1 /* $NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_compat_sunos.h" 77 #include "opt_compat_netbsd.h" 78 #include "opt_compat_netbsd32.h" 79 #include "opt_pax.h" 80 #include "opt_sa.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/systm.h> 87 #include <sys/wait.h> 88 #include <sys/ktrace.h> 89 #include <sys/syslog.h> 90 #include <sys/filedesc.h> 91 #include <sys/file.h> 92 #include <sys/pool.h> 93 #include <sys/ucontext.h> 94 #include <sys/sa.h> 95 #include <sys/savar.h> 96 #include <sys/exec.h> 97 #include <sys/kauth.h> 98 #include <sys/acct.h> 99 #include <sys/callout.h> 100 #include <sys/atomic.h> 101 #include <sys/cpu.h> 102 #include <sys/module.h> 103 #include <sys/sdt.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm_extern.h> 110 111 static pool_cache_t sigacts_cache __read_mostly; 112 static pool_cache_t ksiginfo_cache __read_mostly; 113 static callout_t proc_stop_ch __cacheline_aligned; 114 115 #ifdef KERN_SA 116 static pool_cache_t siginfo_cache; 117 #endif 118 119 sigset_t contsigmask __cacheline_aligned; 120 static sigset_t stopsigmask __cacheline_aligned; 121 sigset_t sigcantmask __cacheline_aligned; 122 123 static void ksiginfo_exechook(struct proc *, void *); 124 static void proc_stop_callout(void *); 125 static int sigchecktrace(void); 126 static int sigpost(struct lwp *, sig_t, int, int, int); 127 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 128 static int sigunwait(struct proc *, const ksiginfo_t *); 129 static void sigswitch(bool, int, int); 130 131 static void sigacts_poolpage_free(struct pool *, void *); 132 static void *sigacts_poolpage_alloc(struct pool *, int); 133 134 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 135 int (*coredump_vec)(struct lwp *, const char *) = 136 (int (*)(struct lwp *, const char *))enosys; 137 138 /* 139 * DTrace SDT provider definitions 140 */ 141 SDT_PROBE_DEFINE(proc,,,signal_send, 142 "struct lwp *", NULL, /* target thread */ 143 "struct proc *", NULL, /* target process */ 144 "int", NULL, /* signal */ 145 NULL, NULL, NULL, NULL); 146 SDT_PROBE_DEFINE(proc,,,signal_discard, 147 "struct lwp *", NULL, /* target thread */ 148 "struct proc *", NULL, /* target process */ 149 "int", NULL, /* signal */ 150 NULL, NULL, NULL, NULL); 151 SDT_PROBE_DEFINE(proc,,,signal_clear, 152 "int", NULL, /* signal */ 153 NULL, NULL, NULL, NULL, 154 NULL, NULL, NULL, NULL); 155 SDT_PROBE_DEFINE(proc,,,signal_handle, 156 "int", NULL, /* signal */ 157 "ksiginfo_t *", NULL, 158 "void (*)(void)", NULL, /* handler address */ 159 NULL, NULL, NULL, NULL); 160 161 162 static struct pool_allocator sigactspool_allocator = { 163 .pa_alloc = sigacts_poolpage_alloc, 164 .pa_free = sigacts_poolpage_free 165 }; 166 167 #ifdef DEBUG 168 int kern_logsigexit = 1; 169 #else 170 int kern_logsigexit = 0; 171 #endif 172 173 static const char logcoredump[] = 174 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 175 static const char lognocoredump[] = 176 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 177 178 static kauth_listener_t signal_listener; 179 180 static int 181 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 182 void *arg0, void *arg1, void *arg2, void *arg3) 183 { 184 struct proc *p; 185 int result, signum; 186 187 result = KAUTH_RESULT_DEFER; 188 p = arg0; 189 signum = (int)(unsigned long)arg1; 190 191 if (action != KAUTH_PROCESS_SIGNAL) 192 return result; 193 194 if (kauth_cred_uidmatch(cred, p->p_cred) || 195 (signum == SIGCONT && (curproc->p_session == p->p_session))) 196 result = KAUTH_RESULT_ALLOW; 197 198 return result; 199 } 200 201 /* 202 * signal_init: 203 * 204 * Initialize global signal-related data structures. 205 */ 206 void 207 signal_init(void) 208 { 209 210 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 211 212 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 213 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 214 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 215 #ifdef KERN_SA 216 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 217 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 218 #endif 219 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 220 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 221 222 exechook_establish(ksiginfo_exechook, NULL); 223 224 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 225 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 226 227 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 228 signal_listener_cb, NULL); 229 } 230 231 /* 232 * sigacts_poolpage_alloc: 233 * 234 * Allocate a page for the sigacts memory pool. 235 */ 236 static void * 237 sigacts_poolpage_alloc(struct pool *pp, int flags) 238 { 239 240 return (void *)uvm_km_alloc(kernel_map, 241 PAGE_SIZE * 2, PAGE_SIZE * 2, 242 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 243 | UVM_KMF_WIRED); 244 } 245 246 /* 247 * sigacts_poolpage_free: 248 * 249 * Free a page on behalf of the sigacts memory pool. 250 */ 251 static void 252 sigacts_poolpage_free(struct pool *pp, void *v) 253 { 254 255 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 256 } 257 258 /* 259 * sigactsinit: 260 * 261 * Create an initial sigacts structure, using the same signal state 262 * as of specified process. If 'share' is set, share the sigacts by 263 * holding a reference, otherwise just copy it from parent. 264 */ 265 struct sigacts * 266 sigactsinit(struct proc *pp, int share) 267 { 268 struct sigacts *ps = pp->p_sigacts, *ps2; 269 270 if (__predict_false(share)) { 271 atomic_inc_uint(&ps->sa_refcnt); 272 return ps; 273 } 274 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 275 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 276 ps2->sa_refcnt = 1; 277 278 mutex_enter(&ps->sa_mutex); 279 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 280 mutex_exit(&ps->sa_mutex); 281 return ps2; 282 } 283 284 /* 285 * sigactsunshare: 286 * 287 * Make this process not share its sigacts, maintaining all signal state. 288 */ 289 void 290 sigactsunshare(struct proc *p) 291 { 292 struct sigacts *ps, *oldps = p->p_sigacts; 293 294 if (__predict_true(oldps->sa_refcnt == 1)) 295 return; 296 297 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 298 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 299 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 300 ps->sa_refcnt = 1; 301 302 p->p_sigacts = ps; 303 sigactsfree(oldps); 304 } 305 306 /* 307 * sigactsfree; 308 * 309 * Release a sigacts structure. 310 */ 311 void 312 sigactsfree(struct sigacts *ps) 313 { 314 315 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 316 mutex_destroy(&ps->sa_mutex); 317 pool_cache_put(sigacts_cache, ps); 318 } 319 } 320 321 /* 322 * siginit: 323 * 324 * Initialize signal state for process 0; set to ignore signals that 325 * are ignored by default and disable the signal stack. Locking not 326 * required as the system is still cold. 327 */ 328 void 329 siginit(struct proc *p) 330 { 331 struct lwp *l; 332 struct sigacts *ps; 333 int signo, prop; 334 335 ps = p->p_sigacts; 336 sigemptyset(&contsigmask); 337 sigemptyset(&stopsigmask); 338 sigemptyset(&sigcantmask); 339 for (signo = 1; signo < NSIG; signo++) { 340 prop = sigprop[signo]; 341 if (prop & SA_CONT) 342 sigaddset(&contsigmask, signo); 343 if (prop & SA_STOP) 344 sigaddset(&stopsigmask, signo); 345 if (prop & SA_CANTMASK) 346 sigaddset(&sigcantmask, signo); 347 if (prop & SA_IGNORE && signo != SIGCONT) 348 sigaddset(&p->p_sigctx.ps_sigignore, signo); 349 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 350 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 351 } 352 sigemptyset(&p->p_sigctx.ps_sigcatch); 353 p->p_sflag &= ~PS_NOCLDSTOP; 354 355 ksiginfo_queue_init(&p->p_sigpend.sp_info); 356 sigemptyset(&p->p_sigpend.sp_set); 357 358 /* 359 * Reset per LWP state. 