1 /* $NetBSD: kern_sig.c,v 1.213 2005/12/24 19:12:23 perry Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.213 2005/12/24 19:12:23 perry Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_compat_sunos.h" 44 #include "opt_compat_netbsd.h" 45 #include "opt_compat_netbsd32.h" 46 47 #define SIGPROP /* include signal properties table */ 48 #include <sys/param.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/namei.h> 52 #include <sys/vnode.h> 53 #include <sys/proc.h> 54 #include <sys/systm.h> 55 #include <sys/timeb.h> 56 #include <sys/times.h> 57 #include <sys/buf.h> 58 #include <sys/acct.h> 59 #include <sys/file.h> 60 #include <sys/kernel.h> 61 #include <sys/wait.h> 62 #include <sys/ktrace.h> 63 #include <sys/syslog.h> 64 #include <sys/stat.h> 65 #include <sys/core.h> 66 #include <sys/filedesc.h> 67 #include <sys/malloc.h> 68 #include <sys/pool.h> 69 #include <sys/ucontext.h> 70 #include <sys/sa.h> 71 #include <sys/savar.h> 72 #include <sys/exec.h> 73 74 #include <sys/mount.h> 75 #include <sys/syscallargs.h> 76 77 #include <machine/cpu.h> 78 79 #include <sys/user.h> /* for coredump */ 80 81 #include <uvm/uvm.h> 82 #include <uvm/uvm_extern.h> 83 84 static void child_psignal(struct proc *, int); 85 static int build_corename(struct proc *, char *, const char *, size_t); 86 static void ksiginfo_exithook(struct proc *, void *); 87 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 88 static ksiginfo_t *ksiginfo_get(struct proc *, int); 89 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 90 91 sigset_t contsigmask, stopsigmask, sigcantmask; 92 93 struct pool sigacts_pool; /* memory pool for sigacts structures */ 94 95 /* 96 * struct sigacts memory pool allocator. 97 */ 98 99 static void * 100 sigacts_poolpage_alloc(struct pool *pp, int flags) 101 { 102 103 return (void *)uvm_km_alloc(kernel_map, 104 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 105 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 106 | UVM_KMF_WIRED); 107 } 108 109 static void 110 sigacts_poolpage_free(struct pool *pp, void *v) 111 { 112 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 113 } 114 115 static struct pool_allocator sigactspool_allocator = { 116 sigacts_poolpage_alloc, sigacts_poolpage_free, 117 }; 118 119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 120 &pool_allocator_nointr); 121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL); 122 123 /* 124 * Can process p, with pcred pc, send the signal signum to process q? 125 */ 126 #define CANSIGNAL(p, pc, q, signum) \ 127 ((pc)->pc_ucred->cr_uid == 0 || \ 128 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 129 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 130 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 131 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 132 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 133 134 /* 135 * Remove and return the first ksiginfo element that matches our requested 136 * signal, or return NULL if one not found. 137 */ 138 static ksiginfo_t * 139 ksiginfo_get(struct proc *p, int signo) 140 { 141 ksiginfo_t *ksi; 142 int s; 143 144 s = splsoftclock(); 145 simple_lock(&p->p_sigctx.ps_silock); 146 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 147 if (ksi->ksi_signo == signo) { 148 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 149 goto out; 150 } 151 } 152 ksi = NULL; 153 out: 154 simple_unlock(&p->p_sigctx.ps_silock); 155 splx(s); 156 return ksi; 157 } 158 159 /* 160 * Append a new ksiginfo element to the list of pending ksiginfo's, if 161 * we need to (SA_SIGINFO was requested). We replace non RT signals if 162 * they already existed in the queue and we add new entries for RT signals, 163 * or for non RT signals with non-existing entries. 164 */ 165 static void 166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 167 { 168 ksiginfo_t *kp; 169 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 170 int s; 171 172 if ((sa->sa_flags & SA_SIGINFO) == 0) 173 return; 174 /* 175 * If there's no info, don't save it. 176 */ 177 if (KSI_EMPTY_P(ksi)) 178 return; 179 180 s = splsoftclock(); 181 simple_lock(&p->p_sigctx.ps_silock); 182 #ifdef notyet /* XXX: QUEUING */ 183 if (ksi->ksi_signo < SIGRTMIN) 184 #endif 185 { 186 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 187 if (kp->ksi_signo == ksi->ksi_signo) { 188 KSI_COPY(ksi, kp); 189 goto out; 190 } 191 } 192 } 193 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 194 if (kp == NULL) { 195 #ifdef DIAGNOSTIC 196 printf("Out of memory allocating siginfo for pid %d\n", 197 p->p_pid); 198 #endif 199 goto out; 200 } 201 *kp = *ksi; 202 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 203 out: 204 simple_unlock(&p->p_sigctx.ps_silock); 205 splx(s); 206 } 207 208 /* 209 * free all pending ksiginfo on exit 210 */ 211 static void 212 ksiginfo_exithook(struct proc *p, void *v) 213 { 214 int s; 215 216 s = splsoftclock(); 217 simple_lock(&p->p_sigctx.ps_silock); 218 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 219 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 220 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 221 pool_put(&ksiginfo_pool, ksi); 222 } 223 simple_unlock(&p->p_sigctx.ps_silock); 224 splx(s); 225 } 226 227 /* 228 * Initialize signal-related data structures. 229 */ 230 void 231 signal_init(void) 232 { 233 234 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 235 236 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 237 sizeof(struct sigacts) > PAGE_SIZE ? 238 &sigactspool_allocator : &pool_allocator_nointr); 239 240 exithook_establish(ksiginfo_exithook, NULL); 241 exechook_establish(ksiginfo_exithook, NULL); 242 } 243 244 /* 245 * Create an initial sigctx structure, using the same signal state 246 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 247 * copy it from parent. 248 */ 249 void 250 sigactsinit(struct proc *np, struct proc *pp, int share) 251 { 252 struct sigacts *ps; 253 254 if (share) { 255 np->p_sigacts = pp->p_sigacts; 256 pp->p_sigacts->sa_refcnt++; 257 } else { 258 ps = pool_get(&sigacts_pool, PR_WAITOK); 259 if (pp) 260 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 261 else 262 memset(ps, '\0', sizeof(struct sigacts)); 263 ps->sa_refcnt = 1; 264 np->p_sigacts = ps; 265 } 266 } 267 268 /* 269 * Make this process not share its sigctx, maintaining all 270 * signal state. 271 */ 272 void 273 sigactsunshare(struct proc *p) 274 { 275 struct sigacts *oldps; 276 277 if (p->p_sigacts->sa_refcnt == 1) 278 return; 279 280 oldps = p->p_sigacts; 281 sigactsinit(p, NULL, 0); 282 283 if (--oldps->sa_refcnt == 0) 284 pool_put(&sigacts_pool, oldps); 285 } 286 287 /* 288 * Release a sigctx structure. 289 */ 290 void 291 sigactsfree(struct sigacts *ps) 292 { 293 294 if (--ps->sa_refcnt > 0) 295 return; 296 297 pool_put(&sigacts_pool, ps); 298 } 299 300 int 301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 302 struct sigaction *osa, const void *tramp, int vers) 303 { 304 struct sigacts *ps; 305 int prop; 306 307 ps = p->p_sigacts; 308 if (signum <= 0 || signum >= NSIG) 309 return (EINVAL); 310 311 /* 312 * Trampoline ABI version 0 is reserved for the legacy 313 * kernel-provided on-stack trampoline. Conversely, if we are 314 * using a non-0 ABI version, we must have a trampoline. Only 315 * validate the vers if a new sigaction was supplied. Emulations 316 * use legacy kernel trampolines with version 0, alternatively 317 * check for that too. 318 */ 319 if ((vers != 0 && tramp == NULL) || 320 #ifdef SIGTRAMP_VALID 321 (nsa != NULL && 322 ((vers == 0) ? 323 (p->p_emul->e_sigcode == NULL) : 324 !SIGTRAMP_VALID(vers))) || 325 #endif 326 (vers == 0 && tramp != NULL)) 327 return (EINVAL); 328 329 if (osa) 330 *osa = SIGACTION_PS(ps, signum); 331 332 if (nsa) { 333 if (nsa->sa_flags & ~SA_ALLBITS) 334 return (EINVAL); 335 336 prop = sigprop[signum]; 337 if (prop & SA_CANTMASK) 338 return (EINVAL); 339 340 (void) splsched(); /* XXXSMP */ 341 SIGACTION_PS(ps, signum) = *nsa; 342 ps->sa_sigdesc[signum].sd_tramp = tramp; 343 ps->sa_sigdesc[signum].sd_vers = vers; 344 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 345 if ((prop & SA_NORESET) != 0) 346 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 347 if (signum == SIGCHLD) { 348 if (nsa->sa_flags & SA_NOCLDSTOP) 349 p->p_flag |= P_NOCLDSTOP; 350 else 351 p->p_flag &= ~P_NOCLDSTOP; 352 if (nsa->sa_flags & SA_NOCLDWAIT) { 353 /* 354 * Paranoia: since SA_NOCLDWAIT is implemented 355 * by reparenting the dying child to PID 1 (and 356 * trust it to reap the zombie), PID 1 itself 357 * is forbidden to set SA_NOCLDWAIT. 