xref: /netbsd-src/sys/kern/kern_sig.c (revision 9aa0541bdf64142d9a27c2cf274394d60182818f)
1 /*	$NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $");
74 
75 #include "opt_ptrace.h"
76 #include "opt_compat_sunos.h"
77 #include "opt_compat_netbsd.h"
78 #include "opt_compat_netbsd32.h"
79 #include "opt_pax.h"
80 #include "opt_sa.h"
81 
82 #define	SIGPROP		/* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/wait.h>
88 #include <sys/ktrace.h>
89 #include <sys/syslog.h>
90 #include <sys/filedesc.h>
91 #include <sys/file.h>
92 #include <sys/pool.h>
93 #include <sys/ucontext.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96 #include <sys/exec.h>
97 #include <sys/kauth.h>
98 #include <sys/acct.h>
99 #include <sys/callout.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/sdt.h>
104 
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108 
109 #include <uvm/uvm_extern.h>
110 
111 static pool_cache_t	sigacts_cache	__read_mostly;
112 static pool_cache_t	ksiginfo_cache	__read_mostly;
113 static callout_t	proc_stop_ch	__cacheline_aligned;
114 
115 #ifdef KERN_SA
116 static pool_cache_t	siginfo_cache;
117 #endif
118 
119 sigset_t		contsigmask	__cacheline_aligned;
120 static sigset_t		stopsigmask	__cacheline_aligned;
121 sigset_t		sigcantmask	__cacheline_aligned;
122 
123 static void	ksiginfo_exechook(struct proc *, void *);
124 static void	proc_stop_callout(void *);
125 static int	sigchecktrace(void);
126 static int	sigpost(struct lwp *, sig_t, int, int, int);
127 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
128 static int	sigunwait(struct proc *, const ksiginfo_t *);
129 static void	sigswitch(bool, int, int);
130 
131 static void	sigacts_poolpage_free(struct pool *, void *);
132 static void	*sigacts_poolpage_alloc(struct pool *, int);
133 
134 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
135 int (*coredump_vec)(struct lwp *, const char *) =
136     (int (*)(struct lwp *, const char *))enosys;
137 
138 /*
139  * DTrace SDT provider definitions
140  */
141 SDT_PROBE_DEFINE(proc,,,signal_send,
142 	    "struct lwp *", NULL,	/* target thread */
143 	    "struct proc *", NULL,	/* target process */
144 	    "int", NULL, 		/* signal */
145 	    NULL, NULL, NULL, NULL);
146 SDT_PROBE_DEFINE(proc,,,signal_discard,
147 	    "struct lwp *", NULL,	/* target thread */
148 	    "struct proc *", NULL,	/* target process */
149 	    "int", NULL, 		/* signal */
150 	    NULL, NULL, NULL, NULL);
151 SDT_PROBE_DEFINE(proc,,,signal_clear,
152 	    "int", NULL,		/* signal */
153 	    NULL, NULL, NULL, NULL,
154 	    NULL, NULL, NULL, NULL);
155 SDT_PROBE_DEFINE(proc,,,signal_handle,
156 	    "int", NULL,		/* signal */
157 	    "ksiginfo_t *", NULL,
158 	    "void (*)(void)", NULL,	/* handler address */
159 	    NULL, NULL, NULL, NULL);
160 
161 
162 static struct pool_allocator sigactspool_allocator = {
163 	.pa_alloc = sigacts_poolpage_alloc,
164 	.pa_free = sigacts_poolpage_free
165 };
166 
167 #ifdef DEBUG
168 int	kern_logsigexit = 1;
169 #else
170 int	kern_logsigexit = 0;
171 #endif
172 
173 static const char logcoredump[] =
174     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
175 static const char lognocoredump[] =
176     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
177 
178 static kauth_listener_t signal_listener;
179 
180 static int
181 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
182     void *arg0, void *arg1, void *arg2, void *arg3)
183 {
184 	struct proc *p;
185 	int result, signum;
186 
187 	result = KAUTH_RESULT_DEFER;
188 	p = arg0;
189 	signum = (int)(unsigned long)arg1;
190 
191 	if (action != KAUTH_PROCESS_SIGNAL)
192 		return result;
193 
194 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
195 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
196 		result = KAUTH_RESULT_ALLOW;
197 
198 	return result;
199 }
200 
201 /*
202  * signal_init:
203  *
204  *	Initialize global signal-related data structures.
205  */
206 void
207 signal_init(void)
208 {
209 
210 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
211 
212 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
213 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
214 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
215 #ifdef KERN_SA
216 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
217 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
218 #endif
219 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
220 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
221 
222 	exechook_establish(ksiginfo_exechook, NULL);
223 
224 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
225 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
226 
227 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
228 	    signal_listener_cb, NULL);
229 }
230 
231 /*
232  * sigacts_poolpage_alloc:
233  *
234  *	Allocate a page for the sigacts memory pool.
235  */
236 static void *
237 sigacts_poolpage_alloc(struct pool *pp, int flags)
238 {
239 
240 	return (void *)uvm_km_alloc(kernel_map,
241 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
242 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
243 	    | UVM_KMF_WIRED);
244 }
245 
246 /*
247  * sigacts_poolpage_free:
248  *
249  *	Free a page on behalf of the sigacts memory pool.
250  */
251 static void
252 sigacts_poolpage_free(struct pool *pp, void *v)
253 {
254 
255 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
256 }
257 
258 /*
259  * sigactsinit:
260  *
261  *	Create an initial sigacts structure, using the same signal state
262  *	as of specified process.  If 'share' is set, share the sigacts by
263  *	holding a reference, otherwise just copy it from parent.
264  */
265 struct sigacts *
266 sigactsinit(struct proc *pp, int share)
267 {
268 	struct sigacts *ps = pp->p_sigacts, *ps2;
269 
270 	if (__predict_false(share)) {
271 		atomic_inc_uint(&ps->sa_refcnt);
272 		return ps;
273 	}
274 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
275 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
276 	ps2->sa_refcnt = 1;
277 
278 	mutex_enter(&ps->sa_mutex);
279 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
280 	mutex_exit(&ps->sa_mutex);
281 	return ps2;
282 }
283 
284 /*
285  * sigactsunshare:
286  *
287  *	Make this process not share its sigacts, maintaining all signal state.
288  */
289 void
290 sigactsunshare(struct proc *p)
291 {
292 	struct sigacts *ps, *oldps = p->p_sigacts;
293 
294 	if (__predict_true(oldps->sa_refcnt == 1))
295 		return;
296 
297 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
298 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
299 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
300 	ps->sa_refcnt = 1;
301 
302 	p->p_sigacts = ps;
303 	sigactsfree(oldps);
304 }
305 
306 /*
307  * sigactsfree;
308  *
309  *	Release a sigacts structure.
310  */
311 void
312 sigactsfree(struct sigacts *ps)
313 {
314 
315 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
316 		mutex_destroy(&ps->sa_mutex);
317 		pool_cache_put(sigacts_cache, ps);
318 	}
319 }
320 
321 /*
322  * siginit:
323  *
324  *	Initialize signal state for process 0; set to ignore signals that
325  *	are ignored by default and disable the signal stack.  Locking not
326  *	required as the system is still cold.
327  */
328 void
329 siginit(struct proc *p)
330 {
331 	struct lwp *l;
332 	struct sigacts *ps;
333 	int signo, prop;
334 
335 	ps = p->p_sigacts;
336 	sigemptyset(&contsigmask);
337 	sigemptyset(&stopsigmask);
338 	sigemptyset(&sigcantmask);
339 	for (signo = 1; signo < NSIG; signo++) {
340 		prop = sigprop[signo];
341 		if (prop & SA_CONT)
342 			sigaddset(&contsigmask, signo);
343 		if (prop & SA_STOP)
344 			sigaddset(&stopsigmask, signo);
345 		if (prop & SA_CANTMASK)
346 			sigaddset(&sigcantmask, signo);
347 		if (prop & SA_IGNORE && signo != SIGCONT)
348 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
349 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
350 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
351 	}
352 	sigemptyset(&p->p_sigctx.ps_sigcatch);
353 	p->p_sflag &= ~PS_NOCLDSTOP;
354 
355 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
356 	sigemptyset(&p->p_sigpend.sp_set);
357 
358 	/*
359 	 * Reset per LWP state.
360 	 */
361 	l = LIST_FIRST(&p->p_lwps);
362 	l->l_sigwaited = NULL;
363 	l->l_sigstk.ss_flags = SS_DISABLE;
364 	l->l_sigstk.ss_size = 0;
365 	l->l_sigstk.ss_sp = 0;
366 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
367 	sigemptyset(&l->l_sigpend.sp_set);
368 
369 	/* One reference. */
370 	ps->sa_refcnt = 1;
371 }
372 
373 /*
374  * execsigs:
375  *
376  *	Reset signals for an exec of the specified process.