360 */ 361 l = LIST_FIRST(&p->p_lwps); 362 l->l_sigwaited = NULL; 363 l->l_sigstk.ss_flags = SS_DISABLE; 364 l->l_sigstk.ss_size = 0; 365 l->l_sigstk.ss_sp = 0; 366 ksiginfo_queue_init(&l->l_sigpend.sp_info); 367 sigemptyset(&l->l_sigpend.sp_set); 368 369 /* One reference. */ 370 ps->sa_refcnt = 1; 371 } 372 373 /* 374 * execsigs: 375 * 376 * Reset signals for an exec of the specified process. 377 */ 378 void 379 execsigs(struct proc *p) 380 { 381 struct sigacts *ps; 382 struct lwp *l; 383 int signo, prop; 384 sigset_t tset; 385 ksiginfoq_t kq; 386 387 KASSERT(p->p_nlwps == 1); 388 389 sigactsunshare(p); 390 ps = p->p_sigacts; 391 392 /* 393 * Reset caught signals. Held signals remain held through 394 * l->l_sigmask (unless they were caught, and are now ignored 395 * by default). 396 * 397 * No need to lock yet, the process has only one LWP and 398 * at this point the sigacts are private to the process. 399 */ 400 sigemptyset(&tset); 401 for (signo = 1; signo < NSIG; signo++) { 402 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 403 prop = sigprop[signo]; 404 if (prop & SA_IGNORE) { 405 if ((prop & SA_CONT) == 0) 406 sigaddset(&p->p_sigctx.ps_sigignore, 407 signo); 408 sigaddset(&tset, signo); 409 } 410 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 411 } 412 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 413 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 414 } 415 ksiginfo_queue_init(&kq); 416 417 mutex_enter(p->p_lock); 418 sigclearall(p, &tset, &kq); 419 sigemptyset(&p->p_sigctx.ps_sigcatch); 420 421 /* 422 * Reset no zombies if child dies flag as Solaris does. 423 */ 424 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 425 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 426 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 427 428 /* 429 * Reset per-LWP state. 430 */ 431 l = LIST_FIRST(&p->p_lwps); 432 l->l_sigwaited = NULL; 433 l->l_sigstk.ss_flags = SS_DISABLE; 434 l->l_sigstk.ss_size = 0; 435 l->l_sigstk.ss_sp = 0; 436 ksiginfo_queue_init(&l->l_sigpend.sp_info); 437 sigemptyset(&l->l_sigpend.sp_set); 438 mutex_exit(p->p_lock); 439 440 ksiginfo_queue_drain(&kq); 441 } 442 443 /* 444 * ksiginfo_exechook: 445 * 446 * Free all pending ksiginfo entries from a process on exec. 447 * Additionally, drain any unused ksiginfo structures in the 448 * system back to the pool. 449 * 450 * XXX This should not be a hook, every process has signals. 451 */ 452 static void 453 ksiginfo_exechook(struct proc *p, void *v) 454 { 455 ksiginfoq_t kq; 456 457 ksiginfo_queue_init(&kq); 458 459 mutex_enter(p->p_lock); 460 sigclearall(p, NULL, &kq); 461 mutex_exit(p->p_lock); 462 463 ksiginfo_queue_drain(&kq); 464 } 465 466 /* 467 * ksiginfo_alloc: 468 * 469 * Allocate a new ksiginfo structure from the pool, and optionally copy 470 * an existing one. If the existing ksiginfo_t is from the pool, and 471 * has not been queued somewhere, then just return it. Additionally, 472 * if the existing ksiginfo_t does not contain any information beyond 473 * the signal number, then just return it. 474 */ 475 ksiginfo_t * 476 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 477 { 478 ksiginfo_t *kp; 479 480 if (ok != NULL) { 481 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 482 KSI_FROMPOOL) 483 return ok; 484 if (KSI_EMPTY_P(ok)) 485 return ok; 486 } 487 488 kp = pool_cache_get(ksiginfo_cache, flags); 489 if (kp == NULL) { 490 #ifdef DIAGNOSTIC 491 printf("Out of memory allocating ksiginfo for pid %d\n", 492 p->p_pid); 493 #endif 494 return NULL; 495 } 496 497 if (ok != NULL) { 498 memcpy(kp, ok, sizeof(*kp)); 499 kp->ksi_flags &= ~KSI_QUEUED; 500 } else 501 KSI_INIT_EMPTY(kp); 502 503 kp->ksi_flags |= KSI_FROMPOOL; 504 505 return kp; 506 } 507 508 /* 509 * ksiginfo_free: 510 * 511 * If the given ksiginfo_t is from the pool and has not been queued, 512 * then free it. 513 */ 514 void 515 ksiginfo_free(ksiginfo_t *kp) 516 { 517 518 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 519 return; 520 pool_cache_put(ksiginfo_cache, kp); 521 } 522 523 /* 524 * ksiginfo_queue_drain: 525 * 526 * Drain a non-empty ksiginfo_t queue. 527 */ 528 void 529 ksiginfo_queue_drain0(ksiginfoq_t *kq) 530 { 531 ksiginfo_t *ksi; 532 533 KASSERT(!CIRCLEQ_EMPTY(kq)); 534 535 while (!CIRCLEQ_EMPTY(kq)) { 536 ksi = CIRCLEQ_FIRST(kq); 537 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 538 pool_cache_put(ksiginfo_cache, ksi); 539 } 540 } 541 542 static bool 543 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 544 { 545 ksiginfo_t *ksi; 546 547 if (sp == NULL) 548 goto out; 549 550 /* Find siginfo and copy it out. */ 551 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 552 if (ksi->ksi_signo != signo) 553 continue; 554 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 555 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 556 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 557 ksi->ksi_flags &= ~KSI_QUEUED; 558 if (out != NULL) { 559 memcpy(out, ksi, sizeof(*out)); 560 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 561 } 562 ksiginfo_free(ksi); /* XXXSMP */ 563 return true; 564 } 565 566 out: 567 /* If there is no siginfo, then manufacture it. */ 568 if (out != NULL) { 569 KSI_INIT(out); 570 out->ksi_info._signo = signo; 571 out->ksi_info._code = SI_NOINFO; 572 } 573 return false; 574 } 575 576 /* 577 * sigget: 578 * 579 * Fetch the first pending signal from a set. Optionally, also fetch 580 * or manufacture a ksiginfo element. Returns the number of the first 581 * pending signal, or zero. 582 */ 583 int 584 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 585 { 586 sigset_t tset; 587 588 /* If there's no pending set, the signal is from the debugger. */ 589 if (sp == NULL) 590 goto out; 591 592 /* Construct mask from signo, and 'mask'. */ 593 if (signo == 0) { 594 if (mask != NULL) { 595 tset = *mask; 596 __sigandset(&sp->sp_set, &tset); 597 } else 598 tset = sp->sp_set; 599 600 /* If there are no signals pending - return. */ 601 if ((signo = firstsig(&tset)) == 0) 602 goto out; 603 } else { 604 KASSERT(sigismember(&sp->sp_set, signo)); 605 } 606 607 sigdelset(&sp->sp_set, signo); 608 out: 609 (void)siggetinfo(sp, out, signo); 610 return signo; 611 } 612 613 /* 614 * sigput: 615 * 616 * Append a new ksiginfo element to the list of pending ksiginfo's. 617 */ 618 static void 619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 620 { 621 ksiginfo_t *kp; 622 623 KASSERT(mutex_owned(p->p_lock)); 624 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 625 626 sigaddset(&sp->sp_set, ksi->ksi_signo); 627 628 /* 629 * If there is no siginfo, we are done. 630 */ 631 if (KSI_EMPTY_P(ksi)) 632 return; 633 634 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 635 636 #ifdef notyet /* XXX: QUEUING */ 637 if (ksi->ksi_signo < SIGRTMIN) 638 #endif 639 { 640 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 641 if (kp->ksi_signo == ksi->ksi_signo) { 642 KSI_COPY(ksi, kp); 643 kp->ksi_flags |= KSI_QUEUED; 644 return; 645 } 646 } 647 } 648 649 ksi->ksi_flags |= KSI_QUEUED; 650 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 651 } 652 653 /* 654 * sigclear: 655 * 656 * Clear all pending signals in the specified set. 657 */ 658 void 659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 660 { 661 ksiginfo_t *ksi, *next; 662 663 if (mask == NULL) 664 sigemptyset(&sp->sp_set); 665 else 666 sigminusset(mask, &sp->sp_set); 667 668 ksi = CIRCLEQ_FIRST(&sp->sp_info); 669 for (; ksi != (void *)&sp->sp_info; ksi = next) { 670 next = CIRCLEQ_NEXT(ksi, ksi_list); 671 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 672 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 673 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 