358 */ 359 if (p->p_pid == 1) 360 p->p_flag &= ~P_NOCLDWAIT; 361 else 362 p->p_flag |= P_NOCLDWAIT; 363 } else 364 p->p_flag &= ~P_NOCLDWAIT; 365 366 if (nsa->sa_handler == SIG_IGN) { 367 /* 368 * Paranoia: same as above. 369 */ 370 if (p->p_pid == 1) 371 p->p_flag &= ~P_CLDSIGIGN; 372 else 373 p->p_flag |= P_CLDSIGIGN; 374 } else 375 p->p_flag &= ~P_CLDSIGIGN; 376 377 } 378 if ((nsa->sa_flags & SA_NODEFER) == 0) 379 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 380 else 381 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 382 /* 383 * Set bit in p_sigctx.ps_sigignore for signals that are set to 384 * SIG_IGN, and for signals set to SIG_DFL where the default is 385 * to ignore. However, don't put SIGCONT in 386 * p_sigctx.ps_sigignore, as we have to restart the process. 387 */ 388 if (nsa->sa_handler == SIG_IGN || 389 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 390 /* never to be seen again */ 391 sigdelset(&p->p_sigctx.ps_siglist, signum); 392 if (signum != SIGCONT) { 393 /* easier in psignal */ 394 sigaddset(&p->p_sigctx.ps_sigignore, signum); 395 } 396 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 397 } else { 398 sigdelset(&p->p_sigctx.ps_sigignore, signum); 399 if (nsa->sa_handler == SIG_DFL) 400 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 401 else 402 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 403 } 404 (void) spl0(); 405 } 406 407 return (0); 408 } 409 410 #ifdef COMPAT_16 411 /* ARGSUSED */ 412 int 413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 414 { 415 struct compat_16_sys___sigaction14_args /* { 416 syscallarg(int) signum; 417 syscallarg(const struct sigaction *) nsa; 418 syscallarg(struct sigaction *) osa; 419 } */ *uap = v; 420 struct proc *p; 421 struct sigaction nsa, osa; 422 int error; 423 424 if (SCARG(uap, nsa)) { 425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 426 if (error) 427 return (error); 428 } 429 p = l->l_proc; 430 error = sigaction1(p, SCARG(uap, signum), 431 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 432 NULL, 0); 433 if (error) 434 return (error); 435 if (SCARG(uap, osa)) { 436 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 437 if (error) 438 return (error); 439 } 440 return (0); 441 } 442 #endif 443 444 /* ARGSUSED */ 445 int 446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 447 { 448 struct sys___sigaction_sigtramp_args /* { 449 syscallarg(int) signum; 450 syscallarg(const struct sigaction *) nsa; 451 syscallarg(struct sigaction *) osa; 452 syscallarg(void *) tramp; 453 syscallarg(int) vers; 454 } */ *uap = v; 455 struct proc *p = l->l_proc; 456 struct sigaction nsa, osa; 457 int error; 458 459 if (SCARG(uap, nsa)) { 460 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 461 if (error) 462 return (error); 463 } 464 error = sigaction1(p, SCARG(uap, signum), 465 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 466 SCARG(uap, tramp), SCARG(uap, vers)); 467 if (error) 468 return (error); 469 if (SCARG(uap, osa)) { 470 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 471 if (error) 472 return (error); 473 } 474 return (0); 475 } 476 477 /* 478 * Initialize signal state for process 0; 479 * set to ignore signals that are ignored by default and disable the signal 480 * stack. 481 */ 482 void 483 siginit(struct proc *p) 484 { 485 struct sigacts *ps; 486 int signum, prop; 487 488 ps = p->p_sigacts; 489 sigemptyset(&contsigmask); 490 sigemptyset(&stopsigmask); 491 sigemptyset(&sigcantmask); 492 for (signum = 1; signum < NSIG; signum++) { 493 prop = sigprop[signum]; 494 if (prop & SA_CONT) 495 sigaddset(&contsigmask, signum); 496 if (prop & SA_STOP) 497 sigaddset(&stopsigmask, signum); 498 if (prop & SA_CANTMASK) 499 sigaddset(&sigcantmask, signum); 500 if (prop & SA_IGNORE && signum != SIGCONT) 501 sigaddset(&p->p_sigctx.ps_sigignore, signum); 502 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 503 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 504 } 505 sigemptyset(&p->p_sigctx.ps_sigcatch); 506 p->p_sigctx.ps_sigwaited = NULL; 507 p->p_flag &= ~P_NOCLDSTOP; 508 509 /* 510 * Reset stack state to the user stack. 511 */ 512 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 513 p->p_sigctx.ps_sigstk.ss_size = 0; 514 p->p_sigctx.ps_sigstk.ss_sp = 0; 515 516 /* One reference. */ 517 ps->sa_refcnt = 1; 518 } 519 520 /* 521 * Reset signals for an exec of the specified process. 522 */ 523 void 524 execsigs(struct proc *p) 525 { 526 struct sigacts *ps; 527 int signum, prop; 528 529 sigactsunshare(p); 530 531 ps = p->p_sigacts; 532 533 /* 534 * Reset caught signals. Held signals remain held 535 * through p_sigctx.ps_sigmask (unless they were caught, 536 * and are now ignored by default). 537 */ 538 for (signum = 1; signum < NSIG; signum++) { 539 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 540 prop = sigprop[signum]; 541 if (prop & SA_IGNORE) { 542 if ((prop & SA_CONT) == 0) 543 sigaddset(&p->p_sigctx.ps_sigignore, 544 signum); 545 sigdelset(&p->p_sigctx.ps_siglist, signum); 546 } 547 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 548 } 549 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 550 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 551 } 552 sigemptyset(&p->p_sigctx.ps_sigcatch); 553 p->p_sigctx.ps_sigwaited = NULL; 554 555 /* 556 * Reset no zombies if child dies flag as Solaris does. 557 */ 558 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN); 559 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 560 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 561 562 /* 563 * Reset stack state to the user stack. 564 */ 565 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 566 p->p_sigctx.ps_sigstk.ss_size = 0; 567 p->p_sigctx.ps_sigstk.ss_sp = 0; 568 } 569 570 int 571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 572 { 573 574 if (oss) 575 *oss = p->p_sigctx.ps_sigmask; 576 577 if (nss) { 578 (void)splsched(); /* XXXSMP */ 579 switch (how) { 580 case SIG_BLOCK: 581 sigplusset(nss, &p->p_sigctx.ps_sigmask); 582 break; 583 case SIG_UNBLOCK: 584 sigminusset(nss, &p->p_sigctx.ps_sigmask); 585 CHECKSIGS(p); 586 break; 587 case SIG_SETMASK: 588 p->p_sigctx.ps_sigmask = *nss; 589 CHECKSIGS(p); 590 break; 591 default: 592 (void)spl0(); /* XXXSMP */ 593 return (EINVAL); 594 } 595 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 596 (void)spl0(); /* XXXSMP */ 597 } 598 599 return (0); 600 } 601 602 /* 603 * Manipulate signal mask. 604 * Note that we receive new mask, not pointer, 605 * and return old mask as return value; 606 * the library stub does the rest. 607 */ 608 int 609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 610 { 611 struct sys___sigprocmask14_args /* { 612 syscallarg(int) how; 613 syscallarg(const sigset_t *) set; 614 syscallarg(sigset_t *) oset; 615 } */ *uap = v; 616 struct proc *p; 617 sigset_t nss, oss; 618 int error; 619 620 if (SCARG(uap, set)) { 621 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 622 if (error) 623 return (error); 624 } 625 p = l->l_proc; 626 error = sigprocmask1(p, SCARG(uap, how), 627 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 628 if (error) 629 return (error); 630 if (SCARG(uap, oset)) { 631 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 632 if (error) 633 return (error); 634 } 635 return (0); 636 } 637 638 void 639 sigpending1(struct proc *p, sigset_t *ss) 640 { 641 642 *ss = p->p_sigctx.ps_siglist; 643 sigminusset(&p->p_sigctx.ps_sigmask, ss); 644 } 645 646 /* ARGSUSED */ 647 int 648 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 649 { 650 struct sys___sigpending14_args /* { 651 syscallarg(sigset_t *) set; 652 } */ *uap = v; 653 struct proc *p; 654 sigset_t ss; 655 656 p = l->l_proc; 657 sigpending1(p, &ss); 658 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 659 } 660 661 int 662 sigsuspend1(struct proc *p, const sigset_t *ss) 663 { 664 struct sigacts *ps; 665 666 ps = p->p_sigacts; 667 if (ss) { 668 /* 669 * When returning from sigpause, we want 670 * the old mask to be restored after the 671 * signal handler has finished. Thus, we 672 * save it here and mark the sigctx structure 673 * to indicate this. 674 */ 675 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 676 p->p_sigctx.ps_flags |= SAS_OLDMASK; 677 (void) splsched(); /* XXXSMP */ 678 p->p_sigctx.ps_sigmask = *ss; 679 CHECKSIGS(p); 680 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 681 (void) spl0(); /* XXXSMP */ 682 } 683 684 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 685 /* void */; 686 687 /* always return EINTR rather than ERESTART... */ 688 return (EINTR); 689 } 690 691 /* 692 * Suspend process until signal, providing mask to be set 693 * in the meantime. Note nonstandard calling convention: 694 * libc stub passes mask, not pointer, to save a copyin. 