xsig = SIGCONT; 1427 p->p_sflag |= PS_CONTINUED; 1428 child_psignal(p, 0); 1429 if (action == SIG_DFL) { 1430 KASSERT(signo != SIGKILL); 1431 goto deliver; 1432 } 1433 } 1434 } else if ((prop & SA_STOP) != 0) { 1435 /* 1436 * Already stopped, don't need to stop again. 1437 * (If we did the shell could get confused.) 1438 */ 1439 goto out; 1440 } 1441 } 1442 /* 1443 * Make signal pending. 1444 */ 1445 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1446 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1447 goto out; 1448 deliver: 1449 /* 1450 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1451 * visible on the per process list (for sigispending()). This 1452 * is unlikely to be needed in practice, but... 1453 */ 1454 membar_producer(); 1455 1456 /* 1457 * Try to find an LWP that can take the signal. 1458 */ 1459 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1460 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1461 break; 1462 } 1463 signo = -1; 1464 out: 1465 /* 1466 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1467 * with locks held. The caller should take care of this. 1468 */ 1469 ksiginfo_free(kp); 1470 if (signo == -1) 1471 return error; 1472 discard: 1473 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0); 1474 return error; 1475 } 1476 1477 void 1478 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1479 { 1480 struct proc *p = l->l_proc; 1481 1482 KASSERT(mutex_owned(p->p_lock)); 1483 (*p->p_emul->e_sendsig)(ksi, mask); 1484 } 1485 1486 /* 1487 * Stop any LWPs sleeping interruptably. 1488 */ 1489 static void 1490 proc_stop_lwps(struct proc *p) 1491 { 1492 struct lwp *l; 1493 1494 KASSERT(mutex_owned(p->p_lock)); 1495 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1496 1497 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1498 lwp_lock(l); 1499 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1500 l->l_stat = LSSTOP; 1501 p->p_nrlwps--; 1502 } 1503 lwp_unlock(l); 1504 } 1505 } 1506 1507 /* 1508 * Finish stopping of a process. Mark it stopped and notify the parent. 1509 * 1510 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1511 */ 1512 static void 1513 proc_stop_done(struct proc *p, int ppmask) 1514 { 1515 1516 KASSERT(mutex_owned(proc_lock)); 1517 KASSERT(mutex_owned(p->p_lock)); 1518 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1519 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1520 1521 p->p_sflag &= ~PS_STOPPING; 1522 p->p_stat = SSTOP; 1523 p->p_waited = 0; 1524 p->p_pptr->p_nstopchild++; 1525 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1526 /* child_psignal drops p_lock briefly. */ 1527 child_psignal(p, ppmask); 1528 cv_broadcast(&p->p_pptr->p_waitcv); 1529 } 1530 } 1531 1532 /* 1533 * Stop the current process and switch away when being stopped or traced. 1534 */ 1535 void 1536 sigswitch(int ppmask, int signo, bool relock) 1537 { 1538 struct lwp *l = curlwp; 1539 struct proc *p = l->l_proc; 1540 int biglocks; 1541 1542 KASSERT(mutex_owned(p->p_lock)); 1543 KASSERT(l->l_stat == LSONPROC); 1544 KASSERT(p->p_nrlwps > 0); 1545 1546 /* 1547 * On entry we know that the process needs to stop. If it's 1548 * the result of a 'sideways' stop signal that has been sourced 1549 * through issignal(), then stop other LWPs in the process too. 1550 */ 1551 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1552 KASSERT(signo != 0); 1553 proc_stop(p, signo); 1554 KASSERT(p->p_nrlwps > 0); 1555 } 1556 1557 /* 1558 * If we are the last live LWP, and the stop was a result of 1559 * a new signal, then signal the parent. 