1 /* $NetBSD: kern_sig.c,v 1.306 2010/07/01 02:38:30 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.306 2010/07/01 02:38:30 rmind Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_compat_sunos.h" 73 #include "opt_compat_netbsd.h" 74 #include "opt_compat_netbsd32.h" 75 #include "opt_pax.h" 76 #include "opt_sa.h" 77 78 #define SIGPROP /* include signal properties table */ 79 #include <sys/param.h> 80 #include <sys/signalvar.h> 81 #include <sys/proc.h> 82 #include <sys/systm.h> 83 #include <sys/wait.h> 84 #include <sys/ktrace.h> 85 #include <sys/syslog.h> 86 #include <sys/filedesc.h> 87 #include <sys/file.h> 88 #include <sys/pool.h> 89 #include <sys/ucontext.h> 90 #include <sys/sa.h> 91 #include <sys/savar.h> 92 #include <sys/exec.h> 93 #include <sys/kauth.h> 94 #include <sys/acct.h> 95 #include <sys/callout.h> 96 #include <sys/atomic.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/sdt.h> 100 101 #ifdef PAX_SEGVGUARD 102 #include <sys/pax.h> 103 #endif /* PAX_SEGVGUARD */ 104 105 #include <uvm/uvm.h> 106 #include <uvm/uvm_extern.h> 107 108 static void ksiginfo_exechook(struct proc *, void *); 109 static void proc_stop_callout(void *); 110 static int sigchecktrace(void); 111 static int sigpost(struct lwp *, sig_t, int, int, int); 112 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 113 static int sigunwait(struct proc *, const ksiginfo_t *); 114 static void sigswitch(bool, int, int); 115 116 sigset_t contsigmask, stopsigmask, sigcantmask; 117 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 118 static void sigacts_poolpage_free(struct pool *, void *); 119 static void *sigacts_poolpage_alloc(struct pool *, int); 120 static callout_t proc_stop_ch; 121 static pool_cache_t siginfo_cache; 122 static pool_cache_t ksiginfo_cache; 123 124 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 125 int (*coredump_vec)(struct lwp *, const char *) = 126 (int (*)(struct lwp *, const char *))enosys; 127 128 /* 129 * DTrace SDT provider definitions 130 */ 131 SDT_PROBE_DEFINE(proc,,,signal_send, 132 "struct lwp *", NULL, /* target thread */ 133 "struct proc *", NULL, /* target process */ 134 "int", NULL, /* signal */ 135 NULL, NULL, NULL, NULL); 136 SDT_PROBE_DEFINE(proc,,,signal_discard, 137 "struct lwp *", NULL, /* target thread */ 138 "struct proc *", NULL, /* target process */ 139 "int", NULL, /* signal */ 140 NULL, NULL, NULL, NULL); 141 SDT_PROBE_DEFINE(proc,,,signal_clear, 142 "int", NULL, /* signal */ 143 NULL, NULL, NULL, NULL, 144 NULL, NULL, NULL, NULL); 145 SDT_PROBE_DEFINE(proc,,,signal_handle, 146 "int", NULL, /* signal */ 147 "ksiginfo_t *", NULL, 148 "void (*)(void)", NULL, /* handler address */ 149 NULL, NULL, NULL, NULL); 150 151 152 static struct pool_allocator sigactspool_allocator = { 153 .pa_alloc = sigacts_poolpage_alloc, 154 .pa_free = sigacts_poolpage_free 155 }; 156 157 #ifdef DEBUG 158 int kern_logsigexit = 1; 159 #else 160 int kern_logsigexit = 0; 161 #endif 162 163 static const char logcoredump[] = 164 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 165 static const char lognocoredump[] = 166 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 167 168 static kauth_listener_t signal_listener; 169 170 static int 171 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 172 void *arg0, void *arg1, void *arg2, void *arg3) 173 { 174 struct proc *p; 175 int result, signum; 176 177 result = KAUTH_RESULT_DEFER; 178 p = arg0; 179 signum = (int)(unsigned long)arg1; 180 181 if (action != KAUTH_PROCESS_SIGNAL) 182 return result; 183 184 if (kauth_cred_uidmatch(cred, p->p_cred) || 185 (signum == SIGCONT && (curproc->p_session == p->p_session))) 186 result = KAUTH_RESULT_ALLOW; 187 188 return result; 189 } 190 191 /* 192 * signal_init: 193 * 194 * Initialize global signal-related data structures. 195 */ 196 void 197 signal_init(void) 198 { 199 200 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 201 202 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 203 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 204 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 205 206 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 207 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 208 209 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 210 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 211 212 exechook_establish(ksiginfo_exechook, NULL); 213 214 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 215 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 216 217 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 218 signal_listener_cb, NULL); 219 } 220 221 /* 222 * sigacts_poolpage_alloc: 223 * 224 * Allocate a page for the sigacts memory pool. 225 */ 226 static void * 227 sigacts_poolpage_alloc(struct pool *pp, int flags) 228 { 229 230 return (void *)uvm_km_alloc(kernel_map, 231 PAGE_SIZE * 2, PAGE_SIZE * 2, 232 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 233 | UVM_KMF_WIRED); 234 } 235 236 /* 237 * sigacts_poolpage_free: 238 * 239 * Free a page on behalf of the sigacts memory pool. 240 */ 241 static void 242 sigacts_poolpage_free(struct pool *pp, void *v) 243 { 244 245 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 246 } 247 248 /* 249 * sigactsinit: 250 * 251 * Create an initial sigacts structure, using the same signal state 252 * as of specified process. If 'share' is set, share the sigacts by 253 * holding a reference, otherwise just copy it from parent. 254 */ 255 struct sigacts * 256 sigactsinit(struct proc *pp, int share) 257 { 258 struct sigacts *ps = pp->p_sigacts, *ps2; 259 260 if (__predict_false(share)) { 261 atomic_inc_uint(&ps->sa_refcnt); 262 return ps; 263 } 264 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 265 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 266 ps2->sa_refcnt = 1; 267 268 mutex_enter(&ps->sa_mutex); 269 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 270 mutex_exit(&ps->sa_mutex); 271 return ps2; 272 } 273 274 /* 275 * sigactsunshare: 276 * 277 * Make this process not share its sigacts, maintaining all signal state. 278 */ 279 void 280 sigactsunshare(struct proc *p) 281 { 282 struct sigacts *ps, *oldps = p->p_sigacts; 283 284 if (__predict_true(oldps->sa_refcnt == 1)) 285 return; 286 287 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 288 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 289 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 290 ps->sa_refcnt = 1; 291 292 p->p_sigacts = ps; 293 sigactsfree(oldps); 294 } 295 296 /* 297 * sigactsfree; 298 * 299 * Release a sigacts structure. 300 */ 301 void 302 sigactsfree(struct sigacts *ps) 303 { 304 305 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 306 mutex_destroy(&ps->sa_mutex); 307 pool_cache_put(sigacts_cache, ps); 308 } 309 } 310 311 /* 312 * siginit: 313 * 314 * Initialize signal state for process 0; set to ignore signals that 315 * are ignored by default and disable the signal stack. Locking not 316 * required as the system is still cold. 317 */ 318 void 319 siginit(struct proc *p) 320 { 321 struct lwp *l; 322 struct sigacts *ps; 323 int signo, prop; 324 325 ps = p->p_sigacts; 326 sigemptyset(&contsigmask); 327 sigemptyset(&stopsigmask); 328 sigemptyset(&sigcantmask); 329 for (signo = 1; signo < NSIG; signo++) { 330 prop = sigprop[signo]; 331 if (prop & SA_CONT) 332 sigaddset(&contsigmask, signo); 333 if (prop & SA_STOP) 334 sigaddset(&stopsigmask, signo); 335 if (prop & SA_CANTMASK) 336 sigaddset(&sigcantmask, signo); 337 if (prop & SA_IGNORE && signo != SIGCONT) 338 sigaddset(&p->p_sigctx.ps_sigignore, signo); 339 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 340 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 341 } 342 sigemptyset(&p->p_sigctx.ps_sigcatch); 343 p->p_sflag &= ~PS_NOCLDSTOP; 344 345 ksiginfo_queue_init(&p->p_sigpend.sp_info); 346 sigemptyset(&p->p_sigpend.sp_set); 347 348 /* 349 * Reset per LWP state. 