674 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 675 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 676 } 677 } 678 } 679 680 /* 681 * sigclearall: 682 * 683 * Clear all pending signals in the specified set from a process and 684 * its LWPs. 685 */ 686 void 687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 688 { 689 struct lwp *l; 690 691 KASSERT(mutex_owned(p->p_lock)); 692 693 sigclear(&p->p_sigpend, mask, kq); 694 695 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 696 sigclear(&l->l_sigpend, mask, kq); 697 } 698 } 699 700 /* 701 * sigispending: 702 * 703 * Return the first signal number if there are pending signals for the 704 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 705 * and that the signal has been posted to the appopriate queue before 706 * LW_PENDSIG is set. 707 */ 708 int 709 sigispending(struct lwp *l, int signo) 710 { 711 struct proc *p = l->l_proc; 712 sigset_t tset; 713 714 membar_consumer(); 715 716 tset = l->l_sigpend.sp_set; 717 sigplusset(&p->p_sigpend.sp_set, &tset); 718 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 719 sigminusset(&l->l_sigmask, &tset); 720 721 if (signo == 0) { 722 return firstsig(&tset); 723 } 724 return sigismember(&tset, signo) ? signo : 0; 725 } 726 727 #ifdef KERN_SA 728 729 /* 730 * siginfo_alloc: 731 * 732 * Allocate a new siginfo_t structure from the pool. 733 */ 734 siginfo_t * 735 siginfo_alloc(int flags) 736 { 737 738 return pool_cache_get(siginfo_cache, flags); 739 } 740 741 /* 742 * siginfo_free: 743 * 744 * Return a siginfo_t structure to the pool. 745 */ 746 void 747 siginfo_free(void *arg) 748 { 749 750 pool_cache_put(siginfo_cache, arg); 751 } 752 753 #endif 754 755 void 756 getucontext(struct lwp *l, ucontext_t *ucp) 757 { 758 struct proc *p = l->l_proc; 759 760 KASSERT(mutex_owned(p->p_lock)); 761 762 ucp->uc_flags = 0; 763 ucp->uc_link = l->l_ctxlink; 764 765 #if KERN_SA 766 if (p->p_sa != NULL) 767 ucp->uc_sigmask = p->p_sa->sa_sigmask; 768 else 769 #endif /* KERN_SA */ 770 ucp->uc_sigmask = l->l_sigmask; 771 ucp->uc_flags |= _UC_SIGMASK; 772 773 /* 774 * The (unsupplied) definition of the `current execution stack' 775 * in the System V Interface Definition appears to allow returning 776 * the main context stack. 777 */ 778 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 779 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 780 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 781 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 782 } else { 783 /* Simply copy alternate signal execution stack. */ 784 ucp->uc_stack = l->l_sigstk; 785 } 786 ucp->uc_flags |= _UC_STACK; 787 mutex_exit(p->p_lock); 788 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 789 mutex_enter(p->p_lock); 790 } 791 792 /* 793 * getucontext_sa: 794 * Get a ucontext_t for use in SA upcall generation. 795 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 796 * fudge things with uc_link (which is usually NULL for libpthread 797 * code), and 3) we report an empty signal mask. 798 */ 799 void 800 getucontext_sa(struct lwp *l, ucontext_t *ucp) 801 { 802 ucp->uc_flags = 0; 803 ucp->uc_link = l->l_ctxlink; 804 805 sigemptyset(&ucp->uc_sigmask); 806 ucp->uc_flags |= _UC_SIGMASK; 807 808 /* 809 * The (unsupplied) definition of the `current execution stack' 810 * in the System V Interface Definition appears to allow returning 811 * the main context stack. 812 */ 813 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 814 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 815 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 816 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 817 } else { 818 /* Simply copy alternate signal execution stack. */ 819 ucp->uc_stack = l->l_sigstk; 820 } 821 ucp->uc_flags |= _UC_STACK; 822 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 823 } 824 825 int 826 setucontext(struct lwp *l, const ucontext_t *ucp) 827 { 828 struct proc *p = l->l_proc; 829 int error; 830 831 KASSERT(mutex_owned(p->p_lock)); 832 833 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 834 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 835 if (error != 0) 836 return error; 837 } 838 839 mutex_exit(p->p_lock); 840 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 841 mutex_enter(p->p_lock); 842 if (error != 0) 843 return (error); 844 845 l->l_ctxlink = ucp->uc_link; 846 847 /* 848 * If there was stack information, update whether or not we are 849 * still running on an alternate signal stack. 850 */ 851 if ((ucp->uc_flags & _UC_STACK) != 0) { 852 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 853 l->l_sigstk.ss_flags |= SS_ONSTACK; 854 else 855 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 856 } 857 858 return 0; 859 } 860 861 /* 862 * killpg1: common code for kill process group/broadcast kill. 863 */ 864 int 865 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 866 { 867 struct proc *p, *cp; 868 kauth_cred_t pc; 869 struct pgrp *pgrp; 870 int nfound; 871 int signo = ksi->ksi_signo; 872 873 cp = l->l_proc; 874 pc = l->l_cred; 875 nfound = 0; 876 877 mutex_enter(proc_lock); 878 if (all) { 879 /* 880 * Broadcast. 881 */ 882 PROCLIST_FOREACH(p, &allproc) { 883 if (p->p_pid <= 1 || p == cp || 884 (p->p_flag & PK_SYSTEM) != 0) 885 continue; 886 mutex_enter(p->p_lock); 887 if (kauth_authorize_process(pc, 888 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 889 NULL) == 0) { 890 nfound++; 891 if (signo) 892 kpsignal2(p, ksi); 893 } 894 mutex_exit(p->p_lock); 895 } 896 } else { 897 if (pgid == 0) 898 /* Zero pgid means send to my process group. */ 899 pgrp = cp->p_pgrp; 900 else { 901 pgrp = pgrp_find(pgid); 902 if (pgrp == NULL) 903 goto out; 904 } 905 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 906 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 907 continue; 908 mutex_enter(p->p_lock); 909 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 910 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 911 nfound++; 912 if (signo && P_ZOMBIE(p) == 0) 913 kpsignal2(p, ksi); 914 } 915 mutex_exit(p->p_lock); 916 } 917 } 918 out: 919 mutex_exit(proc_lock); 920 return nfound ? 0 : ESRCH; 921 } 922 923 /* 924 * Send a signal to a process group. If checktty is set, limit to members 925 * which have a controlling terminal. 926 */ 927 void 928 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 929 { 930 ksiginfo_t ksi; 931 932 KASSERT(!cpu_intr_p()); 933 KASSERT(mutex_owned(proc_lock)); 934 935 KSI_INIT_EMPTY(&ksi); 936 ksi.ksi_signo = sig; 937 kpgsignal(pgrp, &ksi, NULL, checkctty); 938 } 939 940 void 941 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 942 { 943 struct proc *p; 944 945 KASSERT(!cpu_intr_p()); 946 KASSERT(mutex_owned(proc_lock)); 947 KASSERT(pgrp != NULL); 948 949 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 950 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 951 kpsignal(p, ksi, data); 952 } 953 954 /* 955 * Send a signal caused by a trap to the current LWP. If it will be caught 956 * immediately, deliver it with correct code. Otherwise, post it normally. 957 */ 958 void 959 trapsignal(struct lwp *l, ksiginfo_t *ksi) 960 { 961 struct proc *p; 962 struct sigacts *ps; 963 int signo = ksi->ksi_signo; 964 sigset_t *mask; 965 966 KASSERT(KSI_TRAP_P(ksi)); 967 968 ksi->ksi_lid = l->l_lid; 969 p = l->l_proc; 970 971 KASSERT(!cpu_intr_p()); 972 mutex_enter(proc_lock); 973 mutex_enter(p->p_lock); 974 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 975 ps = p->p_sigacts; 976 if ((p->p_slflag & PSL_TRACED) == 0 && 977 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 978 !sigismember(mask, signo)) { 979 mutex_exit(proc_lock); 980 l->l_ru.ru_nsignals++; 981 kpsendsig(l, ksi, mask); 982 mutex_exit(p->p_lock); 983 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 984 } else { 985 /* XXX for core dump/debugger */ 986 p->p_sigctx.ps_lwp = l->l_lid; 987 p->p_sigctx.ps_signo = ksi->ksi_signo; 988 p->p_sigctx.ps_code = ksi->ksi_trap; 989 kpsignal2(p, ksi); 990 mutex_exit(p->p_lock); 991 mutex_exit(proc_lock); 992 } 993 } 994 995 /* 996 * Fill in signal information and signal the parent for a child status change. 