695 */ 696 /* ARGSUSED */ 697 int 698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 699 { 700 struct sys___sigsuspend14_args /* { 701 syscallarg(const sigset_t *) set; 702 } */ *uap = v; 703 struct proc *p; 704 sigset_t ss; 705 int error; 706 707 if (SCARG(uap, set)) { 708 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 709 if (error) 710 return (error); 711 } 712 713 p = l->l_proc; 714 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 715 } 716 717 int 718 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 719 struct sigaltstack *oss) 720 { 721 722 if (oss) 723 *oss = p->p_sigctx.ps_sigstk; 724 725 if (nss) { 726 if (nss->ss_flags & ~SS_ALLBITS) 727 return (EINVAL); 728 729 if (nss->ss_flags & SS_DISABLE) { 730 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 731 return (EINVAL); 732 } else { 733 if (nss->ss_size < MINSIGSTKSZ) 734 return (ENOMEM); 735 } 736 p->p_sigctx.ps_sigstk = *nss; 737 } 738 739 return (0); 740 } 741 742 /* ARGSUSED */ 743 int 744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 745 { 746 struct sys___sigaltstack14_args /* { 747 syscallarg(const struct sigaltstack *) nss; 748 syscallarg(struct sigaltstack *) oss; 749 } */ *uap = v; 750 struct proc *p; 751 struct sigaltstack nss, oss; 752 int error; 753 754 if (SCARG(uap, nss)) { 755 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 756 if (error) 757 return (error); 758 } 759 p = l->l_proc; 760 error = sigaltstack1(p, 761 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 762 if (error) 763 return (error); 764 if (SCARG(uap, oss)) { 765 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 766 if (error) 767 return (error); 768 } 769 return (0); 770 } 771 772 /* ARGSUSED */ 773 int 774 sys_kill(struct lwp *l, void *v, register_t *retval) 775 { 776 struct sys_kill_args /* { 777 syscallarg(int) pid; 778 syscallarg(int) signum; 779 } */ *uap = v; 780 struct proc *cp, *p; 781 struct pcred *pc; 782 ksiginfo_t ksi; 783 784 cp = l->l_proc; 785 pc = cp->p_cred; 786 if ((u_int)SCARG(uap, signum) >= NSIG) 787 return (EINVAL); 788 KSI_INIT(&ksi); 789 ksi.ksi_signo = SCARG(uap, signum); 790 ksi.ksi_code = SI_USER; 791 ksi.ksi_pid = cp->p_pid; 792 ksi.ksi_uid = cp->p_ucred->cr_uid; 793 if (SCARG(uap, pid) > 0) { 794 /* kill single process */ 795 if ((p = pfind(SCARG(uap, pid))) == NULL) 796 return (ESRCH); 797 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 798 return (EPERM); 799 if (SCARG(uap, signum)) 800 kpsignal2(p, &ksi, 1); 801 return (0); 802 } 803 switch (SCARG(uap, pid)) { 804 case -1: /* broadcast signal */ 805 return (killpg1(cp, &ksi, 0, 1)); 806 case 0: /* signal own process group */ 807 return (killpg1(cp, &ksi, 0, 0)); 808 default: /* negative explicit process group */ 809 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 810 } 811 /* NOTREACHED */ 812 } 813 814 /* 815 * Common code for kill process group/broadcast kill. 816 * cp is calling process. 817 */ 818 int 819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 820 { 821 struct proc *p; 822 struct pcred *pc; 823 struct pgrp *pgrp; 824 int nfound; 825 int signum = ksi->ksi_signo; 826 827 pc = cp->p_cred; 828 nfound = 0; 829 if (all) { 830 /* 831 * broadcast 832 */ 833 proclist_lock_read(); 834 PROCLIST_FOREACH(p, &allproc) { 835 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 836 p == cp || !CANSIGNAL(cp, pc, p, signum)) 837 continue; 838 nfound++; 839 if (signum) 840 kpsignal2(p, ksi, 1); 841 } 842 proclist_unlock_read(); 843 } else { 844 if (pgid == 0) 845 /* 846 * zero pgid means send to my process group. 847 */ 848 pgrp = cp->p_pgrp; 849 else { 850 pgrp = pgfind(pgid); 851 if (pgrp == NULL) 852 return (ESRCH); 853 } 854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 855 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 856 !CANSIGNAL(cp, pc, p, signum)) 857 continue; 858 nfound++; 859 if (signum && P_ZOMBIE(p) == 0) 860 kpsignal2(p, ksi, 1); 861 } 862 } 863 return (nfound ? 0 : ESRCH); 864 } 865 866 /* 867 * Send a signal to a process group. 868 */ 869 void 870 gsignal(int pgid, int signum) 871 { 872 ksiginfo_t ksi; 873 KSI_INIT_EMPTY(&ksi); 874 ksi.ksi_signo = signum; 875 kgsignal(pgid, &ksi, NULL); 876 } 877 878 void 879 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 880 { 881 struct pgrp *pgrp; 882 883 if (pgid && (pgrp = pgfind(pgid))) 884 kpgsignal(pgrp, ksi, data, 0); 885 } 886 887 /* 888 * Send a signal to a process group. If checktty is 1, 889 * limit to members which have a controlling terminal. 890 */ 891 void 892 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 893 { 894 ksiginfo_t ksi; 895 KSI_INIT_EMPTY(&ksi); 896 ksi.ksi_signo = sig; 897 kpgsignal(pgrp, &ksi, NULL, checkctty); 898 } 899 900 void 901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 902 { 903 struct proc *p; 904 905 if (pgrp) 906 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 907 if (checkctty == 0 || p->p_flag & P_CONTROLT) 908 kpsignal(p, ksi, data); 909 } 910 911 /* 912 * Send a signal caused by a trap to the current process. 913 * If it will be caught immediately, deliver it with correct code. 914 * Otherwise, post it normally. 915 */ 916 void 917 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 918 { 919 struct proc *p; 920 struct sigacts *ps; 921 int signum = ksi->ksi_signo; 922 923 KASSERT(KSI_TRAP_P(ksi)); 924 925 p = l->l_proc; 926 ps = p->p_sigacts; 927 if ((p->p_flag & P_TRACED) == 0 && 928 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 929 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 930 p->p_stats->p_ru.ru_nsignals++; 931 #ifdef KTRACE 932 if (KTRPOINT(p, KTR_PSIG)) 933 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler, 934 &p->p_sigctx.ps_sigmask, ksi); 935 #endif 936 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 937 (void) splsched(); /* XXXSMP */ 938 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 939 &p->p_sigctx.ps_sigmask); 940 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 941 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 942 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 943 sigaddset(&p->p_sigctx.ps_sigignore, signum); 944 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 945 } 946 (void) spl0(); /* XXXSMP */ 947 } else { 948 p->p_sigctx.ps_lwp = l->l_lid; 949 /* XXX for core dump/debugger */ 950 p->p_sigctx.ps_signo = ksi->ksi_signo; 951 p->p_sigctx.ps_code = ksi->ksi_trap; 952 kpsignal2(p, ksi, 1); 953 } 954 } 955 956 /* 957 * Fill in signal information and signal the parent for a child status change. 958 */ 959 static void 960 child_psignal(struct proc *p, int dolock) 961 { 962 ksiginfo_t ksi; 963 964 KSI_INIT(&ksi); 965 ksi.ksi_signo = SIGCHLD; 966 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 967 ksi.ksi_pid = p->p_pid; 968 ksi.ksi_uid = p->p_ucred->cr_uid; 969 ksi.ksi_status = p->p_xstat; 970 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 971 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 972 kpsignal2(p->p_pptr, &ksi, dolock); 973 } 974 975 /* 976 * Send the signal to the process. If the signal has an action, the action 977 * is usually performed by the target process rather than the caller; we add 978 * the signal to the set of pending signals for the process. 979 * 980 * Exceptions: 981 * o When a stop signal is sent to a sleeping process that takes the 982 * default action, the process is stopped without awakening it. 983 * o SIGCONT restarts stopped processes (or puts them back to sleep) 984 * regardless of the signal action (eg, blocked or ignored). 985 * 986 * Other ignored signals are discarded immediately. 987 * 988 * XXXSMP: Invoked as psignal() or sched_psignal(). 