1560 */ 1561 if ((p->p_sflag & PS_STOPPING) != 0) { 1562 if (relock && !mutex_tryenter(proc_lock)) { 1563 mutex_exit(p->p_lock); 1564 mutex_enter(proc_lock); 1565 mutex_enter(p->p_lock); 1566 } 1567 1568 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1569 /* 1570 * Note that proc_stop_done() can drop 1571 * p->p_lock briefly. 1572 */ 1573 proc_stop_done(p, ppmask); 1574 } 1575 1576 mutex_exit(proc_lock); 1577 } 1578 1579 /* 1580 * Unlock and switch away. 1581 */ 1582 KERNEL_UNLOCK_ALL(l, &biglocks); 1583 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1584 p->p_nrlwps--; 1585 lwp_lock(l); 1586 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1587 l->l_stat = LSSTOP; 1588 lwp_unlock(l); 1589 } 1590 1591 mutex_exit(p->p_lock); 1592 lwp_lock(l); 1593 mi_switch(l); 1594 KERNEL_LOCK(biglocks, l); 1595 mutex_enter(p->p_lock); 1596 } 1597 1598 /* 1599 * Check for a signal from the debugger. 1600 */ 1601 static int 1602 sigchecktrace(void) 1603 { 1604 struct lwp *l = curlwp; 1605 struct proc *p = l->l_proc; 1606 int signo; 1607 1608 KASSERT(mutex_owned(p->p_lock)); 1609 1610 /* If there's a pending SIGKILL, process it immediately. */ 1611 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1612 return 0; 1613 1614 /* 1615 * If we are no longer being traced, or the parent didn't 1616 * give us a signal, or we're stopping, look for more signals. 1617 */ 1618 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 || 1619 (p->p_sflag & PS_STOPPING) != 0) 1620 return 0; 1621 1622 /* 1623 * If the new signal is being masked, look for other signals. 1624 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1625 */ 1626 signo = p->p_xsig; 1627 p->p_xsig = 0; 1628 if (sigismember(&l->l_sigmask, signo)) { 1629 signo = 0; 1630 } 1631 return signo; 1632 } 1633 1634 /* 1635 * If the current process has received a signal (should be caught or cause 1636 * termination, should interrupt current syscall), return the signal number. 1637 * 1638 * Stop signals with default action are processed immediately, then cleared; 1639 * they aren't returned. This is checked after each entry to the system for 1640 * a syscall or trap. 1641 * 1642 * We will also return -1 if the process is exiting and the current LWP must 1643 * follow suit. 1644 */ 1645 int 1646 issignal(struct lwp *l) 1647 { 1648 struct proc *p; 1649 int signo, prop; 1650 sigpend_t *sp; 1651 sigset_t ss; 1652 1653 p = l->l_proc; 1654 sp = NULL; 1655 signo = 0; 1656 1657 KASSERT(p == curproc); 1658 KASSERT(mutex_owned(p->p_lock)); 1659 1660 for (;;) { 1661 /* Discard any signals that we have decided not to take. */ 1662 if (signo != 0) { 1663 (void)sigget(sp, NULL, signo, NULL); 1664 } 1665 1666 /* 1667 * If the process is stopped/stopping, then stop ourselves 1668 * now that we're on the kernel/userspace boundary. When 1669 * we awaken, check for a signal from the debugger. 1670 */ 1671 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1672 sigswitch(PS_NOCLDSTOP, 0, true); 1673 signo = sigchecktrace(); 1674 } else 1675 signo = 0; 1676 1677 /* Signals from the debugger are "out of band". */ 1678 sp = NULL; 1679 1680 /* 1681 * If the debugger didn't provide a signal, find a pending 1682 * signal from our set. Check per-LWP signals first, and 1683 * then per-process. 