377  */
378 void
379 execsigs(struct proc *p)
380 {
381 	struct sigacts *ps;
382 	struct lwp *l;
383 	int signo, prop;
384 	sigset_t tset;
385 	ksiginfoq_t kq;
386 
387 	KASSERT(p->p_nlwps == 1);
388 
389 	sigactsunshare(p);
390 	ps = p->p_sigacts;
391 
392 	/*
393 	 * Reset caught signals.  Held signals remain held through
394 	 * l->l_sigmask (unless they were caught, and are now ignored
395 	 * by default).
396 	 *
397 	 * No need to lock yet, the process has only one LWP and
398 	 * at this point the sigacts are private to the process.
399 	 */
400 	sigemptyset(&tset);
401 	for (signo = 1; signo < NSIG; signo++) {
402 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
403 			prop = sigprop[signo];
404 			if (prop & SA_IGNORE) {
405 				if ((prop & SA_CONT) == 0)
406 					sigaddset(&p->p_sigctx.ps_sigignore,
407 					    signo);
408 				sigaddset(&tset, signo);
409 			}
410 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
411 		}
412 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
413 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
414 	}
415 	ksiginfo_queue_init(&kq);
416 
417 	mutex_enter(p->p_lock);
418 	sigclearall(p, &tset, &kq);
419 	sigemptyset(&p->p_sigctx.ps_sigcatch);
420 
421 	/*
422 	 * Reset no zombies if child dies flag as Solaris does.
423 	 */
424 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
425 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
426 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
427 
428 	/*
429 	 * Reset per-LWP state.
430 	 */
431 	l = LIST_FIRST(&p->p_lwps);
432 	l->l_sigwaited = NULL;
433 	l->l_sigstk.ss_flags = SS_DISABLE;
434 	l->l_sigstk.ss_size = 0;
435 	l->l_sigstk.ss_sp = 0;
436 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
437 	sigemptyset(&l->l_sigpend.sp_set);
438 	mutex_exit(p->p_lock);
439 
440 	ksiginfo_queue_drain(&kq);
441 }
442 
443 /*
444  * ksiginfo_exechook:
445  *
446  *	Free all pending ksiginfo entries from a process on exec.
447  *	Additionally, drain any unused ksiginfo structures in the
448  *	system back to the pool.
449  *
450  *	XXX This should not be a hook, every process has signals.
451  */
452 static void
453 ksiginfo_exechook(struct proc *p, void *v)
454 {
455 	ksiginfoq_t kq;
456 
457 	ksiginfo_queue_init(&kq);
458 
459 	mutex_enter(p->p_lock);
460 	sigclearall(p, NULL, &kq);
461 	mutex_exit(p->p_lock);
462 
463 	ksiginfo_queue_drain(&kq);
464 }
465 
466 /*
467  * ksiginfo_alloc:
468  *
469  *	Allocate a new ksiginfo structure from the pool, and optionally copy
470  *	an existing one.  If the existing ksiginfo_t is from the pool, and
471  *	has not been queued somewhere, then just return it.  Additionally,
472  *	if the existing ksiginfo_t does not contain any information beyond
473  *	the signal number, then just return it.
474  */
475 ksiginfo_t *
476 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
477 {
478 	ksiginfo_t *kp;
479 
480 	if (ok != NULL) {
481 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
482 		    KSI_FROMPOOL)
483 			return ok;
484 		if (KSI_EMPTY_P(ok))
485 			return ok;
486 	}
487 
488 	kp = pool_cache_get(ksiginfo_cache, flags);
489 	if (kp == NULL) {
490 #ifdef DIAGNOSTIC
491 		printf("Out of memory allocating ksiginfo for pid %d\n",
492 		    p->p_pid);
493 #endif
494 		return NULL;
495 	}
496 
497 	if (ok != NULL) {
498 		memcpy(kp, ok, sizeof(*kp));
499 		kp->ksi_flags &= ~KSI_QUEUED;
500 	} else
501 		KSI_INIT_EMPTY(kp);
502 
503 	kp->ksi_flags |= KSI_FROMPOOL;
504 
505 	return kp;
506 }
507 
508 /*
509  * ksiginfo_free:
510  *
511  *	If the given ksiginfo_t is from the pool and has not been queued,
512  *	then free it.
513  */
514 void
515 ksiginfo_free(ksiginfo_t *kp)
516 {
517 
518 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
519 		return;
520 	pool_cache_put(ksiginfo_cache, kp);
521 }
522 
523 /*
524  * ksiginfo_queue_drain:
525  *
526  *	Drain a non-empty ksiginfo_t queue.
527  */
528 void
529 ksiginfo_queue_drain0(ksiginfoq_t *kq)
530 {
531 	ksiginfo_t *ksi;
532 
533 	KASSERT(!CIRCLEQ_EMPTY(kq));
534 
535 	while (!CIRCLEQ_EMPTY(kq)) {
536 		ksi = CIRCLEQ_FIRST(kq);
537 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
538 		pool_cache_put(ksiginfo_cache, ksi);
539 	}
540 }
541 
542 static bool
543 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
544 {
545 	ksiginfo_t *ksi;
546 
547 	if (sp == NULL)
548 		goto out;
549 
550 	/* Find siginfo and copy it out. */
551 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
552 		if (ksi->ksi_signo != signo)
553 			continue;
554 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
555 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
556 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
557 		ksi->ksi_flags &= ~KSI_QUEUED;
558 		if (out != NULL) {
559 			memcpy(out, ksi, sizeof(*out));
560 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
561 		}
562 		ksiginfo_free(ksi);	/* XXXSMP */
563 		return true;
564 	}
565 
566 out:
567 	/* If there is no siginfo, then manufacture it. */
568 	if (out != NULL) {
569 		KSI_INIT(out);
570 		out->ksi_info._signo = signo;
571 		out->ksi_info._code = SI_NOINFO;
572 	}
573 	return false;
574 }
575 
576 /*
577  * sigget:
578  *
579  *	Fetch the first pending signal from a set.  Optionally, also fetch
580  *	or manufacture a ksiginfo element.  Returns the number of the first
581  *	pending signal, or zero.
582  */
583 int
584 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
585 {
586 	sigset_t tset;
587 
588 	/* If there's no pending set, the signal is from the debugger. */
589 	if (sp == NULL)
590 		goto out;
591 
592 	/* Construct mask from signo, and 'mask'. */
593 	if (signo == 0) {
594 		if (mask != NULL) {
595 			tset = *mask;
596 			__sigandset(&sp->sp_set, &tset);
597 		} else
598 			tset = sp->sp_set;
599 
600 		/* If there are no signals pending - return. */
601 		if ((signo = firstsig(&tset)) == 0)
602 			goto out;
603 	} else {
604 		KASSERT(sigismember(&sp->sp_set, signo));
605 	}
606 
607 	sigdelset(&sp->sp_set, signo);
608 out:
609 	(void)siggetinfo(sp, out, signo);
610 	return signo;
611 }
612 
613 /*
614  * sigput:
615  *
616  *	Append a new ksiginfo element to the list of pending ksiginfo's.
617  */
618 static void
619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
620 {
621 	ksiginfo_t *kp;
622 
623 	KASSERT(mutex_owned(p->p_lock));
624 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
625 
626 	sigaddset(&sp->sp_set, ksi->ksi_signo);
627 
628 	/*
629 	 * If there is no siginfo, we are done.
630 	 */
631 	if (KSI_EMPTY_P(ksi))
632 		return;
633 
634 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
635 
636 #ifdef notyet	/* XXX: QUEUING */
637 	if (ksi->ksi_signo < SIGRTMIN)
638 #endif
639 	{
640 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
641 			if (kp->ksi_signo == ksi->ksi_signo) {
642 				KSI_COPY(ksi, kp);
643 				kp->ksi_flags |= KSI_QUEUED;
644 				return;
645 			}
646 		}
647 	}
648 
649 	ksi->ksi_flags |= KSI_QUEUED;
650 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
651 }
652 
653 /*
654  * sigclear:
655  *
656  *	Clear all pending signals in the specified set.
657  */
658 void
659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
660 {
661 	ksiginfo_t *ksi, *next;
662 
663 	if (mask == NULL)
664 		sigemptyset(&sp->sp_set);
665 	else
666 		sigminusset(mask, &sp->sp_set);
667 
668 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
669 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
670 		next = CIRCLEQ_NEXT(ksi, ksi_list);
671 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
672 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
673 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
674 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
675 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
676 		}
677 	}
678 }
679 
680 /*
681  * sigclearall:
682  *
683  *	Clear all pending signals in the specified set from a process and
684  *	its LWPs.
685  */
686 void
687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
688 {
689 	struct lwp *l;
690 
691 	KASSERT(mutex_owned(p->p_lock));
692 
693 	sigclear(&p->p_sigpend, mask, kq);
694 
695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
696 		sigclear(&l->l_sigpend, mask, kq);
697 	}
698 }
699 
700 /*
701  * sigispending:
702  *
703  *	Return the first signal number if there are pending signals for the
704  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
705  *	and that the signal has been posted to the appopriate queue before
706  *	LW_PENDSIG is set.
