xref: /netbsd-src/sys/kern/kern_sig.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: kern_sig.c,v 1.306 2010/07/01 02:38:30 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.306 2010/07/01 02:38:30 rmind Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/sdt.h>
100 
101 #ifdef PAX_SEGVGUARD
102 #include <sys/pax.h>
103 #endif /* PAX_SEGVGUARD */
104 
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107 
108 static void	ksiginfo_exechook(struct proc *, void *);
109 static void	proc_stop_callout(void *);
110 static int	sigchecktrace(void);
111 static int	sigpost(struct lwp *, sig_t, int, int, int);
112 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
113 static int	sigunwait(struct proc *, const ksiginfo_t *);
114 static void	sigswitch(bool, int, int);
115 
116 sigset_t	contsigmask, stopsigmask, sigcantmask;
117 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
118 static void	sigacts_poolpage_free(struct pool *, void *);
119 static void	*sigacts_poolpage_alloc(struct pool *, int);
120 static callout_t proc_stop_ch;
121 static pool_cache_t siginfo_cache;
122 static pool_cache_t ksiginfo_cache;
123 
124 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
125 int (*coredump_vec)(struct lwp *, const char *) =
126     (int (*)(struct lwp *, const char *))enosys;
127 
128 /*
129  * DTrace SDT provider definitions
130  */
131 SDT_PROBE_DEFINE(proc,,,signal_send,
132 	    "struct lwp *", NULL,	/* target thread */
133 	    "struct proc *", NULL,	/* target process */
134 	    "int", NULL, 		/* signal */
135 	    NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,signal_discard,
137 	    "struct lwp *", NULL,	/* target thread */
138 	    "struct proc *", NULL,	/* target process */
139 	    "int", NULL, 		/* signal */
140 	    NULL, NULL, NULL, NULL);
141 SDT_PROBE_DEFINE(proc,,,signal_clear,
142 	    "int", NULL,		/* signal */
143 	    NULL, NULL, NULL, NULL,
144 	    NULL, NULL, NULL, NULL);
145 SDT_PROBE_DEFINE(proc,,,signal_handle,
146 	    "int", NULL,		/* signal */
147 	    "ksiginfo_t *", NULL,
148 	    "void (*)(void)", NULL,	/* handler address */
149 	    NULL, NULL, NULL, NULL);
150 
151 
152 static struct pool_allocator sigactspool_allocator = {
153 	.pa_alloc = sigacts_poolpage_alloc,
154 	.pa_free = sigacts_poolpage_free
155 };
156 
157 #ifdef DEBUG
158 int	kern_logsigexit = 1;
159 #else
160 int	kern_logsigexit = 0;
161 #endif
162 
163 static const char logcoredump[] =
164     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
165 static const char lognocoredump[] =
166     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
167 
168 static kauth_listener_t signal_listener;
169 
170 static int
171 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
172     void *arg0, void *arg1, void *arg2, void *arg3)
173 {
174 	struct proc *p;
175 	int result, signum;
176 
177 	result = KAUTH_RESULT_DEFER;
178 	p = arg0;
179 	signum = (int)(unsigned long)arg1;
180 
181 	if (action != KAUTH_PROCESS_SIGNAL)
182 		return result;
183 
184 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
185 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
186 		result = KAUTH_RESULT_ALLOW;
187 
188 	return result;
189 }
190 
191 /*
192  * signal_init:
193  *
194  *	Initialize global signal-related data structures.
195  */
196 void
197 signal_init(void)
198 {
199 
200 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
201 
202 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
203 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
204 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
205 
206 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
207 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
208 
209 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
210 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
211 
212 	exechook_establish(ksiginfo_exechook, NULL);
213 
214 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
215 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
216 
217 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
218 	    signal_listener_cb, NULL);
219 }
220 
221 /*
222  * sigacts_poolpage_alloc:
223  *
224  *	Allocate a page for the sigacts memory pool.
225  */
226 static void *
227 sigacts_poolpage_alloc(struct pool *pp, int flags)
228 {
229 
230 	return (void *)uvm_km_alloc(kernel_map,
231 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
232 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
233 	    | UVM_KMF_WIRED);
234 }
235 
236 /*
237  * sigacts_poolpage_free:
238  *
239  *	Free a page on behalf of the sigacts memory pool.
240  */
241 static void
242 sigacts_poolpage_free(struct pool *pp, void *v)
243 {
244 
245 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
246 }
247 
248 /*
249  * sigactsinit:
250  *
251  *	Create an initial sigacts structure, using the same signal state
252  *	as of specified process.  If 'share' is set, share the sigacts by
253  *	holding a reference, otherwise just copy it from parent.
254  */
255 struct sigacts *
256 sigactsinit(struct proc *pp, int share)
257 {
258 	struct sigacts *ps = pp->p_sigacts, *ps2;
259 
260 	if (__predict_false(share)) {
261 		atomic_inc_uint(&ps->sa_refcnt);
262 		return ps;
263 	}
264 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
265 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
266 	ps2->sa_refcnt = 1;
267 
268 	mutex_enter(&ps->sa_mutex);
269 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
270 	mutex_exit(&ps->sa_mutex);
271 	return ps2;
272 }
273 
274 /*
275  * sigactsunshare:
276  *
277  *	Make this process not share its sigacts, maintaining all signal state.
278  */
279 void
280 sigactsunshare(struct proc *p)
281 {
282 	struct sigacts *ps, *oldps = p->p_sigacts;
283 
284 	if (__predict_true(oldps->sa_refcnt == 1))
285 		return;
286 
287 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
288 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
289 	memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
290 	ps->sa_refcnt = 1;
291 
292 	p->p_sigacts = ps;
293 	sigactsfree(oldps);
294 }
295 
296 /*
297  * sigactsfree;
298  *
299  *	Release a sigacts structure.
300  */
301 void
302 sigactsfree(struct sigacts *ps)
303 {
304 
305 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
306 		mutex_destroy(&ps->sa_mutex);
307 		pool_cache_put(sigacts_cache, ps);
308 	}
309 }
310 
311 /*
312  * siginit:
313  *
314  *	Initialize signal state for process 0; set to ignore signals that
315  *	are ignored by default and disable the signal stack.  Locking not
316  *	required as the system is still cold.
317  */
318 void
319 siginit(struct proc *p)
320 {
321 	struct lwp *l;
322 	struct sigacts *ps;
323 	int signo, prop;
324 
325 	ps = p->p_sigacts;
326 	sigemptyset(&contsigmask);
327 	sigemptyset(&stopsigmask);
328 	sigemptyset(&sigcantmask);
329 	for (signo = 1; signo < NSIG; signo++) {
330 		prop = sigprop[signo];
331 		if (prop & SA_CONT)
332 			sigaddset(&contsigmask, signo);
333 		if (prop & SA_STOP)
334 			sigaddset(&stopsigmask, signo);
335 		if (prop & SA_CANTMASK)
336 			sigaddset(&sigcantmask, signo);
337 		if (prop & SA_IGNORE && signo != SIGCONT)
338 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
339 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
340 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
341 	}
342 	sigemptyset(&p->p_sigctx.ps_sigcatch);
343 	p->p_sflag &= ~PS_NOCLDSTOP;
344 
345 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
346 	sigemptyset(&p->p_sigpend.sp_set);
347 
348 	/*
349 	 * Reset per LWP state.
350 	 */
351 	l = LIST_FIRST(&p->p_lwps);
352 	l->l_sigwaited = NULL;
353 	l->l_sigstk.ss_flags = SS_DISABLE;
354 	l->l_sigstk.ss_size = 0;
355 	l->l_sigstk.ss_sp = 0;
356 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
357 	sigemptyset(&l->l_sigpend.sp_set);
358 
359 	/* One reference. */
360 	ps->sa_refcnt = 1;
361 }
362 
363 /*
364  * execsigs:
365  *
366  *	Reset signals for an exec of the specified process.
367  */
368 void
369 execsigs(struct proc *p)
370 {
371 	struct sigacts *ps;
372 	struct lwp *l;
373 	int signo, prop;
374 	sigset_t tset;
375 	ksiginfoq_t kq;
376 
377 	KASSERT(p->p_nlwps == 1);
378 
379 	sigactsunshare(p);
380 	ps = p->p_sigacts;
381 
382 	/*
383 	 * Reset caught signals.  Held signals remain held through
384 	 * l->l_sigmask (unless they were caught, and are now ignored
385 	 * by default).
386 	 *
387 	 * No need to lock yet, the process has only one LWP and
388 	 * at this point the sigacts are private to the process.