350 */ 351 l = LIST_FIRST(&p->p_lwps); 352 l->l_sigwaited = NULL; 353 l->l_sigstk.ss_flags = SS_DISABLE; 354 l->l_sigstk.ss_size = 0; 355 l->l_sigstk.ss_sp = 0; 356 ksiginfo_queue_init(&l->l_sigpend.sp_info); 357 sigemptyset(&l->l_sigpend.sp_set); 358 359 /* One reference. */ 360 ps->sa_refcnt = 1; 361 } 362 363 /* 364 * execsigs: 365 * 366 * Reset signals for an exec of the specified process. 367 */ 368 void 369 execsigs(struct proc *p) 370 { 371 struct sigacts *ps; 372 struct lwp *l; 373 int signo, prop; 374 sigset_t tset; 375 ksiginfoq_t kq; 376 377 KASSERT(p->p_nlwps == 1); 378 379 sigactsunshare(p); 380 ps = p->p_sigacts; 381 382 /* 383 * Reset caught signals. Held signals remain held through 384 * l->l_sigmask (unless they were caught, and are now ignored 385 * by default). 386 * 387 * No need to lock yet, the process has only one LWP and 388 * at this point the sigacts are private to the process. 389 */ 390 sigemptyset(&tset); 391 for (signo = 1; signo < NSIG; signo++) { 392 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 393 prop = sigprop[signo]; 394 if (prop & SA_IGNORE) { 395 if ((prop & SA_CONT) == 0) 396 sigaddset(&p->p_sigctx.ps_sigignore, 397 signo); 398 sigaddset(&tset, signo); 399 } 400 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 401 } 402 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 403 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 404 } 405 ksiginfo_queue_init(&kq); 406 407 mutex_enter(p->p_lock); 408 sigclearall(p, &tset, &kq); 409 sigemptyset(&p->p_sigctx.ps_sigcatch); 410 411 /* 412 * Reset no zombies if child dies flag as Solaris does. 413 */ 414 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 415 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 416 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 417 418 /* 419 * Reset per-LWP state. 420 */ 421 l = LIST_FIRST(&p->p_lwps); 422 l->l_sigwaited = NULL; 423 l->l_sigstk.ss_flags = SS_DISABLE; 424 l->l_sigstk.ss_size = 0; 425 l->l_sigstk.ss_sp = 0; 426 ksiginfo_queue_init(&l->l_sigpend.sp_info); 427 sigemptyset(&l->l_sigpend.sp_set); 428 mutex_exit(p->p_lock); 429 430 ksiginfo_queue_drain(&kq); 431 } 432 433 /* 434 * ksiginfo_exechook: 435 * 436 * Free all pending ksiginfo entries from a process on exec. 437 * Additionally, drain any unused ksiginfo structures in the 438 * system back to the pool. 439 * 440 * XXX This should not be a hook, every process has signals. 441 */ 442 static void 443 ksiginfo_exechook(struct proc *p, void *v) 444 { 445 ksiginfoq_t kq; 446 447 ksiginfo_queue_init(&kq); 448 449 mutex_enter(p->p_lock); 450 sigclearall(p, NULL, &kq); 451 mutex_exit(p->p_lock); 452 453 ksiginfo_queue_drain(&kq); 454 } 455 456 /* 457 * ksiginfo_alloc: 458 * 459 * Allocate a new ksiginfo structure from the pool, and optionally copy 460 * an existing one. If the existing ksiginfo_t is from the pool, and 461 * has not been queued somewhere, then just return it. Additionally, 462 * if the existing ksiginfo_t does not contain any information beyond 463 * the signal number, then just return it. 464 */ 465 ksiginfo_t * 466 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 467 { 468 ksiginfo_t *kp; 469 470 if (ok != NULL) { 471 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 472 KSI_FROMPOOL) 473 return ok; 474 if (KSI_EMPTY_P(ok)) 475 return ok; 476 } 477 478 kp = pool_cache_get(ksiginfo_cache, flags); 479 if (kp == NULL) { 480 #ifdef DIAGNOSTIC 481 printf("Out of memory allocating ksiginfo for pid %d\n", 482 p->p_pid); 483 #endif 484 return NULL; 485 } 486 487 if (ok != NULL) { 488 memcpy(kp, ok, sizeof(*kp)); 489 kp->ksi_flags &= ~KSI_QUEUED; 490 } else 491 KSI_INIT_EMPTY(kp); 492 493 kp->ksi_flags |= KSI_FROMPOOL; 494 495 return kp; 496 } 497 498 /* 499 * ksiginfo_free: 500 * 501 * If the given ksiginfo_t is from the pool and has not been queued, 502 * then free it. 503 */ 504 void 505 ksiginfo_free(ksiginfo_t *kp) 506 { 507 508 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 509 return; 510 pool_cache_put(ksiginfo_cache, kp); 511 } 512 513 /* 514 * ksiginfo_queue_drain: 515 * 516 * Drain a non-empty ksiginfo_t queue. 517 */ 518 void 519 ksiginfo_queue_drain0(ksiginfoq_t *kq) 520 { 521 ksiginfo_t *ksi; 522 523 KASSERT(!CIRCLEQ_EMPTY(kq)); 524 525 while (!CIRCLEQ_EMPTY(kq)) { 526 ksi = CIRCLEQ_FIRST(kq); 527 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 528 pool_cache_put(ksiginfo_cache, ksi); 529 } 530 } 531 532 /* 533 * sigget: 534 * 535 * Fetch the first pending signal from a set. Optionally, also fetch 536 * or manufacture a ksiginfo element. Returns the number of the first 537 * pending signal, or zero. 538 */ 539 int 540 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 541 { 542 ksiginfo_t *ksi; 543 sigset_t tset; 544 545 /* If there's no pending set, the signal is from the debugger. */ 546 if (sp == NULL) 547 goto out; 548 549 /* Construct mask from signo, and 'mask'. */ 550 if (signo == 0) { 551 if (mask != NULL) { 552 tset = *mask; 553 __sigandset(&sp->sp_set, &tset); 554 } else 555 tset = sp->sp_set; 556 557 /* If there are no signals pending - return. */ 558 if ((signo = firstsig(&tset)) == 0) 559 goto out; 560 } else { 561 KASSERT(sigismember(&sp->sp_set, signo)); 562 } 563 564 sigdelset(&sp->sp_set, signo); 565 566 /* Find siginfo and copy it out. */ 567 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 568 if (ksi->ksi_signo != signo) 569 continue; 570 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 571 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 572 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 573 ksi->ksi_flags &= ~KSI_QUEUED; 574 if (out != NULL) { 575 memcpy(out, ksi, sizeof(*out)); 576 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 577 } 578 ksiginfo_free(ksi); /* XXXSMP */ 579 return signo; 580 } 581 out: 582 /* If there is no siginfo, then manufacture it. */ 583 if (out != NULL) { 584 KSI_INIT(out); 585 out->ksi_info._signo = signo; 586 out->ksi_info._code = SI_NOINFO; 587 } 588 return signo; 589 } 590 591 /* 592 * sigput: 593 * 594 * Append a new ksiginfo element to the list of pending ksiginfo's. 595 */ 596 static void 597 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 598 { 599 ksiginfo_t *kp; 600 601 KASSERT(mutex_owned(p->p_lock)); 602 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 603 604 sigaddset(&sp->sp_set, ksi->ksi_signo); 605 606 /* 607 * If there is no siginfo, we are done. 608 */ 609 if (KSI_EMPTY_P(ksi)) 610 return; 611 612 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 613 614 #ifdef notyet /* XXX: QUEUING */ 615 if (ksi->ksi_signo < SIGRTMIN) 616 #endif 617 { 618 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 619 if (kp->ksi_signo == ksi->ksi_signo) { 620 KSI_COPY(ksi, kp); 621 kp->ksi_flags |= KSI_QUEUED; 622 return; 623 } 624 } 625 } 626 627 ksi->ksi_flags |= KSI_QUEUED; 628 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 629 } 630 631 /* 632 * sigclear: 633 * 634 * Clear all pending signals in the specified set. 635 */ 636 void 637 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 638 { 639 ksiginfo_t *ksi, *next; 640 641 if (mask == NULL) 642 sigemptyset(&sp->sp_set); 643 else 644 sigminusset(mask, &sp->sp_set); 645 646 ksi = CIRCLEQ_FIRST(&sp->sp_info); 647 for (; ksi != (void *)&sp->sp_info; ksi = next) { 648 next = CIRCLEQ_NEXT(ksi, ksi_list); 649 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 650 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 651 