707  */
708 int
709 sigispending(struct lwp *l, int signo)
710 {
711 	struct proc *p = l->l_proc;
712 	sigset_t tset;
713 
714 	membar_consumer();
715 
716 	tset = l->l_sigpend.sp_set;
717 	sigplusset(&p->p_sigpend.sp_set, &tset);
718 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
719 	sigminusset(&l->l_sigmask, &tset);
720 
721 	if (signo == 0) {
722 		return firstsig(&tset);
723 	}
724 	return sigismember(&tset, signo) ? signo : 0;
725 }
726 
727 #ifdef KERN_SA
728 
729 /*
730  * siginfo_alloc:
731  *
732  *	Allocate a new siginfo_t structure from the pool.
733  */
734 siginfo_t *
735 siginfo_alloc(int flags)
736 {
737 
738 	return pool_cache_get(siginfo_cache, flags);
739 }
740 
741 /*
742  * siginfo_free:
743  *
744  *	Return a siginfo_t structure to the pool.
745  */
746 void
747 siginfo_free(void *arg)
748 {
749 
750 	pool_cache_put(siginfo_cache, arg);
751 }
752 
753 #endif
754 
755 void
756 getucontext(struct lwp *l, ucontext_t *ucp)
757 {
758 	struct proc *p = l->l_proc;
759 
760 	KASSERT(mutex_owned(p->p_lock));
761 
762 	ucp->uc_flags = 0;
763 	ucp->uc_link = l->l_ctxlink;
764 
765 #if KERN_SA
766 	if (p->p_sa != NULL)
767 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
768 	else
769 #endif /* KERN_SA */
770 		ucp->uc_sigmask = l->l_sigmask;
771 	ucp->uc_flags |= _UC_SIGMASK;
772 
773 	/*
774 	 * The (unsupplied) definition of the `current execution stack'
775 	 * in the System V Interface Definition appears to allow returning
776 	 * the main context stack.
777 	 */
778 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
779 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
780 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
781 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
782 	} else {
783 		/* Simply copy alternate signal execution stack. */
784 		ucp->uc_stack = l->l_sigstk;
785 	}
786 	ucp->uc_flags |= _UC_STACK;
787 	mutex_exit(p->p_lock);
788 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
789 	mutex_enter(p->p_lock);
790 }
791 
792 /*
793  * getucontext_sa:
794  *      Get a ucontext_t for use in SA upcall generation.
795  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
796  * fudge things with uc_link (which is usually NULL for libpthread
797  * code), and 3) we report an empty signal mask.
798  */
799 void
800 getucontext_sa(struct lwp *l, ucontext_t *ucp)
801 {
802 	ucp->uc_flags = 0;
803 	ucp->uc_link = l->l_ctxlink;
804 
805 	sigemptyset(&ucp->uc_sigmask);
806 	ucp->uc_flags |= _UC_SIGMASK;
807 
808 	/*
809 	 * The (unsupplied) definition of the `current execution stack'
810 	 * in the System V Interface Definition appears to allow returning
811 	 * the main context stack.
812 	 */
813 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
814 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
815 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
816 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
817 	} else {
818 		/* Simply copy alternate signal execution stack. */
819 		ucp->uc_stack = l->l_sigstk;
820 	}
821 	ucp->uc_flags |= _UC_STACK;
822 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
823 }
824 
825 int
826 setucontext(struct lwp *l, const ucontext_t *ucp)
827 {
828 	struct proc *p = l->l_proc;
829 	int error;
830 
831 	KASSERT(mutex_owned(p->p_lock));
832 
833 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
834 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
835 		if (error != 0)
836 			return error;
837 	}
838 
839 	mutex_exit(p->p_lock);
840 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
841 	mutex_enter(p->p_lock);
842 	if (error != 0)
843 		return (error);
844 
845 	l->l_ctxlink = ucp->uc_link;
846 
847 	/*
848 	 * If there was stack information, update whether or not we are
849 	 * still running on an alternate signal stack.
850 	 */
851 	if ((ucp->uc_flags & _UC_STACK) != 0) {
852 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
853 			l->l_sigstk.ss_flags |= SS_ONSTACK;
854 		else
855 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
856 	}
857 
858 	return 0;
859 }
860 
861 /*
862  * killpg1: common code for kill process group/broadcast kill.
863  */
864 int
865 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
866 {
867 	struct proc	*p, *cp;
868 	kauth_cred_t	pc;
869 	struct pgrp	*pgrp;
870 	int		nfound;
871 	int		signo = ksi->ksi_signo;
872 
873 	cp = l->l_proc;
874 	pc = l->l_cred;
875 	nfound = 0;
876 
877 	mutex_enter(proc_lock);
878 	if (all) {
879 		/*
880 		 * Broadcast.
881 		 */
882 		PROCLIST_FOREACH(p, &allproc) {
883 			if (p->p_pid <= 1 || p == cp ||
884 			    (p->p_flag & PK_SYSTEM) != 0)
885 				continue;
886 			mutex_enter(p->p_lock);
887 			if (kauth_authorize_process(pc,
888 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
889 			    NULL) == 0) {
890 				nfound++;
891 				if (signo)
892 					kpsignal2(p, ksi);
893 			}
894 			mutex_exit(p->p_lock);
895 		}
896 	} else {
897 		if (pgid == 0)
898 			/* Zero pgid means send to my process group. */
899 			pgrp = cp->p_pgrp;
900 		else {
901 			pgrp = pgrp_find(pgid);
902 			if (pgrp == NULL)
903 				goto out;
904 		}
905 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
906 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
907 				continue;
908 			mutex_enter(p->p_lock);
909 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
910 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
911 				nfound++;
912 				if (signo && P_ZOMBIE(p) == 0)
913 					kpsignal2(p, ksi);
914 			}
915 			mutex_exit(p->p_lock);
916 		}
917 	}
918 out:
919 	mutex_exit(proc_lock);
920 	return nfound ? 0 : ESRCH;
921 }
922 
923 /*
924  * Send a signal to a process group.  If checktty is set, limit to members
925  * which have a controlling terminal.
926  */
927 void
928 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
929 {
930 	ksiginfo_t ksi;
931 
932 	KASSERT(!cpu_intr_p());
933 	KASSERT(mutex_owned(proc_lock));
934 
935 	KSI_INIT_EMPTY(&ksi);
936 	ksi.ksi_signo = sig;
937 	kpgsignal(pgrp, &ksi, NULL, checkctty);
938 }
939 
940 void
941 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
942 {
943 	struct proc *p;
944 
945 	KASSERT(!cpu_intr_p());
946 	KASSERT(mutex_owned(proc_lock));
947 	KASSERT(pgrp != NULL);
948 
949 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
950 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
951 			kpsignal(p, ksi, data);
952 }
953 
954 /*
955  * Send a signal caused by a trap to the current LWP.  If it will be caught
956  * immediately, deliver it with correct code.  Otherwise, post it normally.
957  */
958 void
959 trapsignal(struct lwp *l, ksiginfo_t *ksi)
960 {
961 	struct proc	*p;
962 	struct sigacts	*ps;
963 	int signo = ksi->ksi_signo;
964 	sigset_t *mask;
965 
966 	KASSERT(KSI_TRAP_P(ksi));
967 
968 	ksi->ksi_lid = l->l_lid;
969 	p = l->l_proc;
970 
971 	KASSERT(!cpu_intr_p());
972 	mutex_enter(proc_lock);
973 	mutex_enter(p->p_lock);
974 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
975 	ps = p->p_sigacts;
976 	if ((p->p_slflag & PSL_TRACED) == 0 &&
977 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
978 	    !sigismember(mask, signo)) {
979 		mutex_exit(proc_lock);
980 		l->l_ru.ru_nsignals++;
981 		kpsendsig(l, ksi, mask);
982 		mutex_exit(p->p_lock);
983 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
984 	} else {
985 		/* XXX for core dump/debugger */
986 		p->p_sigctx.ps_lwp = l->l_lid;
987 		p->p_sigctx.ps_signo = ksi->ksi_signo;
988 		p->p_sigctx.ps_code = ksi->ksi_trap;
989 		kpsignal2(p, ksi);
990 		mutex_exit(p->p_lock);
991 		mutex_exit(proc_lock);
992 	}
993 }
994 
995 /*
996  * Fill in signal information and signal the parent for a child status change.