1684 */ 1685 if (signo == 0) { 1686 sp = &l->l_sigpend; 1687 ss = sp->sp_set; 1688 if ((p->p_lflag & PL_PPWAIT) != 0) 1689 sigminusset(&vforksigmask, &ss); 1690 sigminusset(&l->l_sigmask, &ss); 1691 1692 if ((signo = firstsig(&ss)) == 0) { 1693 sp = &p->p_sigpend; 1694 ss = sp->sp_set; 1695 if ((p->p_lflag & PL_PPWAIT) != 0) 1696 sigminusset(&vforksigmask, &ss); 1697 sigminusset(&l->l_sigmask, &ss); 1698 1699 if ((signo = firstsig(&ss)) == 0) { 1700 /* 1701 * No signal pending - clear the 1702 * indicator and bail out. 1703 */ 1704 lwp_lock(l); 1705 l->l_flag &= ~LW_PENDSIG; 1706 lwp_unlock(l); 1707 sp = NULL; 1708 break; 1709 } 1710 } 1711 } 1712 1713 /* 1714 * We should see pending but ignored signals only if 1715 * we are being traced. 1716 */ 1717 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1718 (p->p_slflag & PSL_TRACED) == 0) { 1719 /* Discard the signal. */ 1720 continue; 1721 } 1722 1723 /* 1724 * If traced, always stop, and stay stopped until released 1725 * by the debugger. If the our parent is our debugger waiting 1726 * for us and we vforked, don't hang as we could deadlock. 1727 */ 1728 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL && 1729 !(ISSET(p->p_lflag, PL_PPWAIT) && 1730 (p->p_pptr == p->p_opptr))) { 1731 /* 1732 * Take the signal, but don't remove it from the 1733 * siginfo queue, because the debugger can send 1734 * it later. 1735 */ 1736 if (sp) 1737 sigdelset(&sp->sp_set, signo); 1738 p->p_xsig = signo; 1739 1740 /* Handling of signal trace */ 1741 sigswitch(0, signo, true); 1742 1743 /* Check for a signal from the debugger. */ 1744 if ((signo = sigchecktrace()) == 0) 1745 continue; 1746 1747 /* Signals from the debugger are "out of band". */ 1748 sp = NULL; 1749 } 1750 1751 prop = sigprop[signo]; 1752 1753 /* 1754 * Decide whether the signal should be returned. 1755 */ 1756 switch ((long)SIGACTION(p, signo).sa_handler) { 1757 case (long)SIG_DFL: 1758 /* 1759 * Don't take default actions on system processes. 1760 */ 1761 if (p->p_pid <= 1) { 1762 #ifdef DIAGNOSTIC 1763 /* 1764 * Are you sure you want to ignore SIGSEGV 1765 * in init? XXX 1766 */ 1767 printf_nolog("Process (pid %d) got sig %d\n", 1768 p->p_pid, signo); 1769 #endif 1770 continue; 1771 } 1772 1773 /* 1774 * If there is a pending stop signal to process with 1775 * default action, stop here, then clear the signal. 1776 * However, if process is member of an orphaned 1777 * process group, ignore tty stop signals. 1778 */ 1779 if (prop & SA_STOP) { 1780 /* 1781 * XXX Don't hold proc_lock for p_lflag, 1782 * but it's not a big deal. 1783 */ 1784 if ((ISSET(p->p_slflag, PSL_TRACED) && 1785 !(ISSET(p->p_lflag, PL_PPWAIT) && 1786 (p->p_pptr == p->p_opptr))) || 1787 ((p->p_lflag & PL_ORPHANPG) != 0 && 1788 prop & SA_TTYSTOP)) { 1789 /* Ignore the signal. */ 1790 continue; 1791 } 1792 /* Take the signal. */ 1793 (void)sigget(sp, NULL, signo, NULL); 1794 p->p_xsig = signo; 1795 p->p_sflag &= ~PS_CONTINUED; 1796 signo = 0; 1797 sigswitch(PS_NOCLDSTOP, p->p_xsig, true); 1798 } else if (prop & SA_IGNORE) { 1799 /* 1800 * Except for SIGCONT, shouldn't get here. 1801 * Default action is to ignore; drop it. 1802 */ 1803 continue; 1804 } 1805 break; 1806 1807 case (long)SIG_IGN: 1808 #ifdef DEBUG_ISSIGNAL 1809 /* 1810 * Masking above should prevent us ever trying 1811 * to take action on an ignored signal other 1812 * than SIGCONT, unless process is traced. 1813 */ 1814 if ((prop & SA_CONT) == 0 && 1815 (p->p_slflag & PSL_TRACED) == 0) 1816 printf_nolog("issignal\n"); 1817 #endif 1818 continue; 1819 1820 default: 1821 /* 1822 * This signal has an action, let postsig() process 1823 * it. 1824 */ 1825 break; 1826 } 1827 1828 break; 1829 } 1830 1831 l->l_sigpendset = sp; 1832 return signo; 1833 } 1834 1835 /* 1836 * Take the action for the specified signal 1837 * from the current set of pending signals. 