989 */ 990 void 991 psignal1(struct proc *p, int signum, int dolock) 992 { 993 ksiginfo_t ksi; 994 995 KSI_INIT_EMPTY(&ksi); 996 ksi.ksi_signo = signum; 997 kpsignal2(p, &ksi, dolock); 998 } 999 1000 void 1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 1002 { 1003 1004 if ((p->p_flag & P_WEXIT) == 0 && data) { 1005 size_t fd; 1006 struct filedesc *fdp = p->p_fd; 1007 1008 ksi->ksi_fd = -1; 1009 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 1010 struct file *fp = fdp->fd_ofiles[fd]; 1011 /* XXX: lock? */ 1012 if (fp && fp->f_data == data) { 1013 ksi->ksi_fd = fd; 1014 break; 1015 } 1016 } 1017 } 1018 kpsignal2(p, ksi, dolock); 1019 } 1020 1021 static void 1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 1023 { 1024 struct lwp *l, *suspended = NULL; 1025 struct sadata_vp *vp; 1026 int s = 0, prop, allsusp; 1027 sig_t action; 1028 int signum = ksi->ksi_signo; 1029 1030 #ifdef DIAGNOSTIC 1031 if (signum <= 0 || signum >= NSIG) 1032 panic("psignal signal number %d", signum); 1033 1034 /* XXXSMP: works, but icky */ 1035 if (dolock) 1036 SCHED_ASSERT_UNLOCKED(); 1037 else 1038 SCHED_ASSERT_LOCKED(); 1039 #endif 1040 1041 /* 1042 * Notify any interested parties in the signal. 1043 */ 1044 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1045 1046 prop = sigprop[signum]; 1047 1048 /* 1049 * If proc is traced, always give parent a chance. 1050 */ 1051 if (p->p_flag & P_TRACED) { 1052 action = SIG_DFL; 1053 1054 /* 1055 * If the process is being traced and the signal is being 1056 * caught, make sure to save any ksiginfo. 1057 */ 1058 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1059 ksiginfo_put(p, ksi); 1060 } else { 1061 /* 1062 * If the signal was the result of a trap, reset it 1063 * to default action if it's currently masked, so that it would 1064 * coredump immediatelly instead of spinning repeatedly 1065 * taking the signal. 1066 */ 1067 if (KSI_TRAP_P(ksi) 1068 && sigismember(&p->p_sigctx.ps_sigmask, signum) 1069 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 1070 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1071 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1072 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1073 SIGACTION(p, signum).sa_handler = SIG_DFL; 1074 } 1075 1076 /* 1077 * If the signal is being ignored, 1078 * then we forget about it immediately. 1079 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1080 * and if it is set to SIG_IGN, 1081 * action will be SIG_DFL here.) 1082 */ 1083 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1084 return; 1085 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1086 action = SIG_HOLD; 1087 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1088 action = SIG_CATCH; 1089 else { 1090 action = SIG_DFL; 1091 1092 if (prop & SA_KILL && p->p_nice > NZERO) 1093 p->p_nice = NZERO; 1094 1095 /* 1096 * If sending a tty stop signal to a member of an 1097 * orphaned process group, discard the signal here if 1098 * the action is default; don't stop the process below 1099 * if sleeping, and don't clear any pending SIGCONT. 1100 */ 1101 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1102 return; 1103 } 1104 } 1105 1106 if (prop & SA_CONT) 1107 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1108 1109 if (prop & SA_STOP) 1110 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1111 1112 /* 1113 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1114 * please!), check if anything waits on it. If yes, save the 1115 * info into provided ps_sigwaited, and wake-up the waiter. 1116 * The signal won't be processed further here. 1117 */ 1118 if ((prop & SA_CANTMASK) == 0 1119 && p->p_sigctx.ps_sigwaited 1120 && sigismember(p->p_sigctx.ps_sigwait, signum) 1121 && p->p_stat != SSTOP) { 1122 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1123 p->p_sigctx.ps_sigwaited = NULL; 1124 if (dolock) 1125 wakeup_one(&p->p_sigctx.ps_sigwait); 1126 else 1127 sched_wakeup(&p->p_sigctx.ps_sigwait); 1128 return; 1129 } 1130 1131 sigaddset(&p->p_sigctx.ps_siglist, signum); 1132 1133 /* CHECKSIGS() is "inlined" here. */ 1134 p->p_sigctx.ps_sigcheck = 1; 1135 1136 /* 1137 * Defer further processing for signals which are held, 1138 * except that stopped processes must be continued by SIGCONT. 1139 */ 1140 if (action == SIG_HOLD && 1141 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1142 ksiginfo_put(p, ksi); 1143 return; 1144 } 1145 /* XXXSMP: works, but icky */ 1146 if (dolock) 1147 SCHED_LOCK(s); 1148 1149 if (p->p_flag & P_SA) { 1150 allsusp = 0; 1151 l = NULL; 1152 if (p->p_stat == SACTIVE) { 1153 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1154 l = vp->savp_lwp; 1155 KDASSERT(l != NULL); 1156 if (l->l_flag & L_SA_IDLE) { 1157 /* wakeup idle LWP */ 1158 goto found; 1159 /*NOTREACHED*/ 1160 } else if (l->l_flag & L_SA_YIELD) { 1161 /* idle LWP is already waking up */ 1162 goto out; 1163 /*NOTREACHED*/ 1164 } 1165 } 1166 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1167 l = vp->savp_lwp; 1168 if (l->l_stat == LSRUN || 1169 l->l_stat == LSONPROC) { 1170 signotify(p); 1171 goto out; 1172 /*NOTREACHED*/ 1173 } 1174 if (l->l_stat == LSSLEEP && 1175 l->l_flag & L_SINTR) { 1176 /* ok to signal vp lwp */ 1177 break; 1178 } else 1179 l = NULL; 1180 } 1181 } else if (p->p_stat == SSTOP) { 1182 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1183 l = vp->savp_lwp; 1184 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1185 break; 1186 l = NULL; 1187 } 1188 } 1189 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1190 /* 1191 * At least one LWP is running or on a run queue. 1192 * The signal will be noticed when one of them returns 1193 * to userspace. 1194 */ 1195 signotify(p); 1196 /* 1197 * The signal will be noticed very soon. 1198 */ 1199 goto out; 1200 /*NOTREACHED*/ 1201 } else { 1202 /* 1203 * Find out if any of the sleeps are interruptable, 1204 * and if all the live LWPs remaining are suspended. 1205 */ 1206 allsusp = 1; 1207 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1208 if (l->l_stat == LSSLEEP && 1209 l->l_flag & L_SINTR) 1210 break; 1211 if (l->l_stat == LSSUSPENDED) 1212 suspended = l; 1213 else if ((l->l_stat != LSZOMB) && 1214 (l->l_stat != LSDEAD)) 1215 allsusp = 0; 1216 } 1217 } 1218 1219 found: 1220 switch (p->p_stat) { 1221 case SACTIVE: 1222 1223 if (l != NULL && (p->p_flag & P_TRACED)) 1224 goto run; 1225 1226 /* 1227 * If SIGCONT is default (or ignored) and process is 1228 * asleep, we are finished; the process should not 1229 * be awakened. 1230 */ 1231 if ((prop & SA_CONT) && action == SIG_DFL) { 1232 sigdelset(&p->p_sigctx.ps_siglist, signum); 1233 goto done; 1234 } 1235 1236 /* 1237 * When a sleeping process receives a stop 1238 * signal, process immediately if possible. 1239 */ 1240 if ((prop & SA_STOP) && action == SIG_DFL) { 1241 /* 1242 * If a child holding parent blocked, 1243 * stopping could cause deadlock. 1244 */ 1245 if (p->p_flag & P_PPWAIT) { 1246 goto out; 1247 } 1248 sigdelset(&p->p_sigctx.ps_siglist, signum); 1249 p->p_xstat = signum; 1250 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1251 /* 1252 * XXXSMP: recursive call; don't lock 1253 * the second time around. 1254 */ 1255 child_psignal(p, 0); 1256 } 1257 proc_stop(p, 1); /* XXXSMP: recurse? */ 1258 goto done; 1259 } 1260 1261 if (l == NULL) { 1262 /* 1263 * Special case: SIGKILL of a process 1264 * which is entirely composed of 1265 * suspended LWPs should succeed. We 1266 * make this happen by unsuspending one of 1267 * them. 1268 */ 1269 if (allsusp && (signum == SIGKILL)) { 1270 lwp_continue(suspended); 1271 } 1272 goto done; 1273 } 1274 /* 1275 * All other (caught or default) signals 1276 * cause the process to run. 1277 */ 1278 goto runfast; 1279 /*NOTREACHED*/ 1280 case SSTOP: 1281 /* Process is stopped */ 1282 /* 1283 * If traced process is already stopped, 1284 * then no further action is necessary. 1285 */ 1286 if (p->p_flag & P_TRACED) 1287 goto done; 1288 1289 /* 1290 * Kill signal always sets processes running, 1291 * if possible. 1292 */ 1293 if (signum == SIGKILL) { 1294 l = proc_unstop(p); 1295 if (l) 1296 goto runfast; 1297 goto done; 1298 } 1299 1300 if (prop & SA_CONT) { 1301 /* 1302 * If SIGCONT is default (or ignored), 1303 * we continue the process but don't 1304 * leave the signal in ps_siglist, as 1305 * it has no further action. If 1306 * SIGCONT is held, we continue the 1307 * process and leave the signal in 1308 * ps_siglist. If the process catches 1309 * SIGCONT, let it handle the signal 1310 * itself. If it isn't waiting on an 1311 * event, then it goes back to run 1312 * state. Otherwise, process goes 1313 * back to sleep state. 