997  */
998 void
999 child_psignal(struct proc *p, int mask)
1000 {
1001 	ksiginfo_t ksi;
1002 	struct proc *q;
1003 	int xstat;
1004 
1005 	KASSERT(mutex_owned(proc_lock));
1006 	KASSERT(mutex_owned(p->p_lock));
1007 
1008 	xstat = p->p_xstat;
1009 
1010 	KSI_INIT(&ksi);
1011 	ksi.ksi_signo = SIGCHLD;
1012 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1013 	ksi.ksi_pid = p->p_pid;
1014 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1015 	ksi.ksi_status = xstat;
1016 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1017 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1018 
1019 	q = p->p_pptr;
1020 
1021 	mutex_exit(p->p_lock);
1022 	mutex_enter(q->p_lock);
1023 
1024 	if ((q->p_sflag & mask) == 0)
1025 		kpsignal2(q, &ksi);
1026 
1027 	mutex_exit(q->p_lock);
1028 	mutex_enter(p->p_lock);
1029 }
1030 
1031 void
1032 psignal(struct proc *p, int signo)
1033 {
1034 	ksiginfo_t ksi;
1035 
1036 	KASSERT(!cpu_intr_p());
1037 	KASSERT(mutex_owned(proc_lock));
1038 
1039 	KSI_INIT_EMPTY(&ksi);
1040 	ksi.ksi_signo = signo;
1041 	mutex_enter(p->p_lock);
1042 	kpsignal2(p, &ksi);
1043 	mutex_exit(p->p_lock);
1044 }
1045 
1046 void
1047 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1048 {
1049 	fdfile_t *ff;
1050 	file_t *fp;
1051 	fdtab_t *dt;
1052 
1053 	KASSERT(!cpu_intr_p());
1054 	KASSERT(mutex_owned(proc_lock));
1055 
1056 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1057 		size_t fd;
1058 		filedesc_t *fdp = p->p_fd;
1059 
1060 		/* XXXSMP locking */
1061 		ksi->ksi_fd = -1;
1062 		dt = fdp->fd_dt;
1063 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1064 			if ((ff = dt->dt_ff[fd]) == NULL)
1065 				continue;
1066 			if ((fp = ff->ff_file) == NULL)
1067 				continue;
1068 			if (fp->f_data == data) {
1069 				ksi->ksi_fd = fd;
1070 				break;
1071 			}
1072 		}
1073 	}
1074 	mutex_enter(p->p_lock);
1075 	kpsignal2(p, ksi);
1076 	mutex_exit(p->p_lock);
1077 }
1078 
1079 /*
1080  * sigismasked:
1081  *
1082  *	Returns true if signal is ignored or masked for the specified LWP.
1083  */
1084 int
1085 sigismasked(struct lwp *l, int sig)
1086 {
1087 	struct proc *p = l->l_proc;
1088 
1089 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1090 	    sigismember(&l->l_sigmask, sig)
1091 #if KERN_SA
1092 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1093 #endif /* KERN_SA */
1094 	    );
1095 }
1096 
1097 /*
1098  * sigpost:
1099  *
1100  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1101  *	be able to take the signal.
1102  */
1103 static int
1104 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1105 {
1106 	int rv, masked;
1107 	struct proc *p = l->l_proc;
1108 
1109 	KASSERT(mutex_owned(p->p_lock));
1110 
1111 	/*
1112 	 * If the LWP is on the way out, sigclear() will be busy draining all
1113 	 * pending signals.  Don't give it more.
1114 	 */
1115 	if (l->l_refcnt == 0)
1116 		return 0;
1117 
1118 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
1119 
1120 	/*
1121 	 * Have the LWP check for signals.  This ensures that even if no LWP
1122 	 * is found to take the signal immediately, it should be taken soon.
1123 	 */
1124 	lwp_lock(l);
1125 	l->l_flag |= LW_PENDSIG;
1126 
1127 	/*
1128 	 * When sending signals to SA processes, we first try to find an
1129 	 * idle VP to take it.
1130 	 */
1131 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1132 		lwp_unlock(l);
1133 		return 0;
1134 	}
1135 
1136 	/*
1137 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1138 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1139 	 */
1140 #if KERN_SA
1141 	if (p->p_sa != NULL)
1142 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1143 	else
1144 #endif
1145 		masked = sigismember(&l->l_sigmask, sig);
1146 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1147 		lwp_unlock(l);
1148 		return 0;
1149 	}
1150 
1151 	/*
1152 	 * If killing the process, make it run fast.
1153 	 */
1154 	if (__predict_false((prop & SA_KILL) != 0) &&
1155 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1156 		KASSERT(l->l_class == SCHED_OTHER);
1157 		lwp_changepri(l, MAXPRI_USER);
1158 	}
1159 
1160 	/*
1161 	 * If the LWP is running or on a run queue, then we win.  If it's
1162 	 * sleeping interruptably, wake it and make it take the signal.  If
1163 	 * the sleep isn't interruptable, then the chances are it will get
1164 	 * to see the signal soon anyhow.  If suspended, it can't take the
1165 	 * signal right now.  If it's LWP private or for all LWPs, save it
1166 	 * for later; otherwise punt.
1167 	 */
1168 	rv = 0;
1169 
1170 	switch (l->l_stat) {
1171 	case LSRUN:
1172 	case LSONPROC:
1173 		lwp_need_userret(l);
1174 		rv = 1;
1175 		break;
1176 
1177 	case LSSLEEP:
1178 		if ((l->l_flag & LW_SINTR) != 0) {
1179 			/* setrunnable() will release the lock. */
1180 			setrunnable(l);
1181 			return 1;
1182 		}
1183 		break;
1184 
1185 	case LSSUSPENDED:
1186 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1187 			/* lwp_continue() will release the lock. */
1188 			lwp_continue(l);
1189 			return 1;
1190 		}
1191 		break;
1192 
1193 	case LSSTOP:
1194 		if ((prop & SA_STOP) != 0)
1195 			break;
1196 
1197 		/*
1198 		 * If the LWP is stopped and we are sending a continue
1199 		 * signal, then start it again.
1200 		 */
1201 		if ((prop & SA_CONT) != 0) {
1202 			if (l->l_wchan != NULL) {
1203 				l->l_stat = LSSLEEP;
1204 				p->p_nrlwps++;
1205 				rv = 1;
1206 				break;
1207 			}
1208 			/* setrunnable() will release the lock. */
1209 			setrunnable(l);
1210 			return 1;
1211 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1212 			/* setrunnable() will release the lock. */
1213 			setrunnable(l);
1214 			return 1;
1215 		}
1216 		break;
1217 
1218 	default:
1219 		break;
1220 	}
1221 
1222 	lwp_unlock(l);
1223 	return rv;
1224 }
1225 
1226 /*
1227  * Notify an LWP that it has a pending signal.
1228  */
1229 void
1230 signotify(struct lwp *l)
1231 {
1232 	KASSERT(lwp_locked(l, NULL));
1233 
1234 	l->l_flag |= LW_PENDSIG;
1235 	lwp_need_userret(l);
1236 }
1237 
1238 /*
1239  * Find an LWP within process p that is waiting on signal ksi, and hand
1240  * it on.
1241  */
1242 static int
1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1244 {
1245 	struct lwp *l;
1246 	int signo;
1247 
1248 	KASSERT(mutex_owned(p->p_lock));
1249 
1250 	signo = ksi->ksi_signo;
1251 
1252 	if (ksi->ksi_lid != 0) {
1253 		/*
1254 		 * Signal came via _lwp_kill().  Find the LWP and see if
1255 		 * it's interested.
1256 		 */
1257 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1258 			return 0;
1259 		if (l->l_sigwaited == NULL ||
1260 		    !sigismember(&l->l_sigwaitset, signo))
1261 			return 0;
1262 	} else {
1263 		/*
1264 		 * Look for any LWP that may be interested.
1265 		 */
1266 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1267 			KASSERT(l->l_sigwaited != NULL);
1268 			if (sigismember(&l->l_sigwaitset, signo))
1269 				break;
1270 		}
1271 	}
1272 
1273 	if (l != NULL) {
1274 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1275 		l->l_sigwaited = NULL;
1276 		LIST_REMOVE(l, l_sigwaiter);
1277 		cv_signal(&l->l_sigcv);
1278 		return 1;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Send the signal to the process.  If the signal has an action, the action
1286  * is usually performed by the target process rather than the caller; we add
1287  * the signal to the set of pending signals for the process.
1288  *
1289  * Exceptions:
1290  *   o When a stop signal is sent to a sleeping process that takes the
1291  *     default action, the process is stopped without awakening it.
1292  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1293  *     regardless of the signal action (eg, blocked or ignored).
1294  *
1295  * Other ignored signals are discarded immediately.
1296  */
1297 void
1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1299 {
1300 	int prop, signo = ksi->ksi_signo;
1301 	struct sigacts *sa;
1302 	struct lwp *l;
1303 	ksiginfo_t *kp;
1304 	lwpid_t lid;
1305 	sig_t action;
1306 	bool toall;
1307 
1308 	KASSERT(!cpu_intr_p());
1309 	KASSERT(mutex_owned(proc_lock));
1310 	KASSERT(mutex_owned(p->p_lock));
1311 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1312 	KASSERT(signo > 0 && signo < NSIG);
1313 
1314 	/*
1315 	 * If the process is being created by fork, is a zombie or is
1316 	 * exiting, then just drop the signal here and bail out.
