1 /* $NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_compat_sunos.h" 73 #include "opt_compat_netbsd.h" 74 #include "opt_compat_netbsd32.h" 75 #include "opt_pax.h" 76 77 #define SIGPROP /* include signal properties table */ 78 #include <sys/param.h> 79 #include <sys/signalvar.h> 80 #include <sys/proc.h> 81 #include <sys/systm.h> 82 #include <sys/wait.h> 83 #include <sys/ktrace.h> 84 #include <sys/syslog.h> 85 #include <sys/filedesc.h> 86 #include <sys/file.h> 87 #include <sys/malloc.h> 88 #include <sys/pool.h> 89 #include <sys/ucontext.h> 90 #include <sys/exec.h> 91 #include <sys/kauth.h> 92 #include <sys/acct.h> 93 #include <sys/callout.h> 94 #include <sys/atomic.h> 95 #include <sys/cpu.h> 96 97 #ifdef PAX_SEGVGUARD 98 #include <sys/pax.h> 99 #endif /* PAX_SEGVGUARD */ 100 101 #include <uvm/uvm.h> 102 #include <uvm/uvm_extern.h> 103 104 static void ksiginfo_exechook(struct proc *, void *); 105 static void proc_stop_callout(void *); 106 107 int sigunwait(struct proc *, const ksiginfo_t *); 108 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 109 int sigpost(struct lwp *, sig_t, int, int); 110 int sigchecktrace(sigpend_t **); 111 void sigswitch(bool, int, int); 112 void sigrealloc(ksiginfo_t *); 113 114 sigset_t contsigmask, stopsigmask, sigcantmask; 115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 116 static void sigacts_poolpage_free(struct pool *, void *); 117 static void *sigacts_poolpage_alloc(struct pool *, int); 118 static callout_t proc_stop_ch; 119 static pool_cache_t siginfo_cache; 120 static pool_cache_t ksiginfo_cache; 121 122 static struct pool_allocator sigactspool_allocator = { 123 .pa_alloc = sigacts_poolpage_alloc, 124 .pa_free = sigacts_poolpage_free, 125 }; 126 127 #ifdef DEBUG 128 int kern_logsigexit = 1; 129 #else 130 int kern_logsigexit = 0; 131 #endif 132 133 static const char logcoredump[] = 134 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 135 static const char lognocoredump[] = 136 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 137 138 /* 139 * signal_init: 140 * 141 * Initialize global signal-related data structures. 142 */ 143 void 144 signal_init(void) 145 { 146 147 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 148 149 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 150 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 151 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 152 153 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 154 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 155 156 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 157 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 158 159 exechook_establish(ksiginfo_exechook, NULL); 160 161 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 162 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 163 } 164 165 /* 166 * sigacts_poolpage_alloc: 167 * 168 * Allocate a page for the sigacts memory pool. 169 */ 170 static void * 171 sigacts_poolpage_alloc(struct pool *pp, int flags) 172 { 173 174 return (void *)uvm_km_alloc(kernel_map, 175 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 176 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 177 | UVM_KMF_WIRED); 178 } 179 180 /* 181 * sigacts_poolpage_free: 182 * 183 * Free a page on behalf of the sigacts memory pool. 184 */ 185 static void 186 sigacts_poolpage_free(struct pool *pp, void *v) 187 { 188 189 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 190 } 191 192 /* 193 * sigactsinit: 194 * 195 * Create an initial sigctx structure, using the same signal state as 196 * p. If 'share' is set, share the sigctx_proc part, otherwise just 197 * copy it from parent. 198 */ 199 struct sigacts * 200 sigactsinit(struct proc *pp, int share) 201 { 202 struct sigacts *ps, *ps2; 203 204 ps = pp->p_sigacts; 205 206 if (share) { 207 atomic_inc_uint(&ps->sa_refcnt); 208 ps2 = ps; 209 } else { 210 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 211 /* XXXAD get rid of this */ 212 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 213 mutex_enter(&ps->sa_mutex); 214 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 215 sizeof(ps2->sa_sigdesc)); 216 mutex_exit(&ps->sa_mutex); 217 ps2->sa_refcnt = 1; 218 } 219 220 return ps2; 221 } 222 223 /* 224 * sigactsunshare: 225 * 226 * Make this process not share its sigctx, maintaining all 227 * signal state. 228 */ 229 void 230 sigactsunshare(struct proc *p) 231 { 232 struct sigacts *ps, *oldps; 233 234 oldps = p->p_sigacts; 235 if (oldps->sa_refcnt == 1) 236 return; 237 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 238 /* XXXAD get rid of this */ 239 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 240 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 241 p->p_sigacts = ps; 242 sigactsfree(oldps); 243 } 244 245 /* 246 * sigactsfree; 247 * 248 * Release a sigctx structure. 249 */ 250 void 251 sigactsfree(struct sigacts *ps) 252 { 253 254 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 255 mutex_destroy(&ps->sa_mutex); 256 pool_cache_put(sigacts_cache, ps); 257 } 258 } 259 260 /* 261 * siginit: 262 * 263 * Initialize signal state for process 0; set to ignore signals that 264 * are ignored by default and disable the signal stack. Locking not 265 * required as the system is still cold. 266 */ 267 void 268 siginit(struct proc *p) 269 { 270 struct lwp *l; 271 struct sigacts *ps; 272 int signo, prop; 273 274 ps = p->p_sigacts; 275 sigemptyset(&contsigmask); 276 sigemptyset(&stopsigmask); 277 sigemptyset(&sigcantmask); 278 for (signo = 1; signo < NSIG; signo++) { 279 prop = sigprop[signo]; 280 if (prop & SA_CONT) 281 sigaddset(&contsigmask, signo); 282 if (prop & SA_STOP) 283 sigaddset(&stopsigmask, signo); 284 if (prop & SA_CANTMASK) 285 sigaddset(&sigcantmask, signo); 286 if (prop & SA_IGNORE && signo != SIGCONT) 287 sigaddset(&p->p_sigctx.ps_sigignore, signo); 288 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 289 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 290 } 291 sigemptyset(&p->p_sigctx.ps_sigcatch); 292 p->p_sflag &= ~PS_NOCLDSTOP; 293 294 ksiginfo_queue_init(&p->p_sigpend.sp_info); 295 sigemptyset(&p->p_sigpend.sp_set); 296 297 /* 298 * Reset per LWP state. 299 */ 300 l = LIST_FIRST(&p->p_lwps); 301 l->l_sigwaited = NULL; 302 l->l_sigstk.ss_flags = SS_DISABLE; 303 l->l_sigstk.ss_size = 0; 304 l->l_sigstk.ss_sp = 0; 305 ksiginfo_queue_init(&l->l_sigpend.sp_info); 306 sigemptyset(&l->l_sigpend.sp_set); 307 308 /* One reference. */ 309 ps->sa_refcnt = 1; 310 } 311 312 /* 313 * execsigs: 314 * 315 * Reset signals for an exec of the specified process. 316 */ 317 void 318 execsigs(struct proc *p) 319 { 320 struct sigacts *ps; 321 struct lwp *l; 322 int signo, prop; 323 sigset_t tset; 324 ksiginfoq_t kq; 325 326 KASSERT(p->p_nlwps == 1); 327 328 sigactsunshare(p); 329 ps = p->p_sigacts; 330 331 /* 332 * Reset caught signals. Held signals remain held through 333 * l->l_sigmask (unless they were caught, and are now ignored 334 * by default). 