997 */ 998 void 999 child_psignal(struct proc *p, int mask) 1000 { 1001 ksiginfo_t ksi; 1002 struct proc *q; 1003 int xstat; 1004 1005 KASSERT(mutex_owned(proc_lock)); 1006 KASSERT(mutex_owned(p->p_lock)); 1007 1008 xstat = p->p_xstat; 1009 1010 KSI_INIT(&ksi); 1011 ksi.ksi_signo = SIGCHLD; 1012 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 1013 ksi.ksi_pid = p->p_pid; 1014 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 1015 ksi.ksi_status = xstat; 1016 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 1017 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 1018 1019 q = p->p_pptr; 1020 1021 mutex_exit(p->p_lock); 1022 mutex_enter(q->p_lock); 1023 1024 if ((q->p_sflag & mask) == 0) 1025 kpsignal2(q, &ksi); 1026 1027 mutex_exit(q->p_lock); 1028 mutex_enter(p->p_lock); 1029 } 1030 1031 void 1032 psignal(struct proc *p, int signo) 1033 { 1034 ksiginfo_t ksi; 1035 1036 KASSERT(!cpu_intr_p()); 1037 KASSERT(mutex_owned(proc_lock)); 1038 1039 KSI_INIT_EMPTY(&ksi); 1040 ksi.ksi_signo = signo; 1041 mutex_enter(p->p_lock); 1042 kpsignal2(p, &ksi); 1043 mutex_exit(p->p_lock); 1044 } 1045 1046 void 1047 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1048 { 1049 fdfile_t *ff; 1050 file_t *fp; 1051 fdtab_t *dt; 1052 1053 KASSERT(!cpu_intr_p()); 1054 KASSERT(mutex_owned(proc_lock)); 1055 1056 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1057 size_t fd; 1058 filedesc_t *fdp = p->p_fd; 1059 1060 /* XXXSMP locking */ 1061 ksi->ksi_fd = -1; 1062 dt = fdp->fd_dt; 1063 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1064 if ((ff = dt->dt_ff[fd]) == NULL) 1065 continue; 1066 if ((fp = ff->ff_file) == NULL) 1067 continue; 1068 if (fp->f_data == data) { 1069 ksi->ksi_fd = fd; 1070 break; 1071 } 1072 } 1073 } 1074 mutex_enter(p->p_lock); 1075 kpsignal2(p, ksi); 1076 mutex_exit(p->p_lock); 1077 } 1078 1079 /* 1080 * sigismasked: 1081 * 1082 * Returns true if signal is ignored or masked for the specified LWP. 1083 */ 1084 int 1085 sigismasked(struct lwp *l, int sig) 1086 { 1087 struct proc *p = l->l_proc; 1088 1089 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1090 sigismember(&l->l_sigmask, sig) 1091 #if KERN_SA 1092 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1093 #endif /* KERN_SA */ 1094 ); 1095 } 1096 1097 /* 1098 * sigpost: 1099 * 1100 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1101 * be able to take the signal. 1102 */ 1103 static int 1104 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1105 { 1106 int rv, masked; 1107 struct proc *p = l->l_proc; 1108 1109 KASSERT(mutex_owned(p->p_lock)); 1110 1111 /* 1112 * If the LWP is on the way out, sigclear() will be busy draining all 1113 * pending signals. Don't give it more. 1114 */ 1115 if (l->l_refcnt == 0) 1116 return 0; 1117 1118 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1119 1120 /* 1121 * Have the LWP check for signals. This ensures that even if no LWP 1122 * is found to take the signal immediately, it should be taken soon. 1123 */ 1124 lwp_lock(l); 1125 l->l_flag |= LW_PENDSIG; 1126 1127 /* 1128 * When sending signals to SA processes, we first try to find an 1129 * idle VP to take it. 1130 */ 1131 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1132 lwp_unlock(l); 1133 return 0; 1134 } 1135 1136 /* 1137 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1138 * Note: SIGKILL and SIGSTOP cannot be masked. 1139 */ 1140 #if KERN_SA 1141 if (p->p_sa != NULL) 1142 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1143 else 1144 #endif 1145 masked = sigismember(&l->l_sigmask, sig); 1146 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1147 lwp_unlock(l); 1148 return 0; 1149 } 1150 1151 /* 1152 * If killing the process, make it run fast. 1153 */ 1154 if (__predict_false((prop & SA_KILL) != 0) && 1155 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1156 KASSERT(l->l_class == SCHED_OTHER); 1157 lwp_changepri(l, MAXPRI_USER); 1158 } 1159 1160 /* 1161 * If the LWP is running or on a run queue, then we win. If it's 1162 * sleeping interruptably, wake it and make it take the signal. If 1163 * the sleep isn't interruptable, then the chances are it will get 1164 * to see the signal soon anyhow. If suspended, it can't take the 1165 * signal right now. If it's LWP private or for all LWPs, save it 1166 * for later; otherwise punt. 1167 */ 1168 rv = 0; 1169 1170 switch (l->l_stat) { 1171 case LSRUN: 1172 case LSONPROC: 1173 lwp_need_userret(l); 1174 rv = 1; 1175 break; 1176 1177 case LSSLEEP: 1178 if ((l->l_flag & LW_SINTR) != 0) { 1179 /* setrunnable() will release the lock. */ 1180 setrunnable(l); 1181 return 1; 1182 } 1183 break; 1184 1185 case LSSUSPENDED: 1186 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1187 /* lwp_continue() will release the lock. */ 1188 lwp_continue(l); 1189 return 1; 1190 } 1191 break; 1192 1193 case LSSTOP: 1194 if ((prop & SA_STOP) != 0) 1195 break; 1196 1197 /* 1198 * If the LWP is stopped and we are sending a continue 1199 * signal, then start it again. 1200 */ 1201 if ((prop & SA_CONT) != 0) { 1202 if (l->l_wchan != NULL) { 1203 l->l_stat = LSSLEEP; 1204 p->p_nrlwps++; 1205 rv = 1; 1206 break; 1207 } 1208 /* setrunnable() will release the lock. */ 1209 setrunnable(l); 1210 return 1; 1211 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1212 /* setrunnable() will release the lock. */ 1213 setrunnable(l); 1214 return 1; 1215 } 1216 break; 1217 1218 default: 1219 break; 1220 } 1221 1222 lwp_unlock(l); 1223 return rv; 1224 } 1225 1226 /* 1227 * Notify an LWP that it has a pending signal. 1228 */ 1229 void 1230 signotify(struct lwp *l) 1231 { 1232 KASSERT(lwp_locked(l, NULL)); 1233 1234 l->l_flag |= LW_PENDSIG; 1235 lwp_need_userret(l); 1236 } 1237 1238 /* 1239 * Find an LWP within process p that is waiting on signal ksi, and hand 1240 * it on. 1241 */ 1242 static int 1243 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1244 { 1245 struct lwp *l; 1246 int signo; 1247 1248 KASSERT(mutex_owned(p->p_lock)); 1249 1250 signo = ksi->ksi_signo; 1251 1252 if (ksi->ksi_lid != 0) { 1253 /* 1254 * Signal came via _lwp_kill(). Find the LWP and see if 1255 * it's interested. 1256 */ 1257 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1258 return 0; 1259 if (l->l_sigwaited == NULL || 1260 !sigismember(&l->l_sigwaitset, signo)) 1261 return 0; 1262 } else { 1263 /* 1264 * Look for any LWP that may be interested. 1265 */ 1266 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1267 KASSERT(l->l_sigwaited != NULL); 1268 if (sigismember(&l->l_sigwaitset, signo)) 1269 break; 1270 } 1271 } 1272 1273 if (l != NULL) { 1274 l->l_sigwaited->ksi_info = ksi->ksi_info; 1275 l->l_sigwaited = NULL; 1276 LIST_REMOVE(l, l_sigwaiter); 1277 cv_signal(&l->l_sigcv); 1278 return 1; 1279 } 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Send the signal to the process. If the signal has an action, the action 1286 * is usually performed by the target process rather than the caller; we add 1287 * the signal to the set of pending signals for the process. 1288 * 1289 * Exceptions: 1290 * o When a stop signal is sent to a sleeping process that takes the 1291 * default action, the process is stopped without awakening it. 1292 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1293 * regardless of the signal action (eg, blocked or ignored). 