1317 	 */
1318 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1319 		return;
1320 
1321 	/*
1322 	 * Notify any interested parties of the signal.
1323 	 */
1324 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1325 
1326 	/*
1327 	 * Some signals including SIGKILL must act on the entire process.
1328 	 */
1329 	kp = NULL;
1330 	prop = sigprop[signo];
1331 	toall = ((prop & SA_TOALL) != 0);
1332 	lid = toall ? 0 : ksi->ksi_lid;
1333 
1334 	/*
1335 	 * If proc is traced, always give parent a chance.
1336 	 */
1337 	if (p->p_slflag & PSL_TRACED) {
1338 		action = SIG_DFL;
1339 
1340 		if (lid == 0) {
1341 			/*
1342 			 * If the process is being traced and the signal
1343 			 * is being caught, make sure to save any ksiginfo.
1344 			 */
1345 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1346 				return;
1347 			sigput(&p->p_sigpend, p, kp);
1348 		}
1349 	} else {
1350 		/*
1351 		 * If the signal was the result of a trap and is not being
1352 		 * caught, then reset it to default action so that the
1353 		 * process dumps core immediately.
1354 		 */
1355 		if (KSI_TRAP_P(ksi)) {
1356 			sa = p->p_sigacts;
1357 			mutex_enter(&sa->sa_mutex);
1358 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1359 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1360 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1361 			}
1362 			mutex_exit(&sa->sa_mutex);
1363 		}
1364 
1365 		/*
1366 		 * If the signal is being ignored, then drop it.  Note: we
1367 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1368 		 * SIG_IGN, action will be SIG_DFL here.
1369 		 */
1370 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1371 			return;
1372 
1373 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1374 			action = SIG_CATCH;
1375 		else {
1376 			action = SIG_DFL;
1377 
1378 			/*
1379 			 * If sending a tty stop signal to a member of an
1380 			 * orphaned process group, discard the signal here if
1381 			 * the action is default; don't stop the process below
1382 			 * if sleeping, and don't clear any pending SIGCONT.
1383 			 */
1384 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1385 				return;
1386 
1387 			if (prop & SA_KILL && p->p_nice > NZERO)
1388 				p->p_nice = NZERO;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If stopping or continuing a process, discard any pending
1394 	 * signals that would do the inverse.
1395 	 */
1396 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1397 		ksiginfoq_t kq;
1398 
1399 		ksiginfo_queue_init(&kq);
1400 		if ((prop & SA_CONT) != 0)
1401 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1402 		if ((prop & SA_STOP) != 0)
1403 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1404 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1405 	}
1406 
1407 	/*
1408 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1409 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1410 	 * the signal info.  The signal won't be processed further here.
1411 	 */
1412 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1413 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1414 	    sigunwait(p, ksi))
1415 		return;
1416 
1417 	/*
1418 	 * XXXSMP Should be allocated by the caller, we're holding locks
1419 	 * here.
1420 	 */
1421 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1422 		return;
1423 
1424 	/*
1425 	 * LWP private signals are easy - just find the LWP and post
1426 	 * the signal to it.
1427 	 */
1428 	if (lid != 0) {
1429 		l = lwp_find(p, lid);
1430 		if (l != NULL) {
1431 			sigput(&l->l_sigpend, p, kp);
1432 			membar_producer();
1433 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1434 		}
1435 		goto out;
1436 	}
1437 
1438 	/*
1439 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1440 	 * or for an SA process.
1441 	 */
1442 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1443 		if ((p->p_slflag & PSL_TRACED) != 0)
1444 			goto deliver;
1445 
1446 		/*
1447 		 * If SIGCONT is default (or ignored) and process is
1448 		 * asleep, we are finished; the process should not
1449 		 * be awakened.
1450 		 */
1451 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1452 			goto out;
1453 	} else {
1454 		/*
1455 		 * Process is stopped or stopping.
1456 		 * - If traced, then no action is needed, unless killing.
1457 		 * - Run the process only if sending SIGCONT or SIGKILL.
1458 		 */
1459 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1460 			goto out;
1461 		}
1462 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1463 			/*
1464 			 * Re-adjust p_nstopchild if the process wasn't
1465 			 * collected by its parent.
1466 			 */
1467 			p->p_stat = SACTIVE;
1468 			p->p_sflag &= ~PS_STOPPING;
1469 			if (!p->p_waited) {
1470 				p->p_pptr->p_nstopchild--;
1471 			}
1472 			if (p->p_slflag & PSL_TRACED) {
1473 				KASSERT(signo == SIGKILL);
1474 				goto deliver;
1475 			}
1476 			/*
1477 			 * Do not make signal pending if SIGCONT is default.
1478 			 *
1479 			 * If the process catches SIGCONT, let it handle the
1480 			 * signal itself (if waiting on event - process runs,
1481 			 * otherwise continues sleeping).
1482 			 */
1483 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1484 				KASSERT(signo != SIGKILL);
1485 				goto deliver;
1486 			}
1487 		} else if ((prop & SA_STOP) != 0) {
1488 			/*
1489 			 * Already stopped, don't need to stop again.
1490 			 * (If we did the shell could get confused.)
1491 			 */
1492 			goto out;
1493 		}
1494 	}
1495 	/*
1496 	 * Make signal pending.
1497 	 */
1498 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1499 	sigput(&p->p_sigpend, p, kp);
1500 
1501 deliver:
1502 	/*
1503 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1504 	 * visible on the per process list (for sigispending()).  This
1505 	 * is unlikely to be needed in practice, but...
1506 	 */
1507 	membar_producer();
1508 
1509 	/*
1510 	 * Try to find an LWP that can take the signal.
1511 	 */
1512 #if KERN_SA
1513 	if ((p->p_sa != NULL) && !toall) {
1514 		struct sadata_vp *vp;
1515 		/*
1516 		 * If we're in this delivery path, we are delivering a
1517 		 * signal that needs to go to one thread in the process.
1518 		 *
1519 		 * In the SA case, we try to find an idle LWP that can take
1520 		 * the signal.  If that fails, only then do we consider
1521 		 * interrupting active LWPs. Since the signal's going to
1522 		 * just one thread, we need only look at "blessed" lwps,
1523 		 * so scan the vps for them.
1524 		 */
1525 		l = NULL;
1526 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1527 			l = vp->savp_lwp;
1528 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1529 				break;
1530 		}
1531 
1532 		if (l == NULL) {
1533 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1534 				l = vp->savp_lwp;
1535 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1536 					break;
1537 			}
1538 		}
1539 		/* Delivered, skip next. */
1540 		goto out;
1541 	}
1542 #endif
1543 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1544 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1545 			break;
1546 	}
1547 out:
1548 	/*
1549 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1550 	 * with locks held.  The caller should take care of this.
1551 	 */
1552 	ksiginfo_free(kp);
1553 }
1554 
1555 void
1556 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1557 {
1558 	struct proc *p = l->l_proc;
1559 #ifdef KERN_SA
1560 	struct lwp *le, *li;
1561 	siginfo_t *si;
1562 	int f;
1563 #endif /* KERN_SA */
1564 
1565 	KASSERT(mutex_owned(p->p_lock));
1566 
1567 #ifdef KERN_SA
1568 	if (p->p_sflag & PS_SA) {
1569 		/* f indicates if we should clear LP_SA_NOBLOCK */
1570 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1571 		l->l_pflag |= LP_SA_NOBLOCK;
1572 
1573 		mutex_exit(p->p_lock);
1574 		/* XXXUPSXXX What if not on sa_vp? */
1575 		/*
1576 		 * WRS: I think it won't matter, beyond the
1577 		 * question of what exactly we do with a signal
1578 		 * to a blocked user thread. Also, we try hard to always
1579 		 * send signals to blessed lwps, so we would only send
1580 		 * to a non-blessed lwp under special circumstances.
1581 		 */
1582 		si = siginfo_alloc(PR_WAITOK);
1583 
1584 		si->_info = ksi->ksi_info;
1585 
1586 		/*
1587 		 * Figure out if we're the innocent victim or the main
1588 		 * perpitrator.
1589 		 */
1590 		le = li = NULL;
1591 		if (KSI_TRAP_P(ksi))
1592 			le = l;
1593 		else
1594 			li = l;
1595 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1596 		    sizeof(*si), si, siginfo_free) != 0) {
1597 			siginfo_free(si);
1598 #if 0
1599 			if (KSI_TRAP_P(ksi))
1600 				/* XXX What dowe do here? The signal
1601 				 * didn't make it
1602 				 */;
1603 #endif
1604 		}
1605 		l->l_pflag ^= f;
1606 		mutex_enter(p->p_lock);
1607 		return;
1608 	}
1609 #endif /* KERN_SA */
1610 
1611 	(*p->p_emul->e_sendsig)(ksi, mask);
1612 }
1613 
1614 /*
1615  * Stop any LWPs sleeping interruptably.