389 	 */
390 	sigemptyset(&tset);
391 	for (signo = 1; signo < NSIG; signo++) {
392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
393 			prop = sigprop[signo];
394 			if (prop & SA_IGNORE) {
395 				if ((prop & SA_CONT) == 0)
396 					sigaddset(&p->p_sigctx.ps_sigignore,
397 					    signo);
398 				sigaddset(&tset, signo);
399 			}
400 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
401 		}
402 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
403 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
404 	}
405 	ksiginfo_queue_init(&kq);
406 
407 	mutex_enter(p->p_lock);
408 	sigclearall(p, &tset, &kq);
409 	sigemptyset(&p->p_sigctx.ps_sigcatch);
410 
411 	/*
412 	 * Reset no zombies if child dies flag as Solaris does.
413 	 */
414 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
415 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
416 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
417 
418 	/*
419 	 * Reset per-LWP state.
420 	 */
421 	l = LIST_FIRST(&p->p_lwps);
422 	l->l_sigwaited = NULL;
423 	l->l_sigstk.ss_flags = SS_DISABLE;
424 	l->l_sigstk.ss_size = 0;
425 	l->l_sigstk.ss_sp = 0;
426 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
427 	sigemptyset(&l->l_sigpend.sp_set);
428 	mutex_exit(p->p_lock);
429 
430 	ksiginfo_queue_drain(&kq);
431 }
432 
433 /*
434  * ksiginfo_exechook:
435  *
436  *	Free all pending ksiginfo entries from a process on exec.
437  *	Additionally, drain any unused ksiginfo structures in the
438  *	system back to the pool.
439  *
440  *	XXX This should not be a hook, every process has signals.
441  */
442 static void
443 ksiginfo_exechook(struct proc *p, void *v)
444 {
445 	ksiginfoq_t kq;
446 
447 	ksiginfo_queue_init(&kq);
448 
449 	mutex_enter(p->p_lock);
450 	sigclearall(p, NULL, &kq);
451 	mutex_exit(p->p_lock);
452 
453 	ksiginfo_queue_drain(&kq);
454 }
455 
456 /*
457  * ksiginfo_alloc:
458  *
459  *	Allocate a new ksiginfo structure from the pool, and optionally copy
460  *	an existing one.  If the existing ksiginfo_t is from the pool, and
461  *	has not been queued somewhere, then just return it.  Additionally,
462  *	if the existing ksiginfo_t does not contain any information beyond
463  *	the signal number, then just return it.
464  */
465 ksiginfo_t *
466 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
467 {
468 	ksiginfo_t *kp;
469 
470 	if (ok != NULL) {
471 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
472 		    KSI_FROMPOOL)
473 			return ok;
474 		if (KSI_EMPTY_P(ok))
475 			return ok;
476 	}
477 
478 	kp = pool_cache_get(ksiginfo_cache, flags);
479 	if (kp == NULL) {
480 #ifdef DIAGNOSTIC
481 		printf("Out of memory allocating ksiginfo for pid %d\n",
482 		    p->p_pid);
483 #endif
484 		return NULL;
485 	}
486 
487 	if (ok != NULL) {
488 		memcpy(kp, ok, sizeof(*kp));
489 		kp->ksi_flags &= ~KSI_QUEUED;
490 	} else
491 		KSI_INIT_EMPTY(kp);
492 
493 	kp->ksi_flags |= KSI_FROMPOOL;
494 
495 	return kp;
496 }
497 
498 /*
499  * ksiginfo_free:
500  *
501  *	If the given ksiginfo_t is from the pool and has not been queued,
502  *	then free it.
503  */
504 void
505 ksiginfo_free(ksiginfo_t *kp)
506 {
507 
508 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
509 		return;
510 	pool_cache_put(ksiginfo_cache, kp);
511 }
512 
513 /*
514  * ksiginfo_queue_drain:
515  *
516  *	Drain a non-empty ksiginfo_t queue.
517  */
518 void
519 ksiginfo_queue_drain0(ksiginfoq_t *kq)
520 {
521 	ksiginfo_t *ksi;
522 
523 	KASSERT(!CIRCLEQ_EMPTY(kq));
524 
525 	while (!CIRCLEQ_EMPTY(kq)) {
526 		ksi = CIRCLEQ_FIRST(kq);
527 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
528 		pool_cache_put(ksiginfo_cache, ksi);
529 	}
530 }
531 
532 /*
533  * sigget:
534  *
535  *	Fetch the first pending signal from a set.  Optionally, also fetch
536  *	or manufacture a ksiginfo element.  Returns the number of the first
537  *	pending signal, or zero.
538  */
539 int
540 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
541 {
542 	ksiginfo_t *ksi;
543 	sigset_t tset;
544 
545 	/* If there's no pending set, the signal is from the debugger. */
546 	if (sp == NULL)
547 		goto out;
548 
549 	/* Construct mask from signo, and 'mask'. */
550 	if (signo == 0) {
551 		if (mask != NULL) {
552 			tset = *mask;
553 			__sigandset(&sp->sp_set, &tset);
554 		} else
555 			tset = sp->sp_set;
556 
557 		/* If there are no signals pending - return. */
558 		if ((signo = firstsig(&tset)) == 0)
559 			goto out;
560 	} else {
561 		KASSERT(sigismember(&sp->sp_set, signo));
562 	}
563 
564 	sigdelset(&sp->sp_set, signo);
565 
566 	/* Find siginfo and copy it out. */
567 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
568 		if (ksi->ksi_signo != signo)
569 			continue;
570 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
571 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
572 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
573 		ksi->ksi_flags &= ~KSI_QUEUED;
574 		if (out != NULL) {
575 			memcpy(out, ksi, sizeof(*out));
576 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
577 		}
578 		ksiginfo_free(ksi);	/* XXXSMP */
579 		return signo;
580 	}
581 out:
582 	/* If there is no siginfo, then manufacture it. */
583 	if (out != NULL) {
584 		KSI_INIT(out);
585 		out->ksi_info._signo = signo;
586 		out->ksi_info._code = SI_NOINFO;
587 	}
588 	return signo;
589 }
590 
591 /*
592  * sigput:
593  *
594  *	Append a new ksiginfo element to the list of pending ksiginfo's.
595  */
596 static void
597 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
598 {
599 	ksiginfo_t *kp;
600 
601 	KASSERT(mutex_owned(p->p_lock));
602 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
603 
604 	sigaddset(&sp->sp_set, ksi->ksi_signo);
605 
606 	/*
607 	 * If there is no siginfo, we are done.
608 	 */
609 	if (KSI_EMPTY_P(ksi))
610 		return;
611 
612 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
613 
614 #ifdef notyet	/* XXX: QUEUING */
615 	if (ksi->ksi_signo < SIGRTMIN)
616 #endif
617 	{
618 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
619 			if (kp->ksi_signo == ksi->ksi_signo) {
620 				KSI_COPY(ksi, kp);
621 				kp->ksi_flags |= KSI_QUEUED;
622 				return;
623 			}
624 		}
625 	}
626 
627 	ksi->ksi_flags |= KSI_QUEUED;
628 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
629 }
630 
631 /*
632  * sigclear:
633  *
634  *	Clear all pending signals in the specified set.
635  */
636 void
637 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
638 {
639 	ksiginfo_t *ksi, *next;
640 
641 	if (mask == NULL)
642 		sigemptyset(&sp->sp_set);
643 	else
644 		sigminusset(mask, &sp->sp_set);
645 
646 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
647 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
648 		next = CIRCLEQ_NEXT(ksi, ksi_list);
649 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
650 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
651 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
652 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
653 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
654 		}
655 	}
656 }
657 
658 /*
659  * sigclearall:
660  *
661  *	Clear all pending signals in the specified set from a process and
662  *	its LWPs.
663  */
664 void
665 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
666 {
667 	struct lwp *l;
668 
669 	KASSERT(mutex_owned(p->p_lock));
670 
671 	sigclear(&p->p_sigpend, mask, kq);
672 
673 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
674 		sigclear(&l->l_sigpend, mask, kq);
675 	}
676 }
677 
678 /*
679  * sigispending:
680  *
681  *	Return true if there are pending signals for the current LWP.  May
682  *	be called unlocked provided that LW_PENDSIG is set, and that the
683  *	signal has been posted to the appopriate queue before LW_PENDSIG is
684  *	set.
685  */
686 int
687 sigispending(struct lwp *l, int signo)
688 {
689 	struct proc *p = l->l_proc;
690 	sigset_t tset;
691 
692 	membar_consumer();
693 
694 	tset = l->l_sigpend.sp_set;
695 	sigplusset(&p->p_sigpend.sp_set, &tset);
696 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
697 	sigminusset(&l->l_sigmask, &tset);
698 
699 	if (signo == 0) {
700 		if (firstsig(&tset) != 0)
701 			return EINTR;
702 	} else if (sigismember(&tset, signo))
703 		return EINTR;
704 
705 	return 0;
706 }
707 
708 #ifdef KERN_SA
709 
710 /*
711  * siginfo_alloc:
712  *
713  *	Allocate a new siginfo_t structure from the pool.