1838 */ 1839 void 1840 postsig(int signo) 1841 { 1842 struct lwp *l; 1843 struct proc *p; 1844 struct sigacts *ps; 1845 sig_t action; 1846 sigset_t *returnmask; 1847 ksiginfo_t ksi; 1848 1849 l = curlwp; 1850 p = l->l_proc; 1851 ps = p->p_sigacts; 1852 1853 KASSERT(mutex_owned(p->p_lock)); 1854 KASSERT(signo > 0); 1855 1856 /* 1857 * Set the new mask value and also defer further occurrences of this 1858 * signal. 1859 * 1860 * Special case: user has done a sigsuspend. Here the current mask is 1861 * not of interest, but rather the mask from before the sigsuspend is 1862 * what we want restored after the signal processing is completed. 1863 */ 1864 if (l->l_sigrestore) { 1865 returnmask = &l->l_sigoldmask; 1866 l->l_sigrestore = 0; 1867 } else 1868 returnmask = &l->l_sigmask; 1869 1870 /* 1871 * Commit to taking the signal before releasing the mutex. 1872 */ 1873 action = SIGACTION_PS(ps, signo).sa_handler; 1874 l->l_ru.ru_nsignals++; 1875 if (l->l_sigpendset == NULL) { 1876 /* From the debugger */ 1877 if (p->p_sigctx.ps_faked && 1878 signo == p->p_sigctx.ps_info._signo) { 1879 KSI_INIT(&ksi); 1880 ksi.ksi_info = p->p_sigctx.ps_info; 1881 ksi.ksi_lid = p->p_sigctx.ps_lwp; 1882 p->p_sigctx.ps_faked = false; 1883 } else { 1884 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 1885 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 1886 } 1887 } else 1888 sigget(l->l_sigpendset, &ksi, signo, NULL); 1889 1890 if (ktrpoint(KTR_PSIG)) { 1891 mutex_exit(p->p_lock); 1892 if (p->p_emul->e_ktrpsig) 1893 p->p_emul->e_ktrpsig(signo, action, 1894 returnmask, &ksi); 1895 else 1896 ktrpsig(signo, action, returnmask, &ksi); 1897 mutex_enter(p->p_lock); 1898 } 1899 1900 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0); 1901 1902 if (action == SIG_DFL) { 1903 /* 1904 * Default action, where the default is to kill 1905 * the process. (Other cases were ignored above.) 1906 */ 1907 sigexit(l, signo); 1908 return; 1909 } 1910 1911 /* 1912 * If we get here, the signal must be caught. 1913 */ 1914 #ifdef DIAGNOSTIC 1915 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1916 panic("postsig action"); 1917 #endif 1918 1919 kpsendsig(l, &ksi, returnmask); 1920 } 1921 1922 /* 1923 * sendsig: 1924 * 1925 * Default signal delivery method for NetBSD. 1926 */ 1927 void 1928 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1929 { 1930 struct sigacts *sa; 1931 int sig; 1932 1933 sig = ksi->ksi_signo; 1934 sa = curproc->p_sigacts; 1935 1936 switch (sa->sa_sigdesc[sig].sd_vers) { 1937 case 0: 1938 case 1: 1939 /* Compat for 1.6 and earlier. */ 1940 if (sendsig_sigcontext_vec == NULL) { 1941 break; 1942 } 1943 (*sendsig_sigcontext_vec)(ksi, mask); 1944 return; 1945 case 2: 1946 case 3: 1947 sendsig_siginfo(ksi, mask); 1948 return; 1949 default: 1950 break; 1951 } 1952 1953 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 1954 sigexit(curlwp, SIGILL); 1955 } 1956 1957 /* 1958 * sendsig_reset: 1959 * 1960 * Reset the signal action. Called from emulation specific sendsig() 1961 * before unlocking to deliver the signal. 1962 */ 1963 void 1964 sendsig_reset(struct lwp *l, int signo) 1965 { 1966 struct proc *p = l->l_proc; 1967 struct sigacts *ps = p->p_sigacts; 1968 1969 KASSERT(mutex_owned(p->p_lock)); 1970 1971 p->p_sigctx.ps_lwp = 0; 1972 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 1973 1974 mutex_enter(&ps->sa_mutex); 1975 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1976 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1977 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1978 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1979 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1980 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1981 } 1982 mutex_exit(&ps->sa_mutex); 1983 } 1984 1985 /* 1986 * Kill the current process for stated reason. 