335 * 336 * No need to lock yet, the process has only one LWP and 337 * at this point the sigacts are private to the process. 338 */ 339 sigemptyset(&tset); 340 for (signo = 1; signo < NSIG; signo++) { 341 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 342 prop = sigprop[signo]; 343 if (prop & SA_IGNORE) { 344 if ((prop & SA_CONT) == 0) 345 sigaddset(&p->p_sigctx.ps_sigignore, 346 signo); 347 sigaddset(&tset, signo); 348 } 349 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 350 } 351 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 352 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 353 } 354 ksiginfo_queue_init(&kq); 355 356 mutex_enter(p->p_lock); 357 sigclearall(p, &tset, &kq); 358 sigemptyset(&p->p_sigctx.ps_sigcatch); 359 360 /* 361 * Reset no zombies if child dies flag as Solaris does. 362 */ 363 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 364 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 365 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 366 367 /* 368 * Reset per-LWP state. 369 */ 370 l = LIST_FIRST(&p->p_lwps); 371 l->l_sigwaited = NULL; 372 l->l_sigstk.ss_flags = SS_DISABLE; 373 l->l_sigstk.ss_size = 0; 374 l->l_sigstk.ss_sp = 0; 375 ksiginfo_queue_init(&l->l_sigpend.sp_info); 376 sigemptyset(&l->l_sigpend.sp_set); 377 mutex_exit(p->p_lock); 378 379 ksiginfo_queue_drain(&kq); 380 } 381 382 /* 383 * ksiginfo_exechook: 384 * 385 * Free all pending ksiginfo entries from a process on exec. 386 * Additionally, drain any unused ksiginfo structures in the 387 * system back to the pool. 388 * 389 * XXX This should not be a hook, every process has signals. 390 */ 391 static void 392 ksiginfo_exechook(struct proc *p, void *v) 393 { 394 ksiginfoq_t kq; 395 396 ksiginfo_queue_init(&kq); 397 398 mutex_enter(p->p_lock); 399 sigclearall(p, NULL, &kq); 400 mutex_exit(p->p_lock); 401 402 ksiginfo_queue_drain(&kq); 403 } 404 405 /* 406 * ksiginfo_alloc: 407 * 408 * Allocate a new ksiginfo structure from the pool, and optionally copy 409 * an existing one. If the existing ksiginfo_t is from the pool, and 410 * has not been queued somewhere, then just return it. Additionally, 411 * if the existing ksiginfo_t does not contain any information beyond 412 * the signal number, then just return it. 413 */ 414 ksiginfo_t * 415 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 416 { 417 ksiginfo_t *kp; 418 419 if (ok != NULL) { 420 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 421 KSI_FROMPOOL) 422 return ok; 423 if (KSI_EMPTY_P(ok)) 424 return ok; 425 } 426 427 kp = pool_cache_get(ksiginfo_cache, flags); 428 if (kp == NULL) { 429 #ifdef DIAGNOSTIC 430 printf("Out of memory allocating ksiginfo for pid %d\n", 431 p->p_pid); 432 #endif 433 return NULL; 434 } 435 436 if (ok != NULL) { 437 memcpy(kp, ok, sizeof(*kp)); 438 kp->ksi_flags &= ~KSI_QUEUED; 439 } else 440 KSI_INIT_EMPTY(kp); 441 442 kp->ksi_flags |= KSI_FROMPOOL; 443 444 return kp; 445 } 446 447 /* 448 * ksiginfo_free: 449 * 450 * If the given ksiginfo_t is from the pool and has not been queued, 451 * then free it. 452 */ 453 void 454 ksiginfo_free(ksiginfo_t *kp) 455 { 456 457 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 458 return; 459 pool_cache_put(ksiginfo_cache, kp); 460 } 461 462 /* 463 * ksiginfo_queue_drain: 464 * 465 * Drain a non-empty ksiginfo_t queue. 466 */ 467 void 468 ksiginfo_queue_drain0(ksiginfoq_t *kq) 469 { 470 ksiginfo_t *ksi; 471 472 KASSERT(!CIRCLEQ_EMPTY(kq)); 473 474 while (!CIRCLEQ_EMPTY(kq)) { 475 ksi = CIRCLEQ_FIRST(kq); 476 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 477 pool_cache_put(ksiginfo_cache, ksi); 478 } 479 } 480 481 /* 482 * sigget: 483 * 484 * Fetch the first pending signal from a set. Optionally, also fetch 485 * or manufacture a ksiginfo element. Returns the number of the first 486 * pending signal, or zero. 487 */ 488 int 489 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 490 { 491 ksiginfo_t *ksi; 492 sigset_t tset; 493 494 /* If there's no pending set, the signal is from the debugger. */ 495 if (sp == NULL) 496 goto out; 497 498 /* Construct mask from signo, and 'mask'. */ 499 if (signo == 0) { 500 if (mask != NULL) { 501 tset = *mask; 502 __sigandset(&sp->sp_set, &tset); 503 } else 504 tset = sp->sp_set; 505 506 /* If there are no signals pending, that's it. */ 507 if ((signo = firstsig(&tset)) == 0) 508 goto out; 509 } else { 510 KASSERT(sigismember(&sp->sp_set, signo)); 511 } 512 513 sigdelset(&sp->sp_set, signo); 514 515 /* Find siginfo and copy it out. */ 516 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 517 if (ksi->ksi_signo == signo) { 518 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 519 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 520 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 521 ksi->ksi_flags &= ~KSI_QUEUED; 522 if (out != NULL) { 523 memcpy(out, ksi, sizeof(*out)); 524 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 525 } 526 ksiginfo_free(ksi); 527 return signo; 528 } 529 } 530 531 out: 532 /* If there's no siginfo, then manufacture it. */ 533 if (out != NULL) { 534 KSI_INIT(out); 535 out->ksi_info._signo = signo; 536 out->ksi_info._code = SI_NOINFO; 537 } 538 539 return signo; 540 } 541 542 /* 543 * sigput: 544 * 545 * Append a new ksiginfo element to the list of pending ksiginfo's, if 546 * we need to (e.g. SA_SIGINFO was requested). 547 */ 548 void 549 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 550 { 551 ksiginfo_t *kp; 552 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 553 554 KASSERT(mutex_owned(p->p_lock)); 555 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 556 557 sigaddset(&sp->sp_set, ksi->ksi_signo); 558 559 /* 560 * If there is no siginfo, or is not required (and we don't add 561 * it for the benefit of ktrace, we are done). 