1314 */ 1315 if (action == SIG_DFL) 1316 sigdelset(&p->p_sigctx.ps_siglist, 1317 signum); 1318 l = proc_unstop(p); 1319 if (l && (action == SIG_CATCH)) 1320 goto runfast; 1321 goto out; 1322 } 1323 1324 if (prop & SA_STOP) { 1325 /* 1326 * Already stopped, don't need to stop again. 1327 * (If we did the shell could get confused.) 1328 */ 1329 sigdelset(&p->p_sigctx.ps_siglist, signum); 1330 goto done; 1331 } 1332 1333 /* 1334 * If a lwp is sleeping interruptibly, then 1335 * wake it up; it will run until the kernel 1336 * boundary, where it will stop in issignal(), 1337 * since p->p_stat is still SSTOP. When the 1338 * process is continued, it will be made 1339 * runnable and can look at the signal. 1340 */ 1341 if (l) 1342 goto run; 1343 goto out; 1344 case SIDL: 1345 /* Process is being created by fork */ 1346 /* XXX: We are not ready to receive signals yet */ 1347 goto done; 1348 default: 1349 /* Else what? */ 1350 panic("psignal: Invalid process state %d.", p->p_stat); 1351 } 1352 /*NOTREACHED*/ 1353 1354 runfast: 1355 if (action == SIG_CATCH) { 1356 ksiginfo_put(p, ksi); 1357 action = SIG_HOLD; 1358 } 1359 /* 1360 * Raise priority to at least PUSER. 1361 */ 1362 if (l->l_priority > PUSER) 1363 l->l_priority = PUSER; 1364 run: 1365 if (action == SIG_CATCH) { 1366 ksiginfo_put(p, ksi); 1367 action = SIG_HOLD; 1368 } 1369 1370 setrunnable(l); /* XXXSMP: recurse? */ 1371 out: 1372 if (action == SIG_CATCH) 1373 ksiginfo_put(p, ksi); 1374 done: 1375 /* XXXSMP: works, but icky */ 1376 if (dolock) 1377 SCHED_UNLOCK(s); 1378 } 1379 1380 siginfo_t * 1381 siginfo_alloc(int flags) 1382 { 1383 1384 return pool_get(&siginfo_pool, flags); 1385 } 1386 1387 void 1388 siginfo_free(void *arg) 1389 { 1390 1391 pool_put(&siginfo_pool, arg); 1392 } 1393 1394 void 1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1396 { 1397 struct proc *p = l->l_proc; 1398 struct lwp *le, *li; 1399 siginfo_t *si; 1400 int f; 1401 1402 if (p->p_flag & P_SA) { 1403 1404 /* XXXUPSXXX What if not on sa_vp ? */ 1405 1406 f = l->l_flag & L_SA; 1407 l->l_flag &= ~L_SA; 1408 si = siginfo_alloc(PR_WAITOK); 1409 si->_info = ksi->ksi_info; 1410 le = li = NULL; 1411 if (KSI_TRAP_P(ksi)) 1412 le = l; 1413 else 1414 li = l; 1415 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1416 sizeof(*si), si, siginfo_free) != 0) { 1417 siginfo_free(si); 1418 if (KSI_TRAP_P(ksi)) 1419 /* XXX What do we do here?? */; 1420 } 1421 l->l_flag |= f; 1422 return; 1423 } 1424 1425 (*p->p_emul->e_sendsig)(ksi, mask); 1426 } 1427 1428 static inline int firstsig(const sigset_t *); 1429 1430 static inline int 1431 firstsig(const sigset_t *ss) 1432 { 1433 int sig; 1434 1435 sig = ffs(ss->__bits[0]); 1436 if (sig != 0) 1437 return (sig); 1438 #if NSIG > 33 1439 sig = ffs(ss->__bits[1]); 1440 if (sig != 0) 1441 return (sig + 32); 1442 #endif 1443 #if NSIG > 65 1444 sig = ffs(ss->__bits[2]); 1445 if (sig != 0) 1446 return (sig + 64); 1447 #endif 1448 #if NSIG > 97 1449 sig = ffs(ss->__bits[3]); 1450 if (sig != 0) 1451 return (sig + 96); 1452 #endif 1453 return (0); 1454 } 1455 1456 /* 1457 * If the current process has received a signal (should be caught or cause 1458 * termination, should interrupt current syscall), return the signal number. 1459 * Stop signals with default action are processed immediately, then cleared; 1460 * they aren't returned. This is checked after each entry to the system for 1461 * a syscall or trap (though this can usually be done without calling issignal 1462 * by checking the pending signal masks in the CURSIG macro.) The normal call 1463 * sequence is 1464 * 1465 * while (signum = CURSIG(curlwp)) 1466 * postsig(signum); 1467 */ 1468 int 1469 issignal(struct lwp *l) 1470 { 1471 struct proc *p = l->l_proc; 1472 int s = 0, signum, prop; 1473 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1474 sigset_t ss; 1475 1476 /* Bail out if we do not own the virtual processor */ 1477 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1478 return 0; 1479 1480 if (p->p_stat == SSTOP) { 1481 /* 1482 * The process is stopped/stopping. Stop ourselves now that 1483 * we're on the kernel/userspace boundary. 1484 */ 1485 if (dolock) 1486 SCHED_LOCK(s); 1487 l->l_stat = LSSTOP; 1488 p->p_nrlwps--; 1489 if (p->p_flag & P_TRACED) 1490 goto sigtraceswitch; 1491 else 1492 goto sigswitch; 1493 } 1494 for (;;) { 1495 sigpending1(p, &ss); 1496 if (p->p_flag & P_PPWAIT) 1497 sigminusset(&stopsigmask, &ss); 1498 signum = firstsig(&ss); 1499 if (signum == 0) { /* no signal to send */ 1500 p->p_sigctx.ps_sigcheck = 0; 1501 if (locked && dolock) 1502 SCHED_LOCK(s); 1503 return (0); 1504 } 1505 /* take the signal! */ 1506 sigdelset(&p->p_sigctx.ps_siglist, signum); 1507 1508 /* 1509 * We should see pending but ignored signals 1510 * only if P_TRACED was on when they were posted. 1511 */ 1512 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1513 (p->p_flag & P_TRACED) == 0) 1514 continue; 1515 1516 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1517 /* 1518 * If traced, always stop, and stay 1519 * stopped until released by the debugger. 1520 */ 1521 p->p_xstat = signum; 1522 1523 /* Emulation-specific handling of signal trace */ 1524 if ((p->p_emul->e_tracesig != NULL) && 1525 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1526 goto childresumed; 1527 1528 if ((p->p_flag & P_FSTRACE) == 0) 1529 child_psignal(p, dolock); 1530 if (dolock) 1531 SCHED_LOCK(s); 1532 proc_stop(p, 1); 1533 sigtraceswitch: 1534 mi_switch(l, NULL); 1535 SCHED_ASSERT_UNLOCKED(); 1536 if (dolock) 1537 splx(s); 1538 else 1539 dolock = 1; 1540 1541 childresumed: 1542 /* 1543 * If we are no longer being traced, or the parent 1544 * didn't give us a signal, look for more signals. 1545 */ 1546 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1547 continue; 1548 1549 /* 1550 * If the new signal is being masked, look for other 1551 * signals. 1552 */ 1553 signum = p->p_xstat; 1554 p->p_xstat = 0; 1555 /* 1556 * `p->p_sigctx.ps_siglist |= mask' is done 1557 * in setrunnable(). 1558 */ 1559 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1560 continue; 1561 /* take the signal! */ 1562 sigdelset(&p->p_sigctx.ps_siglist, signum); 1563 } 1564 1565 prop = sigprop[signum]; 1566 1567 /* 1568 * Decide whether the signal should be returned. 1569 * Return the signal's number, or fall through 1570 * to clear it from the pending mask. 1571 */ 1572 switch ((long)SIGACTION(p, signum).sa_handler) { 1573 1574 case (long)SIG_DFL: 1575 /* 1576 * Don't take default actions on system processes. 1577 */ 1578 if (p->p_pid <= 1) { 1579 #ifdef DIAGNOSTIC 1580 /* 1581 * Are you sure you want to ignore SIGSEGV 1582 * in init? XXX 1583 */ 1584 printf("Process (pid %d) got signal %d\n", 1585 p->p_pid, signum); 1586 #endif 1587 break; /* == ignore */ 1588 } 1589 /* 1590 * If there is a pending stop signal to process 1591 * with default action, stop here, 1592 * then clear the signal. However, 1593 * if process is member of an orphaned 1594 * process group, ignore tty stop signals. 1595 */ 1596 if (prop & SA_STOP) { 1597 if (p->p_flag & P_TRACED || 1598 (p->p_pgrp->pg_jobc == 0 && 1599 prop & SA_TTYSTOP)) 1600 break; /* == ignore */ 1601 p->p_xstat = signum; 1602 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1603 child_psignal(p, dolock); 1604 if (dolock) 1605 SCHED_LOCK(s); 1606 proc_stop(p, 1); 1607 sigswitch: 1608 mi_switch(l, NULL); 1609 SCHED_ASSERT_UNLOCKED(); 1610 if (dolock) 1611 splx(s); 1612 else 1613 dolock = 1; 1614 break; 1615 } else if (prop & SA_IGNORE) { 1616 /* 1617 * Except for SIGCONT, shouldn't get here. 1618 * Default action is to ignore; drop it. 1619 */ 1620 break; /* == ignore */ 1621 } else 1622 goto keep; 1623 /*NOTREACHED*/ 1624 1625 case (long)SIG_IGN: 1626 /* 1627 * Masking above should prevent us ever trying 1628 * to take action on an ignored signal other 1629 * than SIGCONT, unless process is traced. 1630 */ 1631 #ifdef DEBUG_ISSIGNAL 1632 if ((prop & SA_CONT) == 0 && 1633 (p->p_flag & P_TRACED) == 0) 1634 printf("issignal\n"); 1635 #endif 1636 break; /* == ignore */ 1637 1638 default: 1639 /* 1640 * This signal has an action, let 1641 * postsig() process it. 1642 */ 1643 goto keep; 1644 } 1645 } 1646 /* NOTREACHED */ 1647 1648 keep: 1649 /* leave the signal for later */ 1650 sigaddset(&p->p_sigctx.ps_siglist, signum); 1651 CHECKSIGS(p); 1652 if (locked && dolock) 1653 SCHED_LOCK(s); 1654 return (signum); 1655 } 1656 1657 /* 1658 * Put the argument process into the stopped state and notify the parent 1659 * via wakeup. Signals are handled elsewhere. The process must not be 1660 * on the run queue. 