1294 * 1295 * Other ignored signals are discarded immediately. 1296 */ 1297 void 1298 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1299 { 1300 int prop, signo = ksi->ksi_signo; 1301 struct sigacts *sa; 1302 struct lwp *l; 1303 ksiginfo_t *kp; 1304 lwpid_t lid; 1305 sig_t action; 1306 bool toall; 1307 1308 KASSERT(!cpu_intr_p()); 1309 KASSERT(mutex_owned(proc_lock)); 1310 KASSERT(mutex_owned(p->p_lock)); 1311 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1312 KASSERT(signo > 0 && signo < NSIG); 1313 1314 /* 1315 * If the process is being created by fork, is a zombie or is 1316 * exiting, then just drop the signal here and bail out. 1317 */ 1318 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1319 return; 1320 1321 /* 1322 * Notify any interested parties of the signal. 1323 */ 1324 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1325 1326 /* 1327 * Some signals including SIGKILL must act on the entire process. 1328 */ 1329 kp = NULL; 1330 prop = sigprop[signo]; 1331 toall = ((prop & SA_TOALL) != 0); 1332 lid = toall ? 0 : ksi->ksi_lid; 1333 1334 /* 1335 * If proc is traced, always give parent a chance. 1336 */ 1337 if (p->p_slflag & PSL_TRACED) { 1338 action = SIG_DFL; 1339 1340 if (lid == 0) { 1341 /* 1342 * If the process is being traced and the signal 1343 * is being caught, make sure to save any ksiginfo. 1344 */ 1345 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1346 return; 1347 sigput(&p->p_sigpend, p, kp); 1348 } 1349 } else { 1350 /* 1351 * If the signal was the result of a trap and is not being 1352 * caught, then reset it to default action so that the 1353 * process dumps core immediately. 1354 */ 1355 if (KSI_TRAP_P(ksi)) { 1356 sa = p->p_sigacts; 1357 mutex_enter(&sa->sa_mutex); 1358 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1359 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1360 SIGACTION(p, signo).sa_handler = SIG_DFL; 1361 } 1362 mutex_exit(&sa->sa_mutex); 1363 } 1364 1365 /* 1366 * If the signal is being ignored, then drop it. Note: we 1367 * don't set SIGCONT in ps_sigignore, and if it is set to 1368 * SIG_IGN, action will be SIG_DFL here. 1369 */ 1370 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1371 return; 1372 1373 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1374 action = SIG_CATCH; 1375 else { 1376 action = SIG_DFL; 1377 1378 /* 1379 * If sending a tty stop signal to a member of an 1380 * orphaned process group, discard the signal here if 1381 * the action is default; don't stop the process below 1382 * if sleeping, and don't clear any pending SIGCONT. 1383 */ 1384 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1385 return; 1386 1387 if (prop & SA_KILL && p->p_nice > NZERO) 1388 p->p_nice = NZERO; 1389 } 1390 } 1391 1392 /* 1393 * If stopping or continuing a process, discard any pending 1394 * signals that would do the inverse. 1395 */ 1396 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1397 ksiginfoq_t kq; 1398 1399 ksiginfo_queue_init(&kq); 1400 if ((prop & SA_CONT) != 0) 1401 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1402 if ((prop & SA_STOP) != 0) 1403 sigclear(&p->p_sigpend, &contsigmask, &kq); 1404 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1405 } 1406 1407 /* 1408 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1409 * please!), check if any LWPs are waiting on it. If yes, pass on 1410 * the signal info. The signal won't be processed further here. 1411 */ 1412 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1413 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1414 sigunwait(p, ksi)) 1415 return; 1416 1417 /* 1418 * XXXSMP Should be allocated by the caller, we're holding locks 1419 * here. 1420 */ 1421 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1422 return; 1423 1424 /* 1425 * LWP private signals are easy - just find the LWP and post 1426 * the signal to it. 1427 */ 1428 if (lid != 0) { 1429 l = lwp_find(p, lid); 1430 if (l != NULL) { 1431 sigput(&l->l_sigpend, p, kp); 1432 membar_producer(); 1433 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1434 } 1435 goto out; 1436 } 1437 1438 /* 1439 * Some signals go to all LWPs, even if posted with _lwp_kill() 1440 * or for an SA process. 1441 */ 1442 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1443 if ((p->p_slflag & PSL_TRACED) != 0) 1444 goto deliver; 1445 1446 /* 1447 * If SIGCONT is default (or ignored) and process is 1448 * asleep, we are finished; the process should not 1449 * be awakened. 1450 */ 1451 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1452 goto out; 1453 } else { 1454 /* 1455 * Process is stopped or stopping. 1456 * - If traced, then no action is needed, unless killing. 1457 * - Run the process only if sending SIGCONT or SIGKILL. 1458 */ 1459 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1460 goto out; 1461 } 1462 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1463 /* 1464 * Re-adjust p_nstopchild if the process wasn't 1465 * collected by its parent. 1466 */ 1467 p->p_stat = SACTIVE; 1468 p->p_sflag &= ~PS_STOPPING; 1469 if (!p->p_waited) { 1470 p->p_pptr->p_nstopchild--; 1471 } 1472 if (p->p_slflag & PSL_TRACED) { 1473 KASSERT(signo == SIGKILL); 1474 goto deliver; 1475 } 1476 /* 1477 * Do not make signal pending if SIGCONT is default. 1478 * 1479 * If the process catches SIGCONT, let it handle the 1480 * signal itself (if waiting on event - process runs, 1481 * otherwise continues sleeping). 1482 */ 1483 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1484 KASSERT(signo != SIGKILL); 1485 goto deliver; 1486 } 1487 } else if ((prop & SA_STOP) != 0) { 1488 /* 1489 * Already stopped, don't need to stop again. 1490 * (If we did the shell could get confused.) 1491 */ 1492 goto out; 1493 } 1494 } 1495 /* 1496 * Make signal pending. 1497 */ 1498 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1499 sigput(&p->p_sigpend, p, kp); 1500 1501 deliver: 1502 /* 1503 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1504 * visible on the per process list (for sigispending()). This 1505 * is unlikely to be needed in practice, but... 1506 */ 1507 membar_producer(); 1508 1509 /* 1510 * Try to find an LWP that can take the signal. 1511 */ 1512 #if KERN_SA 1513 if ((p->p_sa != NULL) && !toall) { 1514 struct sadata_vp *vp; 1515 /* 1516 * If we're in this delivery path, we are delivering a 1517 * signal that needs to go to one thread in the process. 1518 * 1519 * In the SA case, we try to find an idle LWP that can take 1520 * the signal. If that fails, only then do we consider 1521 * interrupting active LWPs. Since the signal's going to 1522 * just one thread, we need only look at "blessed" lwps, 1523 * so scan the vps for them. 1524 */ 1525 l = NULL; 1526 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1527 l = vp->savp_lwp; 1528 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1529 break; 1530 } 1531 1532 if (l == NULL) { 1533 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1534 l = vp->savp_lwp; 1535 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1536 break; 1537 } 1538 } 1539 /* Delivered, skip next. */ 1540 goto out; 1541 } 1542 #endif 1543 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1544 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1545 break; 1546 } 1547 out: 1548 /* 1549 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1550 * with locks held. The caller should take care of this. 1551 */ 1552 ksiginfo_free(kp); 1553 } 1554 1555 void 1556 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1557 { 1558 struct proc *p = l->l_proc; 1559 #ifdef KERN_SA 1560 struct lwp *le, *li; 1561 siginfo_t *si; 1562 int f; 1563 #endif /* KERN_SA */ 1564 1565 KASSERT(mutex_owned(p->p_lock)); 1566 1567 #ifdef KERN_SA 1568 if (p->p_sflag & PS_SA) { 1569 /* f indicates if we should clear LP_SA_NOBLOCK */ 1570 f = ~l->l_pflag & LP_SA_NOBLOCK; 1571 l->l_pflag |= LP_SA_NOBLOCK; 1572 1573 mutex_exit(p->p_lock); 1574 /* XXXUPSXXX What if not on sa_vp? */ 1575 /* 1576 * WRS: I think it won't matter, beyond the 1577 * question of what exactly we do with a signal 1578 * to a blocked user thread. Also, we try hard to always 1579 * send signals to blessed lwps, so we would only send 1580 * to a non-blessed lwp under special circumstances. 