562 */ 563 if (KSI_EMPTY_P(ksi) || 564 (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0)) 565 return; 566 567 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 568 569 #ifdef notyet /* XXX: QUEUING */ 570 if (ksi->ksi_signo < SIGRTMIN) 571 #endif 572 { 573 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 574 if (kp->ksi_signo == ksi->ksi_signo) { 575 KSI_COPY(ksi, kp); 576 kp->ksi_flags |= KSI_QUEUED; 577 return; 578 } 579 } 580 } 581 582 ksi->ksi_flags |= KSI_QUEUED; 583 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 584 } 585 586 /* 587 * sigclear: 588 * 589 * Clear all pending signals in the specified set. 590 */ 591 void 592 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 593 { 594 ksiginfo_t *ksi, *next; 595 596 if (mask == NULL) 597 sigemptyset(&sp->sp_set); 598 else 599 sigminusset(mask, &sp->sp_set); 600 601 ksi = CIRCLEQ_FIRST(&sp->sp_info); 602 for (; ksi != (void *)&sp->sp_info; ksi = next) { 603 next = CIRCLEQ_NEXT(ksi, ksi_list); 604 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 605 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 606 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 607 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 608 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 609 } 610 } 611 } 612 613 /* 614 * sigclearall: 615 * 616 * Clear all pending signals in the specified set from a process and 617 * its LWPs. 618 */ 619 void 620 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 621 { 622 struct lwp *l; 623 624 KASSERT(mutex_owned(p->p_lock)); 625 626 sigclear(&p->p_sigpend, mask, kq); 627 628 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 629 sigclear(&l->l_sigpend, mask, kq); 630 } 631 } 632 633 /* 634 * sigispending: 635 * 636 * Return true if there are pending signals for the current LWP. May 637 * be called unlocked provided that LW_PENDSIG is set, and that the 638 * signal has been posted to the appopriate queue before LW_PENDSIG is 639 * set. 640 */ 641 int 642 sigispending(struct lwp *l, int signo) 643 { 644 struct proc *p = l->l_proc; 645 sigset_t tset; 646 647 membar_consumer(); 648 649 tset = l->l_sigpend.sp_set; 650 sigplusset(&p->p_sigpend.sp_set, &tset); 651 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 652 sigminusset(&l->l_sigmask, &tset); 653 654 if (signo == 0) { 655 if (firstsig(&tset) != 0) 656 return EINTR; 657 } else if (sigismember(&tset, signo)) 658 return EINTR; 659 660 return 0; 661 } 662 663 /* 664 * siginfo_alloc: 665 * 666 * Allocate a new siginfo_t structure from the pool. 667 */ 668 siginfo_t * 669 siginfo_alloc(int flags) 670 { 671 672 return pool_cache_get(siginfo_cache, flags); 673 } 674 675 /* 676 * siginfo_free: 677 * 678 * Return a siginfo_t structure to the pool. 679 */ 680 void 681 siginfo_free(void *arg) 682 { 683 684 pool_cache_put(siginfo_cache, arg); 685 } 686 687 void 688 getucontext(struct lwp *l, ucontext_t *ucp) 689 { 690 struct proc *p = l->l_proc; 691 692 KASSERT(mutex_owned(p->p_lock)); 693 694 ucp->uc_flags = 0; 695 ucp->uc_link = l->l_ctxlink; 696 697 ucp->uc_sigmask = l->l_sigmask; 698 ucp->uc_flags |= _UC_SIGMASK; 699 700 /* 701 * The (unsupplied) definition of the `current execution stack' 702 * in the System V Interface Definition appears to allow returning 703 * the main context stack. 704 */ 705 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 706 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 707 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 708 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 709 } else { 710 /* Simply copy alternate signal execution stack. */ 711 ucp->uc_stack = l->l_sigstk; 712 } 713 ucp->uc_flags |= _UC_STACK; 714 mutex_exit(p->p_lock); 715 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 716 mutex_enter(p->p_lock); 717 } 718 719 int 720 setucontext(struct lwp *l, const ucontext_t *ucp) 721 { 722 struct proc *p = l->l_proc; 723 int error; 724 725 KASSERT(mutex_owned(p->p_lock)); 726 727 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 728 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 729 if (error != 0) 730 return error; 731 } 732 733 mutex_exit(p->p_lock); 734 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 735 mutex_enter(p->p_lock); 736 if (error != 0) 737 return (error); 738 739 l->l_ctxlink = ucp->uc_link; 740 741 /* 742 * If there was stack information, update whether or not we are 743 * still running on an alternate signal stack. 744 */ 745 if ((ucp->uc_flags & _UC_STACK) != 0) { 746 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 747 l->l_sigstk.ss_flags |= SS_ONSTACK; 748 else 749 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 750 } 751 752 return 0; 753 } 754 755 /* 756 * Common code for kill process group/broadcast kill. cp is calling 757 * process. 758 */ 759 int 760 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 761 { 762 struct proc *p, *cp; 763 kauth_cred_t pc; 764 struct pgrp *pgrp; 765 int nfound; 766 int signo = ksi->ksi_signo; 767 768 cp = l->l_proc; 769 pc = l->l_cred; 770 nfound = 0; 771 772 mutex_enter(proc_lock); 773 if (all) { 774 /* 775 * broadcast 776 */ 777 PROCLIST_FOREACH(p, &allproc) { 778 if (p->p_pid <= 1 || p == cp || 779 p->p_flag & (PK_SYSTEM|PK_MARKER)) 780 continue; 781 mutex_enter(p->p_lock); 782 if (kauth_authorize_process(pc, 783 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 784 NULL) == 0) { 785 nfound++; 786 if (signo) 787 kpsignal2(p, ksi); 788 } 789 mutex_exit(p->p_lock); 790 } 791 } else { 792 if (pgid == 0) 793 /* 794 * zero pgid means send to my process group. 795 */ 796 pgrp = cp->p_pgrp; 797 else { 798 pgrp = pg_find(pgid, PFIND_LOCKED); 799 if (pgrp == NULL) 800 goto out; 801 } 802 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 803 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 804 continue; 805 mutex_enter(p->p_lock); 806 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 807 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 808 nfound++; 809 if (signo && P_ZOMBIE(p) == 0) 810 kpsignal2(p, ksi); 811 } 812 mutex_exit(p->p_lock); 813 } 814 } 815 out: 816 mutex_exit(proc_lock); 817 return (nfound ? 0 : ESRCH); 818 } 819 820 /* 821 * Send a signal to a process group. If checktty is 1, limit to members 822 * which have a controlling terminal. 823 */ 824 void 825 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 826 { 827 ksiginfo_t ksi; 828 829 KASSERT(!cpu_intr_p()); 830 KASSERT(mutex_owned(proc_lock)); 831 832 KSI_INIT_EMPTY(&ksi); 833 ksi.ksi_signo = sig; 834 kpgsignal(pgrp, &ksi, NULL, checkctty); 835 } 836 837 void 838 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 839 { 840 struct proc *p; 841 842 KASSERT(!cpu_intr_p()); 843 KASSERT(mutex_owned(proc_lock)); 844 845 if (pgrp) 846 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 847 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 848 kpsignal(p, ksi, data); 849 } 850 851 /* 852 * Send a signal caused by a trap to the current LWP. If it will be caught 853 * immediately, deliver it with correct code. Otherwise, post it normally. 854 */ 855 void 856 trapsignal(struct lwp *l, ksiginfo_t *ksi) 857 { 858 struct proc *p; 859 struct sigacts *ps; 860 int signo = ksi->ksi_signo; 861 862 KASSERT(KSI_TRAP_P(ksi)); 863 864 ksi->ksi_lid = l->l_lid; 865 p = l->l_proc; 866 867 KASSERT(!cpu_intr_p()); 868 mutex_enter(proc_lock); 869 mutex_enter(p->p_lock); 870 ps = p->p_sigacts; 871 if ((p->p_slflag & PSL_TRACED) == 0 && 872 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 873 !sigismember(&l->l_sigmask, signo)) { 874 mutex_exit(proc_lock); 875 l->l_ru.ru_nsignals++; 876 kpsendsig(l, ksi, &l->l_sigmask); 877 mutex_exit(p->p_lock); 878 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 879 &l->l_sigmask, ksi); 880 } else { 881 /* XXX for core dump/debugger */ 882 p->p_sigctx.ps_lwp = l->l_lid; 883 p->p_sigctx.ps_signo = ksi->ksi_signo; 884 p->p_sigctx.ps_code = ksi->ksi_trap; 885 kpsignal2(p, ksi); 886 mutex_exit(p->p_lock); 887 mutex_exit(proc_lock); 888 } 889 } 890 891 /* 892 * Fill in signal information and signal the parent for a child status change. 