1987 */ 1988 void 1989 killproc(struct proc *p, const char *why) 1990 { 1991 1992 KASSERT(mutex_owned(proc_lock)); 1993 1994 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1995 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1996 psignal(p, SIGKILL); 1997 } 1998 1999 /* 2000 * Force the current process to exit with the specified signal, dumping core 2001 * if appropriate. We bypass the normal tests for masked and caught 2002 * signals, allowing unrecoverable failures to terminate the process without 2003 * changing signal state. Mark the accounting record with the signal 2004 * termination. If dumping core, save the signal number for the debugger. 2005 * Calls exit and does not return. 2006 */ 2007 void 2008 sigexit(struct lwp *l, int signo) 2009 { 2010 int exitsig, error, docore; 2011 struct proc *p; 2012 struct lwp *t; 2013 2014 p = l->l_proc; 2015 2016 KASSERT(mutex_owned(p->p_lock)); 2017 KERNEL_UNLOCK_ALL(l, NULL); 2018 2019 /* 2020 * Don't permit coredump() multiple times in the same process. 2021 * Call back into sigexit, where we will be suspended until 2022 * the deed is done. Note that this is a recursive call, but 2023 * LW_WCORE will prevent us from coming back this way. 2024 */ 2025 if ((p->p_sflag & PS_WCORE) != 0) { 2026 lwp_lock(l); 2027 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2028 lwp_unlock(l); 2029 mutex_exit(p->p_lock); 2030 lwp_userret(l); 2031 panic("sigexit 1"); 2032 /* NOTREACHED */ 2033 } 2034 2035 /* If process is already on the way out, then bail now. */ 2036 if ((p->p_sflag & PS_WEXIT) != 0) { 2037 mutex_exit(p->p_lock); 2038 lwp_exit(l); 2039 panic("sigexit 2"); 2040 /* NOTREACHED */ 2041 } 2042 2043 /* 2044 * Prepare all other LWPs for exit. If dumping core, suspend them 2045 * so that their registers are available long enough to be dumped. 2046 */ 2047 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2048 p->p_sflag |= PS_WCORE; 2049 for (;;) { 2050 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2051 lwp_lock(t); 2052 if (t == l) { 2053 t->l_flag &= ~LW_WSUSPEND; 2054 lwp_unlock(t); 2055 continue; 2056 } 2057 t->l_flag |= (LW_WCORE | LW_WEXIT); 2058 lwp_suspend(l, t); 2059 } 2060 2061 if (p->p_nrlwps == 1) 2062 break; 2063 2064 /* 2065 * Kick any LWPs sitting in lwp_wait1(), and wait 2066 * for everyone else to stop before proceeding. 2067 */ 2068 p->p_nlwpwait++; 2069 cv_broadcast(&p->p_lwpcv); 2070 cv_wait(&p->p_lwpcv, p->p_lock); 2071 p->p_nlwpwait--; 2072 } 2073 } 2074 2075 exitsig = signo; 2076 p->p_acflag |= AXSIG; 2077 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2078 p->p_sigctx.ps_info._signo = signo; 2079 p->p_sigctx.ps_info._code = SI_NOINFO; 2080 2081 if (docore) { 2082 mutex_exit(p->p_lock); 2083 error = (*coredump_vec)(l, NULL); 2084 2085 if (kern_logsigexit) { 2086 int uid = l->l_cred ? 