1581 */ 1582 si = siginfo_alloc(PR_WAITOK); 1583 1584 si->_info = ksi->ksi_info; 1585 1586 /* 1587 * Figure out if we're the innocent victim or the main 1588 * perpitrator. 1589 */ 1590 le = li = NULL; 1591 if (KSI_TRAP_P(ksi)) 1592 le = l; 1593 else 1594 li = l; 1595 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1596 sizeof(*si), si, siginfo_free) != 0) { 1597 siginfo_free(si); 1598 #if 0 1599 if (KSI_TRAP_P(ksi)) 1600 /* XXX What dowe do here? The signal 1601 * didn't make it 1602 */; 1603 #endif 1604 } 1605 l->l_pflag ^= f; 1606 mutex_enter(p->p_lock); 1607 return; 1608 } 1609 #endif /* KERN_SA */ 1610 1611 (*p->p_emul->e_sendsig)(ksi, mask); 1612 } 1613 1614 /* 1615 * Stop any LWPs sleeping interruptably. 1616 */ 1617 static void 1618 proc_stop_lwps(struct proc *p) 1619 { 1620 struct lwp *l; 1621 1622 KASSERT(mutex_owned(p->p_lock)); 1623 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1624 1625 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1626 lwp_lock(l); 1627 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1628 l->l_stat = LSSTOP; 1629 p->p_nrlwps--; 1630 } 1631 lwp_unlock(l); 1632 } 1633 } 1634 1635 /* 1636 * Finish stopping of a process. Mark it stopped and notify the parent. 1637 * 1638 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1639 */ 1640 static void 1641 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1642 { 1643 1644 KASSERT(mutex_owned(proc_lock)); 1645 KASSERT(mutex_owned(p->p_lock)); 1646 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1647 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1648 1649 p->p_sflag &= ~PS_STOPPING; 1650 p->p_stat = SSTOP; 1651 p->p_waited = 0; 1652 p->p_pptr->p_nstopchild++; 1653 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1654 if (ppsig) { 1655 /* child_psignal drops p_lock briefly. */ 1656 child_psignal(p, ppmask); 1657 } 1658 cv_broadcast(&p->p_pptr->p_waitcv); 1659 } 1660 } 1661 1662 /* 1663 * Stop the current process and switch away when being stopped or traced. 1664 */ 1665 static void 1666 sigswitch(bool ppsig, int ppmask, int signo) 1667 { 1668 struct lwp *l = curlwp; 1669 struct proc *p = l->l_proc; 1670 int biglocks; 1671 1672 KASSERT(mutex_owned(p->p_lock)); 1673 KASSERT(l->l_stat == LSONPROC); 1674 KASSERT(p->p_nrlwps > 0); 1675 1676 /* 1677 * On entry we know that the process needs to stop. If it's 1678 * the result of a 'sideways' stop signal that has been sourced 1679 * through issignal(), then stop other LWPs in the process too. 1680 */ 1681 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1682 KASSERT(signo != 0); 1683 proc_stop(p, 1, signo); 1684 KASSERT(p->p_nrlwps > 0); 1685 } 1686 1687 /* 1688 * If we are the last live LWP, and the stop was a result of 1689 * a new signal, then signal the parent. 1690 */ 1691 if ((p->p_sflag & PS_STOPPING) != 0) { 1692 if (!mutex_tryenter(proc_lock)) { 1693 mutex_exit(p->p_lock); 1694 mutex_enter(proc_lock); 1695 mutex_enter(p->p_lock); 1696 } 1697 1698 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1699 /* 1700 * Note that proc_stop_done() can drop 1701 * p->p_lock briefly. 1702 */ 1703 proc_stop_done(p, ppsig, ppmask); 1704 } 1705 1706 mutex_exit(proc_lock); 1707 } 1708 1709 /* 1710 * Unlock and switch away. 1711 */ 1712 KERNEL_UNLOCK_ALL(l, &biglocks); 1713 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1714 p->p_nrlwps--; 1715 lwp_lock(l); 1716 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1717 l->l_stat = LSSTOP; 1718 lwp_unlock(l); 1719 } 1720 1721 mutex_exit(p->p_lock); 1722 lwp_lock(l); 1723 mi_switch(l); 1724 KERNEL_LOCK(biglocks, l); 1725 mutex_enter(p->p_lock); 1726 } 1727 1728 /* 1729 * Check for a signal from the debugger. 1730 */ 1731 static int 1732 sigchecktrace(void) 1733 { 1734 struct lwp *l = curlwp; 1735 struct proc *p = l->l_proc; 1736 sigset_t *mask; 1737 int signo; 1738 1739 KASSERT(mutex_owned(p->p_lock)); 1740 1741 /* If there's a pending SIGKILL, process it immediately. */ 1742 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1743 return 0; 1744 1745 /* 1746 * If we are no longer being traced, or the parent didn't 1747 * give us a signal, or we're stopping, look for more signals. 1748 */ 1749 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 || 1750 (p->p_sflag & PS_STOPPING) != 0) 1751 return 0; 1752 1753 /* 1754 * If the new signal is being masked, look for other signals. 1755 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1756 */ 1757 signo = p->p_xstat; 1758 p->p_xstat = 0; 1759 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1760 if (sigismember(mask, signo)) 1761 signo = 0; 1762 1763 return signo; 1764 } 1765 1766 /* 1767 * If the current process has received a signal (should be caught or cause 1768 * termination, should interrupt current syscall), return the signal number. 1769 * 1770 * Stop signals with default action are processed immediately, then cleared; 1771 * they aren't returned. This is checked after each entry to the system for 1772 * a syscall or trap. 1773 * 1774 * We will also return -1 if the process is exiting and the current LWP must 1775 * follow suit. 1776 */ 1777 int 1778 issignal(struct lwp *l) 1779 { 1780 struct proc *p; 1781 int signo, prop; 1782 sigpend_t *sp; 1783 sigset_t ss; 1784 1785 p = l->l_proc; 1786 sp = NULL; 1787 signo = 0; 1788 1789 KASSERT(p == curproc); 1790 KASSERT(mutex_owned(p->p_lock)); 1791 1792 for (;;) { 1793 /* Discard any signals that we have decided not to take. */ 1794 if (signo != 0) { 1795 (void)sigget(sp, NULL, signo, NULL); 1796 } 1797 1798 /* Bail out if we do not own the virtual processor */ 1799 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1800 break; 1801 1802 /* 1803 * If the process is stopped/stopping, then stop ourselves 1804 * now that we're on the kernel/userspace boundary. When 1805 * we awaken, check for a signal from the debugger. 1806 */ 1807 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1808 sigswitch(true, PS_NOCLDSTOP, 0); 1809 signo = sigchecktrace(); 1810 } else 1811 signo = 0; 1812 1813 /* Signals from the debugger are "out of band". */ 1814 sp = NULL; 1815 1816 /* 1817 * If the debugger didn't provide a signal, find a pending 1818 * signal from our set. Check per-LWP signals first, and 1819 * then per-process. 1820 */ 1821 if (signo == 0) { 1822 sp = &l->l_sigpend; 1823 ss = sp->sp_set; 1824 if ((p->p_lflag & PL_PPWAIT) != 0) 1825 sigminusset(&stopsigmask, &ss); 1826 sigminusset(&l->l_sigmask, &ss); 1827 1828 if ((signo = firstsig(&ss)) == 0) { 1829 sp = &p->p_sigpend; 1830 ss = sp->sp_set; 1831 if ((p->p_lflag & PL_PPWAIT) != 0) 1832 sigminusset(&stopsigmask, &ss); 1833 sigminusset(&l->l_sigmask, &ss); 1834 1835 if ((signo = firstsig(&ss)) == 0) { 1836 /* 1837 * No signal pending - clear the 1838 * indicator and bail out. 1839 */ 1840 lwp_lock(l); 1841 l->l_flag &= ~LW_PENDSIG; 1842 lwp_unlock(l); 1843 sp = NULL; 1844 break; 1845 } 1846 } 1847 } 1848 1849 /* 1850 * We should see pending but ignored signals only if 1851 * we are being traced. 1852 */ 1853 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1854 (p->p_slflag & PSL_TRACED) == 0) { 1855 /* Discard the signal. */ 1856 continue; 1857 } 1858 1859 /* 1860 * If traced, always stop, and stay stopped until released 1861 * by the debugger. If the our parent process is waiting 1862 * for us, don't hang as we could deadlock. 