893 */ 894 void 895 child_psignal(struct proc *p, int mask) 896 { 897 ksiginfo_t ksi; 898 struct proc *q; 899 int xstat; 900 901 KASSERT(mutex_owned(proc_lock)); 902 KASSERT(mutex_owned(p->p_lock)); 903 904 xstat = p->p_xstat; 905 906 KSI_INIT(&ksi); 907 ksi.ksi_signo = SIGCHLD; 908 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 909 ksi.ksi_pid = p->p_pid; 910 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 911 ksi.ksi_status = xstat; 912 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 913 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 914 915 q = p->p_pptr; 916 917 mutex_exit(p->p_lock); 918 mutex_enter(q->p_lock); 919 920 if ((q->p_sflag & mask) == 0) 921 kpsignal2(q, &ksi); 922 923 mutex_exit(q->p_lock); 924 mutex_enter(p->p_lock); 925 } 926 927 void 928 psignal(struct proc *p, int signo) 929 { 930 ksiginfo_t ksi; 931 932 KASSERT(!cpu_intr_p()); 933 KASSERT(mutex_owned(proc_lock)); 934 935 KSI_INIT_EMPTY(&ksi); 936 ksi.ksi_signo = signo; 937 mutex_enter(p->p_lock); 938 kpsignal2(p, &ksi); 939 mutex_exit(p->p_lock); 940 } 941 942 void 943 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 944 { 945 fdfile_t *ff; 946 file_t *fp; 947 948 KASSERT(!cpu_intr_p()); 949 KASSERT(mutex_owned(proc_lock)); 950 951 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 952 size_t fd; 953 filedesc_t *fdp = p->p_fd; 954 955 /* XXXSMP locking */ 956 ksi->ksi_fd = -1; 957 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 958 if ((ff = fdp->fd_ofiles[fd]) == NULL) 959 continue; 960 if ((fp = ff->ff_file) == NULL) 961 continue; 962 if (fp->f_data == data) { 963 ksi->ksi_fd = fd; 964 break; 965 } 966 } 967 } 968 mutex_enter(p->p_lock); 969 kpsignal2(p, ksi); 970 mutex_exit(p->p_lock); 971 } 972 973 /* 974 * sigismasked: 975 * 976 * Returns true if signal is ignored or masked for the specified LWP. 977 */ 978 int 979 sigismasked(struct lwp *l, int sig) 980 { 981 struct proc *p = l->l_proc; 982 983 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 984 sigismember(&l->l_sigmask, sig)); 985 } 986 987 /* 988 * sigpost: 989 * 990 * Post a pending signal to an LWP. Returns non-zero if the LWP was 991 * able to take the signal. 992 */ 993 int 994 sigpost(struct lwp *l, sig_t action, int prop, int sig) 995 { 996 int rv, masked; 997 998 KASSERT(mutex_owned(l->l_proc->p_lock)); 999 1000 /* 1001 * If the LWP is on the way out, sigclear() will be busy draining all 1002 * pending signals. Don't give it more. 1003 */ 1004 if (l->l_refcnt == 0) 1005 return 0; 1006 1007 lwp_lock(l); 1008 1009 /* 1010 * Have the LWP check for signals. This ensures that even if no LWP 1011 * is found to take the signal immediately, it should be taken soon. 1012 */ 1013 l->l_flag |= LW_PENDSIG; 1014 1015 /* 1016 * SIGCONT can be masked, but must always restart stopped LWPs. 1017 */ 1018 masked = sigismember(&l->l_sigmask, sig); 1019 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1020 lwp_unlock(l); 1021 return 0; 1022 } 1023 1024 /* 1025 * If killing the process, make it run fast. 1026 */ 1027 if (__predict_false((prop & SA_KILL) != 0) && 1028 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1029 KASSERT(l->l_class == SCHED_OTHER); 1030 lwp_changepri(l, MAXPRI_USER); 1031 } 1032 1033 /* 1034 * If the LWP is running or on a run queue, then we win. If it's 1035 * sleeping interruptably, wake it and make it take the signal. If 1036 * the sleep isn't interruptable, then the chances are it will get 1037 * to see the signal soon anyhow. If suspended, it can't take the 1038 * signal right now. If it's LWP private or for all LWPs, save it 1039 * for later; otherwise punt. 1040 */ 1041 rv = 0; 1042 1043 switch (l->l_stat) { 1044 case LSRUN: 1045 case LSONPROC: 1046 lwp_need_userret(l); 1047 rv = 1; 1048 break; 1049 1050 case LSSLEEP: 1051 if ((l->l_flag & LW_SINTR) != 0) { 1052 /* setrunnable() will release the lock. */ 1053 setrunnable(l); 1054 return 1; 1055 } 1056 break; 1057 1058 case LSSUSPENDED: 1059 if ((prop & SA_KILL) != 0) { 1060 /* lwp_continue() will release the lock. */ 1061 lwp_continue(l); 1062 return 1; 1063 } 1064 break; 1065 1066 case LSSTOP: 1067 if ((prop & SA_STOP) != 0) 1068 break; 1069 1070 /* 1071 * If the LWP is stopped and we are sending a continue 1072 * signal, then start it again. 1073 */ 1074 if ((prop & SA_CONT) != 0) { 1075 if (l->l_wchan != NULL) { 1076 l->l_stat = LSSLEEP; 1077 l->l_proc->p_nrlwps++; 1078 rv = 1; 1079 break; 1080 } 1081 /* setrunnable() will release the lock. */ 1082 setrunnable(l); 1083 return 1; 1084 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1085 /* setrunnable() will release the lock. */ 1086 setrunnable(l); 1087 return 1; 1088 } 1089 break; 1090 1091 default: 1092 break; 1093 } 1094 1095 lwp_unlock(l); 1096 return rv; 1097 } 1098 1099 /* 1100 * Notify an LWP that it has a pending signal. 1101 */ 1102 void 1103 signotify(struct lwp *l) 1104 { 1105 KASSERT(lwp_locked(l, NULL)); 1106 1107 l->l_flag |= LW_PENDSIG; 1108 lwp_need_userret(l); 1109 } 1110 1111 /* 1112 * Find an LWP within process p that is waiting on signal ksi, and hand 1113 * it on. 1114 */ 1115 int 1116 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1117 { 1118 struct lwp *l; 1119 int signo; 1120 1121 KASSERT(mutex_owned(p->p_lock)); 1122 1123 signo = ksi->ksi_signo; 1124 1125 if (ksi->ksi_lid != 0) { 1126 /* 1127 * Signal came via _lwp_kill(). Find the LWP and see if 1128 * it's interested. 1129 */ 1130 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1131 return 0; 1132 if (l->l_sigwaited == NULL || 1133 !sigismember(&l->l_sigwaitset, signo)) 1134 return 0; 1135 } else { 1136 /* 1137 * Look for any LWP that may be interested. 1138 */ 1139 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1140 KASSERT(l->l_sigwaited != NULL); 1141 if (sigismember(&l->l_sigwaitset, signo)) 1142 break; 1143 } 1144 } 1145 1146 if (l != NULL) { 1147 l->l_sigwaited->ksi_info = ksi->ksi_info; 1148 l->l_sigwaited = NULL; 1149 LIST_REMOVE(l, l_sigwaiter); 1150 cv_signal(&l->l_sigcv); 1151 return 1; 1152 } 1153 1154 return 0; 1155 } 1156 1157 /* 1158 * Send the signal to the process. If the signal has an action, the action 1159 * is usually performed by the target process rather than the caller; we add 1160 * the signal to the set of pending signals for the process. 1161 * 1162 * Exceptions: 1163 * o When a stop signal is sent to a sleeping process that takes the 1164 * default action, the process is stopped without awakening it. 1165 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1166 * regardless of the signal action (eg, blocked or ignored). 