1616  */
1617 static void
1618 proc_stop_lwps(struct proc *p)
1619 {
1620 	struct lwp *l;
1621 
1622 	KASSERT(mutex_owned(p->p_lock));
1623 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1624 
1625 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1626 		lwp_lock(l);
1627 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1628 			l->l_stat = LSSTOP;
1629 			p->p_nrlwps--;
1630 		}
1631 		lwp_unlock(l);
1632 	}
1633 }
1634 
1635 /*
1636  * Finish stopping of a process.  Mark it stopped and notify the parent.
1637  *
1638  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1639  */
1640 static void
1641 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1642 {
1643 
1644 	KASSERT(mutex_owned(proc_lock));
1645 	KASSERT(mutex_owned(p->p_lock));
1646 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1647 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1648 
1649 	p->p_sflag &= ~PS_STOPPING;
1650 	p->p_stat = SSTOP;
1651 	p->p_waited = 0;
1652 	p->p_pptr->p_nstopchild++;
1653 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1654 		if (ppsig) {
1655 			/* child_psignal drops p_lock briefly. */
1656 			child_psignal(p, ppmask);
1657 		}
1658 		cv_broadcast(&p->p_pptr->p_waitcv);
1659 	}
1660 }
1661 
1662 /*
1663  * Stop the current process and switch away when being stopped or traced.
1664  */
1665 static void
1666 sigswitch(bool ppsig, int ppmask, int signo)
1667 {
1668 	struct lwp *l = curlwp;
1669 	struct proc *p = l->l_proc;
1670 	int biglocks;
1671 
1672 	KASSERT(mutex_owned(p->p_lock));
1673 	KASSERT(l->l_stat == LSONPROC);
1674 	KASSERT(p->p_nrlwps > 0);
1675 
1676 	/*
1677 	 * On entry we know that the process needs to stop.  If it's
1678 	 * the result of a 'sideways' stop signal that has been sourced
1679 	 * through issignal(), then stop other LWPs in the process too.
1680 	 */
1681 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1682 		KASSERT(signo != 0);
1683 		proc_stop(p, 1, signo);
1684 		KASSERT(p->p_nrlwps > 0);
1685 	}
1686 
1687 	/*
1688 	 * If we are the last live LWP, and the stop was a result of
1689 	 * a new signal, then signal the parent.
1690 	 */
1691 	if ((p->p_sflag & PS_STOPPING) != 0) {
1692 		if (!mutex_tryenter(proc_lock)) {
1693 			mutex_exit(p->p_lock);
1694 			mutex_enter(proc_lock);
1695 			mutex_enter(p->p_lock);
1696 		}
1697 
1698 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1699 			/*
1700 			 * Note that proc_stop_done() can drop
1701 			 * p->p_lock briefly.
1702 			 */
1703 			proc_stop_done(p, ppsig, ppmask);
1704 		}
1705 
1706 		mutex_exit(proc_lock);
1707 	}
1708 
1709 	/*
1710 	 * Unlock and switch away.
1711 	 */
1712 	KERNEL_UNLOCK_ALL(l, &biglocks);
1713 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1714 		p->p_nrlwps--;
1715 		lwp_lock(l);
1716 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1717 		l->l_stat = LSSTOP;
1718 		lwp_unlock(l);
1719 	}
1720 
1721 	mutex_exit(p->p_lock);
1722 	lwp_lock(l);
1723 	mi_switch(l);
1724 	KERNEL_LOCK(biglocks, l);
1725 	mutex_enter(p->p_lock);
1726 }
1727 
1728 /*
1729  * Check for a signal from the debugger.
1730  */
1731 static int
1732 sigchecktrace(void)
1733 {
1734 	struct lwp *l = curlwp;
1735 	struct proc *p = l->l_proc;
1736 	sigset_t *mask;
1737 	int signo;
1738 
1739 	KASSERT(mutex_owned(p->p_lock));
1740 
1741 	/* If there's a pending SIGKILL, process it immediately. */
1742 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1743 		return 0;
1744 
1745 	/*
1746 	 * If we are no longer being traced, or the parent didn't
1747 	 * give us a signal, or we're stopping, look for more signals.
1748 	 */
1749 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1750 	    (p->p_sflag & PS_STOPPING) != 0)
1751 		return 0;
1752 
1753 	/*
1754 	 * If the new signal is being masked, look for other signals.
1755 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1756 	 */
1757 	signo = p->p_xstat;
1758 	p->p_xstat = 0;
1759 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1760 	if (sigismember(mask, signo))
1761 		signo = 0;
1762 
1763 	return signo;
1764 }
1765 
1766 /*
1767  * If the current process has received a signal (should be caught or cause
1768  * termination, should interrupt current syscall), return the signal number.
1769  *
1770  * Stop signals with default action are processed immediately, then cleared;
1771  * they aren't returned.  This is checked after each entry to the system for
1772  * a syscall or trap.
1773  *
1774  * We will also return -1 if the process is exiting and the current LWP must
1775  * follow suit.
1776  */
1777 int
1778 issignal(struct lwp *l)
1779 {
1780 	struct proc *p;
1781 	int signo, prop;
1782 	sigpend_t *sp;
1783 	sigset_t ss;
1784 
1785 	p = l->l_proc;
1786 	sp = NULL;
1787 	signo = 0;
1788 
1789 	KASSERT(p == curproc);
1790 	KASSERT(mutex_owned(p->p_lock));
1791 
1792 	for (;;) {
1793 		/* Discard any signals that we have decided not to take. */
1794 		if (signo != 0) {
1795 			(void)sigget(sp, NULL, signo, NULL);
1796 		}
1797 
1798 		/* Bail out if we do not own the virtual processor */
1799 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1800 			break;
1801 
1802 		/*
1803 		 * If the process is stopped/stopping, then stop ourselves
1804 		 * now that we're on the kernel/userspace boundary.  When
1805 		 * we awaken, check for a signal from the debugger.
1806 		 */
1807 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1808 			sigswitch(true, PS_NOCLDSTOP, 0);
1809 			signo = sigchecktrace();
1810 		} else
1811 			signo = 0;
1812 
1813 		/* Signals from the debugger are "out of band". */
1814 		sp = NULL;
1815 
1816 		/*
1817 		 * If the debugger didn't provide a signal, find a pending
1818 		 * signal from our set.  Check per-LWP signals first, and
1819 		 * then per-process.
1820 		 */
1821 		if (signo == 0) {
1822 			sp = &l->l_sigpend;
1823 			ss = sp->sp_set;
1824 			if ((p->p_lflag & PL_PPWAIT) != 0)
1825 				sigminusset(&stopsigmask, &ss);
1826 			sigminusset(&l->l_sigmask, &ss);
1827 
1828 			if ((signo = firstsig(&ss)) == 0) {
1829 				sp = &p->p_sigpend;
1830 				ss = sp->sp_set;
1831 				if ((p->p_lflag & PL_PPWAIT) != 0)
1832 					sigminusset(&stopsigmask, &ss);
1833 				sigminusset(&l->l_sigmask, &ss);
1834 
1835 				if ((signo = firstsig(&ss)) == 0) {
1836 					/*
1837 					 * No signal pending - clear the
1838 					 * indicator and bail out.
1839 					 */
1840 					lwp_lock(l);
1841 					l->l_flag &= ~LW_PENDSIG;
1842 					lwp_unlock(l);
1843 					sp = NULL;
1844 					break;
1845 				}
1846 			}
1847 		}
1848 
1849 		/*
1850 		 * We should see pending but ignored signals only if
1851 		 * we are being traced.
1852 		 */
1853 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1854 		    (p->p_slflag & PSL_TRACED) == 0) {
1855 			/* Discard the signal. */
1856 			continue;
1857 		}
1858 
1859 		/*
1860 		 * If traced, always stop, and stay stopped until released
1861 		 * by the debugger.  If the our parent process is waiting
1862 		 * for us, don't hang as we could deadlock.
1863 		 */
1864 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1865 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1866 			/*
1867 			 * Take the signal, but don't remove it from the
1868 			 * siginfo queue, because the debugger can send
1869 			 * it later.
1870 			 */
1871 			if (sp)
1872 				sigdelset(&sp->sp_set, signo);
1873 			p->p_xstat = signo;
1874 
1875 			/* Emulation-specific handling of signal trace */
1876 			if (p->p_emul->e_tracesig == NULL ||
1877 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1878 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1879 				    signo);
1880 
1881 			/* Check for a signal from the debugger. */
1882 			if ((signo = sigchecktrace()) == 0)
1883 				continue;
1884 
1885 			/* Signals from the debugger are "out of band". */
1886 			sp = NULL;
1887 		}
1888 
1889 		prop = sigprop[signo];
1890 
1891 		/* XXX no siginfo? */
1892 		SDT_PROBE(proc,,,signal_handle, signo, 0,
1893 			SIGACTION(p, signo).sa_handler, 0, 0);
1894 
1895 		/*
1896 		 * Decide whether the signal should be returned.