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 652 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 653 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 654 } 655 } 656 } 657 658 /* 659 * sigclearall: 660 * 661 * Clear all pending signals in the specified set from a process and 662 * its LWPs. 663 */ 664 void 665 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 666 { 667 struct lwp *l; 668 669 KASSERT(mutex_owned(p->p_lock)); 670 671 sigclear(&p->p_sigpend, mask, kq); 672 673 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 674 sigclear(&l->l_sigpend, mask, kq); 675 } 676 } 677 678 /* 679 * sigispending: 680 * 681 * Return true if there are pending signals for the current LWP. May 682 * be called unlocked provided that LW_PENDSIG is set, and that the 683 * signal has been posted to the appopriate queue before LW_PENDSIG is 684 * set. 685 */ 686 int 687 sigispending(struct lwp *l, int signo) 688 { 689 struct proc *p = l->l_proc; 690 sigset_t tset; 691 692 membar_consumer(); 693 694 tset = l->l_sigpend.sp_set; 695 sigplusset(&p->p_sigpend.sp_set, &tset); 696 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 697 sigminusset(&l->l_sigmask, &tset); 698 699 if (signo == 0) { 700 if (firstsig(&tset) != 0) 701 return EINTR; 702 } else if (sigismember(&tset, signo)) 703 return EINTR; 704 705 return 0; 706 } 707 708 #ifdef KERN_SA 709 710 /* 711 * siginfo_alloc: 712 * 713 * Allocate a new siginfo_t structure from the pool. 714 */ 715 siginfo_t * 716 siginfo_alloc(int flags) 717 { 718 719 return pool_cache_get(siginfo_cache, flags); 720 } 721 722 /* 723 * siginfo_free: 724 * 725 * Return a siginfo_t structure to the pool. 726 */ 727 void 728 siginfo_free(void *arg) 729 { 730 731 pool_cache_put(siginfo_cache, arg); 732 } 733 734 #endif 735 736 void 737 getucontext(struct lwp *l, ucontext_t *ucp) 738 { 739 struct proc *p = l->l_proc; 740 741 KASSERT(mutex_owned(p->p_lock)); 742 743 ucp->uc_flags = 0; 744 ucp->uc_link = l->l_ctxlink; 745 746 #if KERN_SA 747 if (p->p_sa != NULL) 748 ucp->uc_sigmask = p->p_sa->sa_sigmask; 749 else 750 #endif /* KERN_SA */ 751 ucp->uc_sigmask = l->l_sigmask; 752 ucp->uc_flags |= _UC_SIGMASK; 753 754 /* 755 * The (unsupplied) definition of the `current execution stack' 756 * in the System V Interface Definition appears to allow returning 757 * the main context stack. 758 */ 759 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 760 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 761 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 762 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 763 } else { 764 /* Simply copy alternate signal execution stack. */ 765 ucp->uc_stack = l->l_sigstk; 766 } 767 ucp->uc_flags |= _UC_STACK; 768 mutex_exit(p->p_lock); 769 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 770 mutex_enter(p->p_lock); 771 } 772 773 /* 774 * getucontext_sa: 775 * Get a ucontext_t for use in SA upcall generation. 776 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 777 * fudge things with uc_link (which is usually NULL for libpthread 778 * code), and 3) we report an empty signal mask. 779 */ 780 void 781 getucontext_sa(struct lwp *l, ucontext_t *ucp) 782 { 783 ucp->uc_flags = 0; 784 ucp->uc_link = l->l_ctxlink; 785 786 sigemptyset(&ucp->uc_sigmask); 787 ucp->uc_flags |= _UC_SIGMASK; 788 789 /* 790 * The (unsupplied) definition of the `current execution stack' 791 * in the System V Interface Definition appears to allow returning 792 * the main context stack. 793 */ 794 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 795 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 796 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 797 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 798 } else { 799 /* Simply copy alternate signal execution stack. */ 800 ucp->uc_stack = l->l_sigstk; 801 } 802 ucp->uc_flags |= _UC_STACK; 803 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 804 } 805 806 int 807 setucontext(struct lwp *l, const ucontext_t *ucp) 808 { 809 struct proc *p = l->l_proc; 810 int error; 811 812 KASSERT(mutex_owned(p->p_lock)); 813 814 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 815 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 816 if (error != 0) 817 return error; 818 } 819 820 mutex_exit(p->p_lock); 821 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 822 mutex_enter(p->p_lock); 823 if (error != 0) 824 return (error); 825 826 l->l_ctxlink = ucp->uc_link; 827 828 /* 829 * If there was stack information, update whether or not we are 830 * still running on an alternate signal stack. 831 */ 832 if ((ucp->uc_flags & _UC_STACK) != 0) { 833 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 834 l->l_sigstk.ss_flags |= SS_ONSTACK; 835 else 836 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 837 } 838 839 return 0; 840 } 841 842 /* 843 * killpg1: common code for kill process group/broadcast kill. 844 */ 845 int 846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 847 { 848 struct proc *p, *cp; 849 kauth_cred_t pc; 850 struct pgrp *pgrp; 851 int nfound; 852 int signo = ksi->ksi_signo; 853 854 cp = l->l_proc; 855 pc = l->l_cred; 856 nfound = 0; 857 858 mutex_enter(proc_lock); 859 if (all) { 860 /* 861 * Broadcast. 862 */ 863 PROCLIST_FOREACH(p, &allproc) { 864 if (p->p_pid <= 1 || p == cp || 865 (p->p_flag & PK_SYSTEM) != 0) 866 continue; 867 mutex_enter(p->p_lock); 868 if (kauth_authorize_process(pc, 869 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 870 NULL) == 0) { 871 nfound++; 872 if (signo) 873 kpsignal2(p, ksi); 874 } 875 mutex_exit(p->p_lock); 876 } 877 } else { 878 if (pgid == 0) 879 /* Zero pgid means send to my process group. */ 880 pgrp = cp->p_pgrp; 881 else { 882 pgrp = pgrp_find(pgid); 883 if (pgrp == NULL) 884 goto out; 885 } 886 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 887 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 888 continue; 889 mutex_enter(p->p_lock); 890 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 891 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 892 nfound++; 893 if (signo && P_ZOMBIE(p) == 0) 894 kpsignal2(p, ksi); 895 } 896 mutex_exit(p->p_lock); 897 } 898 } 899 out: 900 mutex_exit(proc_lock); 901 return nfound ? 0 : ESRCH; 902 } 903 904 /* 905 * Send a signal to a process group. If checktty is set, limit to members 906 * which have a controlling terminal. 907 */ 908 void 909 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 910 { 911 ksiginfo_t ksi; 912 913 KASSERT(!cpu_intr_p()); 914 KASSERT(mutex_owned(proc_lock)); 915 916 KSI_INIT_EMPTY(&ksi); 917 ksi.ksi_signo = sig; 918 kpgsignal(pgrp, &ksi, NULL, checkctty); 919 } 920 921 void 922 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 923 { 924 struct proc *p; 925 926 KASSERT(!cpu_intr_p()); 927 KASSERT(mutex_owned(proc_lock)); 928 KASSERT(pgrp != NULL); 929 930 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 931 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 932 kpsignal(p, ksi, data); 933 } 934 935 /* 936 * Send a signal caused by a trap to the current LWP. If it will be caught 937 * immediately, deliver it with correct code. Otherwise, post it normally. 