1167 * 1168 * Other ignored signals are discarded immediately. 1169 */ 1170 void 1171 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1172 { 1173 int prop, lid, toall, signo = ksi->ksi_signo; 1174 struct sigacts *sa; 1175 struct lwp *l; 1176 ksiginfo_t *kp; 1177 ksiginfoq_t kq; 1178 sig_t action; 1179 1180 KASSERT(!cpu_intr_p()); 1181 KASSERT(mutex_owned(proc_lock)); 1182 KASSERT(mutex_owned(p->p_lock)); 1183 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1184 KASSERT(signo > 0 && signo < NSIG); 1185 1186 /* 1187 * If the process is being created by fork, is a zombie or is 1188 * exiting, then just drop the signal here and bail out. 1189 */ 1190 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1191 return; 1192 1193 /* 1194 * Notify any interested parties of the signal. 1195 */ 1196 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1197 1198 /* 1199 * Some signals including SIGKILL must act on the entire process. 1200 */ 1201 kp = NULL; 1202 prop = sigprop[signo]; 1203 toall = ((prop & SA_TOALL) != 0); 1204 1205 if (toall) 1206 lid = 0; 1207 else 1208 lid = ksi->ksi_lid; 1209 1210 /* 1211 * If proc is traced, always give parent a chance. 1212 */ 1213 if (p->p_slflag & PSL_TRACED) { 1214 action = SIG_DFL; 1215 1216 if (lid == 0) { 1217 /* 1218 * If the process is being traced and the signal 1219 * is being caught, make sure to save any ksiginfo. 1220 */ 1221 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1222 return; 1223 sigput(&p->p_sigpend, p, kp); 1224 } 1225 } else { 1226 /* 1227 * If the signal was the result of a trap and is not being 1228 * caught, then reset it to default action so that the 1229 * process dumps core immediately. 1230 */ 1231 if (KSI_TRAP_P(ksi)) { 1232 sa = p->p_sigacts; 1233 mutex_enter(&sa->sa_mutex); 1234 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1235 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1236 SIGACTION(p, signo).sa_handler = SIG_DFL; 1237 } 1238 mutex_exit(&sa->sa_mutex); 1239 } 1240 1241 /* 1242 * If the signal is being ignored, then drop it. Note: we 1243 * don't set SIGCONT in ps_sigignore, and if it is set to 1244 * SIG_IGN, action will be SIG_DFL here. 1245 */ 1246 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1247 return; 1248 1249 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1250 action = SIG_CATCH; 1251 else { 1252 action = SIG_DFL; 1253 1254 /* 1255 * If sending a tty stop signal to a member of an 1256 * orphaned process group, discard the signal here if 1257 * the action is default; don't stop the process below 1258 * if sleeping, and don't clear any pending SIGCONT. 1259 */ 1260 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1261 return; 1262 1263 if (prop & SA_KILL && p->p_nice > NZERO) 1264 p->p_nice = NZERO; 1265 } 1266 } 1267 1268 /* 1269 * If stopping or continuing a process, discard any pending 1270 * signals that would do the inverse. 1271 */ 1272 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1273 ksiginfo_queue_init(&kq); 1274 if ((prop & SA_CONT) != 0) 1275 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1276 if ((prop & SA_STOP) != 0) 1277 sigclear(&p->p_sigpend, &contsigmask, &kq); 1278 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1279 } 1280 1281 /* 1282 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1283 * please!), check if any LWPs are waiting on it. If yes, pass on 1284 * the signal info. The signal won't be processed further here. 1285 */ 1286 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1287 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1288 sigunwait(p, ksi)) 1289 return; 1290 1291 /* 1292 * XXXSMP Should be allocated by the caller, we're holding locks 1293 * here. 1294 */ 1295 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1296 return; 1297 1298 /* 1299 * LWP private signals are easy - just find the LWP and post 1300 * the signal to it. 1301 */ 1302 if (lid != 0) { 1303 l = lwp_find(p, lid); 1304 if (l != NULL) { 1305 sigput(&l->l_sigpend, p, kp); 1306 membar_producer(); 1307 (void)sigpost(l, action, prop, kp->ksi_signo); 1308 } 1309 goto out; 1310 } 1311 1312 /* 1313 * Some signals go to all LWPs, even if posted with _lwp_kill(). 1314 */ 1315 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1316 if ((p->p_slflag & PSL_TRACED) != 0) 1317 goto deliver; 1318 1319 /* 1320 * If SIGCONT is default (or ignored) and process is 1321 * asleep, we are finished; the process should not 1322 * be awakened. 1323 */ 1324 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1325 goto out; 1326 1327 sigput(&p->p_sigpend, p, kp); 1328 } else { 1329 /* 1330 * Process is stopped or stopping. If traced, then no 1331 * further action is necessary. 1332 */ 1333 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1334 goto out; 1335 1336 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1337 /* 1338 * Re-adjust p_nstopchild if the process wasn't 1339 * collected by its parent. 1340 */ 1341 p->p_stat = SACTIVE; 1342 p->p_sflag &= ~PS_STOPPING; 1343 if (!p->p_waited) 1344 p->p_pptr->p_nstopchild--; 1345 1346 /* 1347 * If SIGCONT is default (or ignored), we continue 1348 * the process but don't leave the signal in 1349 * ps_siglist, as it has no further action. If 1350 * SIGCONT is held, we continue the process and 1351 * leave the signal in ps_siglist. If the process 1352 * catches SIGCONT, let it handle the signal itself. 1353 * If it isn't waiting on an event, then it goes 1354 * back to run state. Otherwise, process goes back 1355 * to sleep state. 1356 */ 1357 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1358 sigput(&p->p_sigpend, p, kp); 1359 } else if ((prop & SA_STOP) != 0) { 1360 /* 1361 * Already stopped, don't need to stop again. 1362 * (If we did the shell could get confused.) 1363 */ 1364 goto out; 1365 } else 1366 sigput(&p->p_sigpend, p, kp); 1367 } 1368 1369 deliver: 1370 /* 1371 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1372 * visible on the per process list (for sigispending()). This 1373 * is unlikely to be needed in practice, but... 1374 */ 1375 membar_producer(); 1376 1377 /* 1378 * Try to find an LWP that can take the signal. 1379 */ 1380 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1381 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1382 break; 1383 1384 out: 1385 /* 1386 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1387 * with locks held. The caller should take care of this. 1388 */ 1389 ksiginfo_free(kp); 1390 } 1391 1392 void 1393 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1394 { 1395 struct proc *p = l->l_proc; 1396 1397 KASSERT(mutex_owned(p->p_lock)); 1398 1399 (*p->p_emul->e_sendsig)(ksi, mask); 1400 } 1401 1402 /* 1403 * Stop any LWPs sleeping interruptably. 