1897 		 */
1898 		switch ((long)SIGACTION(p, signo).sa_handler) {
1899 		case (long)SIG_DFL:
1900 			/*
1901 			 * Don't take default actions on system processes.
1902 			 */
1903 			if (p->p_pid <= 1) {
1904 #ifdef DIAGNOSTIC
1905 				/*
1906 				 * Are you sure you want to ignore SIGSEGV
1907 				 * in init? XXX
1908 				 */
1909 				printf_nolog("Process (pid %d) got sig %d\n",
1910 				    p->p_pid, signo);
1911 #endif
1912 				continue;
1913 			}
1914 
1915 			/*
1916 			 * If there is a pending stop signal to process with
1917 			 * default action, stop here, then clear the signal.
1918 			 * However, if process is member of an orphaned
1919 			 * process group, ignore tty stop signals.
1920 			 */
1921 			if (prop & SA_STOP) {
1922 				/*
1923 				 * XXX Don't hold proc_lock for p_lflag,
1924 				 * but it's not a big deal.
1925 				 */
1926 				if (p->p_slflag & PSL_TRACED ||
1927 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1928 				    prop & SA_TTYSTOP)) {
1929 					/* Ignore the signal. */
1930 					continue;
1931 				}
1932 				/* Take the signal. */
1933 				(void)sigget(sp, NULL, signo, NULL);
1934 				p->p_xstat = signo;
1935 				signo = 0;
1936 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1937 			} else if (prop & SA_IGNORE) {
1938 				/*
1939 				 * Except for SIGCONT, shouldn't get here.
1940 				 * Default action is to ignore; drop it.
1941 				 */
1942 				continue;
1943 			}
1944 			break;
1945 
1946 		case (long)SIG_IGN:
1947 #ifdef DEBUG_ISSIGNAL
1948 			/*
1949 			 * Masking above should prevent us ever trying
1950 			 * to take action on an ignored signal other
1951 			 * than SIGCONT, unless process is traced.
1952 			 */
1953 			if ((prop & SA_CONT) == 0 &&
1954 			    (p->p_slflag & PSL_TRACED) == 0)
1955 				printf_nolog("issignal\n");
1956 #endif
1957 			continue;
1958 
1959 		default:
1960 			/*
1961 			 * This signal has an action, let postsig() process
1962 			 * it.
1963 			 */
1964 			break;
1965 		}
1966 
1967 		break;
1968 	}
1969 
1970 	l->l_sigpendset = sp;
1971 	return signo;
1972 }
1973 
1974 /*
1975  * Take the action for the specified signal
1976  * from the current set of pending signals.
1977  */
1978 void
1979 postsig(int signo)
1980 {
1981 	struct lwp	*l;
1982 	struct proc	*p;
1983 	struct sigacts	*ps;
1984 	sig_t		action;
1985 	sigset_t	*returnmask;
1986 	ksiginfo_t	ksi;
1987 
1988 	l = curlwp;
1989 	p = l->l_proc;
1990 	ps = p->p_sigacts;
1991 
1992 	KASSERT(mutex_owned(p->p_lock));
1993 	KASSERT(signo > 0);
1994 
1995 	/*
1996 	 * Set the new mask value and also defer further occurrences of this
1997 	 * signal.
1998 	 *
1999 	 * Special case: user has done a sigsuspend.  Here the current mask is
2000 	 * not of interest, but rather the mask from before the sigsuspend is
2001 	 * what we want restored after the signal processing is completed.
2002 	 */
2003 	if (l->l_sigrestore) {
2004 		returnmask = &l->l_sigoldmask;
2005 		l->l_sigrestore = 0;
2006 	} else
2007 		returnmask = &l->l_sigmask;
2008 
2009 	/*
2010 	 * Commit to taking the signal before releasing the mutex.
2011 	 */
2012 	action = SIGACTION_PS(ps, signo).sa_handler;
2013 	l->l_ru.ru_nsignals++;
2014 	if (l->l_sigpendset == NULL) {
2015 		/* From the debugger */
2016 		if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2017 			(void)siggetinfo(&p->p_sigpend, &ksi, signo);
2018 	} else
2019 		sigget(l->l_sigpendset, &ksi, signo, NULL);
2020 
2021 	if (ktrpoint(KTR_PSIG)) {
2022 		mutex_exit(p->p_lock);
2023 		ktrpsig(signo, action, returnmask, &ksi);
2024 		mutex_enter(p->p_lock);
2025 	}
2026 
2027 	if (action == SIG_DFL) {
2028 		/*
2029 		 * Default action, where the default is to kill
2030 		 * the process.  (Other cases were ignored above.)
2031 		 */
2032 		sigexit(l, signo);
2033 		return;
2034 	}
2035 
2036 	/*
2037 	 * If we get here, the signal must be caught.
2038 	 */
2039 #ifdef DIAGNOSTIC
2040 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2041 		panic("postsig action");
2042 #endif
2043 
2044 	kpsendsig(l, &ksi, returnmask);
2045 }
2046 
2047 /*
2048  * sendsig:
2049  *
2050  *	Default signal delivery method for NetBSD.
2051  */
2052 void
2053 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2054 {
2055 	struct sigacts *sa;
2056 	int sig;
2057 
2058 	sig = ksi->ksi_signo;
2059 	sa = curproc->p_sigacts;
2060 
2061 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2062 	case 0:
2063 	case 1:
2064 		/* Compat for 1.6 and earlier. */
2065 		if (sendsig_sigcontext_vec == NULL) {
2066 			break;
2067 		}
2068 		(*sendsig_sigcontext_vec)(ksi, mask);
2069 		return;
2070 	case 2:
2071 	case 3:
2072 		sendsig_siginfo(ksi, mask);
2073 		return;
2074 	default:
2075 		break;
2076 	}
2077 
2078 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2079 	sigexit(curlwp, SIGILL);
2080 }
2081 
2082 /*
2083  * sendsig_reset:
2084  *
2085  *	Reset the signal action.  Called from emulation specific sendsig()
2086  *	before unlocking to deliver the signal.
2087  */
2088 void
2089 sendsig_reset(struct lwp *l, int signo)
2090 {
2091 	struct proc *p = l->l_proc;
2092 	struct sigacts *ps = p->p_sigacts;
2093 	sigset_t *mask;
2094 
2095 	KASSERT(mutex_owned(p->p_lock));
2096 
2097 	p->p_sigctx.ps_lwp = 0;
2098 	p->p_sigctx.ps_code = 0;
2099 	p->p_sigctx.ps_signo = 0;
2100 
2101 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2102 
2103 	mutex_enter(&ps->sa_mutex);
2104 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2105 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2106 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2107 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2108 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2109 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2110 	}
2111 	mutex_exit(&ps->sa_mutex);
2112 }
2113 
2114 /*
2115  * Kill the current process for stated reason.
2116  */
2117 void
2118 killproc(struct proc *p, const char *why)
2119 {
2120 
2121 	KASSERT(mutex_owned(proc_lock));
2122 
2123 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2124 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2125 	psignal(p, SIGKILL);
2126 }
2127 
2128 /*
2129  * Force the current process to exit with the specified signal, dumping core
2130  * if appropriate.  We bypass the normal tests for masked and caught
2131  * signals, allowing unrecoverable failures to terminate the process without
2132  * changing signal state.  Mark the accounting record with the signal
2133  * termination.  If dumping core, save the signal number for the debugger.
2134  * Calls exit and does not return.
2135  */
2136 void
2137 sigexit(struct lwp *l, int signo)
2138 {
2139 	int exitsig, error, docore;
2140 	struct proc *p;
2141 	struct lwp *t;
2142 
2143 	p = l->l_proc;
2144 
2145 	KASSERT(mutex_owned(p->p_lock));
2146 	KERNEL_UNLOCK_ALL(l, NULL);
2147 
2148 	/*
2149 	 * Don't permit coredump() multiple times in the same process.
2150 	 * Call back into sigexit, where we will be suspended until
2151 	 * the deed is done.  Note that this is a recursive call, but
2152 	 * LW_WCORE will prevent us from coming back this way.
2153 	 */
2154 	if ((p->p_sflag & PS_WCORE) != 0) {
2155 		lwp_lock(l);
2156 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2157 		lwp_unlock(l);
2158 		mutex_exit(p->p_lock);
2159 		lwp_userret(l);
2160 		panic("sigexit 1");
2161 		/* NOTREACHED */
2162 	}
2163 
2164 	/* If process is already on the way out, then bail now. */
2165 	if ((p->p_sflag & PS_WEXIT) != 0) {
2166 		mutex_exit(p->p_lock);
2167 		lwp_exit(l);
2168 		panic("sigexit 2");
2169 		/* NOTREACHED */
2170 	}
2171 
2172 	/*
2173 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2174 	 * so that their registers are available long enough to be dumped.