1863 */ 1864 if ((p->p_slflag & PSL_TRACED) != 0 && 1865 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1866 /* 1867 * Take the signal, but don't remove it from the 1868 * siginfo queue, because the debugger can send 1869 * it later. 1870 */ 1871 if (sp) 1872 sigdelset(&sp->sp_set, signo); 1873 p->p_xstat = signo; 1874 1875 /* Emulation-specific handling of signal trace */ 1876 if (p->p_emul->e_tracesig == NULL || 1877 (*p->p_emul->e_tracesig)(p, signo) == 0) 1878 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1879 signo); 1880 1881 /* Check for a signal from the debugger. */ 1882 if ((signo = sigchecktrace()) == 0) 1883 continue; 1884 1885 /* Signals from the debugger are "out of band". */ 1886 sp = NULL; 1887 } 1888 1889 prop = sigprop[signo]; 1890 1891 /* XXX no siginfo? */ 1892 SDT_PROBE(proc,,,signal_handle, signo, 0, 1893 SIGACTION(p, signo).sa_handler, 0, 0); 1894 1895 /* 1896 * Decide whether the signal should be returned. 1897 */ 1898 switch ((long)SIGACTION(p, signo).sa_handler) { 1899 case (long)SIG_DFL: 1900 /* 1901 * Don't take default actions on system processes. 1902 */ 1903 if (p->p_pid <= 1) { 1904 #ifdef DIAGNOSTIC 1905 /* 1906 * Are you sure you want to ignore SIGSEGV 1907 * in init? XXX 1908 */ 1909 printf_nolog("Process (pid %d) got sig %d\n", 1910 p->p_pid, signo); 1911 #endif 1912 continue; 1913 } 1914 1915 /* 1916 * If there is a pending stop signal to process with 1917 * default action, stop here, then clear the signal. 1918 * However, if process is member of an orphaned 1919 * process group, ignore tty stop signals. 1920 */ 1921 if (prop & SA_STOP) { 1922 /* 1923 * XXX Don't hold proc_lock for p_lflag, 1924 * but it's not a big deal. 1925 */ 1926 if (p->p_slflag & PSL_TRACED || 1927 ((p->p_lflag & PL_ORPHANPG) != 0 && 1928 prop & SA_TTYSTOP)) { 1929 /* Ignore the signal. */ 1930 continue; 1931 } 1932 /* Take the signal. */ 1933 (void)sigget(sp, NULL, signo, NULL); 1934 p->p_xstat = signo; 1935 signo = 0; 1936 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1937 } else if (prop & SA_IGNORE) { 1938 /* 1939 * Except for SIGCONT, shouldn't get here. 1940 * Default action is to ignore; drop it. 1941 */ 1942 continue; 1943 } 1944 break; 1945 1946 case (long)SIG_IGN: 1947 #ifdef DEBUG_ISSIGNAL 1948 /* 1949 * Masking above should prevent us ever trying 1950 * to take action on an ignored signal other 1951 * than SIGCONT, unless process is traced. 1952 */ 1953 if ((prop & SA_CONT) == 0 && 1954 (p->p_slflag & PSL_TRACED) == 0) 1955 printf_nolog("issignal\n"); 1956 #endif 1957 continue; 1958 1959 default: 1960 /* 1961 * This signal has an action, let postsig() process 1962 * it. 1963 */ 1964 break; 1965 } 1966 1967 break; 1968 } 1969 1970 l->l_sigpendset = sp; 1971 return signo; 1972 } 1973 1974 /* 1975 * Take the action for the specified signal 1976 * from the current set of pending signals. 1977 */ 1978 void 1979 postsig(int signo) 1980 { 1981 struct lwp *l; 1982 struct proc *p; 1983 struct sigacts *ps; 1984 sig_t action; 1985 sigset_t *returnmask; 1986 ksiginfo_t ksi; 1987 1988 l = curlwp; 1989 p = l->l_proc; 1990 ps = p->p_sigacts; 1991 1992 KASSERT(mutex_owned(p->p_lock)); 1993 KASSERT(signo > 0); 1994 1995 /* 1996 * Set the new mask value and also defer further occurrences of this 1997 * signal. 1998 * 1999 * Special case: user has done a sigsuspend. Here the current mask is 2000 * not of interest, but rather the mask from before the sigsuspend is 2001 * what we want restored after the signal processing is completed. 2002 */ 2003 if (l->l_sigrestore) { 2004 returnmask = &l->l_sigoldmask; 2005 l->l_sigrestore = 0; 2006 } else 2007 returnmask = &l->l_sigmask; 2008 2009 /* 2010 * Commit to taking the signal before releasing the mutex. 2011 */ 2012 action = SIGACTION_PS(ps, signo).sa_handler; 2013 l->l_ru.ru_nsignals++; 2014 if (l->l_sigpendset == NULL) { 2015 /* From the debugger */ 2016 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 2017 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 2018 } else 2019 sigget(l->l_sigpendset, &ksi, signo, NULL); 2020 2021 if (ktrpoint(KTR_PSIG)) { 2022 mutex_exit(p->p_lock); 2023 ktrpsig(signo, action, returnmask, &ksi); 2024 mutex_enter(p->p_lock); 2025 } 2026 2027 if (action == SIG_DFL) { 2028 /* 2029 * Default action, where the default is to kill 2030 * the process. (Other cases were ignored above.) 2031 */ 2032 sigexit(l, signo); 2033 return; 2034 } 2035 2036 /* 2037 * If we get here, the signal must be caught. 2038 */ 2039 #ifdef DIAGNOSTIC 2040 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2041 panic("postsig action"); 2042 #endif 2043 2044 kpsendsig(l, &ksi, returnmask); 2045 } 2046 2047 /* 2048 * sendsig: 2049 * 2050 * Default signal delivery method for NetBSD. 2051 */ 2052 void 2053 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2054 { 2055 struct sigacts *sa; 2056 int sig; 2057 2058 sig = ksi->ksi_signo; 2059 sa = curproc->p_sigacts; 2060 2061 switch (sa->sa_sigdesc[sig].sd_vers) { 2062 case 0: 2063 case 1: 2064 /* Compat for 1.6 and earlier. */ 2065 if (sendsig_sigcontext_vec == NULL) { 2066 break; 2067 } 2068 (*sendsig_sigcontext_vec)(ksi, mask); 2069 return; 2070 case 2: 2071 case 3: 2072 sendsig_siginfo(ksi, mask); 2073 return; 2074 default: 2075 break; 2076 } 2077 2078 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2079 sigexit(curlwp, SIGILL); 2080 } 2081 2082 /* 2083 * sendsig_reset: 2084 * 2085 * Reset the signal action. Called from emulation specific sendsig() 2086 * before unlocking to deliver the signal. 2087 */ 2088 void 2089 sendsig_reset(struct lwp *l, int signo) 2090 { 2091 struct proc *p = l->l_proc; 2092 struct sigacts *ps = p->p_sigacts; 2093 sigset_t *mask; 2094 2095 KASSERT(mutex_owned(p->p_lock)); 2096 2097 p->p_sigctx.ps_lwp = 0; 2098 p->p_sigctx.ps_code = 0; 2099 p->p_sigctx.ps_signo = 0; 2100 2101 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2102 2103 mutex_enter(&ps->sa_mutex); 2104 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2105 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2106 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2107 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2108 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2109 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2110 } 2111 mutex_exit(&ps->sa_mutex); 2112 } 2113 2114 /* 2115 * Kill the current process for stated reason. 2116 */ 2117 void 2118 killproc(struct proc *p, const char *why) 2119 { 2120 2121 KASSERT(mutex_owned(proc_lock)); 2122 2123 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2124 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2125 psignal(p, SIGKILL); 2126 } 2127 2128 /* 2129 * Force the current process to exit with the specified signal, dumping core 2130 * if appropriate. We bypass the normal tests for masked and caught 2131 * signals, allowing unrecoverable failures to terminate the process without 2132 * changing signal state. Mark the accounting record with the signal 2133 * termination. If dumping core, save the signal number for the debugger. 2134 * Calls exit and does not return. 2135 */ 2136 void 2137 sigexit(struct lwp *l, int signo) 2138 { 2139 int exitsig, error, docore; 2140 struct proc *p; 2141 struct lwp *t; 2142 2143 p = l->l_proc; 2144 2145 KASSERT(mutex_owned(p->p_lock)); 2146 KERNEL_UNLOCK_ALL(l, NULL); 2147 2148 /* 2149 * Don't permit coredump() multiple times in the same process. 