938 */ 939 void 940 trapsignal(struct lwp *l, ksiginfo_t *ksi) 941 { 942 struct proc *p; 943 struct sigacts *ps; 944 int signo = ksi->ksi_signo; 945 sigset_t *mask; 946 947 KASSERT(KSI_TRAP_P(ksi)); 948 949 ksi->ksi_lid = l->l_lid; 950 p = l->l_proc; 951 952 KASSERT(!cpu_intr_p()); 953 mutex_enter(proc_lock); 954 mutex_enter(p->p_lock); 955 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 956 ps = p->p_sigacts; 957 if ((p->p_slflag & PSL_TRACED) == 0 && 958 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 959 !sigismember(mask, signo)) { 960 mutex_exit(proc_lock); 961 l->l_ru.ru_nsignals++; 962 kpsendsig(l, ksi, mask); 963 mutex_exit(p->p_lock); 964 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 965 } else { 966 /* XXX for core dump/debugger */ 967 p->p_sigctx.ps_lwp = l->l_lid; 968 p->p_sigctx.ps_signo = ksi->ksi_signo; 969 p->p_sigctx.ps_code = ksi->ksi_trap; 970 kpsignal2(p, ksi); 971 mutex_exit(p->p_lock); 972 mutex_exit(proc_lock); 973 } 974 } 975 976 /* 977 * Fill in signal information and signal the parent for a child status change. 978 */ 979 void 980 child_psignal(struct proc *p, int mask) 981 { 982 ksiginfo_t ksi; 983 struct proc *q; 984 int xstat; 985 986 KASSERT(mutex_owned(proc_lock)); 987 KASSERT(mutex_owned(p->p_lock)); 988 989 xstat = p->p_xstat; 990 991 KSI_INIT(&ksi); 992 ksi.ksi_signo = SIGCHLD; 993 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 994 ksi.ksi_pid = p->p_pid; 995 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 996 ksi.ksi_status = xstat; 997 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 998 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 999 1000 q = p->p_pptr; 1001 1002 mutex_exit(p->p_lock); 1003 mutex_enter(q->p_lock); 1004 1005 if ((q->p_sflag & mask) == 0) 1006 kpsignal2(q, &ksi); 1007 1008 mutex_exit(q->p_lock); 1009 mutex_enter(p->p_lock); 1010 } 1011 1012 void 1013 psignal(struct proc *p, int signo) 1014 { 1015 ksiginfo_t ksi; 1016 1017 KASSERT(!cpu_intr_p()); 1018 KASSERT(mutex_owned(proc_lock)); 1019 1020 KSI_INIT_EMPTY(&ksi); 1021 ksi.ksi_signo = signo; 1022 mutex_enter(p->p_lock); 1023 kpsignal2(p, &ksi); 1024 mutex_exit(p->p_lock); 1025 } 1026 1027 void 1028 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1029 { 1030 fdfile_t *ff; 1031 file_t *fp; 1032 fdtab_t *dt; 1033 1034 KASSERT(!cpu_intr_p()); 1035 KASSERT(mutex_owned(proc_lock)); 1036 1037 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1038 size_t fd; 1039 filedesc_t *fdp = p->p_fd; 1040 1041 /* XXXSMP locking */ 1042 ksi->ksi_fd = -1; 1043 dt = fdp->fd_dt; 1044 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1045 if ((ff = dt->dt_ff[fd]) == NULL) 1046 continue; 1047 if ((fp = ff->ff_file) == NULL) 1048 continue; 1049 if (fp->f_data == data) { 1050 ksi->ksi_fd = fd; 1051 break; 1052 } 1053 } 1054 } 1055 mutex_enter(p->p_lock); 1056 kpsignal2(p, ksi); 1057 mutex_exit(p->p_lock); 1058 } 1059 1060 /* 1061 * sigismasked: 1062 * 1063 * Returns true if signal is ignored or masked for the specified LWP. 1064 */ 1065 int 1066 sigismasked(struct lwp *l, int sig) 1067 { 1068 struct proc *p = l->l_proc; 1069 1070 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1071 sigismember(&l->l_sigmask, sig) 1072 #if KERN_SA 1073 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1074 #endif /* KERN_SA */ 1075 ); 1076 } 1077 1078 /* 1079 * sigpost: 1080 * 1081 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1082 * be able to take the signal. 1083 */ 1084 static int 1085 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1086 { 1087 int rv, masked; 1088 struct proc *p = l->l_proc; 1089 1090 KASSERT(mutex_owned(p->p_lock)); 1091 1092 /* 1093 * If the LWP is on the way out, sigclear() will be busy draining all 1094 * pending signals. Don't give it more. 1095 */ 1096 if (l->l_refcnt == 0) 1097 return 0; 1098 1099 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1100 1101 /* 1102 * Have the LWP check for signals. This ensures that even if no LWP 1103 * is found to take the signal immediately, it should be taken soon. 1104 */ 1105 lwp_lock(l); 1106 l->l_flag |= LW_PENDSIG; 1107 1108 /* 1109 * When sending signals to SA processes, we first try to find an 1110 * idle VP to take it. 1111 */ 1112 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1113 lwp_unlock(l); 1114 return 0; 1115 } 1116 1117 /* 1118 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1119 * Note: SIGKILL and SIGSTOP cannot be masked. 1120 */ 1121 #if KERN_SA 1122 if (p->p_sa != NULL) 1123 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1124 else 1125 #endif 1126 masked = sigismember(&l->l_sigmask, sig); 1127 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1128 lwp_unlock(l); 1129 return 0; 1130 } 1131 1132 /* 1133 * If killing the process, make it run fast. 1134 */ 1135 if (__predict_false((prop & SA_KILL) != 0) && 1136 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1137 KASSERT(l->l_class == SCHED_OTHER); 1138 lwp_changepri(l, MAXPRI_USER); 1139 } 1140 1141 /* 1142 * If the LWP is running or on a run queue, then we win. If it's 1143 * sleeping interruptably, wake it and make it take the signal. If 1144 * the sleep isn't interruptable, then the chances are it will get 1145 * to see the signal soon anyhow. If suspended, it can't take the 1146 * signal right now. If it's LWP private or for all LWPs, save it 1147 * for later; otherwise punt. 1148 */ 1149 rv = 0; 1150 1151 switch (l->l_stat) { 1152 case LSRUN: 1153 case LSONPROC: 1154 lwp_need_userret(l); 1155 rv = 1; 1156 break; 1157 1158 case LSSLEEP: 1159 if ((l->l_flag & LW_SINTR) != 0) { 1160 /* setrunnable() will release the lock. */ 1161 setrunnable(l); 1162 return 1; 1163 } 1164 break; 1165 1166 case LSSUSPENDED: 1167 if ((prop & SA_KILL) != 0) { 1168 /* lwp_continue() will release the lock. */ 1169 lwp_continue(l); 1170 return 1; 1171 } 1172 break; 1173 1174 case LSSTOP: 1175 if ((prop & SA_STOP) != 0) 1176 break; 1177 1178 /* 1179 * If the LWP is stopped and we are sending a continue 1180 * signal, then start it again. 1181 */ 1182 if ((prop & SA_CONT) != 0) { 1183 if (l->l_wchan != NULL) { 1184 l->l_stat = LSSLEEP; 1185 p->p_nrlwps++; 1186 rv = 1; 1187 break; 1188 } 1189 /* setrunnable() will release the lock. */ 1190 setrunnable(l); 1191 return 1; 1192 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1193 /* setrunnable() will release the lock. */ 1194 setrunnable(l); 1195 return 1; 1196 } 1197 break; 1198 1199 default: 1200 break; 1201 } 1202 1203 lwp_unlock(l); 1204 return rv; 1205 } 1206 1207 /* 1208 * Notify an LWP that it has a pending signal. 1209 */ 1210 void 1211 signotify(struct lwp *l) 1212 { 1213 KASSERT(lwp_locked(l, NULL)); 1214 1215 l->l_flag |= LW_PENDSIG; 1216 lwp_need_userret(l); 1217 } 1218 1219 /* 1220 * Find an LWP within process p that is waiting on signal ksi, and hand 1221 * it on. 1222 */ 1223 static int 1224 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1225 { 1226 struct lwp *l; 1227 int signo; 1228 1229 KASSERT(mutex_owned(p->p_lock)); 1230 1231 signo = ksi->ksi_signo; 1232 1233 if (ksi->ksi_lid != 0) { 1234 /* 1235 * Signal came via _lwp_kill(). Find the LWP and see if 1236 * it's interested. 1237 */ 1238 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1239 return 0; 1240 if (l->l_sigwaited == NULL || 1241 !sigismember(&l->l_sigwaitset, signo)) 1242 return 0; 1243 } else { 1244 /* 1245 * Look for any LWP that may be interested. 1246 */ 1247 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1248 KASSERT(l->l_sigwaited != NULL); 1249 if (sigismember(&l->l_sigwaitset, signo)) 1250 break; 1251 } 1252 } 1253 1254 if (l != NULL) { 1255 l->l_sigwaited->ksi_info = ksi->ksi_info; 1256 l->l_sigwaited = NULL; 1257 LIST_REMOVE(l, l_sigwaiter); 1258 cv_signal(&l->l_sigcv); 1259 return 1; 1260 } 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * Send the signal to the process. If the signal has an action, the action 1267 * is usually performed by the target process rather than the caller; we add 1268 * the signal to the set of pending signals for the process. 1269 * 1270 * Exceptions: 1271 * o When a stop signal is sent to a sleeping process that takes the 1272 * default action, the process is stopped without awakening it. 1273 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1274 * regardless of the signal action (eg, blocked or ignored). 