2087 (int)kauth_cred_geteuid(l->l_cred) : -1; 2088 2089 if (error) 2090 log(LOG_INFO, lognocoredump, p->p_pid, 2091 p->p_comm, uid, signo, error); 2092 else 2093 log(LOG_INFO, logcoredump, p->p_pid, 2094 p->p_comm, uid, signo); 2095 } 2096 2097 #ifdef PAX_SEGVGUARD 2098 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2099 #endif /* PAX_SEGVGUARD */ 2100 /* Acquire the sched state mutex. exit1() will release it. */ 2101 mutex_enter(p->p_lock); 2102 if (error == 0) 2103 p->p_sflag |= PS_COREDUMP; 2104 } 2105 2106 /* No longer dumping core. */ 2107 p->p_sflag &= ~PS_WCORE; 2108 2109 exit1(l, 0, exitsig); 2110 /* NOTREACHED */ 2111 } 2112 2113 /* 2114 * Put process 'p' into the stopped state and optionally, notify the parent. 2115 */ 2116 void 2117 proc_stop(struct proc *p, int signo) 2118 { 2119 struct lwp *l; 2120 2121 KASSERT(mutex_owned(p->p_lock)); 2122 2123 /* 2124 * First off, set the stopping indicator and bring all sleeping 2125 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2126 * unlock between here and the p->p_nrlwps check below. 2127 */ 2128 p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP; 2129 membar_producer(); 2130 2131 proc_stop_lwps(p); 2132 2133 /* 2134 * If there are no LWPs available to take the signal, then we 2135 * signal the parent process immediately. Otherwise, the last 2136 * LWP to stop will take care of it. 2137 */ 2138 2139 if (p->p_nrlwps == 0) { 2140 proc_stop_done(p, PS_NOCLDSTOP); 2141 } else { 2142 /* 2143 * Have the remaining LWPs come to a halt, and trigger 2144 * proc_stop_callout() to ensure that they do. 2145 */ 2146 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2147 sigpost(l, SIG_DFL, SA_STOP, signo); 2148 } 2149 callout_schedule(&proc_stop_ch, 1); 2150 } 2151 } 2152 2153 /* 2154 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2155 * but wait for them to come to a halt at the kernel-user boundary. This is 2156 * to allow LWPs to release any locks that they may hold before stopping. 2157 * 2158 * Non-interruptable sleeps can be long, and there is the potential for an 2159 * LWP to begin sleeping interruptably soon after the process has been set 2160 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2161 * stopping, and so complete halt of the process and the return of status 2162 * information to the parent could be delayed indefinitely. 2163 * 2164 * To handle this race, proc_stop_callout() runs once per tick while there 2165 * are stopping processes in the system. It sets LWPs that are sleeping 2166 * interruptably into the LSSTOP state. 2167 * 2168 * Note that we are not concerned about keeping all LWPs stopped while the 2169 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2170 * What we do need to ensure is that all LWPs in a stopping process have 2171 * stopped at least once, so that notification can be sent to the parent 2172 * process. 2173 */ 2174 static void 2175 proc_stop_callout(void *cookie) 2176 { 2177 bool more, restart; 2178 struct proc *p; 2179 2180 (void)cookie; 2181 2182 do { 2183 restart = false; 2184 more = false; 2185 2186 mutex_enter(proc_lock); 2187 PROCLIST_FOREACH(p, &allproc) { 2188 mutex_enter(p->p_lock); 2189 2190 if ((p->p_sflag & PS_STOPPING) == 0) { 2191 mutex_exit(p->p_lock); 2192 continue; 2193 } 2194 2195 /* Stop any LWPs sleeping interruptably. */ 2196 proc_stop_lwps(p); 2197 if (p->p_nrlwps == 0) { 2198 /* 2199 * We brought the process to a halt. 2200 * Mark it as stopped and notify the 2201 * parent. 2202 */ 2203 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2204 /* 2205 * Note that proc_stop_done() will 2206 * drop p->p_lock briefly. 2207 * Arrange to restart and check 2208 * all processes again. 