2150 * Call back into sigexit, where we will be suspended until 2151 * the deed is done. Note that this is a recursive call, but 2152 * LW_WCORE will prevent us from coming back this way. 2153 */ 2154 if ((p->p_sflag & PS_WCORE) != 0) { 2155 lwp_lock(l); 2156 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2157 lwp_unlock(l); 2158 mutex_exit(p->p_lock); 2159 lwp_userret(l); 2160 panic("sigexit 1"); 2161 /* NOTREACHED */ 2162 } 2163 2164 /* If process is already on the way out, then bail now. */ 2165 if ((p->p_sflag & PS_WEXIT) != 0) { 2166 mutex_exit(p->p_lock); 2167 lwp_exit(l); 2168 panic("sigexit 2"); 2169 /* NOTREACHED */ 2170 } 2171 2172 /* 2173 * Prepare all other LWPs for exit. If dumping core, suspend them 2174 * so that their registers are available long enough to be dumped. 2175 */ 2176 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2177 p->p_sflag |= PS_WCORE; 2178 for (;;) { 2179 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2180 lwp_lock(t); 2181 if (t == l) { 2182 t->l_flag &= ~LW_WSUSPEND; 2183 lwp_unlock(t); 2184 continue; 2185 } 2186 t->l_flag |= (LW_WCORE | LW_WEXIT); 2187 lwp_suspend(l, t); 2188 } 2189 2190 if (p->p_nrlwps == 1) 2191 break; 2192 2193 /* 2194 * Kick any LWPs sitting in lwp_wait1(), and wait 2195 * for everyone else to stop before proceeding. 2196 */ 2197 p->p_nlwpwait++; 2198 cv_broadcast(&p->p_lwpcv); 2199 cv_wait(&p->p_lwpcv, p->p_lock); 2200 p->p_nlwpwait--; 2201 } 2202 } 2203 2204 exitsig = signo; 2205 p->p_acflag |= AXSIG; 2206 p->p_sigctx.ps_signo = signo; 2207 2208 if (docore) { 2209 mutex_exit(p->p_lock); 2210 if ((error = (*coredump_vec)(l, NULL)) == 0) 2211 exitsig |= WCOREFLAG; 2212 2213 if (kern_logsigexit) { 2214 int uid = l->l_cred ? 2215 (int)kauth_cred_geteuid(l->l_cred) : -1; 2216 2217 if (error) 2218 log(LOG_INFO, lognocoredump, p->p_pid, 2219 p->p_comm, uid, signo, error); 2220 else 2221 log(LOG_INFO, logcoredump, p->p_pid, 2222 p->p_comm, uid, signo); 2223 } 2224 2225 #ifdef PAX_SEGVGUARD 2226 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2227 #endif /* PAX_SEGVGUARD */ 2228 /* Acquire the sched state mutex. exit1() will release it. */ 2229 mutex_enter(p->p_lock); 2230 } 2231 2232 /* No longer dumping core. */ 2233 p->p_sflag &= ~PS_WCORE; 2234 2235 exit1(l, W_EXITCODE(0, exitsig)); 2236 /* NOTREACHED */ 2237 } 2238 2239 /* 2240 * Put process 'p' into the stopped state and optionally, notify the parent. 2241 */ 2242 void 2243 proc_stop(struct proc *p, int notify, int signo) 2244 { 2245 struct lwp *l; 2246 2247 KASSERT(mutex_owned(p->p_lock)); 2248 2249 /* 2250 * First off, set the stopping indicator and bring all sleeping 2251 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2252 * unlock between here and the p->p_nrlwps check below. 2253 */ 2254 p->p_sflag |= PS_STOPPING; 2255 if (notify) 2256 p->p_sflag |= PS_NOTIFYSTOP; 2257 else 2258 p->p_sflag &= ~PS_NOTIFYSTOP; 2259 membar_producer(); 2260 2261 proc_stop_lwps(p); 2262 2263 /* 2264 * If there are no LWPs available to take the signal, then we 2265 * signal the parent process immediately. Otherwise, the last 2266 * LWP to stop will take care of it. 2267 */ 2268 2269 if (p->p_nrlwps == 0) { 2270 proc_stop_done(p, true, PS_NOCLDSTOP); 2271 } else { 2272 /* 2273 * Have the remaining LWPs come to a halt, and trigger 2274 * proc_stop_callout() to ensure that they do. 2275 */ 2276 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2277 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2278 callout_schedule(&proc_stop_ch, 1); 2279 } 2280 } 2281 2282 /* 2283 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2284 * but wait for them to come to a halt at the kernel-user boundary. This is 2285 * to allow LWPs to release any locks that they may hold before stopping. 2286 * 2287 * Non-interruptable sleeps can be long, and there is the potential for an 2288 * LWP to begin sleeping interruptably soon after the process has been set 2289 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2290 * stopping, and so complete halt of the process and the return of status 2291 * information to the parent could be delayed indefinitely. 2292 * 2293 * To handle this race, proc_stop_callout() runs once per tick while there 2294 * are stopping processes in the system. It sets LWPs that are sleeping 2295 * interruptably into the LSSTOP state. 2296 * 2297 * Note that we are not concerned about keeping all LWPs stopped while the 2298 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2299 * What we do need to ensure is that all LWPs in a stopping process have 2300 * stopped at least once, so that notification can be sent to the parent 2301 * process. 2302 */ 2303 static void 2304 proc_stop_callout(void *cookie) 2305 { 2306 bool more, restart; 2307 struct proc *p; 2308 2309 (void)cookie; 2310 2311 do { 2312 restart = false; 2313 more = false; 2314 2315 mutex_enter(proc_lock); 2316 PROCLIST_FOREACH(p, &allproc) { 2317 mutex_enter(p->p_lock); 2318 2319 if ((p->p_sflag & PS_STOPPING) == 0) { 2320 mutex_exit(p->p_lock); 2321 continue; 2322 } 2323 2324 /* Stop any LWPs sleeping interruptably. */ 2325 proc_stop_lwps(p); 2326 if (p->p_nrlwps == 0) { 2327 /* 2328 * We brought the process to a halt. 2329 * Mark it as stopped and notify the 2330 * parent. 2331 */ 2332 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2333 /* 2334 * Note that proc_stop_done() will 2335 * drop p->p_lock briefly. 2336 * Arrange to restart and check 2337 * all processes again. 2338 */ 2339 restart = true; 2340 } 2341 proc_stop_done(p, true, PS_NOCLDSTOP); 2342 } else 2343 more = true; 2344 2345 mutex_exit(p->p_lock); 2346 if (restart) 2347 break; 2348 } 2349 mutex_exit(proc_lock); 2350 } while (restart); 2351 2352 /* 2353 * If we noted processes that are stopping but still have 2354 * running LWPs, then arrange to check again in 1 tick. 2355 */ 2356 if (more) 2357 callout_schedule(&proc_stop_ch, 1); 2358 } 2359 2360 /* 2361 * Given a process in state SSTOP, set the state back to SACTIVE and 2362 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2363 */ 2364 void 2365 proc_unstop(struct proc *p) 2366 { 2367 struct lwp *l; 2368 int sig; 2369 2370 KASSERT(mutex_owned(proc_lock)); 2371 KASSERT(mutex_owned(p->p_lock)); 2372 2373 p->p_stat = SACTIVE; 2374 p->p_sflag &= ~PS_STOPPING; 2375 sig = p->p_xstat; 2376 2377 if (!p->p_waited) 2378 p->p_pptr->p_nstopchild--; 2379 2380 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2381 lwp_lock(l); 2382 if (l->l_stat != LSSTOP) { 2383 lwp_unlock(l); 2384 continue; 2385 } 2386 if (l->l_wchan == NULL) { 2387 setrunnable(l); 2388 continue; 2389 } 2390 if (sig && (l->l_flag & LW_SINTR) != 0) { 2391 setrunnable(l); 2392 sig = 0; 2393 } else { 2394 l->l_stat = LSSLEEP; 2395 p->p_nrlwps++; 2396 lwp_unlock(l); 2397 } 2398 } 2399 } 2400 2401 static int 2402 filt_sigattach(struct knote *kn) 2403 { 2404 struct proc *p = curproc; 2405 2406 kn->kn_obj = p; 2407 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2408 2409 mutex_enter(p->p_lock); 2410 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2411 mutex_exit(p->p_lock); 2412 2413 return 0; 2414 } 2415 2416 static void 2417 filt_sigdetach(struct knote *kn) 2418 { 2419 struct proc *p = kn->kn_obj; 2420 2421 mutex_enter(p->p_lock); 2422 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2423 mutex_exit(p->p_lock); 2424 } 2425 2426 /* 2427 * Signal knotes are shared with proc knotes, so we apply a mask to 2428 * the hint in order to differentiate them from process hints. This 2429 * could be avoided by using a signal-specific knote list, but probably 2430 * isn't worth the trouble. 2431 */ 2432 static int 2433 filt_signal(struct knote *kn, long hint) 2434 { 2435 2436 if (hint & NOTE_SIGNAL) { 2437 hint &= ~NOTE_SIGNAL; 2438 2439 if (kn->kn_id == hint) 2440 kn->kn_data++; 2441 } 2442 return (kn->kn_data != 0); 2443 } 2444 2445 const struct filterops sig_filtops = { 2446 0, filt_sigattach, filt_sigdetach, filt_signal 2447 }; 2448