1275 * 1276 * Other ignored signals are discarded immediately. 1277 */ 1278 void 1279 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1280 { 1281 int prop, signo = ksi->ksi_signo; 1282 struct sigacts *sa; 1283 struct lwp *l; 1284 ksiginfo_t *kp; 1285 lwpid_t lid; 1286 sig_t action; 1287 bool toall; 1288 1289 KASSERT(!cpu_intr_p()); 1290 KASSERT(mutex_owned(proc_lock)); 1291 KASSERT(mutex_owned(p->p_lock)); 1292 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1293 KASSERT(signo > 0 && signo < NSIG); 1294 1295 /* 1296 * If the process is being created by fork, is a zombie or is 1297 * exiting, then just drop the signal here and bail out. 1298 */ 1299 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1300 return; 1301 1302 /* 1303 * Notify any interested parties of the signal. 1304 */ 1305 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1306 1307 /* 1308 * Some signals including SIGKILL must act on the entire process. 1309 */ 1310 kp = NULL; 1311 prop = sigprop[signo]; 1312 toall = ((prop & SA_TOALL) != 0); 1313 lid = toall ? 0 : ksi->ksi_lid; 1314 1315 /* 1316 * If proc is traced, always give parent a chance. 1317 */ 1318 if (p->p_slflag & PSL_TRACED) { 1319 action = SIG_DFL; 1320 1321 if (lid == 0) { 1322 /* 1323 * If the process is being traced and the signal 1324 * is being caught, make sure to save any ksiginfo. 1325 */ 1326 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1327 return; 1328 sigput(&p->p_sigpend, p, kp); 1329 } 1330 } else { 1331 /* 1332 * If the signal was the result of a trap and is not being 1333 * caught, then reset it to default action so that the 1334 * process dumps core immediately. 1335 */ 1336 if (KSI_TRAP_P(ksi)) { 1337 sa = p->p_sigacts; 1338 mutex_enter(&sa->sa_mutex); 1339 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1340 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1341 SIGACTION(p, signo).sa_handler = SIG_DFL; 1342 } 1343 mutex_exit(&sa->sa_mutex); 1344 } 1345 1346 /* 1347 * If the signal is being ignored, then drop it. Note: we 1348 * don't set SIGCONT in ps_sigignore, and if it is set to 1349 * SIG_IGN, action will be SIG_DFL here. 1350 */ 1351 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1352 return; 1353 1354 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1355 action = SIG_CATCH; 1356 else { 1357 action = SIG_DFL; 1358 1359 /* 1360 * If sending a tty stop signal to a member of an 1361 * orphaned process group, discard the signal here if 1362 * the action is default; don't stop the process below 1363 * if sleeping, and don't clear any pending SIGCONT. 1364 */ 1365 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1366 return; 1367 1368 if (prop & SA_KILL && p->p_nice > NZERO) 1369 p->p_nice = NZERO; 1370 } 1371 } 1372 1373 /* 1374 * If stopping or continuing a process, discard any pending 1375 * signals that would do the inverse. 1376 */ 1377 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1378 ksiginfoq_t kq; 1379 1380 ksiginfo_queue_init(&kq); 1381 if ((prop & SA_CONT) != 0) 1382 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1383 if ((prop & SA_STOP) != 0) 1384 sigclear(&p->p_sigpend, &contsigmask, &kq); 1385 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1386 } 1387 1388 /* 1389 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1390 * please!), check if any LWPs are waiting on it. If yes, pass on 1391 * the signal info. The signal won't be processed further here. 1392 */ 1393 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1394 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1395 sigunwait(p, ksi)) 1396 return; 1397 1398 /* 1399 * XXXSMP Should be allocated by the caller, we're holding locks 1400 * here. 1401 */ 1402 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1403 return; 1404 1405 /* 1406 * LWP private signals are easy - just find the LWP and post 1407 * the signal to it. 1408 */ 1409 if (lid != 0) { 1410 l = lwp_find(p, lid); 1411 if (l != NULL) { 1412 sigput(&l->l_sigpend, p, kp); 1413 membar_producer(); 1414 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1415 } 1416 goto out; 1417 } 1418 1419 /* 1420 * Some signals go to all LWPs, even if posted with _lwp_kill() 1421 * or for an SA process. 1422 */ 1423 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1424 if ((p->p_slflag & PSL_TRACED) != 0) 1425 goto deliver; 1426 1427 /* 1428 * If SIGCONT is default (or ignored) and process is 1429 * asleep, we are finished; the process should not 1430 * be awakened. 1431 */ 1432 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1433 goto out; 1434 } else { 1435 /* 1436 * Process is stopped or stopping. 1437 * - If traced, then no action is needed, unless killing. 1438 * - Run the process only if sending SIGCONT or SIGKILL. 1439 */ 1440 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1441 goto out; 1442 } 1443 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1444 /* 1445 * Re-adjust p_nstopchild if the process wasn't 1446 * collected by its parent. 1447 */ 1448 p->p_stat = SACTIVE; 1449 p->p_sflag &= ~PS_STOPPING; 1450 if (!p->p_waited) { 1451 p->p_pptr->p_nstopchild--; 1452 } 1453 if (p->p_slflag & PSL_TRACED) { 1454 KASSERT(signo == SIGKILL); 1455 goto deliver; 1456 } 1457 /* 1458 * Do not make signal pending if SIGCONT is default. 1459 * 1460 * If the process catches SIGCONT, let it handle the 1461 * signal itself (if waiting on event - process runs, 1462 * otherwise continues sleeping). 1463 */ 1464 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1465 KASSERT(signo != SIGKILL); 1466 goto deliver; 1467 } 1468 } else if ((prop & SA_STOP) != 0) { 1469 /* 1470 * Already stopped, don't need to stop again. 1471 * (If we did the shell could get confused.) 1472 */ 1473 goto out; 1474 } 1475 } 1476 /* 1477 * Make signal pending. 1478 */ 1479 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1480 sigput(&p->p_sigpend, p, kp); 1481 1482 deliver: 1483 /* 1484 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1485 * visible on the per process list (for sigispending()). This 1486 * is unlikely to be needed in practice, but... 1487 */ 1488 membar_producer(); 1489 1490 /* 1491 * Try to find an LWP that can take the signal. 1492 */ 1493 #if KERN_SA 1494 if ((p->p_sa != NULL) && !toall) { 1495 struct sadata_vp *vp; 1496 /* 1497 * If we're in this delivery path, we are delivering a 1498 * signal that needs to go to one thread in the process. 1499 * 1500 * In the SA case, we try to find an idle LWP that can take 1501 * the signal. If that fails, only then do we consider 1502 * interrupting active LWPs. Since the signal's going to 1503 * just one thread, we need only look at "blessed" lwps, 1504 * so scan the vps for them. 1505 */ 1506 l = NULL; 1507 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1508 l = vp->savp_lwp; 1509 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1510 break; 1511 } 1512 1513 if (l == NULL) { 1514 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1515 l = vp->savp_lwp; 1516 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1517 break; 1518 } 1519 } 1520 /* Delivered, skip next. */ 1521 goto out; 1522 } 1523 #endif 1524 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1525 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1526 break; 1527 } 1528 out: 1529 /* 1530 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1531 * with locks held. The caller should take care of this. 1532 */ 1533 ksiginfo_free(kp); 1534 } 1535 1536 void 1537 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1538 { 1539 struct proc *p = l->l_proc; 1540 #ifdef KERN_SA 1541 struct lwp *le, *li; 1542 siginfo_t *si; 1543 int f; 1544 #endif /* KERN_SA */ 1545 1546 KASSERT(mutex_owned(p->p_lock)); 1547 1548 #ifdef KERN_SA 1549 if (p->p_sflag & PS_SA) { 1550 /* f indicates if we should clear LP_SA_NOBLOCK */ 1551 f = ~l->l_pflag & LP_SA_NOBLOCK; 1552 l->l_pflag |= LP_SA_NOBLOCK; 1553 1554 mutex_exit(p->p_lock); 1555 /* XXXUPSXXX What if not on sa_vp? */ 1556 /* 1557 * WRS: I think it won't matter, beyond the 1558 * question of what exactly we do with a signal 1559 * to a blocked user thread. Also, we try hard to always 1560 * send signals to blessed lwps, so we would only send 1561 * to a non-blessed lwp under special circumstances. 