714  */
715 siginfo_t *
716 siginfo_alloc(int flags)
717 {
718 
719 	return pool_cache_get(siginfo_cache, flags);
720 }
721 
722 /*
723  * siginfo_free:
724  *
725  *	Return a siginfo_t structure to the pool.
726  */
727 void
728 siginfo_free(void *arg)
729 {
730 
731 	pool_cache_put(siginfo_cache, arg);
732 }
733 
734 #endif
735 
736 void
737 getucontext(struct lwp *l, ucontext_t *ucp)
738 {
739 	struct proc *p = l->l_proc;
740 
741 	KASSERT(mutex_owned(p->p_lock));
742 
743 	ucp->uc_flags = 0;
744 	ucp->uc_link = l->l_ctxlink;
745 
746 #if KERN_SA
747 	if (p->p_sa != NULL)
748 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
749 	else
750 #endif /* KERN_SA */
751 		ucp->uc_sigmask = l->l_sigmask;
752 	ucp->uc_flags |= _UC_SIGMASK;
753 
754 	/*
755 	 * The (unsupplied) definition of the `current execution stack'
756 	 * in the System V Interface Definition appears to allow returning
757 	 * the main context stack.
758 	 */
759 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
760 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
761 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
762 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
763 	} else {
764 		/* Simply copy alternate signal execution stack. */
765 		ucp->uc_stack = l->l_sigstk;
766 	}
767 	ucp->uc_flags |= _UC_STACK;
768 	mutex_exit(p->p_lock);
769 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
770 	mutex_enter(p->p_lock);
771 }
772 
773 /*
774  * getucontext_sa:
775  *      Get a ucontext_t for use in SA upcall generation.
776  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
777  * fudge things with uc_link (which is usually NULL for libpthread
778  * code), and 3) we report an empty signal mask.
779  */
780 void
781 getucontext_sa(struct lwp *l, ucontext_t *ucp)
782 {
783 	ucp->uc_flags = 0;
784 	ucp->uc_link = l->l_ctxlink;
785 
786 	sigemptyset(&ucp->uc_sigmask);
787 	ucp->uc_flags |= _UC_SIGMASK;
788 
789 	/*
790 	 * The (unsupplied) definition of the `current execution stack'
791 	 * in the System V Interface Definition appears to allow returning
792 	 * the main context stack.
793 	 */
794 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
795 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
796 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
797 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
798 	} else {
799 		/* Simply copy alternate signal execution stack. */
800 		ucp->uc_stack = l->l_sigstk;
801 	}
802 	ucp->uc_flags |= _UC_STACK;
803 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
804 }
805 
806 int
807 setucontext(struct lwp *l, const ucontext_t *ucp)
808 {
809 	struct proc *p = l->l_proc;
810 	int error;
811 
812 	KASSERT(mutex_owned(p->p_lock));
813 
814 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
815 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
816 		if (error != 0)
817 			return error;
818 	}
819 
820 	mutex_exit(p->p_lock);
821 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
822 	mutex_enter(p->p_lock);
823 	if (error != 0)
824 		return (error);
825 
826 	l->l_ctxlink = ucp->uc_link;
827 
828 	/*
829 	 * If there was stack information, update whether or not we are
830 	 * still running on an alternate signal stack.
831 	 */
832 	if ((ucp->uc_flags & _UC_STACK) != 0) {
833 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
834 			l->l_sigstk.ss_flags |= SS_ONSTACK;
835 		else
836 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
837 	}
838 
839 	return 0;
840 }
841 
842 /*
843  * killpg1: common code for kill process group/broadcast kill.
844  */
845 int
846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
847 {
848 	struct proc	*p, *cp;
849 	kauth_cred_t	pc;
850 	struct pgrp	*pgrp;
851 	int		nfound;
852 	int		signo = ksi->ksi_signo;
853 
854 	cp = l->l_proc;
855 	pc = l->l_cred;
856 	nfound = 0;
857 
858 	mutex_enter(proc_lock);
859 	if (all) {
860 		/*
861 		 * Broadcast.
862 		 */
863 		PROCLIST_FOREACH(p, &allproc) {
864 			if (p->p_pid <= 1 || p == cp ||
865 			    (p->p_flag & PK_SYSTEM) != 0)
866 				continue;
867 			mutex_enter(p->p_lock);
868 			if (kauth_authorize_process(pc,
869 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
870 			    NULL) == 0) {
871 				nfound++;
872 				if (signo)
873 					kpsignal2(p, ksi);
874 			}
875 			mutex_exit(p->p_lock);
876 		}
877 	} else {
878 		if (pgid == 0)
879 			/* Zero pgid means send to my process group. */
880 			pgrp = cp->p_pgrp;
881 		else {
882 			pgrp = pgrp_find(pgid);
883 			if (pgrp == NULL)
884 				goto out;
885 		}
886 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
887 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
888 				continue;
889 			mutex_enter(p->p_lock);
890 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
891 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
892 				nfound++;
893 				if (signo && P_ZOMBIE(p) == 0)
894 					kpsignal2(p, ksi);
895 			}
896 			mutex_exit(p->p_lock);
897 		}
898 	}
899 out:
900 	mutex_exit(proc_lock);
901 	return nfound ? 0 : ESRCH;
902 }
903 
904 /*
905  * Send a signal to a process group.  If checktty is set, limit to members
906  * which have a controlling terminal.
907  */
908 void
909 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
910 {
911 	ksiginfo_t ksi;
912 
913 	KASSERT(!cpu_intr_p());
914 	KASSERT(mutex_owned(proc_lock));
915 
916 	KSI_INIT_EMPTY(&ksi);
917 	ksi.ksi_signo = sig;
918 	kpgsignal(pgrp, &ksi, NULL, checkctty);
919 }
920 
921 void
922 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
923 {
924 	struct proc *p;
925 
926 	KASSERT(!cpu_intr_p());
927 	KASSERT(mutex_owned(proc_lock));
928 	KASSERT(pgrp != NULL);
929 
930 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
931 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
932 			kpsignal(p, ksi, data);
933 }
934 
935 /*
936  * Send a signal caused by a trap to the current LWP.  If it will be caught
937  * immediately, deliver it with correct code.  Otherwise, post it normally.
938  */
939 void
940 trapsignal(struct lwp *l, ksiginfo_t *ksi)
941 {
942 	struct proc	*p;
943 	struct sigacts	*ps;
944 	int signo = ksi->ksi_signo;
945 	sigset_t *mask;
946 
947 	KASSERT(KSI_TRAP_P(ksi));
948 
949 	ksi->ksi_lid = l->l_lid;
950 	p = l->l_proc;
951 
952 	KASSERT(!cpu_intr_p());
953 	mutex_enter(proc_lock);
954 	mutex_enter(p->p_lock);
955 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
956 	ps = p->p_sigacts;
957 	if ((p->p_slflag & PSL_TRACED) == 0 &&
958 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
959 	    !sigismember(mask, signo)) {
960 		mutex_exit(proc_lock);
961 		l->l_ru.ru_nsignals++;
962 		kpsendsig(l, ksi, mask);
963 		mutex_exit(p->p_lock);
964 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
965 	} else {
966 		/* XXX for core dump/debugger */
967 		p->p_sigctx.ps_lwp = l->l_lid;
968 		p->p_sigctx.ps_signo = ksi->ksi_signo;
969 		p->p_sigctx.ps_code = ksi->ksi_trap;
970 		kpsignal2(p, ksi);
971 		mutex_exit(p->p_lock);
972 		mutex_exit(proc_lock);
973 	}
974 }
975 
976 /*
977  * Fill in signal information and signal the parent for a child status change.