1661 */ 1662 void 1663 proc_stop(struct proc *p, int dowakeup) 1664 { 1665 struct lwp *l; 1666 struct proc *parent; 1667 struct sadata_vp *vp; 1668 1669 SCHED_ASSERT_LOCKED(); 1670 1671 /* XXX lock process LWP state */ 1672 p->p_flag &= ~P_WAITED; 1673 p->p_stat = SSTOP; 1674 parent = p->p_pptr; 1675 parent->p_nstopchild++; 1676 1677 if (p->p_flag & P_SA) { 1678 /* 1679 * Only (try to) put the LWP on the VP in stopped 1680 * state. 1681 * All other LWPs will suspend in sa_setwoken() 1682 * because the VP-LWP in stopped state cannot be 1683 * repossessed. 1684 */ 1685 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1686 l = vp->savp_lwp; 1687 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1688 l->l_stat = LSSTOP; 1689 p->p_nrlwps--; 1690 } else if (l->l_stat == LSRUN) { 1691 /* Remove LWP from the run queue */ 1692 remrunqueue(l); 1693 l->l_stat = LSSTOP; 1694 p->p_nrlwps--; 1695 } else if (l->l_stat == LSSLEEP && 1696 l->l_flag & L_SA_IDLE) { 1697 l->l_flag &= ~L_SA_IDLE; 1698 l->l_stat = LSSTOP; 1699 } 1700 } 1701 goto out; 1702 } 1703 1704 /* 1705 * Put as many LWP's as possible in stopped state. 1706 * Sleeping ones will notice the stopped state as they try to 1707 * return to userspace. 1708 */ 1709 1710 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1711 if (l->l_stat == LSONPROC) { 1712 /* XXX SMP this assumes that a LWP that is LSONPROC 1713 * is curlwp and hence is about to be mi_switched 1714 * away; the only callers of proc_stop() are: 1715 * - psignal 1716 * - issignal() 1717 * For the former, proc_stop() is only called when 1718 * no processes are running, so we don't worry. 1719 * For the latter, proc_stop() is called right 1720 * before mi_switch(). 1721 */ 1722 l->l_stat = LSSTOP; 1723 p->p_nrlwps--; 1724 } else if (l->l_stat == LSRUN) { 1725 /* Remove LWP from the run queue */ 1726 remrunqueue(l); 1727 l->l_stat = LSSTOP; 1728 p->p_nrlwps--; 1729 } else if ((l->l_stat == LSSLEEP) || 1730 (l->l_stat == LSSUSPENDED) || 1731 (l->l_stat == LSZOMB) || 1732 (l->l_stat == LSDEAD)) { 1733 /* 1734 * Don't do anything; let sleeping LWPs 1735 * discover the stopped state of the process 1736 * on their way out of the kernel; otherwise, 1737 * things like NFS threads that sleep with 1738 * locks will block the rest of the system 1739 * from getting any work done. 1740 * 1741 * Suspended/dead/zombie LWPs aren't going 1742 * anywhere, so we don't need to touch them. 1743 */ 1744 } 1745 #ifdef DIAGNOSTIC 1746 else { 1747 panic("proc_stop: process %d lwp %d " 1748 "in unstoppable state %d.\n", 1749 p->p_pid, l->l_lid, l->l_stat); 1750 } 1751 #endif 1752 } 1753 1754 out: 1755 /* XXX unlock process LWP state */ 1756 1757 if (dowakeup) 1758 sched_wakeup((caddr_t)p->p_pptr); 1759 } 1760 1761 /* 1762 * Given a process in state SSTOP, set the state back to SACTIVE and 1763 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1764 * 1765 * If no LWPs ended up runnable (and therefore able to take a signal), 1766 * return a LWP that is sleeping interruptably. The caller can wake 1767 * that LWP up to take a signal. 1768 */ 1769 struct lwp * 1770 proc_unstop(struct proc *p) 1771 { 1772 struct lwp *l, *lr = NULL; 1773 struct sadata_vp *vp; 1774 int cantake = 0; 1775 1776 SCHED_ASSERT_LOCKED(); 1777 1778 /* 1779 * Our caller wants to be informed if there are only sleeping 1780 * and interruptable LWPs left after we have run so that it 1781 * can invoke setrunnable() if required - return one of the 1782 * interruptable LWPs if this is the case. 1783 */ 1784 1785 if (!(p->p_flag & P_WAITED)) 1786 p->p_pptr->p_nstopchild--; 1787 p->p_stat = SACTIVE; 1788 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1789 if (l->l_stat == LSRUN) { 1790 lr = NULL; 1791 cantake = 1; 1792 } 1793 if (l->l_stat != LSSTOP) 1794 continue; 1795 1796 if (l->l_wchan != NULL) { 1797 l->l_stat = LSSLEEP; 1798 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1799 lr = l; 1800 cantake = 1; 1801 } 1802 } else { 1803 setrunnable(l); 1804 lr = NULL; 1805 cantake = 1; 1806 } 1807 } 1808 if (p->p_flag & P_SA) { 1809 /* Only consider returning the LWP on the VP. */ 1810 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1811 lr = vp->savp_lwp; 1812 if (lr->l_stat == LSSLEEP) { 1813 if (lr->l_flag & L_SA_YIELD) { 1814 setrunnable(lr); 1815 break; 1816 } else if (lr->l_flag & L_SINTR) 1817 return lr; 1818 } 1819 } 1820 return NULL; 1821 } 1822 return lr; 1823 } 1824 1825 /* 1826 * Take the action for the specified signal 1827 * from the current set of pending signals. 1828 */ 1829 void 1830 postsig(int signum) 1831 { 1832 struct lwp *l; 1833 struct proc *p; 1834 struct sigacts *ps; 1835 sig_t action; 1836 sigset_t *returnmask; 1837 1838 l = curlwp; 1839 p = l->l_proc; 1840 ps = p->p_sigacts; 1841 #ifdef DIAGNOSTIC 1842 if (signum == 0) 1843 panic("postsig"); 1844 #endif 1845 1846 KERNEL_PROC_LOCK(l); 1847 1848 #ifdef MULTIPROCESSOR 1849 /* 1850 * On MP, issignal() can return the same signal to multiple 1851 * LWPs. The LWPs will block above waiting for the kernel 1852 * lock and the first LWP which gets through will then remove 1853 * the signal from ps_siglist. All other LWPs exit here. 1854 */ 1855 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1856 KERNEL_PROC_UNLOCK(l); 1857 return; 1858 } 1859 #endif 1860 sigdelset(&p->p_sigctx.ps_siglist, signum); 1861 action = SIGACTION_PS(ps, signum).sa_handler; 1862 if (action == SIG_DFL) { 1863 #ifdef KTRACE 1864 if (KTRPOINT(p, KTR_PSIG)) 1865 ktrpsig(l, signum, action, 1866 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1867 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1868 NULL); 1869 #endif 1870 /* 1871 * Default action, where the default is to kill 1872 * the process. (Other cases were ignored above.) 1873 */ 1874 sigexit(l, signum); 1875 /* NOTREACHED */ 1876 } else { 1877 ksiginfo_t *ksi; 1878 /* 1879 * If we get here, the signal must be caught. 1880 */ 1881 #ifdef DIAGNOSTIC 1882 if (action == SIG_IGN || 1883 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1884 panic("postsig action"); 1885 #endif 1886 /* 1887 * Set the new mask value and also defer further 1888 * occurrences of this signal. 1889 * 1890 * Special case: user has done a sigpause. Here the 1891 * current mask is not of interest, but rather the 1892 * mask from before the sigpause is what we want 1893 * restored after the signal processing is completed. 1894 */ 1895 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1896 returnmask = &p->p_sigctx.ps_oldmask; 1897 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1898 } else 1899 returnmask = &p->p_sigctx.ps_sigmask; 1900 p->p_stats->p_ru.ru_nsignals++; 1901 ksi = ksiginfo_get(p, signum); 1902 #ifdef KTRACE 1903 if (KTRPOINT(p, KTR_PSIG)) 1904 ktrpsig(l, signum, action, 1905 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1906 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1907 ksi); 1908 #endif 1909 if (ksi == NULL) { 1910 ksiginfo_t ksi1; 1911 /* 1912 * we did not save any siginfo for this, either 1913 * because the signal was not caught, or because the 1914 * user did not request SA_SIGINFO 1915 */ 1916 KSI_INIT_EMPTY(&ksi1); 1917 ksi1.ksi_signo = signum; 1918 kpsendsig(l, &ksi1, returnmask); 1919 } else { 1920 kpsendsig(l, ksi, returnmask); 1921 pool_put(&ksiginfo_pool, ksi); 1922 } 1923 p->p_sigctx.ps_lwp = 0; 1924 p->p_sigctx.ps_code = 0; 1925 p->p_sigctx.ps_signo = 0; 1926 (void) splsched(); /* XXXSMP */ 1927 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1928 &p->p_sigctx.ps_sigmask); 1929 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1930 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1931 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1932 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1933 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1934 } 1935 (void) spl0(); /* XXXSMP */ 1936 } 1937 1938 KERNEL_PROC_UNLOCK(l); 1939 } 1940 1941 /* 1942 * Kill the current process for stated reason. 