1562 */ 1563 si = siginfo_alloc(PR_WAITOK); 1564 1565 si->_info = ksi->ksi_info; 1566 1567 /* 1568 * Figure out if we're the innocent victim or the main 1569 * perpitrator. 1570 */ 1571 le = li = NULL; 1572 if (KSI_TRAP_P(ksi)) 1573 le = l; 1574 else 1575 li = l; 1576 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1577 sizeof(*si), si, siginfo_free) != 0) { 1578 siginfo_free(si); 1579 #if 0 1580 if (KSI_TRAP_P(ksi)) 1581 /* XXX What dowe do here? The signal 1582 * didn't make it 1583 */; 1584 #endif 1585 } 1586 l->l_pflag ^= f; 1587 mutex_enter(p->p_lock); 1588 return; 1589 } 1590 #endif /* KERN_SA */ 1591 1592 (*p->p_emul->e_sendsig)(ksi, mask); 1593 } 1594 1595 /* 1596 * Stop any LWPs sleeping interruptably. 1597 */ 1598 static void 1599 proc_stop_lwps(struct proc *p) 1600 { 1601 struct lwp *l; 1602 1603 KASSERT(mutex_owned(p->p_lock)); 1604 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1605 1606 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1607 lwp_lock(l); 1608 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1609 l->l_stat = LSSTOP; 1610 p->p_nrlwps--; 1611 } 1612 lwp_unlock(l); 1613 } 1614 } 1615 1616 /* 1617 * Finish stopping of a process. Mark it stopped and notify the parent. 1618 * 1619 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1620 */ 1621 static void 1622 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1623 { 1624 1625 KASSERT(mutex_owned(proc_lock)); 1626 KASSERT(mutex_owned(p->p_lock)); 1627 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1628 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1629 1630 p->p_sflag &= ~PS_STOPPING; 1631 p->p_stat = SSTOP; 1632 p->p_waited = 0; 1633 p->p_pptr->p_nstopchild++; 1634 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1635 if (ppsig) { 1636 /* child_psignal drops p_lock briefly. */ 1637 child_psignal(p, ppmask); 1638 } 1639 cv_broadcast(&p->p_pptr->p_waitcv); 1640 } 1641 } 1642 1643 /* 1644 * Stop the current process and switch away when being stopped or traced. 1645 */ 1646 static void 1647 sigswitch(bool ppsig, int ppmask, int signo) 1648 { 1649 struct lwp *l = curlwp; 1650 struct proc *p = l->l_proc; 1651 int biglocks; 1652 1653 KASSERT(mutex_owned(p->p_lock)); 1654 KASSERT(l->l_stat == LSONPROC); 1655 KASSERT(p->p_nrlwps > 0); 1656 1657 /* 1658 * On entry we know that the process needs to stop. If it's 1659 * the result of a 'sideways' stop signal that has been sourced 1660 * through issignal(), then stop other LWPs in the process too. 1661 */ 1662 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1663 KASSERT(signo != 0); 1664 proc_stop(p, 1, signo); 1665 KASSERT(p->p_nrlwps > 0); 1666 } 1667 1668 /* 1669 * If we are the last live LWP, and the stop was a result of 1670 * a new signal, then signal the parent. 1671 */ 1672 if ((p->p_sflag & PS_STOPPING) != 0) { 1673 if (!mutex_tryenter(proc_lock)) { 1674 mutex_exit(p->p_lock); 1675 mutex_enter(proc_lock); 1676 mutex_enter(p->p_lock); 1677 } 1678 1679 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1680 /* 1681 * Note that proc_stop_done() can drop 1682 * p->p_lock briefly. 1683 */ 1684 proc_stop_done(p, ppsig, ppmask); 1685 } 1686 1687 mutex_exit(proc_lock); 1688 } 1689 1690 /* 1691 * Unlock and switch away. 1692 */ 1693 KERNEL_UNLOCK_ALL(l, &biglocks); 1694 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1695 p->p_nrlwps--; 1696 lwp_lock(l); 1697 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1698 l->l_stat = LSSTOP; 1699 lwp_unlock(l); 1700 } 1701 1702 mutex_exit(p->p_lock); 1703 lwp_lock(l); 1704 mi_switch(l); 1705 KERNEL_LOCK(biglocks, l); 1706 mutex_enter(p->p_lock); 1707 } 1708 1709 /* 1710 * Check for a signal from the debugger. 1711 */ 1712 static int 1713 sigchecktrace(void) 1714 { 1715 struct lwp *l = curlwp; 1716 struct proc *p = l->l_proc; 1717 sigset_t *mask; 1718 int signo; 1719 1720 KASSERT(mutex_owned(p->p_lock)); 1721 1722 /* If there's a pending SIGKILL, process it immediately. */ 1723 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1724 return 0; 1725 1726 /* 1727 * If we are no longer being traced, or the parent didn't 1728 * give us a signal, or we're stopping, look for more signals. 1729 */ 1730 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 || 1731 (p->p_sflag & PS_STOPPING) != 0) 1732 return 0; 1733 1734 /* 1735 * If the new signal is being masked, look for other signals. 1736 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1737 */ 1738 signo = p->p_xstat; 1739 p->p_xstat = 0; 1740 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1741 if (sigismember(mask, signo)) 1742 signo = 0; 1743 1744 return signo; 1745 } 1746 1747 /* 1748 * If the current process has received a signal (should be caught or cause 1749 * termination, should interrupt current syscall), return the signal number. 1750 * 1751 * Stop signals with default action are processed immediately, then cleared; 1752 * they aren't returned. This is checked after each entry to the system for 1753 * a syscall or trap. 1754 * 1755 * We will also return -1 if the process is exiting and the current LWP must 1756 * follow suit. 1757 */ 1758 int 1759 issignal(struct lwp *l) 1760 { 1761 struct proc *p; 1762 int signo, prop; 1763 sigpend_t *sp; 1764 sigset_t ss; 1765 1766 p = l->l_proc; 1767 sp = NULL; 1768 signo = 0; 1769 1770 KASSERT(p == curproc); 1771 KASSERT(mutex_owned(p->p_lock)); 1772 1773 for (;;) { 1774 /* Discard any signals that we have decided not to take. */ 1775 if (signo != 0) 1776 (void)sigget(sp, NULL, signo, NULL); 1777 1778 /* Bail out if we do not own the virtual processor */ 1779 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1780 break; 1781 1782 /* 1783 * If the process is stopped/stopping, then stop ourselves 1784 * now that we're on the kernel/userspace boundary. When 1785 * we awaken, check for a signal from the debugger. 1786 */ 1787 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1788 sigswitch(true, PS_NOCLDSTOP, 0); 1789 signo = sigchecktrace(); 1790 } else 1791 signo = 0; 1792 1793 /* Signals from the debugger are "out of band". */ 1794 sp = NULL; 1795 1796 /* 1797 * If the debugger didn't provide a signal, find a pending 1798 * signal from our set. Check per-LWP signals first, and 1799 * then per-process. 1800 */ 1801 if (signo == 0) { 1802 sp = &l->l_sigpend; 1803 ss = sp->sp_set; 1804 if ((p->p_lflag & PL_PPWAIT) != 0) 1805 sigminusset(&stopsigmask, &ss); 1806 sigminusset(&l->l_sigmask, &ss); 1807 1808 if ((signo = firstsig(&ss)) == 0) { 1809 sp = &p->p_sigpend; 1810 ss = sp->sp_set; 1811 if ((p->p_lflag & PL_PPWAIT) != 0) 1812 sigminusset(&stopsigmask, &ss); 1813 sigminusset(&l->l_sigmask, &ss); 1814 1815 if ((signo = firstsig(&ss)) == 0) { 1816 /* 1817 * No signal pending - clear the 1818 * indicator and bail out. 1819 */ 1820 lwp_lock(l); 1821 l->l_flag &= ~LW_PENDSIG; 1822 lwp_unlock(l); 1823 sp = NULL; 1824 break; 1825 } 1826 } 1827 } 1828 1829 /* 1830 * We should see pending but ignored signals only if 1831 * we are being traced. 