978  */
979 void
980 child_psignal(struct proc *p, int mask)
981 {
982 	ksiginfo_t ksi;
983 	struct proc *q;
984 	int xstat;
985 
986 	KASSERT(mutex_owned(proc_lock));
987 	KASSERT(mutex_owned(p->p_lock));
988 
989 	xstat = p->p_xstat;
990 
991 	KSI_INIT(&ksi);
992 	ksi.ksi_signo = SIGCHLD;
993 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
994 	ksi.ksi_pid = p->p_pid;
995 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
996 	ksi.ksi_status = xstat;
997 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
998 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
999 
1000 	q = p->p_pptr;
1001 
1002 	mutex_exit(p->p_lock);
1003 	mutex_enter(q->p_lock);
1004 
1005 	if ((q->p_sflag & mask) == 0)
1006 		kpsignal2(q, &ksi);
1007 
1008 	mutex_exit(q->p_lock);
1009 	mutex_enter(p->p_lock);
1010 }
1011 
1012 void
1013 psignal(struct proc *p, int signo)
1014 {
1015 	ksiginfo_t ksi;
1016 
1017 	KASSERT(!cpu_intr_p());
1018 	KASSERT(mutex_owned(proc_lock));
1019 
1020 	KSI_INIT_EMPTY(&ksi);
1021 	ksi.ksi_signo = signo;
1022 	mutex_enter(p->p_lock);
1023 	kpsignal2(p, &ksi);
1024 	mutex_exit(p->p_lock);
1025 }
1026 
1027 void
1028 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1029 {
1030 	fdfile_t *ff;
1031 	file_t *fp;
1032 	fdtab_t *dt;
1033 
1034 	KASSERT(!cpu_intr_p());
1035 	KASSERT(mutex_owned(proc_lock));
1036 
1037 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1038 		size_t fd;
1039 		filedesc_t *fdp = p->p_fd;
1040 
1041 		/* XXXSMP locking */
1042 		ksi->ksi_fd = -1;
1043 		dt = fdp->fd_dt;
1044 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1045 			if ((ff = dt->dt_ff[fd]) == NULL)
1046 				continue;
1047 			if ((fp = ff->ff_file) == NULL)
1048 				continue;
1049 			if (fp->f_data == data) {
1050 				ksi->ksi_fd = fd;
1051 				break;
1052 			}
1053 		}
1054 	}
1055 	mutex_enter(p->p_lock);
1056 	kpsignal2(p, ksi);
1057 	mutex_exit(p->p_lock);
1058 }
1059 
1060 /*
1061  * sigismasked:
1062  *
1063  *	Returns true if signal is ignored or masked for the specified LWP.
1064  */
1065 int
1066 sigismasked(struct lwp *l, int sig)
1067 {
1068 	struct proc *p = l->l_proc;
1069 
1070 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1071 	    sigismember(&l->l_sigmask, sig)
1072 #if KERN_SA
1073 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1074 #endif /* KERN_SA */
1075 	    );
1076 }
1077 
1078 /*
1079  * sigpost:
1080  *
1081  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1082  *	be able to take the signal.
1083  */
1084 static int
1085 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1086 {
1087 	int rv, masked;
1088 	struct proc *p = l->l_proc;
1089 
1090 	KASSERT(mutex_owned(p->p_lock));
1091 
1092 	/*
1093 	 * If the LWP is on the way out, sigclear() will be busy draining all
1094 	 * pending signals.  Don't give it more.
1095 	 */
1096 	if (l->l_refcnt == 0)
1097 		return 0;
1098 
1099 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
1100 
1101 	/*
1102 	 * Have the LWP check for signals.  This ensures that even if no LWP
1103 	 * is found to take the signal immediately, it should be taken soon.
1104 	 */
1105 	lwp_lock(l);
1106 	l->l_flag |= LW_PENDSIG;
1107 
1108 	/*
1109 	 * When sending signals to SA processes, we first try to find an
1110 	 * idle VP to take it.
1111 	 */
1112 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1113 		lwp_unlock(l);
1114 		return 0;
1115 	}
1116 
1117 	/*
1118 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1119 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1120 	 */
1121 #if KERN_SA
1122 	if (p->p_sa != NULL)
1123 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1124 	else
1125 #endif
1126 		masked = sigismember(&l->l_sigmask, sig);
1127 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1128 		lwp_unlock(l);
1129 		return 0;
1130 	}
1131 
1132 	/*
1133 	 * If killing the process, make it run fast.
1134 	 */
1135 	if (__predict_false((prop & SA_KILL) != 0) &&
1136 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1137 		KASSERT(l->l_class == SCHED_OTHER);
1138 		lwp_changepri(l, MAXPRI_USER);
1139 	}
1140 
1141 	/*
1142 	 * If the LWP is running or on a run queue, then we win.  If it's
1143 	 * sleeping interruptably, wake it and make it take the signal.  If
1144 	 * the sleep isn't interruptable, then the chances are it will get
1145 	 * to see the signal soon anyhow.  If suspended, it can't take the
1146 	 * signal right now.  If it's LWP private or for all LWPs, save it
1147 	 * for later; otherwise punt.
1148 	 */
1149 	rv = 0;
1150 
1151 	switch (l->l_stat) {
1152 	case LSRUN:
1153 	case LSONPROC:
1154 		lwp_need_userret(l);
1155 		rv = 1;
1156 		break;
1157 
1158 	case LSSLEEP:
1159 		if ((l->l_flag & LW_SINTR) != 0) {
1160 			/* setrunnable() will release the lock. */
1161 			setrunnable(l);
1162 			return 1;
1163 		}
1164 		break;
1165 
1166 	case LSSUSPENDED:
1167 		if ((prop & SA_KILL) != 0) {
1168 			/* lwp_continue() will release the lock. */
1169 			lwp_continue(l);
1170 			return 1;
1171 		}
1172 		break;
1173 
1174 	case LSSTOP:
1175 		if ((prop & SA_STOP) != 0)
1176 			break;
1177 
1178 		/*
1179 		 * If the LWP is stopped and we are sending a continue
1180 		 * signal, then start it again.
1181 		 */
1182 		if ((prop & SA_CONT) != 0) {
1183 			if (l->l_wchan != NULL) {
1184 				l->l_stat = LSSLEEP;
1185 				p->p_nrlwps++;
1186 				rv = 1;
1187 				break;
1188 			}
1189 			/* setrunnable() will release the lock. */
1190 			setrunnable(l);
1191 			return 1;
1192 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1193 			/* setrunnable() will release the lock. */
1194 			setrunnable(l);
1195 			return 1;
1196 		}
1197 		break;
1198 
1199 	default:
1200 		break;
1201 	}
1202 
1203 	lwp_unlock(l);
1204 	return rv;
1205 }
1206 
1207 /*
1208  * Notify an LWP that it has a pending signal.
1209  */
1210 void
1211 signotify(struct lwp *l)
1212 {
1213 	KASSERT(lwp_locked(l, NULL));
1214 
1215 	l->l_flag |= LW_PENDSIG;
1216 	lwp_need_userret(l);
1217 }
1218 
1219 /*
1220  * Find an LWP within process p that is waiting on signal ksi, and hand
1221  * it on.
1222  */
1223 static int
1224 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1225 {
1226 	struct lwp *l;
1227 	int signo;
1228 
1229 	KASSERT(mutex_owned(p->p_lock));
1230 
1231 	signo = ksi->ksi_signo;
1232 
1233 	if (ksi->ksi_lid != 0) {
1234 		/*
1235 		 * Signal came via _lwp_kill().  Find the LWP and see if
1236 		 * it's interested.
1237 		 */
1238 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1239 			return 0;
1240 		if (l->l_sigwaited == NULL ||
1241 		    !sigismember(&l->l_sigwaitset, signo))
1242 			return 0;
1243 	} else {
1244 		/*
1245 		 * Look for any LWP that may be interested.
1246 		 */
1247 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1248 			KASSERT(l->l_sigwaited != NULL);
1249 			if (sigismember(&l->l_sigwaitset, signo))
1250 				break;
1251 		}
1252 	}
1253 
1254 	if (l != NULL) {
1255 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1256 		l->l_sigwaited = NULL;
1257 		LIST_REMOVE(l, l_sigwaiter);
1258 		cv_signal(&l->l_sigcv);
1259 		return 1;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Send the signal to the process.  If the signal has an action, the action
1267  * is usually performed by the target process rather than the caller; we add
1268  * the signal to the set of pending signals for the process.
1269  *
1270  * Exceptions:
1271  *   o When a stop signal is sent to a sleeping process that takes the
1272  *     default action, the process is stopped without awakening it.
1273  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1274  *     regardless of the signal action (eg, blocked or ignored).
1275  *
1276  * Other ignored signals are discarded immediately.
1277  */
1278 void
1279 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1280 {
1281 	int prop, signo = ksi->ksi_signo;
1282 	struct sigacts *sa;
1283 	struct lwp *l;
1284 	ksiginfo_t *kp;
1285 	lwpid_t lid;
1286 	sig_t action;
1287 	bool toall;
1288 
1289 	KASSERT(!cpu_intr_p());
1290 	KASSERT(mutex_owned(proc_lock));
1291 	KASSERT(mutex_owned(p->p_lock));
1292 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1293 	KASSERT(signo > 0 && signo < NSIG);
1294 
1295 	/*
1296 	 * If the process is being created by fork, is a zombie or is
1297 	 * exiting, then just drop the signal here and bail out.
1298 	 */
1299 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1300 		return;
1301 
1302 	/*
1303 	 * Notify any interested parties of the signal.