1404 */ 1405 static void 1406 proc_stop_lwps(struct proc *p) 1407 { 1408 struct lwp *l; 1409 1410 KASSERT(mutex_owned(p->p_lock)); 1411 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1412 1413 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1414 lwp_lock(l); 1415 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1416 l->l_stat = LSSTOP; 1417 p->p_nrlwps--; 1418 } 1419 lwp_unlock(l); 1420 } 1421 } 1422 1423 /* 1424 * Finish stopping of a process. Mark it stopped and notify the parent. 1425 * 1426 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1427 */ 1428 static void 1429 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1430 { 1431 1432 KASSERT(mutex_owned(proc_lock)); 1433 KASSERT(mutex_owned(p->p_lock)); 1434 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1435 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1436 1437 p->p_sflag &= ~PS_STOPPING; 1438 p->p_stat = SSTOP; 1439 p->p_waited = 0; 1440 p->p_pptr->p_nstopchild++; 1441 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1442 if (ppsig) { 1443 /* child_psignal drops p_lock briefly. */ 1444 child_psignal(p, ppmask); 1445 } 1446 cv_broadcast(&p->p_pptr->p_waitcv); 1447 } 1448 } 1449 1450 /* 1451 * Stop the current process and switch away when being stopped or traced. 1452 */ 1453 void 1454 sigswitch(bool ppsig, int ppmask, int signo) 1455 { 1456 struct lwp *l = curlwp; 1457 struct proc *p = l->l_proc; 1458 int biglocks; 1459 1460 KASSERT(mutex_owned(p->p_lock)); 1461 KASSERT(l->l_stat == LSONPROC); 1462 KASSERT(p->p_nrlwps > 0); 1463 1464 /* 1465 * On entry we know that the process needs to stop. If it's 1466 * the result of a 'sideways' stop signal that has been sourced 1467 * through issignal(), then stop other LWPs in the process too. 1468 */ 1469 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1470 KASSERT(signo != 0); 1471 proc_stop(p, 1, signo); 1472 KASSERT(p->p_nrlwps > 0); 1473 } 1474 1475 /* 1476 * If we are the last live LWP, and the stop was a result of 1477 * a new signal, then signal the parent. 1478 */ 1479 if ((p->p_sflag & PS_STOPPING) != 0) { 1480 if (!mutex_tryenter(proc_lock)) { 1481 mutex_exit(p->p_lock); 1482 mutex_enter(proc_lock); 1483 mutex_enter(p->p_lock); 1484 } 1485 1486 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1487 /* 1488 * Note that proc_stop_done() can drop 1489 * p->p_lock briefly. 1490 */ 1491 proc_stop_done(p, ppsig, ppmask); 1492 } 1493 1494 mutex_exit(proc_lock); 1495 } 1496 1497 /* 1498 * Unlock and switch away. 1499 */ 1500 KERNEL_UNLOCK_ALL(l, &biglocks); 1501 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1502 p->p_nrlwps--; 1503 lwp_lock(l); 1504 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1505 l->l_stat = LSSTOP; 1506 lwp_unlock(l); 1507 } 1508 1509 mutex_exit(p->p_lock); 1510 lwp_lock(l); 1511 mi_switch(l); 1512 KERNEL_LOCK(biglocks, l); 1513 mutex_enter(p->p_lock); 1514 } 1515 1516 /* 1517 * Check for a signal from the debugger. 1518 */ 1519 int 1520 sigchecktrace(sigpend_t **spp) 1521 { 1522 struct lwp *l = curlwp; 1523 struct proc *p = l->l_proc; 1524 int signo; 1525 1526 KASSERT(mutex_owned(p->p_lock)); 1527 1528 /* 1529 * If we are no longer being traced, or the parent didn't 1530 * give us a signal, look for more signals. 1531 */ 1532 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1533 return 0; 1534 1535 /* If there's a pending SIGKILL, process it immediately. */ 1536 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1537 return 0; 1538 1539 /* 1540 * If the new signal is being masked, look for other signals. 1541 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1542 */ 1543 signo = p->p_xstat; 1544 p->p_xstat = 0; 1545 if ((sigprop[signo] & SA_TOLWP) != 0) 1546 *spp = &l->l_sigpend; 1547 else 1548 *spp = &p->p_sigpend; 1549 if (sigismember(&l->l_sigmask, signo)) 1550 signo = 0; 1551 1552 return signo; 1553 } 1554 1555 /* 1556 * If the current process has received a signal (should be caught or cause 1557 * termination, should interrupt current syscall), return the signal number. 1558 * 1559 * Stop signals with default action are processed immediately, then cleared; 1560 * they aren't returned. This is checked after each entry to the system for 1561 * a syscall or trap. 1562 * 1563 * We will also return -1 if the process is exiting and the current LWP must 1564 * follow suit. 1565 * 1566 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We 1567 * can switch away, though. 1568 */ 1569 int 1570 issignal(struct lwp *l) 1571 { 1572 struct proc *p = l->l_proc; 1573 int signo = 0, prop; 1574 sigpend_t *sp = NULL; 1575 sigset_t ss; 1576 1577 KASSERT(mutex_owned(p->p_lock)); 1578 1579 for (;;) { 1580 /* Discard any signals that we have decided not to take. */ 1581 if (signo != 0) 1582 (void)sigget(sp, NULL, signo, NULL); 1583 1584 /* 1585 * If the process is stopped/stopping, then stop ourselves 1586 * now that we're on the kernel/userspace boundary. When 1587 * we awaken, check for a signal from the debugger. 1588 */ 1589 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1590 sigswitch(true, PS_NOCLDSTOP, 0); 1591 signo = sigchecktrace(&sp); 1592 } else 1593 signo = 0; 1594 1595 /* 1596 * If the debugger didn't provide a signal, find a pending 1597 * signal from our set. Check per-LWP signals first, and 1598 * then per-process. 1599 */ 1600 if (signo == 0) { 1601 sp = &l->l_sigpend; 1602 ss = sp->sp_set; 1603 if ((p->p_lflag & PL_PPWAIT) != 0) 1604 sigminusset(&stopsigmask, &ss); 1605 sigminusset(&l->l_sigmask, &ss); 1606 1607 if ((signo = firstsig(&ss)) == 0) { 1608 sp = &p->p_sigpend; 1609 ss = sp->sp_set; 1610 if ((p->p_lflag & PL_PPWAIT) != 0) 1611 sigminusset(&stopsigmask, &ss); 1612 sigminusset(&l->l_sigmask, &ss); 1613 1614 if ((signo = firstsig(&ss)) == 0) { 1615 /* 1616 * No signal pending - clear the 1617 * indicator and bail out. 1618 */ 1619 lwp_lock(l); 1620 l->l_flag &= ~LW_PENDSIG; 1621 lwp_unlock(l); 1622 sp = NULL; 1623 break; 1624 } 1625 } 1626 } 1627 1628 /* 1629 * We should see pending but ignored signals only if 1630 * we are being traced. 1631 */ 1632 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1633 (p->p_slflag & PSL_TRACED) == 0) { 1634 /* Discard the signal. */ 1635 continue; 1636 } 1637 1638 /* 1639 * If traced, always stop, and stay stopped until released 1640 * by the debugger. If the our parent process is waiting 1641 * for us, don't hang as we could deadlock. 1642 */ 1643 if ((p->p_slflag & PSL_TRACED) != 0 && 1644 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1645 /* Take the signal. */ 1646 (void)sigget(sp, NULL, signo, NULL); 1647 p->p_xstat = signo; 1648 1649 /* Emulation-specific handling of signal trace */ 1650 if (p->p_emul->e_tracesig == NULL || 1651 (*p->p_emul->e_tracesig)(p, signo) == 0) 1652 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1653 signo); 1654 1655 /* Check for a signal from the debugger. */ 1656 if ((signo = sigchecktrace(&sp)) == 0) 1657 continue; 1658 } 1659 1660 prop = sigprop[signo]; 1661 1662 /* 1663 * Decide whether the signal should be returned. 