1832 */ 1833 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1834 (p->p_slflag & PSL_TRACED) == 0) { 1835 /* Discard the signal. */ 1836 continue; 1837 } 1838 1839 /* 1840 * If traced, always stop, and stay stopped until released 1841 * by the debugger. If the our parent process is waiting 1842 * for us, don't hang as we could deadlock. 1843 */ 1844 if ((p->p_slflag & PSL_TRACED) != 0 && 1845 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1846 /* Take the signal. */ 1847 (void)sigget(sp, NULL, signo, NULL); 1848 p->p_xstat = signo; 1849 1850 /* Emulation-specific handling of signal trace */ 1851 if (p->p_emul->e_tracesig == NULL || 1852 (*p->p_emul->e_tracesig)(p, signo) == 0) 1853 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1854 signo); 1855 1856 /* Check for a signal from the debugger. */ 1857 if ((signo = sigchecktrace()) == 0) 1858 continue; 1859 1860 /* Signals from the debugger are "out of band". */ 1861 sp = NULL; 1862 } 1863 1864 prop = sigprop[signo]; 1865 1866 /* XXX no siginfo? */ 1867 SDT_PROBE(proc,,,signal_handle, signo, 0, 1868 SIGACTION(p, signo).sa_handler, 0, 0); 1869 1870 /* 1871 * Decide whether the signal should be returned. 1872 */ 1873 switch ((long)SIGACTION(p, signo).sa_handler) { 1874 case (long)SIG_DFL: 1875 /* 1876 * Don't take default actions on system processes. 1877 */ 1878 if (p->p_pid <= 1) { 1879 #ifdef DIAGNOSTIC 1880 /* 1881 * Are you sure you want to ignore SIGSEGV 1882 * in init? XXX 1883 */ 1884 printf_nolog("Process (pid %d) got sig %d\n", 1885 p->p_pid, signo); 1886 #endif 1887 continue; 1888 } 1889 1890 /* 1891 * If there is a pending stop signal to process with 1892 * default action, stop here, then clear the signal. 1893 * However, if process is member of an orphaned 1894 * process group, ignore tty stop signals. 1895 */ 1896 if (prop & SA_STOP) { 1897 /* 1898 * XXX Don't hold proc_lock for p_lflag, 1899 * but it's not a big deal. 1900 */ 1901 if (p->p_slflag & PSL_TRACED || 1902 ((p->p_lflag & PL_ORPHANPG) != 0 && 1903 prop & SA_TTYSTOP)) { 1904 /* Ignore the signal. */ 1905 continue; 1906 } 1907 /* Take the signal. */ 1908 (void)sigget(sp, NULL, signo, NULL); 1909 p->p_xstat = signo; 1910 signo = 0; 1911 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1912 } else if (prop & SA_IGNORE) { 1913 /* 1914 * Except for SIGCONT, shouldn't get here. 1915 * Default action is to ignore; drop it. 1916 */ 1917 continue; 1918 } 1919 break; 1920 1921 case (long)SIG_IGN: 1922 #ifdef DEBUG_ISSIGNAL 1923 /* 1924 * Masking above should prevent us ever trying 1925 * to take action on an ignored signal other 1926 * than SIGCONT, unless process is traced. 1927 */ 1928 if ((prop & SA_CONT) == 0 && 1929 (p->p_slflag & PSL_TRACED) == 0) 1930 printf_nolog("issignal\n"); 1931 #endif 1932 continue; 1933 1934 default: 1935 /* 1936 * This signal has an action, let postsig() process 1937 * it. 1938 */ 1939 break; 1940 } 1941 1942 break; 1943 } 1944 1945 l->l_sigpendset = sp; 1946 return signo; 1947 } 1948 1949 /* 1950 * Take the action for the specified signal 1951 * from the current set of pending signals. 1952 */ 1953 void 1954 postsig(int signo) 1955 { 1956 struct lwp *l; 1957 struct proc *p; 1958 struct sigacts *ps; 1959 sig_t action; 1960 sigset_t *returnmask; 1961 ksiginfo_t ksi; 1962 1963 l = curlwp; 1964 p = l->l_proc; 1965 ps = p->p_sigacts; 1966 1967 KASSERT(mutex_owned(p->p_lock)); 1968 KASSERT(signo > 0); 1969 1970 /* 1971 * Set the new mask value and also defer further occurrences of this 1972 * signal. 1973 * 1974 * Special case: user has done a sigsuspend. Here the current mask is 1975 * not of interest, but rather the mask from before the sigsuspend is 1976 * what we want restored after the signal processing is completed. 1977 */ 1978 if (l->l_sigrestore) { 1979 returnmask = &l->l_sigoldmask; 1980 l->l_sigrestore = 0; 1981 } else 1982 returnmask = &l->l_sigmask; 1983 1984 /* 1985 * Commit to taking the signal before releasing the mutex. 1986 */ 1987 action = SIGACTION_PS(ps, signo).sa_handler; 1988 l->l_ru.ru_nsignals++; 1989 sigget(l->l_sigpendset, &ksi, signo, NULL); 1990 1991 if (ktrpoint(KTR_PSIG)) { 1992 mutex_exit(p->p_lock); 1993 ktrpsig(signo, action, returnmask, &ksi); 1994 mutex_enter(p->p_lock); 1995 } 1996 1997 if (action == SIG_DFL) { 1998 /* 1999 * Default action, where the default is to kill 2000 * the process. (Other cases were ignored above.) 2001 */ 2002 sigexit(l, signo); 2003 return; 2004 } 2005 2006 /* 2007 * If we get here, the signal must be caught. 2008 */ 2009 #ifdef DIAGNOSTIC 2010 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2011 panic("postsig action"); 2012 #endif 2013 2014 kpsendsig(l, &ksi, returnmask); 2015 } 2016 2017 /* 2018 * sendsig: 2019 * 2020 * Default signal delivery method for NetBSD. 2021 */ 2022 void 2023 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2024 { 2025 struct sigacts *sa; 2026 int sig; 2027 2028 sig = ksi->ksi_signo; 2029 sa = curproc->p_sigacts; 2030 2031 switch (sa->sa_sigdesc[sig].sd_vers) { 2032 case 0: 2033 case 1: 2034 /* Compat for 1.6 and earlier. */ 2035 if (sendsig_sigcontext_vec == NULL) { 2036 break; 2037 } 2038 (*sendsig_sigcontext_vec)(ksi, mask); 2039 return; 2040 case 2: 2041 case 3: 2042 sendsig_siginfo(ksi, mask); 2043 return; 2044 default: 2045 break; 2046 } 2047 2048 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2049 sigexit(curlwp, SIGILL); 2050 } 2051 2052 /* 2053 * sendsig_reset: 2054 * 2055 * Reset the signal action. Called from emulation specific sendsig() 2056 * before unlocking to deliver the signal. 2057 */ 2058 void 2059 sendsig_reset(struct lwp *l, int signo) 2060 { 2061 struct proc *p = l->l_proc; 2062 struct sigacts *ps = p->p_sigacts; 2063 sigset_t *mask; 2064 2065 KASSERT(mutex_owned(p->p_lock)); 2066 2067 p->p_sigctx.ps_lwp = 0; 2068 p->p_sigctx.ps_code = 0; 2069 p->p_sigctx.ps_signo = 0; 2070 2071 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2072 2073 mutex_enter(&ps->sa_mutex); 2074 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2075 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2076 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2077 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2078 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2079 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2080 } 2081 mutex_exit(&ps->sa_mutex); 2082 } 2083 2084 /* 2085 * Kill the current process for stated reason. 2086 */ 2087 void 2088 killproc(struct proc *p, const char *why) 2089 { 2090 2091 KASSERT(mutex_owned(proc_lock)); 2092 2093 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2094 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2095 psignal(p, SIGKILL); 2096 } 2097 2098 /* 2099 * Force the current process to exit with the specified signal, dumping core 2100 * if appropriate. We bypass the normal tests for masked and caught 2101 * signals, allowing unrecoverable failures to terminate the process without 2102 * changing signal state. Mark the accounting record with the signal 2103 * termination. If dumping core, save the signal number for the debugger. 2104 * Calls exit and does not return. 2105 */ 2106 void 2107 sigexit(struct lwp *l, int signo) 2108 { 2109 int exitsig, error, docore; 2110 struct proc *p; 2111 struct lwp *t; 2112 2113 p = l->l_proc; 2114 2115 KASSERT(mutex_owned(p->p_lock)); 2116 KERNEL_UNLOCK_ALL(l, NULL); 2117 2118 /* 2119 * Don't permit coredump() multiple times in the same process. 