1304 	 */
1305 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1306 
1307 	/*
1308 	 * Some signals including SIGKILL must act on the entire process.
1309 	 */
1310 	kp = NULL;
1311 	prop = sigprop[signo];
1312 	toall = ((prop & SA_TOALL) != 0);
1313 	lid = toall ? 0 : ksi->ksi_lid;
1314 
1315 	/*
1316 	 * If proc is traced, always give parent a chance.
1317 	 */
1318 	if (p->p_slflag & PSL_TRACED) {
1319 		action = SIG_DFL;
1320 
1321 		if (lid == 0) {
1322 			/*
1323 			 * If the process is being traced and the signal
1324 			 * is being caught, make sure to save any ksiginfo.
1325 			 */
1326 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1327 				return;
1328 			sigput(&p->p_sigpend, p, kp);
1329 		}
1330 	} else {
1331 		/*
1332 		 * If the signal was the result of a trap and is not being
1333 		 * caught, then reset it to default action so that the
1334 		 * process dumps core immediately.
1335 		 */
1336 		if (KSI_TRAP_P(ksi)) {
1337 			sa = p->p_sigacts;
1338 			mutex_enter(&sa->sa_mutex);
1339 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1340 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1341 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1342 			}
1343 			mutex_exit(&sa->sa_mutex);
1344 		}
1345 
1346 		/*
1347 		 * If the signal is being ignored, then drop it.  Note: we
1348 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1349 		 * SIG_IGN, action will be SIG_DFL here.
1350 		 */
1351 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1352 			return;
1353 
1354 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1355 			action = SIG_CATCH;
1356 		else {
1357 			action = SIG_DFL;
1358 
1359 			/*
1360 			 * If sending a tty stop signal to a member of an
1361 			 * orphaned process group, discard the signal here if
1362 			 * the action is default; don't stop the process below
1363 			 * if sleeping, and don't clear any pending SIGCONT.
1364 			 */
1365 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1366 				return;
1367 
1368 			if (prop & SA_KILL && p->p_nice > NZERO)
1369 				p->p_nice = NZERO;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * If stopping or continuing a process, discard any pending
1375 	 * signals that would do the inverse.
1376 	 */
1377 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1378 		ksiginfoq_t kq;
1379 
1380 		ksiginfo_queue_init(&kq);
1381 		if ((prop & SA_CONT) != 0)
1382 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1383 		if ((prop & SA_STOP) != 0)
1384 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1385 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1386 	}
1387 
1388 	/*
1389 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1390 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1391 	 * the signal info.  The signal won't be processed further here.
1392 	 */
1393 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1394 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1395 	    sigunwait(p, ksi))
1396 		return;
1397 
1398 	/*
1399 	 * XXXSMP Should be allocated by the caller, we're holding locks
1400 	 * here.
1401 	 */
1402 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1403 		return;
1404 
1405 	/*
1406 	 * LWP private signals are easy - just find the LWP and post
1407 	 * the signal to it.
1408 	 */
1409 	if (lid != 0) {
1410 		l = lwp_find(p, lid);
1411 		if (l != NULL) {
1412 			sigput(&l->l_sigpend, p, kp);
1413 			membar_producer();
1414 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1415 		}
1416 		goto out;
1417 	}
1418 
1419 	/*
1420 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1421 	 * or for an SA process.
1422 	 */
1423 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1424 		if ((p->p_slflag & PSL_TRACED) != 0)
1425 			goto deliver;
1426 
1427 		/*
1428 		 * If SIGCONT is default (or ignored) and process is
1429 		 * asleep, we are finished; the process should not
1430 		 * be awakened.
1431 		 */
1432 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1433 			goto out;
1434 	} else {
1435 		/*
1436 		 * Process is stopped or stopping.
1437 		 * - If traced, then no action is needed, unless killing.
1438 		 * - Run the process only if sending SIGCONT or SIGKILL.
1439 		 */
1440 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1441 			goto out;
1442 		}
1443 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1444 			/*
1445 			 * Re-adjust p_nstopchild if the process wasn't
1446 			 * collected by its parent.
1447 			 */
1448 			p->p_stat = SACTIVE;
1449 			p->p_sflag &= ~PS_STOPPING;
1450 			if (!p->p_waited) {
1451 				p->p_pptr->p_nstopchild--;
1452 			}
1453 			if (p->p_slflag & PSL_TRACED) {
1454 				KASSERT(signo == SIGKILL);
1455 				goto deliver;
1456 			}
1457 			/*
1458 			 * Do not make signal pending if SIGCONT is default.
1459 			 *
1460 			 * If the process catches SIGCONT, let it handle the
1461 			 * signal itself (if waiting on event - process runs,
1462 			 * otherwise continues sleeping).
1463 			 */
1464 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1465 				KASSERT(signo != SIGKILL);
1466 				goto deliver;
1467 			}
1468 		} else if ((prop & SA_STOP) != 0) {
1469 			/*
1470 			 * Already stopped, don't need to stop again.
1471 			 * (If we did the shell could get confused.)
1472 			 */
1473 			goto out;
1474 		}
1475 	}
1476 	/*
1477 	 * Make signal pending.
1478 	 */
1479 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1480 	sigput(&p->p_sigpend, p, kp);
1481 
1482 deliver:
1483 	/*
1484 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1485 	 * visible on the per process list (for sigispending()).  This
1486 	 * is unlikely to be needed in practice, but...
1487 	 */
1488 	membar_producer();
1489 
1490 	/*
1491 	 * Try to find an LWP that can take the signal.
1492 	 */
1493 #if KERN_SA
1494 	if ((p->p_sa != NULL) && !toall) {
1495 		struct sadata_vp *vp;
1496 		/*
1497 		 * If we're in this delivery path, we are delivering a
1498 		 * signal that needs to go to one thread in the process.
1499 		 *
1500 		 * In the SA case, we try to find an idle LWP that can take
1501 		 * the signal.  If that fails, only then do we consider
1502 		 * interrupting active LWPs. Since the signal's going to
1503 		 * just one thread, we need only look at "blessed" lwps,
1504 		 * so scan the vps for them.
1505 		 */
1506 		l = NULL;
1507 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1508 			l = vp->savp_lwp;
1509 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1510 				break;
1511 		}
1512 
1513 		if (l == NULL) {
1514 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1515 				l = vp->savp_lwp;
1516 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1517 					break;
1518 			}
1519 		}
1520 		/* Delivered, skip next. */
1521 		goto out;
1522 	}
1523 #endif
1524 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1525 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1526 			break;
1527 	}
1528 out:
1529 	/*
1530 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1531 	 * with locks held.  The caller should take care of this.
1532 	 */
1533 	ksiginfo_free(kp);
1534 }
1535 
1536 void
1537 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1538 {
1539 	struct proc *p = l->l_proc;
1540 #ifdef KERN_SA
1541 	struct lwp *le, *li;
1542 	siginfo_t *si;
1543 	int f;
1544 #endif /* KERN_SA */
1545 
1546 	KASSERT(mutex_owned(p->p_lock));
1547 
1548 #ifdef KERN_SA
1549 	if (p->p_sflag & PS_SA) {
1550 		/* f indicates if we should clear LP_SA_NOBLOCK */
1551 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1552 		l->l_pflag |= LP_SA_NOBLOCK;
1553 
1554 		mutex_exit(p->p_lock);
1555 		/* XXXUPSXXX What if not on sa_vp? */
1556 		/*
1557 		 * WRS: I think it won't matter, beyond the
1558 		 * question of what exactly we do with a signal
1559 		 * to a blocked user thread. Also, we try hard to always
1560 		 * send signals to blessed lwps, so we would only send
1561 		 * to a non-blessed lwp under special circumstances.
1562 		 */
1563 		si = siginfo_alloc(PR_WAITOK);
1564 
1565 		si->_info = ksi->ksi_info;
1566 
1567 		/*
1568 		 * Figure out if we're the innocent victim or the main
1569 		 * perpitrator.
1570 		 */
1571 		le = li = NULL;
1572 		if (KSI_TRAP_P(ksi))
1573 			le = l;
1574 		else
1575 			li = l;
1576 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1577 		    sizeof(*si), si, siginfo_free) != 0) {
1578 			siginfo_free(si);
1579 #if 0
1580 			if (KSI_TRAP_P(ksi))
1581 				/* XXX What dowe do here? The signal
1582 				 * didn't make it
1583 				 */;
1584 #endif
1585 		}
1586 		l->l_pflag ^= f;
1587 		mutex_enter(p->p_lock);
1588 		return;
1589 	}
1590 #endif /* KERN_SA */
1591 
1592 	(*p->p_emul->e_sendsig)(ksi, mask);
1593 }
1594 
1595 /*
1596  * Stop any LWPs sleeping interruptably.