1943 */ 1944 void 1945 killproc(struct proc *p, const char *why) 1946 { 1947 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1948 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1949 psignal(p, SIGKILL); 1950 } 1951 1952 /* 1953 * Force the current process to exit with the specified signal, dumping core 1954 * if appropriate. We bypass the normal tests for masked and caught signals, 1955 * allowing unrecoverable failures to terminate the process without changing 1956 * signal state. Mark the accounting record with the signal termination. 1957 * If dumping core, save the signal number for the debugger. Calls exit and 1958 * does not return. 1959 */ 1960 1961 #if defined(DEBUG) 1962 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1963 #else 1964 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1965 #endif 1966 1967 static const char logcoredump[] = 1968 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1969 static const char lognocoredump[] = 1970 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1971 1972 /* Wrapper function for use in p_userret */ 1973 static void 1974 lwp_coredump_hook(struct lwp *l, void *arg) 1975 { 1976 int s; 1977 1978 /* 1979 * Suspend ourselves, so that the kernel stack and therefore 1980 * the userland registers saved in the trapframe are around 1981 * for coredump() to write them out. 1982 */ 1983 KERNEL_PROC_LOCK(l); 1984 l->l_flag &= ~L_DETACHED; 1985 SCHED_LOCK(s); 1986 l->l_stat = LSSUSPENDED; 1987 l->l_proc->p_nrlwps--; 1988 /* XXX NJWLWP check if this makes sense here: */ 1989 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1990 mi_switch(l, NULL); 1991 SCHED_ASSERT_UNLOCKED(); 1992 splx(s); 1993 1994 lwp_exit(l); 1995 } 1996 1997 void 1998 sigexit(struct lwp *l, int signum) 1999 { 2000 struct proc *p; 2001 #if 0 2002 struct lwp *l2; 2003 #endif 2004 int error, exitsig; 2005 2006 p = l->l_proc; 2007 2008 /* 2009 * Don't permit coredump() or exit1() multiple times 2010 * in the same process. 2011 */ 2012 if (p->p_flag & P_WEXIT) { 2013 KERNEL_PROC_UNLOCK(l); 2014 (*p->p_userret)(l, p->p_userret_arg); 2015 } 2016 p->p_flag |= P_WEXIT; 2017 /* We don't want to switch away from exiting. */ 2018 /* XXX multiprocessor: stop LWPs on other processors. */ 2019 #if 0 2020 if (p->p_flag & P_SA) { 2021 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 2022 l2->l_flag &= ~L_SA; 2023 p->p_flag &= ~P_SA; 2024 } 2025 #endif 2026 2027 /* Make other LWPs stick around long enough to be dumped */ 2028 p->p_userret = lwp_coredump_hook; 2029 p->p_userret_arg = NULL; 2030 2031 exitsig = signum; 2032 p->p_acflag |= AXSIG; 2033 if (sigprop[signum] & SA_CORE) { 2034 p->p_sigctx.ps_signo = signum; 2035 if ((error = coredump(l, NULL)) == 0) 2036 exitsig |= WCOREFLAG; 2037 2038 if (kern_logsigexit) { 2039 /* XXX What if we ever have really large UIDs? */ 2040 int uid = p->p_cred && p->p_ucred ? 2041 (int) p->p_ucred->cr_uid : -1; 2042 2043 if (error) 2044 log(LOG_INFO, lognocoredump, p->p_pid, 2045 p->p_comm, uid, signum, error); 2046 else 2047 log(LOG_INFO, logcoredump, p->p_pid, 2048 p->p_comm, uid, signum); 2049 } 2050 2051 } 2052 2053 exit1(l, W_EXITCODE(0, exitsig)); 2054 /* NOTREACHED */ 2055 } 2056 2057 struct coredump_iostate { 2058 struct lwp *io_lwp; 2059 struct vnode *io_vp; 2060 struct ucred *io_cred; 2061 off_t io_offset; 2062 }; 2063 2064 int 2065 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len) 2066 { 2067 struct coredump_iostate *io = cookie; 2068 int error; 2069 2070 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len, 2071 io->io_offset, segflg, 2072 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL, 2073 segflg == UIO_USERSPACE ? io->io_lwp : NULL); 2074 if (error) 2075 return (error); 2076 2077 io->io_offset += len; 2078 return (0); 2079 } 2080 2081 /* 2082 * Dump core, into a file named "progname.core" or "core" (depending on the 2083 * value of shortcorename), unless the process was setuid/setgid. 2084 */ 2085 int 2086 coredump(struct lwp *l, const char *pattern) 2087 { 2088 struct vnode *vp; 2089 struct proc *p; 2090 struct vmspace *vm; 2091 struct ucred *cred; 2092 struct nameidata nd; 2093 struct vattr vattr; 2094 struct mount *mp; 2095 struct coredump_iostate io; 2096 int error, error1; 2097 char name[MAXPATHLEN]; 2098 2099 p = l->l_proc; 2100 vm = p->p_vmspace; 2101 cred = p->p_cred->pc_ucred; 2102 2103 /* 2104 * Make sure the process has not set-id, to prevent data leaks. 2105 */ 2106 if (p->p_flag & P_SUGID) 2107 return (EPERM); 2108 2109 /* 2110 * Refuse to core if the data + stack + user size is larger than 2111 * the core dump limit. XXX THIS IS WRONG, because of mapped 2112 * data. 2113 */ 2114 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2115 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2116 return (EFBIG); /* better error code? */ 2117 2118 restart: 2119 /* 2120 * The core dump will go in the current working directory. Make 2121 * sure that the directory is still there and that the mount flags 2122 * allow us to write core dumps there. 2123 */ 2124 vp = p->p_cwdi->cwdi_cdir; 2125 if (vp->v_mount == NULL || 2126 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) 2127 return (EPERM); 2128 2129 if (pattern == NULL) 2130 pattern = p->p_limit->pl_corename; 2131 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0) 2132 return error; 2133 2134 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l); 2135 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 2136 if (error) 2137 return (error); 2138 vp = nd.ni_vp; 2139 2140 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2141 VOP_UNLOCK(vp, 0); 2142 if ((error = vn_close(vp, FWRITE, cred, l)) != 0) 2143 return (error); 2144 if ((error = vn_start_write(NULL, &mp, 2145 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) 2146 return (error); 2147 goto restart; 2148 } 2149 2150 /* Don't dump to non-regular files or files with links. */ 2151 if (vp->v_type != VREG || 2152 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) { 2153 error = EINVAL; 2154 goto out; 2155 } 2156 VATTR_NULL(&vattr); 2157 vattr.va_size = 0; 2158 VOP_LEASE(vp, l, cred, LEASE_WRITE); 2159 VOP_SETATTR(vp, &vattr, cred, l); 2160 p->p_acflag |= ACORE; 2161 2162 io.io_lwp = l; 2163 io.io_vp = vp; 2164 io.io_cred = cred; 2165 io.io_offset = 0; 2166 2167 /* Now dump the actual core file. */ 2168 error = (*p->p_execsw->es_coredump)(l, &io); 2169 out: 2170 VOP_UNLOCK(vp, 0); 2171 vn_finished_write(mp, 0); 2172 error1 = vn_close(vp, FWRITE, cred, l); 2173 if (error == 0) 2174 error = error1; 2175 return (error); 2176 } 2177 2178 /* 2179 * Nonexistent system call-- signal process (may want to handle it). 2180 * Flag error in case process won't see signal immediately (blocked or ignored). 2181 */ 2182 /* ARGSUSED */ 2183 int 2184 sys_nosys(struct lwp *l, void *v, register_t *retval) 2185 { 2186 struct proc *p; 2187 2188 p = l->l_proc; 2189 psignal(p, SIGSYS); 2190 return (ENOSYS); 2191 } 2192 2193 static int 2194 build_corename(struct proc *p, char *dst, const char *src, size_t len) 2195 { 2196 const char *s; 2197 char *d, *end; 2198 int i; 2199 2200 for (s = src, d = dst, end = d + len; *s != '\0'; s++) { 2201 if (*s == '%') { 2202 switch (*(s + 1)) { 2203 case 'n': 2204 i = snprintf(d, end - d, "%s", p->p_comm); 2205 break; 2206 case 'p': 2207 i = snprintf(d, end - d, "%d", p->p_pid); 2208 break; 2209 case 'u': 2210 i = snprintf(d, end - d, "%.*s", 2211 (int)sizeof p->p_pgrp->pg_session->s_login, 2212 p->p_pgrp->pg_session->s_login); 2213 break; 2214 case 't': 2215 i = snprintf(d, end - d, "%ld", 2216 p->p_stats->p_start.tv_sec); 2217 break; 2218 default: 2219 goto copy; 2220 } 2221 d += i; 2222 s++; 2223 } else { 2224 copy: *d = *s; 2225 d++; 2226 } 2227 if (d >= end) 2228 return (ENAMETOOLONG); 2229 } 2230 *d = '\0'; 2231 return 0; 2232 } 2233 2234 void 2235 getucontext(struct lwp *l, ucontext_t *ucp) 2236 { 2237 struct proc *p; 2238 2239 p = l->l_proc; 2240 2241 ucp->uc_flags = 0; 2242 ucp->uc_link = l->l_ctxlink; 2243 2244 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2245 ucp->uc_flags |= _UC_SIGMASK; 2246 2247 /* 2248 * The (unsupplied) definition of the `current execution stack' 2249 * in the System V Interface Definition appears to allow returning 2250 * the main context stack. 