2209 */ 2210 restart = true; 2211 } 2212 proc_stop_done(p, PS_NOCLDSTOP); 2213 } else 2214 more = true; 2215 2216 mutex_exit(p->p_lock); 2217 if (restart) 2218 break; 2219 } 2220 mutex_exit(proc_lock); 2221 } while (restart); 2222 2223 /* 2224 * If we noted processes that are stopping but still have 2225 * running LWPs, then arrange to check again in 1 tick. 2226 */ 2227 if (more) 2228 callout_schedule(&proc_stop_ch, 1); 2229 } 2230 2231 /* 2232 * Given a process in state SSTOP, set the state back to SACTIVE and 2233 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2234 */ 2235 void 2236 proc_unstop(struct proc *p) 2237 { 2238 struct lwp *l; 2239 int sig; 2240 2241 KASSERT(mutex_owned(proc_lock)); 2242 KASSERT(mutex_owned(p->p_lock)); 2243 2244 p->p_stat = SACTIVE; 2245 p->p_sflag &= ~PS_STOPPING; 2246 sig = p->p_xsig; 2247 2248 if (!p->p_waited) 2249 p->p_pptr->p_nstopchild--; 2250 2251 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2252 lwp_lock(l); 2253 if (l->l_stat != LSSTOP) { 2254 lwp_unlock(l); 2255 continue; 2256 } 2257 if (l->l_wchan == NULL) { 2258 setrunnable(l); 2259 continue; 2260 } 2261 if (sig && (l->l_flag & LW_SINTR) != 0) { 2262 setrunnable(l); 2263 sig = 0; 2264 } else { 2265 l->l_stat = LSSLEEP; 2266 p->p_nrlwps++; 2267 lwp_unlock(l); 2268 } 2269 } 2270 } 2271 2272 void 2273 proc_stoptrace(int trapno) 2274 { 2275 struct lwp *l = curlwp; 2276 struct proc *p = l->l_proc; 2277 struct sigacts *ps; 2278 sigset_t *mask; 2279 sig_t action; 2280 ksiginfo_t ksi; 2281 const int signo = SIGTRAP; 2282 2283 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX)); 2284 2285 KSI_INIT_TRAP(&ksi); 2286 ksi.ksi_lid = l->l_lid; 2287 ksi.ksi_info._signo = signo; 2288 ksi.ksi_info._code = trapno; 2289 2290 mutex_enter(p->p_lock); 2291 2292 /* Needed for ktrace */ 2293 ps = p->p_sigacts; 2294 action = SIGACTION_PS(ps, signo).sa_handler; 2295 mask = &l->l_sigmask; 2296 2297 /* initproc (PID1) cannot became a debugger */ 2298 KASSERT(p->p_pptr != initproc); 2299 2300 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 2301 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL)); 2302 2303 p->p_xsig = signo; 2304 p->p_sigctx.ps_lwp = ksi.ksi_lid; 2305 p->p_sigctx.ps_info = ksi.ksi_info; 2306 sigswitch(0, signo, true); 2307 mutex_exit(p->p_lock); 2308 2309 if (ktrpoint(KTR_PSIG)) { 2310 if (p->p_emul->e_ktrpsig) 2311 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 2312 else 2313 ktrpsig(signo, action, mask, &ksi); 2314 } 2315 } 2316 2317 static int 2318 filt_sigattach(struct knote *kn) 2319 { 2320 struct proc *p = curproc; 2321 2322 kn->kn_obj = p; 2323 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2324 2325 mutex_enter(p->p_lock); 2326 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2327 mutex_exit(p->p_lock); 2328 2329 return 0; 2330 } 2331 2332 static void 2333 filt_sigdetach(struct knote *kn) 2334 { 2335 struct proc *p = kn->kn_obj; 2336 2337 mutex_enter(p->p_lock); 2338 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2339 mutex_exit(p->p_lock); 2340 } 2341 2342 /* 2343 * Signal knotes are shared with proc knotes, so we apply a mask to 2344 * the hint in order to differentiate them from process hints. This 2345 * could be avoided by using a signal-specific knote list, but probably 2346 * isn't worth the trouble. 2347 */ 2348 static int 2349 filt_signal(struct knote *kn, long hint) 2350 { 2351 2352 if (hint & NOTE_SIGNAL) { 2353 hint &= ~NOTE_SIGNAL; 2354 2355 if (kn->kn_id == hint) 2356 kn->kn_data++; 2357 } 2358 return (kn->kn_data != 0); 2359 } 2360 2361 const struct filterops sig_filtops = { 2362 .f_isfd = 0, 2363 .f_attach = filt_sigattach, 2364 .f_detach = filt_sigdetach, 2365 .f_event = filt_signal, 2366 }; 2367