1597  */
1598 static void
1599 proc_stop_lwps(struct proc *p)
1600 {
1601 	struct lwp *l;
1602 
1603 	KASSERT(mutex_owned(p->p_lock));
1604 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1605 
1606 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1607 		lwp_lock(l);
1608 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1609 			l->l_stat = LSSTOP;
1610 			p->p_nrlwps--;
1611 		}
1612 		lwp_unlock(l);
1613 	}
1614 }
1615 
1616 /*
1617  * Finish stopping of a process.  Mark it stopped and notify the parent.
1618  *
1619  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1620  */
1621 static void
1622 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1623 {
1624 
1625 	KASSERT(mutex_owned(proc_lock));
1626 	KASSERT(mutex_owned(p->p_lock));
1627 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1628 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1629 
1630 	p->p_sflag &= ~PS_STOPPING;
1631 	p->p_stat = SSTOP;
1632 	p->p_waited = 0;
1633 	p->p_pptr->p_nstopchild++;
1634 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1635 		if (ppsig) {
1636 			/* child_psignal drops p_lock briefly. */
1637 			child_psignal(p, ppmask);
1638 		}
1639 		cv_broadcast(&p->p_pptr->p_waitcv);
1640 	}
1641 }
1642 
1643 /*
1644  * Stop the current process and switch away when being stopped or traced.
1645  */
1646 static void
1647 sigswitch(bool ppsig, int ppmask, int signo)
1648 {
1649 	struct lwp *l = curlwp;
1650 	struct proc *p = l->l_proc;
1651 	int biglocks;
1652 
1653 	KASSERT(mutex_owned(p->p_lock));
1654 	KASSERT(l->l_stat == LSONPROC);
1655 	KASSERT(p->p_nrlwps > 0);
1656 
1657 	/*
1658 	 * On entry we know that the process needs to stop.  If it's
1659 	 * the result of a 'sideways' stop signal that has been sourced
1660 	 * through issignal(), then stop other LWPs in the process too.
1661 	 */
1662 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1663 		KASSERT(signo != 0);
1664 		proc_stop(p, 1, signo);
1665 		KASSERT(p->p_nrlwps > 0);
1666 	}
1667 
1668 	/*
1669 	 * If we are the last live LWP, and the stop was a result of
1670 	 * a new signal, then signal the parent.
1671 	 */
1672 	if ((p->p_sflag & PS_STOPPING) != 0) {
1673 		if (!mutex_tryenter(proc_lock)) {
1674 			mutex_exit(p->p_lock);
1675 			mutex_enter(proc_lock);
1676 			mutex_enter(p->p_lock);
1677 		}
1678 
1679 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1680 			/*
1681 			 * Note that proc_stop_done() can drop
1682 			 * p->p_lock briefly.
1683 			 */
1684 			proc_stop_done(p, ppsig, ppmask);
1685 		}
1686 
1687 		mutex_exit(proc_lock);
1688 	}
1689 
1690 	/*
1691 	 * Unlock and switch away.
1692 	 */
1693 	KERNEL_UNLOCK_ALL(l, &biglocks);
1694 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1695 		p->p_nrlwps--;
1696 		lwp_lock(l);
1697 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1698 		l->l_stat = LSSTOP;
1699 		lwp_unlock(l);
1700 	}
1701 
1702 	mutex_exit(p->p_lock);
1703 	lwp_lock(l);
1704 	mi_switch(l);
1705 	KERNEL_LOCK(biglocks, l);
1706 	mutex_enter(p->p_lock);
1707 }
1708 
1709 /*
1710  * Check for a signal from the debugger.
1711  */
1712 static int
1713 sigchecktrace(void)
1714 {
1715 	struct lwp *l = curlwp;
1716 	struct proc *p = l->l_proc;
1717 	sigset_t *mask;
1718 	int signo;
1719 
1720 	KASSERT(mutex_owned(p->p_lock));
1721 
1722 	/* If there's a pending SIGKILL, process it immediately. */
1723 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1724 		return 0;
1725 
1726 	/*
1727 	 * If we are no longer being traced, or the parent didn't
1728 	 * give us a signal, or we're stopping, look for more signals.
1729 	 */
1730 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1731 	    (p->p_sflag & PS_STOPPING) != 0)
1732 		return 0;
1733 
1734 	/*
1735 	 * If the new signal is being masked, look for other signals.
1736 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1737 	 */
1738 	signo = p->p_xstat;
1739 	p->p_xstat = 0;
1740 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1741 	if (sigismember(mask, signo))
1742 		signo = 0;
1743 
1744 	return signo;
1745 }
1746 
1747 /*
1748  * If the current process has received a signal (should be caught or cause
1749  * termination, should interrupt current syscall), return the signal number.
1750  *
1751  * Stop signals with default action are processed immediately, then cleared;
1752  * they aren't returned.  This is checked after each entry to the system for
1753  * a syscall or trap.
1754  *
1755  * We will also return -1 if the process is exiting and the current LWP must
1756  * follow suit.
1757  */
1758 int
1759 issignal(struct lwp *l)
1760 {
1761 	struct proc *p;
1762 	int signo, prop;
1763 	sigpend_t *sp;
1764 	sigset_t ss;
1765 
1766 	p = l->l_proc;
1767 	sp = NULL;
1768 	signo = 0;
1769 
1770 	KASSERT(p == curproc);
1771 	KASSERT(mutex_owned(p->p_lock));
1772 
1773 	for (;;) {
1774 		/* Discard any signals that we have decided not to take. */
1775 		if (signo != 0)
1776 			(void)sigget(sp, NULL, signo, NULL);
1777 
1778 		/* Bail out if we do not own the virtual processor */
1779 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1780 			break;
1781 
1782 		/*
1783 		 * If the process is stopped/stopping, then stop ourselves
1784 		 * now that we're on the kernel/userspace boundary.  When
1785 		 * we awaken, check for a signal from the debugger.
1786 		 */
1787 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1788 			sigswitch(true, PS_NOCLDSTOP, 0);
1789 			signo = sigchecktrace();
1790 		} else
1791 			signo = 0;
1792 
1793 		/* Signals from the debugger are "out of band". */
1794 		sp = NULL;
1795 
1796 		/*
1797 		 * If the debugger didn't provide a signal, find a pending
1798 		 * signal from our set.  Check per-LWP signals first, and
1799 		 * then per-process.
1800 		 */
1801 		if (signo == 0) {
1802 			sp = &l->l_sigpend;
1803 			ss = sp->sp_set;
1804 			if ((p->p_lflag & PL_PPWAIT) != 0)
1805 				sigminusset(&stopsigmask, &ss);
1806 			sigminusset(&l->l_sigmask, &ss);
1807 
1808 			if ((signo = firstsig(&ss)) == 0) {
1809 				sp = &p->p_sigpend;
1810 				ss = sp->sp_set;
1811 				if ((p->p_lflag & PL_PPWAIT) != 0)
1812 					sigminusset(&stopsigmask, &ss);
1813 				sigminusset(&l->l_sigmask, &ss);
1814 
1815 				if ((signo = firstsig(&ss)) == 0) {
1816 					/*
1817 					 * No signal pending - clear the
1818 					 * indicator and bail out.
1819 					 */
1820 					lwp_lock(l);
1821 					l->l_flag &= ~LW_PENDSIG;
1822 					lwp_unlock(l);
1823 					sp = NULL;
1824 					break;
1825 				}
1826 			}
1827 		}
1828 
1829 		/*
1830 		 * We should see pending but ignored signals only if
1831 		 * we are being traced.
1832 		 */
1833 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1834 		    (p->p_slflag & PSL_TRACED) == 0) {
1835 			/* Discard the signal. */
1836 			continue;
1837 		}
1838 
1839 		/*
1840 		 * If traced, always stop, and stay stopped until released
1841 		 * by the debugger.  If the our parent process is waiting
1842 		 * for us, don't hang as we could deadlock.
1843 		 */
1844 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1845 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1846 			/* Take the signal. */
1847 			(void)sigget(sp, NULL, signo, NULL);
1848 			p->p_xstat = signo;
1849 
1850 			/* Emulation-specific handling of signal trace */
1851 			if (p->p_emul->e_tracesig == NULL ||
1852 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1853 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1854 				    signo);
1855 
1856 			/* Check for a signal from the debugger. */
1857 			if ((signo = sigchecktrace()) == 0)
1858 				continue;
1859 
1860 			/* Signals from the debugger are "out of band". */
1861 			sp = NULL;
1862 		}
1863 
1864 		prop = sigprop[signo];
1865 
1866 		/* XXX no siginfo? */
1867 		SDT_PROBE(proc,,,signal_handle, signo, 0,
1868 			SIGACTION(p, signo).sa_handler, 0, 0);
1869 
1870 		/*
1871 		 * Decide whether the signal should be returned.