2120 * Call back into sigexit, where we will be suspended until 2121 * the deed is done. Note that this is a recursive call, but 2122 * LW_WCORE will prevent us from coming back this way. 2123 */ 2124 if ((p->p_sflag & PS_WCORE) != 0) { 2125 lwp_lock(l); 2126 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2127 lwp_unlock(l); 2128 mutex_exit(p->p_lock); 2129 lwp_userret(l); 2130 panic("sigexit 1"); 2131 /* NOTREACHED */ 2132 } 2133 2134 /* If process is already on the way out, then bail now. */ 2135 if ((p->p_sflag & PS_WEXIT) != 0) { 2136 mutex_exit(p->p_lock); 2137 lwp_exit(l); 2138 panic("sigexit 2"); 2139 /* NOTREACHED */ 2140 } 2141 2142 /* 2143 * Prepare all other LWPs for exit. If dumping core, suspend them 2144 * so that their registers are available long enough to be dumped. 2145 */ 2146 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2147 p->p_sflag |= PS_WCORE; 2148 for (;;) { 2149 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2150 lwp_lock(t); 2151 if (t == l) { 2152 t->l_flag &= ~LW_WSUSPEND; 2153 lwp_unlock(t); 2154 continue; 2155 } 2156 t->l_flag |= (LW_WCORE | LW_WEXIT); 2157 lwp_suspend(l, t); 2158 } 2159 2160 if (p->p_nrlwps == 1) 2161 break; 2162 2163 /* 2164 * Kick any LWPs sitting in lwp_wait1(), and wait 2165 * for everyone else to stop before proceeding. 2166 */ 2167 p->p_nlwpwait++; 2168 cv_broadcast(&p->p_lwpcv); 2169 cv_wait(&p->p_lwpcv, p->p_lock); 2170 p->p_nlwpwait--; 2171 } 2172 } 2173 2174 exitsig = signo; 2175 p->p_acflag |= AXSIG; 2176 p->p_sigctx.ps_signo = signo; 2177 2178 if (docore) { 2179 mutex_exit(p->p_lock); 2180 if ((error = (*coredump_vec)(l, NULL)) == 0) 2181 exitsig |= WCOREFLAG; 2182 2183 if (kern_logsigexit) { 2184 int uid = l->l_cred ? 2185 (int)kauth_cred_geteuid(l->l_cred) : -1; 2186 2187 if (error) 2188 log(LOG_INFO, lognocoredump, p->p_pid, 2189 p->p_comm, uid, signo, error); 2190 else 2191 log(LOG_INFO, logcoredump, p->p_pid, 2192 p->p_comm, uid, signo); 2193 } 2194 2195 #ifdef PAX_SEGVGUARD 2196 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2197 #endif /* PAX_SEGVGUARD */ 2198 /* Acquire the sched state mutex. exit1() will release it. */ 2199 mutex_enter(p->p_lock); 2200 } 2201 2202 /* No longer dumping core. */ 2203 p->p_sflag &= ~PS_WCORE; 2204 2205 exit1(l, W_EXITCODE(0, exitsig)); 2206 /* NOTREACHED */ 2207 } 2208 2209 /* 2210 * Put process 'p' into the stopped state and optionally, notify the parent. 2211 */ 2212 void 2213 proc_stop(struct proc *p, int notify, int signo) 2214 { 2215 struct lwp *l; 2216 2217 KASSERT(mutex_owned(p->p_lock)); 2218 2219 /* 2220 * First off, set the stopping indicator and bring all sleeping 2221 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2222 * unlock between here and the p->p_nrlwps check below. 2223 */ 2224 p->p_sflag |= PS_STOPPING; 2225 if (notify) 2226 p->p_sflag |= PS_NOTIFYSTOP; 2227 else 2228 p->p_sflag &= ~PS_NOTIFYSTOP; 2229 membar_producer(); 2230 2231 proc_stop_lwps(p); 2232 2233 /* 2234 * If there are no LWPs available to take the signal, then we 2235 * signal the parent process immediately. Otherwise, the last 2236 * LWP to stop will take care of it. 2237 */ 2238 2239 if (p->p_nrlwps == 0) { 2240 proc_stop_done(p, true, PS_NOCLDSTOP); 2241 } else { 2242 /* 2243 * Have the remaining LWPs come to a halt, and trigger 2244 * proc_stop_callout() to ensure that they do. 2245 */ 2246 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2247 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2248 callout_schedule(&proc_stop_ch, 1); 2249 } 2250 } 2251 2252 /* 2253 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2254 * but wait for them to come to a halt at the kernel-user boundary. This is 2255 * to allow LWPs to release any locks that they may hold before stopping. 2256 * 2257 * Non-interruptable sleeps can be long, and there is the potential for an 2258 * LWP to begin sleeping interruptably soon after the process has been set 2259 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2260 * stopping, and so complete halt of the process and the return of status 2261 * information to the parent could be delayed indefinitely. 2262 * 2263 * To handle this race, proc_stop_callout() runs once per tick while there 2264 * are stopping processes in the system. It sets LWPs that are sleeping 2265 * interruptably into the LSSTOP state. 2266 * 2267 * Note that we are not concerned about keeping all LWPs stopped while the 2268 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2269 * What we do need to ensure is that all LWPs in a stopping process have 2270 * stopped at least once, so that notification can be sent to the parent 2271 * process. 2272 */ 2273 static void 2274 proc_stop_callout(void *cookie) 2275 { 2276 bool more, restart; 2277 struct proc *p; 2278 2279 (void)cookie; 2280 2281 do { 2282 restart = false; 2283 more = false; 2284 2285 mutex_enter(proc_lock); 2286 PROCLIST_FOREACH(p, &allproc) { 2287 mutex_enter(p->p_lock); 2288 2289 if ((p->p_sflag & PS_STOPPING) == 0) { 2290 mutex_exit(p->p_lock); 2291 continue; 2292 } 2293 2294 /* Stop any LWPs sleeping interruptably. */ 2295 proc_stop_lwps(p); 2296 if (p->p_nrlwps == 0) { 2297 /* 2298 * We brought the process to a halt. 2299 * Mark it as stopped and notify the 2300 * parent. 2301 */ 2302 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2303 /* 2304 * Note that proc_stop_done() will 2305 * drop p->p_lock briefly. 2306 * Arrange to restart and check 2307 * all processes again. 2308 */ 2309 restart = true; 2310 } 2311 proc_stop_done(p, true, PS_NOCLDSTOP); 2312 } else 2313 more = true; 2314 2315 mutex_exit(p->p_lock); 2316 if (restart) 2317 break; 2318 } 2319 mutex_exit(proc_lock); 2320 } while (restart); 2321 2322 /* 2323 * If we noted processes that are stopping but still have 2324 * running LWPs, then arrange to check again in 1 tick. 2325 */ 2326 if (more) 2327 callout_schedule(&proc_stop_ch, 1); 2328 } 2329 2330 /* 2331 * Given a process in state SSTOP, set the state back to SACTIVE and 2332 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2333 */ 2334 void 2335 proc_unstop(struct proc *p) 2336 { 2337 struct lwp *l; 2338 int sig; 2339 2340 KASSERT(mutex_owned(proc_lock)); 2341 KASSERT(mutex_owned(p->p_lock)); 2342 2343 p->p_stat = SACTIVE; 2344 p->p_sflag &= ~PS_STOPPING; 2345 sig = p->p_xstat; 2346 2347 if (!p->p_waited) 2348 p->p_pptr->p_nstopchild--; 2349 2350 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2351 lwp_lock(l); 2352 if (l->l_stat != LSSTOP) { 2353 lwp_unlock(l); 2354 continue; 2355 } 2356 if (l->l_wchan == NULL) { 2357 setrunnable(l); 2358 continue; 2359 } 2360 if (sig && (l->l_flag & LW_SINTR) != 0) { 2361 setrunnable(l); 2362 sig = 0; 2363 } else { 2364 l->l_stat = LSSLEEP; 2365 p->p_nrlwps++; 2366 lwp_unlock(l); 2367 } 2368 } 2369 } 2370 2371 static int 2372 filt_sigattach(struct knote *kn) 2373 { 2374 struct proc *p = curproc; 2375 2376 kn->kn_obj = p; 2377 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2378 2379 mutex_enter(p->p_lock); 2380 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2381 mutex_exit(p->p_lock); 2382 2383 return 0; 2384 } 2385 2386 static void 2387 filt_sigdetach(struct knote *kn) 2388 { 2389 struct proc *p = kn->kn_obj; 2390 2391 mutex_enter(p->p_lock); 2392 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2393 mutex_exit(p->p_lock); 2394 } 2395 2396 /* 2397 * Signal knotes are shared with proc knotes, so we apply a mask to 2398 * the hint in order to differentiate them from process hints. This 2399 * could be avoided by using a signal-specific knote list, but probably 2400 * isn't worth the trouble. 2401 */ 2402 static int 2403 filt_signal(struct knote *kn, long hint) 2404 { 2405 2406 if (hint & NOTE_SIGNAL) { 2407 hint &= ~NOTE_SIGNAL; 2408 2409 if (kn->kn_id == hint) 2410 kn->kn_data++; 2411 } 2412 return (kn->kn_data != 0); 2413 } 2414 2415 const struct filterops sig_filtops = { 2416 0, filt_sigattach, filt_sigdetach, filt_signal 2417 }; 2418