1664 */ 1665 switch ((long)SIGACTION(p, signo).sa_handler) { 1666 case (long)SIG_DFL: 1667 /* 1668 * Don't take default actions on system processes. 1669 */ 1670 if (p->p_pid <= 1) { 1671 #ifdef DIAGNOSTIC 1672 /* 1673 * Are you sure you want to ignore SIGSEGV 1674 * in init? XXX 1675 */ 1676 printf_nolog("Process (pid %d) got sig %d\n", 1677 p->p_pid, signo); 1678 #endif 1679 continue; 1680 } 1681 1682 /* 1683 * If there is a pending stop signal to process with 1684 * default action, stop here, then clear the signal. 1685 * However, if process is member of an orphaned 1686 * process group, ignore tty stop signals. 1687 */ 1688 if (prop & SA_STOP) { 1689 /* 1690 * XXX Don't hold proc_lock for p_lflag, 1691 * but it's not a big deal. 1692 */ 1693 if (p->p_slflag & PSL_TRACED || 1694 ((p->p_lflag & PL_ORPHANPG) != 0 && 1695 prop & SA_TTYSTOP)) { 1696 /* Ignore the signal. */ 1697 continue; 1698 } 1699 /* Take the signal. */ 1700 (void)sigget(sp, NULL, signo, NULL); 1701 p->p_xstat = signo; 1702 signo = 0; 1703 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1704 } else if (prop & SA_IGNORE) { 1705 /* 1706 * Except for SIGCONT, shouldn't get here. 1707 * Default action is to ignore; drop it. 1708 */ 1709 continue; 1710 } 1711 break; 1712 1713 case (long)SIG_IGN: 1714 #ifdef DEBUG_ISSIGNAL 1715 /* 1716 * Masking above should prevent us ever trying 1717 * to take action on an ignored signal other 1718 * than SIGCONT, unless process is traced. 1719 */ 1720 if ((prop & SA_CONT) == 0 && 1721 (p->p_slflag & PSL_TRACED) == 0) 1722 printf_nolog("issignal\n"); 1723 #endif 1724 continue; 1725 1726 default: 1727 /* 1728 * This signal has an action, let postsig() process 1729 * it. 1730 */ 1731 break; 1732 } 1733 1734 break; 1735 } 1736 1737 l->l_sigpendset = sp; 1738 return signo; 1739 } 1740 1741 /* 1742 * Take the action for the specified signal 1743 * from the current set of pending signals. 1744 */ 1745 void 1746 postsig(int signo) 1747 { 1748 struct lwp *l; 1749 struct proc *p; 1750 struct sigacts *ps; 1751 sig_t action; 1752 sigset_t *returnmask; 1753 ksiginfo_t ksi; 1754 1755 l = curlwp; 1756 p = l->l_proc; 1757 ps = p->p_sigacts; 1758 1759 KASSERT(mutex_owned(p->p_lock)); 1760 KASSERT(signo > 0); 1761 1762 /* 1763 * Set the new mask value and also defer further occurrences of this 1764 * signal. 1765 * 1766 * Special case: user has done a sigsuspend. Here the current mask is 1767 * not of interest, but rather the mask from before the sigsuspen is 1768 * what we want restored after the signal processing is completed. 1769 */ 1770 if (l->l_sigrestore) { 1771 returnmask = &l->l_sigoldmask; 1772 l->l_sigrestore = 0; 1773 } else 1774 returnmask = &l->l_sigmask; 1775 1776 /* 1777 * Commit to taking the signal before releasing the mutex. 1778 */ 1779 action = SIGACTION_PS(ps, signo).sa_handler; 1780 l->l_ru.ru_nsignals++; 1781 sigget(l->l_sigpendset, &ksi, signo, NULL); 1782 1783 if (ktrpoint(KTR_PSIG)) { 1784 mutex_exit(p->p_lock); 1785 ktrpsig(signo, action, returnmask, &ksi); 1786 mutex_enter(p->p_lock); 1787 } 1788 1789 if (action == SIG_DFL) { 1790 /* 1791 * Default action, where the default is to kill 1792 * the process. (Other cases were ignored above.) 1793 */ 1794 sigexit(l, signo); 1795 return; 1796 } 1797 1798 /* 1799 * If we get here, the signal must be caught. 1800 */ 1801 #ifdef DIAGNOSTIC 1802 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1803 panic("postsig action"); 1804 #endif 1805 1806 kpsendsig(l, &ksi, returnmask); 1807 } 1808 1809 /* 1810 * sendsig_reset: 1811 * 1812 * Reset the signal action. Called from emulation specific sendsig() 1813 * before unlocking to deliver the signal. 1814 */ 1815 void 1816 sendsig_reset(struct lwp *l, int signo) 1817 { 1818 struct proc *p = l->l_proc; 1819 struct sigacts *ps = p->p_sigacts; 1820 1821 KASSERT(mutex_owned(p->p_lock)); 1822 1823 p->p_sigctx.ps_lwp = 0; 1824 p->p_sigctx.ps_code = 0; 1825 p->p_sigctx.ps_signo = 0; 1826 1827 mutex_enter(&ps->sa_mutex); 1828 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1829 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1830 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1831 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1832 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1833 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1834 } 1835 mutex_exit(&ps->sa_mutex); 1836 } 1837 1838 /* 1839 * Kill the current process for stated reason. 1840 */ 1841 void 1842 killproc(struct proc *p, const char *why) 1843 { 1844 1845 KASSERT(mutex_owned(proc_lock)); 1846 1847 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1848 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1849 psignal(p, SIGKILL); 1850 } 1851 1852 /* 1853 * Force the current process to exit with the specified signal, dumping core 1854 * if appropriate. We bypass the normal tests for masked and caught 1855 * signals, allowing unrecoverable failures to terminate the process without 1856 * changing signal state. Mark the accounting record with the signal 1857 * termination. If dumping core, save the signal number for the debugger. 1858 * Calls exit and does not return. 1859 */ 1860 void 1861 sigexit(struct lwp *l, int signo) 1862 { 1863 int exitsig, error, docore; 1864 struct proc *p; 1865 struct lwp *t; 1866 1867 p = l->l_proc; 1868 1869 KASSERT(mutex_owned(p->p_lock)); 1870 KERNEL_UNLOCK_ALL(l, NULL); 1871 1872 /* 1873 * Don't permit coredump() multiple times in the same process. 1874 * Call back into sigexit, where we will be suspended until 1875 * the deed is done. Note that this is a recursive call, but 1876 * LW_WCORE will prevent us from coming back this way. 1877 */ 1878 if ((p->p_sflag & PS_WCORE) != 0) { 1879 lwp_lock(l); 1880 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1881 lwp_unlock(l); 1882 mutex_exit(p->p_lock); 1883 lwp_userret(l); 1884 panic("sigexit 1"); 1885 /* NOTREACHED */ 1886 } 1887 1888 /* If process is already on the way out, then bail now. */ 1889 if ((p->p_sflag & PS_WEXIT) != 0) { 1890 mutex_exit(p->p_lock); 1891 lwp_exit(l); 1892 panic("sigexit 2"); 1893 /* NOTREACHED */ 1894 } 1895 1896 /* 1897 * Prepare all other LWPs for exit. If dumping core, suspend them 1898 * so that their registers are available long enough to be dumped. 1899 */ 1900 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1901 p->p_sflag |= PS_WCORE; 1902 for (;;) { 1903 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1904 lwp_lock(t); 1905 if (t == l) { 1906 t->l_flag &= ~LW_WSUSPEND; 1907 lwp_unlock(t); 1908 continue; 1909 } 1910 t->l_flag |= (LW_WCORE | LW_WEXIT); 1911 lwp_suspend(l, t); 1912 } 1913 1914 if (p->p_nrlwps == 1) 1915 break; 1916 1917 /* 1918 * Kick any LWPs sitting in lwp_wait1(), and wait 1919 * for everyone else to stop before proceeding. 