2251 */ 2252 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2253 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2254 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2255 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2256 } else { 2257 /* Simply copy alternate signal execution stack. */ 2258 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2259 } 2260 ucp->uc_flags |= _UC_STACK; 2261 2262 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2263 } 2264 2265 /* ARGSUSED */ 2266 int 2267 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2268 { 2269 struct sys_getcontext_args /* { 2270 syscallarg(struct __ucontext *) ucp; 2271 } */ *uap = v; 2272 ucontext_t uc; 2273 2274 getucontext(l, &uc); 2275 2276 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2277 } 2278 2279 int 2280 setucontext(struct lwp *l, const ucontext_t *ucp) 2281 { 2282 struct proc *p; 2283 int error; 2284 2285 p = l->l_proc; 2286 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2287 return (error); 2288 l->l_ctxlink = ucp->uc_link; 2289 2290 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2291 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2292 2293 /* 2294 * If there was stack information, update whether or not we are 2295 * still running on an alternate signal stack. 2296 */ 2297 if ((ucp->uc_flags & _UC_STACK) != 0) { 2298 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2299 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2300 else 2301 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2302 } 2303 2304 return 0; 2305 } 2306 2307 /* ARGSUSED */ 2308 int 2309 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2310 { 2311 struct sys_setcontext_args /* { 2312 syscallarg(const ucontext_t *) ucp; 2313 } */ *uap = v; 2314 ucontext_t uc; 2315 int error; 2316 2317 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2318 exit1(l, W_EXITCODE(0, 0)); 2319 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2320 (error = setucontext(l, &uc)) != 0) 2321 return (error); 2322 2323 return (EJUSTRETURN); 2324 } 2325 2326 /* 2327 * sigtimedwait(2) system call, used also for implementation 2328 * of sigwaitinfo() and sigwait(). 2329 * 2330 * This only handles single LWP in signal wait. libpthread provides 2331 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2332 */ 2333 int 2334 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2335 { 2336 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout); 2337 } 2338 2339 int 2340 __sigtimedwait1(struct lwp *l, void *v, register_t *retval, 2341 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout) 2342 { 2343 struct sys___sigtimedwait_args /* { 2344 syscallarg(const sigset_t *) set; 2345 syscallarg(siginfo_t *) info; 2346 syscallarg(struct timespec *) timeout; 2347 } */ *uap = v; 2348 sigset_t *waitset, twaitset; 2349 struct proc *p = l->l_proc; 2350 int error, signum, s; 2351 int timo = 0; 2352 struct timeval tvstart; 2353 struct timespec ts; 2354 ksiginfo_t *ksi; 2355 2356 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2357 2358 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2359 FREE(waitset, M_TEMP); 2360 return (error); 2361 } 2362 2363 /* 2364 * Silently ignore SA_CANTMASK signals. psignal1() would 2365 * ignore SA_CANTMASK signals in waitset, we do this 2366 * only for the below siglist check. 2367 */ 2368 sigminusset(&sigcantmask, waitset); 2369 2370 /* 2371 * First scan siglist and check if there is signal from 2372 * our waitset already pending. 2373 */ 2374 twaitset = *waitset; 2375 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2376 if ((signum = firstsig(&twaitset))) { 2377 /* found pending signal */ 2378 sigdelset(&p->p_sigctx.ps_siglist, signum); 2379 ksi = ksiginfo_get(p, signum); 2380 if (!ksi) { 2381 /* No queued siginfo, manufacture one */ 2382 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2383 KSI_INIT(ksi); 2384 ksi->ksi_info._signo = signum; 2385 ksi->ksi_info._code = SI_USER; 2386 } 2387 2388 goto sig; 2389 } 2390 2391 /* 2392 * Calculate timeout, if it was specified. 2393 */ 2394 if (SCARG(uap, timeout)) { 2395 uint64_t ms; 2396 2397 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts)))) 2398 return (error); 2399 2400 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2401 timo = mstohz(ms); 2402 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2403 timo = 1; 2404 if (timo <= 0) 2405 return (EAGAIN); 2406 2407 /* 2408 * Remember current mono_time, it would be used in 2409 * ECANCELED/ERESTART case. 2410 */ 2411 s = splclock(); 2412 tvstart = mono_time; 2413 splx(s); 2414 } 2415 2416 /* 2417 * Setup ps_sigwait list. Pass pointer to malloced memory 2418 * here; it's not possible to pass pointer to a structure 2419 * on current process's stack, the current process might 2420 * be swapped out at the time the signal would get delivered. 2421 */ 2422 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2423 p->p_sigctx.ps_sigwaited = ksi; 2424 p->p_sigctx.ps_sigwait = waitset; 2425 2426 /* 2427 * Wait for signal to arrive. We can either be woken up or 2428 * time out. 2429 */ 2430 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2431 2432 /* 2433 * Need to find out if we woke as a result of lwp_wakeup() 2434 * or a signal outside our wait set. 2435 */ 2436 if (error == EINTR && p->p_sigctx.ps_sigwaited 2437 && !firstsig(&p->p_sigctx.ps_siglist)) { 2438 /* wakeup via _lwp_wakeup() */ 2439 error = ECANCELED; 2440 } else if (!error && p->p_sigctx.ps_sigwaited) { 2441 /* spurious wakeup - arrange for syscall restart */ 2442 error = ERESTART; 2443 goto fail; 2444 } 2445 2446 /* 2447 * On error, clear sigwait indication. psignal1() clears it 2448 * in !error case. 2449 */ 2450 if (error) { 2451 p->p_sigctx.ps_sigwaited = NULL; 2452 2453 /* 2454 * If the sleep was interrupted (either by signal or wakeup), 2455 * update the timeout and copyout new value back. 2456 * It would be used when the syscall would be restarted 2457 * or called again. 2458 */ 2459 if (timo && (error == ERESTART || error == ECANCELED)) { 2460 struct timeval tvnow, tvtimo; 2461 int err; 2462 2463 s = splclock(); 2464 tvnow = mono_time; 2465 splx(s); 2466 2467 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 2468 2469 /* compute how much time has passed since start */ 2470 timersub(&tvnow, &tvstart, &tvnow); 2471 /* substract passed time from timeout */ 2472 timersub(&tvtimo, &tvnow, &tvtimo); 2473 2474 if (tvtimo.tv_sec < 0) { 2475 error = EAGAIN; 2476 goto fail; 2477 } 2478 2479 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 2480 2481 /* copy updated timeout to userland */ 2482 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout), 2483 sizeof(ts)))) { 2484 error = err; 2485 goto fail; 2486 } 2487 } 2488 2489 goto fail; 2490 } 2491 2492 /* 2493 * If a signal from the wait set arrived, copy it to userland. 2494 * Copy only the used part of siginfo, the padding part is 2495 * left unchanged (userland is not supposed to touch it anyway). 2496 */ 2497 sig: 2498 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2499 2500 fail: 2501 FREE(waitset, M_TEMP); 2502 pool_put(&ksiginfo_pool, ksi); 2503 p->p_sigctx.ps_sigwait = NULL; 2504 2505 return (error); 2506 } 2507 2508 /* 2509 * Returns true if signal is ignored or masked for passed process. 2510 */ 2511 int 2512 sigismasked(struct proc *p, int sig) 2513 { 2514 2515 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2516 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2517 } 2518 2519 static int 2520 filt_sigattach(struct knote *kn) 2521 { 2522 struct proc *p = curproc; 2523 2524 kn->kn_ptr.p_proc = p; 2525 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2526 2527 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2528 2529 return (0); 2530 } 2531 2532 static void 2533 filt_sigdetach(struct knote *kn) 2534 { 2535 struct proc *p = kn->kn_ptr.p_proc; 2536 2537 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2538 } 2539 2540 /* 2541 * signal knotes are shared with proc knotes, so we apply a mask to 2542 * the hint in order to differentiate them from process hints. This 2543 * could be avoided by using a signal-specific knote list, but probably 2544 * isn't worth the trouble. 2545 */ 2546 static int 2547 filt_signal(struct knote *kn, long hint) 2548 { 2549 2550 if (hint & NOTE_SIGNAL) { 2551 hint &= ~NOTE_SIGNAL; 2552 2553 if (kn->kn_id == hint) 2554 kn->kn_data++; 2555 } 2556 return (kn->kn_data != 0); 2557 } 2558 2559 const struct filterops sig_filtops = { 2560 0, filt_sigattach, filt_sigdetach, filt_signal 2561 }; 2562