1872 		 */
1873 		switch ((long)SIGACTION(p, signo).sa_handler) {
1874 		case (long)SIG_DFL:
1875 			/*
1876 			 * Don't take default actions on system processes.
1877 			 */
1878 			if (p->p_pid <= 1) {
1879 #ifdef DIAGNOSTIC
1880 				/*
1881 				 * Are you sure you want to ignore SIGSEGV
1882 				 * in init? XXX
1883 				 */
1884 				printf_nolog("Process (pid %d) got sig %d\n",
1885 				    p->p_pid, signo);
1886 #endif
1887 				continue;
1888 			}
1889 
1890 			/*
1891 			 * If there is a pending stop signal to process with
1892 			 * default action, stop here, then clear the signal.
1893 			 * However, if process is member of an orphaned
1894 			 * process group, ignore tty stop signals.
1895 			 */
1896 			if (prop & SA_STOP) {
1897 				/*
1898 				 * XXX Don't hold proc_lock for p_lflag,
1899 				 * but it's not a big deal.
1900 				 */
1901 				if (p->p_slflag & PSL_TRACED ||
1902 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1903 				    prop & SA_TTYSTOP)) {
1904 					/* Ignore the signal. */
1905 					continue;
1906 				}
1907 				/* Take the signal. */
1908 				(void)sigget(sp, NULL, signo, NULL);
1909 				p->p_xstat = signo;
1910 				signo = 0;
1911 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1912 			} else if (prop & SA_IGNORE) {
1913 				/*
1914 				 * Except for SIGCONT, shouldn't get here.
1915 				 * Default action is to ignore; drop it.
1916 				 */
1917 				continue;
1918 			}
1919 			break;
1920 
1921 		case (long)SIG_IGN:
1922 #ifdef DEBUG_ISSIGNAL
1923 			/*
1924 			 * Masking above should prevent us ever trying
1925 			 * to take action on an ignored signal other
1926 			 * than SIGCONT, unless process is traced.
1927 			 */
1928 			if ((prop & SA_CONT) == 0 &&
1929 			    (p->p_slflag & PSL_TRACED) == 0)
1930 				printf_nolog("issignal\n");
1931 #endif
1932 			continue;
1933 
1934 		default:
1935 			/*
1936 			 * This signal has an action, let postsig() process
1937 			 * it.
1938 			 */
1939 			break;
1940 		}
1941 
1942 		break;
1943 	}
1944 
1945 	l->l_sigpendset = sp;
1946 	return signo;
1947 }
1948 
1949 /*
1950  * Take the action for the specified signal
1951  * from the current set of pending signals.
1952  */
1953 void
1954 postsig(int signo)
1955 {
1956 	struct lwp	*l;
1957 	struct proc	*p;
1958 	struct sigacts	*ps;
1959 	sig_t		action;
1960 	sigset_t	*returnmask;
1961 	ksiginfo_t	ksi;
1962 
1963 	l = curlwp;
1964 	p = l->l_proc;
1965 	ps = p->p_sigacts;
1966 
1967 	KASSERT(mutex_owned(p->p_lock));
1968 	KASSERT(signo > 0);
1969 
1970 	/*
1971 	 * Set the new mask value and also defer further occurrences of this
1972 	 * signal.
1973 	 *
1974 	 * Special case: user has done a sigsuspend.  Here the current mask is
1975 	 * not of interest, but rather the mask from before the sigsuspend is
1976 	 * what we want restored after the signal processing is completed.
1977 	 */
1978 	if (l->l_sigrestore) {
1979 		returnmask = &l->l_sigoldmask;
1980 		l->l_sigrestore = 0;
1981 	} else
1982 		returnmask = &l->l_sigmask;
1983 
1984 	/*
1985 	 * Commit to taking the signal before releasing the mutex.
1986 	 */
1987 	action = SIGACTION_PS(ps, signo).sa_handler;
1988 	l->l_ru.ru_nsignals++;
1989 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1990 
1991 	if (ktrpoint(KTR_PSIG)) {
1992 		mutex_exit(p->p_lock);
1993 		ktrpsig(signo, action, returnmask, &ksi);
1994 		mutex_enter(p->p_lock);
1995 	}
1996 
1997 	if (action == SIG_DFL) {
1998 		/*
1999 		 * Default action, where the default is to kill
2000 		 * the process.  (Other cases were ignored above.)
2001 		 */
2002 		sigexit(l, signo);
2003 		return;
2004 	}
2005 
2006 	/*
2007 	 * If we get here, the signal must be caught.
2008 	 */
2009 #ifdef DIAGNOSTIC
2010 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2011 		panic("postsig action");
2012 #endif
2013 
2014 	kpsendsig(l, &ksi, returnmask);
2015 }
2016 
2017 /*
2018  * sendsig:
2019  *
2020  *	Default signal delivery method for NetBSD.
2021  */
2022 void
2023 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2024 {
2025 	struct sigacts *sa;
2026 	int sig;
2027 
2028 	sig = ksi->ksi_signo;
2029 	sa = curproc->p_sigacts;
2030 
2031 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2032 	case 0:
2033 	case 1:
2034 		/* Compat for 1.6 and earlier. */
2035 		if (sendsig_sigcontext_vec == NULL) {
2036 			break;
2037 		}
2038 		(*sendsig_sigcontext_vec)(ksi, mask);
2039 		return;
2040 	case 2:
2041 	case 3:
2042 		sendsig_siginfo(ksi, mask);
2043 		return;
2044 	default:
2045 		break;
2046 	}
2047 
2048 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2049 	sigexit(curlwp, SIGILL);
2050 }
2051 
2052 /*
2053  * sendsig_reset:
2054  *
2055  *	Reset the signal action.  Called from emulation specific sendsig()
2056  *	before unlocking to deliver the signal.
2057  */
2058 void
2059 sendsig_reset(struct lwp *l, int signo)
2060 {
2061 	struct proc *p = l->l_proc;
2062 	struct sigacts *ps = p->p_sigacts;
2063 	sigset_t *mask;
2064 
2065 	KASSERT(mutex_owned(p->p_lock));
2066 
2067 	p->p_sigctx.ps_lwp = 0;
2068 	p->p_sigctx.ps_code = 0;
2069 	p->p_sigctx.ps_signo = 0;
2070 
2071 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2072 
2073 	mutex_enter(&ps->sa_mutex);
2074 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2075 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2076 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2077 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2078 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2079 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2080 	}
2081 	mutex_exit(&ps->sa_mutex);
2082 }
2083 
2084 /*
2085  * Kill the current process for stated reason.
2086  */
2087 void
2088 killproc(struct proc *p, const char *why)
2089 {
2090 
2091 	KASSERT(mutex_owned(proc_lock));
2092 
2093 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2094 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2095 	psignal(p, SIGKILL);
2096 }
2097 
2098 /*
2099  * Force the current process to exit with the specified signal, dumping core
2100  * if appropriate.  We bypass the normal tests for masked and caught
2101  * signals, allowing unrecoverable failures to terminate the process without
2102  * changing signal state.  Mark the accounting record with the signal
2103  * termination.  If dumping core, save the signal number for the debugger.
2104  * Calls exit and does not return.
2105  */
2106 void
2107 sigexit(struct lwp *l, int signo)
2108 {
2109 	int exitsig, error, docore;
2110 	struct proc *p;
2111 	struct lwp *t;
2112 
2113 	p = l->l_proc;
2114 
2115 	KASSERT(mutex_owned(p->p_lock));
2116 	KERNEL_UNLOCK_ALL(l, NULL);
2117 
2118 	/*
2119 	 * Don't permit coredump() multiple times in the same process.
2120 	 * Call back into sigexit, where we will be suspended until
2121 	 * the deed is done.  Note that this is a recursive call, but
2122 	 * LW_WCORE will prevent us from coming back this way.
2123 	 */
2124 	if ((p->p_sflag & PS_WCORE) != 0) {
2125 		lwp_lock(l);
2126 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2127 		lwp_unlock(l);
2128 		mutex_exit(p->p_lock);
2129 		lwp_userret(l);
2130 		panic("sigexit 1");
2131 		/* NOTREACHED */
2132 	}
2133 
2134 	/* If process is already on the way out, then bail now. */
2135 	if ((p->p_sflag & PS_WEXIT) != 0) {
2136 		mutex_exit(p->p_lock);
2137 		lwp_exit(l);
2138 		panic("sigexit 2");
2139 		/* NOTREACHED */
2140 	}
2141 
2142 	/*
2143 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2144 	 * so that their registers are available long enough to be dumped.