1920 */ 1921 p->p_nlwpwait++; 1922 cv_broadcast(&p->p_lwpcv); 1923 cv_wait(&p->p_lwpcv, p->p_lock); 1924 p->p_nlwpwait--; 1925 } 1926 } 1927 1928 exitsig = signo; 1929 p->p_acflag |= AXSIG; 1930 p->p_sigctx.ps_signo = signo; 1931 1932 if (docore) { 1933 mutex_exit(p->p_lock); 1934 if ((error = coredump(l, NULL)) == 0) 1935 exitsig |= WCOREFLAG; 1936 1937 if (kern_logsigexit) { 1938 int uid = l->l_cred ? 1939 (int)kauth_cred_geteuid(l->l_cred) : -1; 1940 1941 if (error) 1942 log(LOG_INFO, lognocoredump, p->p_pid, 1943 p->p_comm, uid, signo, error); 1944 else 1945 log(LOG_INFO, logcoredump, p->p_pid, 1946 p->p_comm, uid, signo); 1947 } 1948 1949 #ifdef PAX_SEGVGUARD 1950 pax_segvguard(l, p->p_textvp, p->p_comm, true); 1951 #endif /* PAX_SEGVGUARD */ 1952 /* Acquire the sched state mutex. exit1() will release it. */ 1953 mutex_enter(p->p_lock); 1954 } 1955 1956 /* No longer dumping core. */ 1957 p->p_sflag &= ~PS_WCORE; 1958 1959 exit1(l, W_EXITCODE(0, exitsig)); 1960 /* NOTREACHED */ 1961 } 1962 1963 /* 1964 * Put process 'p' into the stopped state and optionally, notify the parent. 1965 */ 1966 void 1967 proc_stop(struct proc *p, int notify, int signo) 1968 { 1969 struct lwp *l; 1970 1971 KASSERT(mutex_owned(p->p_lock)); 1972 1973 /* 1974 * First off, set the stopping indicator and bring all sleeping 1975 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 1976 * unlock between here and the p->p_nrlwps check below. 1977 */ 1978 p->p_sflag |= PS_STOPPING; 1979 if (notify) 1980 p->p_sflag |= PS_NOTIFYSTOP; 1981 else 1982 p->p_sflag &= ~PS_NOTIFYSTOP; 1983 membar_producer(); 1984 1985 proc_stop_lwps(p); 1986 1987 /* 1988 * If there are no LWPs available to take the signal, then we 1989 * signal the parent process immediately. Otherwise, the last 1990 * LWP to stop will take care of it. 1991 */ 1992 1993 if (p->p_nrlwps == 0) { 1994 proc_stop_done(p, true, PS_NOCLDSTOP); 1995 } else { 1996 /* 1997 * Have the remaining LWPs come to a halt, and trigger 1998 * proc_stop_callout() to ensure that they do. 1999 */ 2000 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2001 sigpost(l, SIG_DFL, SA_STOP, signo); 2002 callout_schedule(&proc_stop_ch, 1); 2003 } 2004 } 2005 2006 /* 2007 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2008 * but wait for them to come to a halt at the kernel-user boundary. This is 2009 * to allow LWPs to release any locks that they may hold before stopping. 2010 * 2011 * Non-interruptable sleeps can be long, and there is the potential for an 2012 * LWP to begin sleeping interruptably soon after the process has been set 2013 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2014 * stopping, and so complete halt of the process and the return of status 2015 * information to the parent could be delayed indefinitely. 2016 * 2017 * To handle this race, proc_stop_callout() runs once per tick while there 2018 * are stopping processes in the system. It sets LWPs that are sleeping 2019 * interruptably into the LSSTOP state. 2020 * 2021 * Note that we are not concerned about keeping all LWPs stopped while the 2022 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2023 * What we do need to ensure is that all LWPs in a stopping process have 2024 * stopped at least once, so that notification can be sent to the parent 2025 * process. 2026 */ 2027 static void 2028 proc_stop_callout(void *cookie) 2029 { 2030 bool more, restart; 2031 struct proc *p; 2032 2033 (void)cookie; 2034 2035 do { 2036 restart = false; 2037 more = false; 2038 2039 mutex_enter(proc_lock); 2040 PROCLIST_FOREACH(p, &allproc) { 2041 if ((p->p_flag & PK_MARKER) != 0) 2042 continue; 2043 mutex_enter(p->p_lock); 2044 2045 if ((p->p_sflag & PS_STOPPING) == 0) { 2046 mutex_exit(p->p_lock); 2047 continue; 2048 } 2049 2050 /* Stop any LWPs sleeping interruptably. */ 2051 proc_stop_lwps(p); 2052 if (p->p_nrlwps == 0) { 2053 /* 2054 * We brought the process to a halt. 2055 * Mark it as stopped and notify the 2056 * parent. 2057 */ 2058 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2059 /* 2060 * Note that proc_stop_done() will 2061 * drop p->p_lock briefly. 2062 * Arrange to restart and check 2063 * all processes again. 2064 */ 2065 restart = true; 2066 } 2067 proc_stop_done(p, true, PS_NOCLDSTOP); 2068 } else 2069 more = true; 2070 2071 mutex_exit(p->p_lock); 2072 if (restart) 2073 break; 2074 } 2075 mutex_exit(proc_lock); 2076 } while (restart); 2077 2078 /* 2079 * If we noted processes that are stopping but still have 2080 * running LWPs, then arrange to check again in 1 tick. 2081 */ 2082 if (more) 2083 callout_schedule(&proc_stop_ch, 1); 2084 } 2085 2086 /* 2087 * Given a process in state SSTOP, set the state back to SACTIVE and 2088 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2089 */ 2090 void 2091 proc_unstop(struct proc *p) 2092 { 2093 struct lwp *l; 2094 int sig; 2095 2096 KASSERT(mutex_owned(proc_lock)); 2097 KASSERT(mutex_owned(p->p_lock)); 2098 2099 p->p_stat = SACTIVE; 2100 p->p_sflag &= ~PS_STOPPING; 2101 sig = p->p_xstat; 2102 2103 if (!p->p_waited) 2104 p->p_pptr->p_nstopchild--; 2105 2106 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2107 lwp_lock(l); 2108 if (l->l_stat != LSSTOP) { 2109 lwp_unlock(l); 2110 continue; 2111 } 2112 if (l->l_wchan == NULL) { 2113 setrunnable(l); 2114 continue; 2115 } 2116 if (sig && (l->l_flag & LW_SINTR) != 0) { 2117 setrunnable(l); 2118 sig = 0; 2119 } else { 2120 l->l_stat = LSSLEEP; 2121 p->p_nrlwps++; 2122 lwp_unlock(l); 2123 } 2124 } 2125 } 2126 2127 static int 2128 filt_sigattach(struct knote *kn) 2129 { 2130 struct proc *p = curproc; 2131 2132 kn->kn_obj = p; 2133 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2134 2135 mutex_enter(p->p_lock); 2136 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2137 mutex_exit(p->p_lock); 2138 2139 return (0); 2140 } 2141 2142 static void 2143 filt_sigdetach(struct knote *kn) 2144 { 2145 struct proc *p = kn->kn_obj; 2146 2147 mutex_enter(p->p_lock); 2148 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2149 mutex_exit(p->p_lock); 2150 } 2151 2152 /* 2153 * signal knotes are shared with proc knotes, so we apply a mask to 2154 * the hint in order to differentiate them from process hints. This 2155 * could be avoided by using a signal-specific knote list, but probably 2156 * isn't worth the trouble. 2157 */ 2158 static int 2159 filt_signal(struct knote *kn, long hint) 2160 { 2161 2162 if (hint & NOTE_SIGNAL) { 2163 hint &= ~NOTE_SIGNAL; 2164 2165 if (kn->kn_id == hint) 2166 kn->kn_data++; 2167 } 2168 return (kn->kn_data != 0); 2169 } 2170 2171 const struct filterops sig_filtops = { 2172 0, filt_sigattach, filt_sigdetach, filt_signal 2173 }; 2174