2175  	 */
2176 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2177 		p->p_sflag |= PS_WCORE;
2178 		for (;;) {
2179 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2180 				lwp_lock(t);
2181 				if (t == l) {
2182 					t->l_flag &= ~LW_WSUSPEND;
2183 					lwp_unlock(t);
2184 					continue;
2185 				}
2186 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2187 				lwp_suspend(l, t);
2188 			}
2189 
2190 			if (p->p_nrlwps == 1)
2191 				break;
2192 
2193 			/*
2194 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2195 			 * for everyone else to stop before proceeding.
2196 			 */
2197 			p->p_nlwpwait++;
2198 			cv_broadcast(&p->p_lwpcv);
2199 			cv_wait(&p->p_lwpcv, p->p_lock);
2200 			p->p_nlwpwait--;
2201 		}
2202 	}
2203 
2204 	exitsig = signo;
2205 	p->p_acflag |= AXSIG;
2206 	p->p_sigctx.ps_signo = signo;
2207 
2208 	if (docore) {
2209 		mutex_exit(p->p_lock);
2210 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2211 			exitsig |= WCOREFLAG;
2212 
2213 		if (kern_logsigexit) {
2214 			int uid = l->l_cred ?
2215 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2216 
2217 			if (error)
2218 				log(LOG_INFO, lognocoredump, p->p_pid,
2219 				    p->p_comm, uid, signo, error);
2220 			else
2221 				log(LOG_INFO, logcoredump, p->p_pid,
2222 				    p->p_comm, uid, signo);
2223 		}
2224 
2225 #ifdef PAX_SEGVGUARD
2226 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2227 #endif /* PAX_SEGVGUARD */
2228 		/* Acquire the sched state mutex.  exit1() will release it. */
2229 		mutex_enter(p->p_lock);
2230 	}
2231 
2232 	/* No longer dumping core. */
2233 	p->p_sflag &= ~PS_WCORE;
2234 
2235 	exit1(l, W_EXITCODE(0, exitsig));
2236 	/* NOTREACHED */
2237 }
2238 
2239 /*
2240  * Put process 'p' into the stopped state and optionally, notify the parent.
2241  */
2242 void
2243 proc_stop(struct proc *p, int notify, int signo)
2244 {
2245 	struct lwp *l;
2246 
2247 	KASSERT(mutex_owned(p->p_lock));
2248 
2249 	/*
2250 	 * First off, set the stopping indicator and bring all sleeping
2251 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2252 	 * unlock between here and the p->p_nrlwps check below.
2253 	 */
2254 	p->p_sflag |= PS_STOPPING;
2255 	if (notify)
2256 		p->p_sflag |= PS_NOTIFYSTOP;
2257 	else
2258 		p->p_sflag &= ~PS_NOTIFYSTOP;
2259 	membar_producer();
2260 
2261 	proc_stop_lwps(p);
2262 
2263 	/*
2264 	 * If there are no LWPs available to take the signal, then we
2265 	 * signal the parent process immediately.  Otherwise, the last
2266 	 * LWP to stop will take care of it.
2267 	 */
2268 
2269 	if (p->p_nrlwps == 0) {
2270 		proc_stop_done(p, true, PS_NOCLDSTOP);
2271 	} else {
2272 		/*
2273 		 * Have the remaining LWPs come to a halt, and trigger
2274 		 * proc_stop_callout() to ensure that they do.
2275 		 */
2276 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2277 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2278 		callout_schedule(&proc_stop_ch, 1);
2279 	}
2280 }
2281 
2282 /*
2283  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2284  * but wait for them to come to a halt at the kernel-user boundary.  This is
2285  * to allow LWPs to release any locks that they may hold before stopping.
2286  *
2287  * Non-interruptable sleeps can be long, and there is the potential for an
2288  * LWP to begin sleeping interruptably soon after the process has been set
2289  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2290  * stopping, and so complete halt of the process and the return of status
2291  * information to the parent could be delayed indefinitely.
2292  *
2293  * To handle this race, proc_stop_callout() runs once per tick while there
2294  * are stopping processes in the system.  It sets LWPs that are sleeping
2295  * interruptably into the LSSTOP state.
2296  *
2297  * Note that we are not concerned about keeping all LWPs stopped while the
2298  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2299  * What we do need to ensure is that all LWPs in a stopping process have
2300  * stopped at least once, so that notification can be sent to the parent
2301  * process.
2302  */
2303 static void
2304 proc_stop_callout(void *cookie)
2305 {
2306 	bool more, restart;
2307 	struct proc *p;
2308 
2309 	(void)cookie;
2310 
2311 	do {
2312 		restart = false;
2313 		more = false;
2314 
2315 		mutex_enter(proc_lock);
2316 		PROCLIST_FOREACH(p, &allproc) {
2317 			mutex_enter(p->p_lock);
2318 
2319 			if ((p->p_sflag & PS_STOPPING) == 0) {
2320 				mutex_exit(p->p_lock);
2321 				continue;
2322 			}
2323 
2324 			/* Stop any LWPs sleeping interruptably. */
2325 			proc_stop_lwps(p);
2326 			if (p->p_nrlwps == 0) {
2327 				/*
2328 				 * We brought the process to a halt.
2329 				 * Mark it as stopped and notify the
2330 				 * parent.
2331 				 */
2332 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2333 					/*
2334 					 * Note that proc_stop_done() will
2335 					 * drop p->p_lock briefly.
2336 					 * Arrange to restart and check
2337 					 * all processes again.
2338 					 */
2339 					restart = true;
2340 				}
2341 				proc_stop_done(p, true, PS_NOCLDSTOP);
2342 			} else
2343 				more = true;
2344 
2345 			mutex_exit(p->p_lock);
2346 			if (restart)
2347 				break;
2348 		}
2349 		mutex_exit(proc_lock);
2350 	} while (restart);
2351 
2352 	/*
2353 	 * If we noted processes that are stopping but still have
2354 	 * running LWPs, then arrange to check again in 1 tick.
2355 	 */
2356 	if (more)
2357 		callout_schedule(&proc_stop_ch, 1);
2358 }
2359 
2360 /*
2361  * Given a process in state SSTOP, set the state back to SACTIVE and
2362  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2363  */
2364 void
2365 proc_unstop(struct proc *p)
2366 {
2367 	struct lwp *l;
2368 	int sig;
2369 
2370 	KASSERT(mutex_owned(proc_lock));
2371 	KASSERT(mutex_owned(p->p_lock));
2372 
2373 	p->p_stat = SACTIVE;
2374 	p->p_sflag &= ~PS_STOPPING;
2375 	sig = p->p_xstat;
2376 
2377 	if (!p->p_waited)
2378 		p->p_pptr->p_nstopchild--;
2379 
2380 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2381 		lwp_lock(l);
2382 		if (l->l_stat != LSSTOP) {
2383 			lwp_unlock(l);
2384 			continue;
2385 		}
2386 		if (l->l_wchan == NULL) {
2387 			setrunnable(l);
2388 			continue;
2389 		}
2390 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2391 			setrunnable(l);
2392 			sig = 0;
2393 		} else {
2394 			l->l_stat = LSSLEEP;
2395 			p->p_nrlwps++;
2396 			lwp_unlock(l);
2397 		}
2398 	}
2399 }
2400 
2401 static int
2402 filt_sigattach(struct knote *kn)
2403 {
2404 	struct proc *p = curproc;
2405 
2406 	kn->kn_obj = p;
2407 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2408 
2409 	mutex_enter(p->p_lock);
2410 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2411 	mutex_exit(p->p_lock);
2412 
2413 	return 0;
2414 }
2415 
2416 static void
2417 filt_sigdetach(struct knote *kn)
2418 {
2419 	struct proc *p = kn->kn_obj;
2420 
2421 	mutex_enter(p->p_lock);
2422 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2423 	mutex_exit(p->p_lock);
2424 }
2425 
2426 /*
2427  * Signal knotes are shared with proc knotes, so we apply a mask to
2428  * the hint in order to differentiate them from process hints.  This
2429  * could be avoided by using a signal-specific knote list, but probably
2430  * isn't worth the trouble.
2431  */
2432 static int
2433 filt_signal(struct knote *kn, long hint)
2434 {
2435 
2436 	if (hint & NOTE_SIGNAL) {
2437 		hint &= ~NOTE_SIGNAL;
2438 
2439 		if (kn->kn_id == hint)
2440 			kn->kn_data++;
2441 	}
2442 	return (kn->kn_data != 0);
2443 }
2444 
2445 const struct filterops sig_filtops = {
2446 	0, filt_sigattach, filt_sigdetach, filt_signal
2447 };
2448