2145  	 */
2146 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2147 		p->p_sflag |= PS_WCORE;
2148 		for (;;) {
2149 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2150 				lwp_lock(t);
2151 				if (t == l) {
2152 					t->l_flag &= ~LW_WSUSPEND;
2153 					lwp_unlock(t);
2154 					continue;
2155 				}
2156 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2157 				lwp_suspend(l, t);
2158 			}
2159 
2160 			if (p->p_nrlwps == 1)
2161 				break;
2162 
2163 			/*
2164 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2165 			 * for everyone else to stop before proceeding.
2166 			 */
2167 			p->p_nlwpwait++;
2168 			cv_broadcast(&p->p_lwpcv);
2169 			cv_wait(&p->p_lwpcv, p->p_lock);
2170 			p->p_nlwpwait--;
2171 		}
2172 	}
2173 
2174 	exitsig = signo;
2175 	p->p_acflag |= AXSIG;
2176 	p->p_sigctx.ps_signo = signo;
2177 
2178 	if (docore) {
2179 		mutex_exit(p->p_lock);
2180 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2181 			exitsig |= WCOREFLAG;
2182 
2183 		if (kern_logsigexit) {
2184 			int uid = l->l_cred ?
2185 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2186 
2187 			if (error)
2188 				log(LOG_INFO, lognocoredump, p->p_pid,
2189 				    p->p_comm, uid, signo, error);
2190 			else
2191 				log(LOG_INFO, logcoredump, p->p_pid,
2192 				    p->p_comm, uid, signo);
2193 		}
2194 
2195 #ifdef PAX_SEGVGUARD
2196 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2197 #endif /* PAX_SEGVGUARD */
2198 		/* Acquire the sched state mutex.  exit1() will release it. */
2199 		mutex_enter(p->p_lock);
2200 	}
2201 
2202 	/* No longer dumping core. */
2203 	p->p_sflag &= ~PS_WCORE;
2204 
2205 	exit1(l, W_EXITCODE(0, exitsig));
2206 	/* NOTREACHED */
2207 }
2208 
2209 /*
2210  * Put process 'p' into the stopped state and optionally, notify the parent.
2211  */
2212 void
2213 proc_stop(struct proc *p, int notify, int signo)
2214 {
2215 	struct lwp *l;
2216 
2217 	KASSERT(mutex_owned(p->p_lock));
2218 
2219 	/*
2220 	 * First off, set the stopping indicator and bring all sleeping
2221 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2222 	 * unlock between here and the p->p_nrlwps check below.
2223 	 */
2224 	p->p_sflag |= PS_STOPPING;
2225 	if (notify)
2226 		p->p_sflag |= PS_NOTIFYSTOP;
2227 	else
2228 		p->p_sflag &= ~PS_NOTIFYSTOP;
2229 	membar_producer();
2230 
2231 	proc_stop_lwps(p);
2232 
2233 	/*
2234 	 * If there are no LWPs available to take the signal, then we
2235 	 * signal the parent process immediately.  Otherwise, the last
2236 	 * LWP to stop will take care of it.
2237 	 */
2238 
2239 	if (p->p_nrlwps == 0) {
2240 		proc_stop_done(p, true, PS_NOCLDSTOP);
2241 	} else {
2242 		/*
2243 		 * Have the remaining LWPs come to a halt, and trigger
2244 		 * proc_stop_callout() to ensure that they do.
2245 		 */
2246 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2247 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2248 		callout_schedule(&proc_stop_ch, 1);
2249 	}
2250 }
2251 
2252 /*
2253  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2254  * but wait for them to come to a halt at the kernel-user boundary.  This is
2255  * to allow LWPs to release any locks that they may hold before stopping.
2256  *
2257  * Non-interruptable sleeps can be long, and there is the potential for an
2258  * LWP to begin sleeping interruptably soon after the process has been set
2259  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2260  * stopping, and so complete halt of the process and the return of status
2261  * information to the parent could be delayed indefinitely.
2262  *
2263  * To handle this race, proc_stop_callout() runs once per tick while there
2264  * are stopping processes in the system.  It sets LWPs that are sleeping
2265  * interruptably into the LSSTOP state.
2266  *
2267  * Note that we are not concerned about keeping all LWPs stopped while the
2268  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2269  * What we do need to ensure is that all LWPs in a stopping process have
2270  * stopped at least once, so that notification can be sent to the parent
2271  * process.
2272  */
2273 static void
2274 proc_stop_callout(void *cookie)
2275 {
2276 	bool more, restart;
2277 	struct proc *p;
2278 
2279 	(void)cookie;
2280 
2281 	do {
2282 		restart = false;
2283 		more = false;
2284 
2285 		mutex_enter(proc_lock);
2286 		PROCLIST_FOREACH(p, &allproc) {
2287 			mutex_enter(p->p_lock);
2288 
2289 			if ((p->p_sflag & PS_STOPPING) == 0) {
2290 				mutex_exit(p->p_lock);
2291 				continue;
2292 			}
2293 
2294 			/* Stop any LWPs sleeping interruptably. */
2295 			proc_stop_lwps(p);
2296 			if (p->p_nrlwps == 0) {
2297 				/*
2298 				 * We brought the process to a halt.
2299 				 * Mark it as stopped and notify the
2300 				 * parent.
2301 				 */
2302 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2303 					/*
2304 					 * Note that proc_stop_done() will
2305 					 * drop p->p_lock briefly.
2306 					 * Arrange to restart and check
2307 					 * all processes again.
2308 					 */
2309 					restart = true;
2310 				}
2311 				proc_stop_done(p, true, PS_NOCLDSTOP);
2312 			} else
2313 				more = true;
2314 
2315 			mutex_exit(p->p_lock);
2316 			if (restart)
2317 				break;
2318 		}
2319 		mutex_exit(proc_lock);
2320 	} while (restart);
2321 
2322 	/*
2323 	 * If we noted processes that are stopping but still have
2324 	 * running LWPs, then arrange to check again in 1 tick.
2325 	 */
2326 	if (more)
2327 		callout_schedule(&proc_stop_ch, 1);
2328 }
2329 
2330 /*
2331  * Given a process in state SSTOP, set the state back to SACTIVE and
2332  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2333  */
2334 void
2335 proc_unstop(struct proc *p)
2336 {
2337 	struct lwp *l;
2338 	int sig;
2339 
2340 	KASSERT(mutex_owned(proc_lock));
2341 	KASSERT(mutex_owned(p->p_lock));
2342 
2343 	p->p_stat = SACTIVE;
2344 	p->p_sflag &= ~PS_STOPPING;
2345 	sig = p->p_xstat;
2346 
2347 	if (!p->p_waited)
2348 		p->p_pptr->p_nstopchild--;
2349 
2350 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2351 		lwp_lock(l);
2352 		if (l->l_stat != LSSTOP) {
2353 			lwp_unlock(l);
2354 			continue;
2355 		}
2356 		if (l->l_wchan == NULL) {
2357 			setrunnable(l);
2358 			continue;
2359 		}
2360 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2361 			setrunnable(l);
2362 			sig = 0;
2363 		} else {
2364 			l->l_stat = LSSLEEP;
2365 			p->p_nrlwps++;
2366 			lwp_unlock(l);
2367 		}
2368 	}
2369 }
2370 
2371 static int
2372 filt_sigattach(struct knote *kn)
2373 {
2374 	struct proc *p = curproc;
2375 
2376 	kn->kn_obj = p;
2377 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2378 
2379 	mutex_enter(p->p_lock);
2380 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2381 	mutex_exit(p->p_lock);
2382 
2383 	return 0;
2384 }
2385 
2386 static void
2387 filt_sigdetach(struct knote *kn)
2388 {
2389 	struct proc *p = kn->kn_obj;
2390 
2391 	mutex_enter(p->p_lock);
2392 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2393 	mutex_exit(p->p_lock);
2394 }
2395 
2396 /*
2397  * Signal knotes are shared with proc knotes, so we apply a mask to
2398  * the hint in order to differentiate them from process hints.  This
2399  * could be avoided by using a signal-specific knote list, but probably
2400  * isn't worth the trouble.
2401  */
2402 static int
2403 filt_signal(struct knote *kn, long hint)
2404 {
2405 
2406 	if (hint & NOTE_SIGNAL) {
2407 		hint &= ~NOTE_SIGNAL;
2408 
2409 		if (kn->kn_id == hint)
2410 			kn->kn_data++;
2411 	}
2412 	return (kn->kn_data != 0);
2413 }
2414 
2415 const struct filterops sig_filtops = {
2416 	0, filt_sigattach, filt_sigdetach, filt_signal
2417 };
2418