xref: /netbsd-src/sys/kern/kern_sig.c (revision 96230fab84e26a6435963032070e916a951a8b2e)
1 /*	$NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/exec.h>
94 #include <sys/kauth.h>
95 #include <sys/acct.h>
96 #include <sys/callout.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99 
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103 
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106 
107 static void	ksiginfo_exechook(struct proc *, void *);
108 static void	proc_stop_callout(void *);
109 
110 int	sigunwait(struct proc *, const ksiginfo_t *);
111 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 int	sigpost(struct lwp *, sig_t, int, int, int);
113 int	sigchecktrace(sigpend_t **);
114 void	sigswitch(bool, int, int);
115 void	sigrealloc(ksiginfo_t *);
116 
117 sigset_t	contsigmask, stopsigmask, sigcantmask;
118 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
119 static void	sigacts_poolpage_free(struct pool *, void *);
120 static void	*sigacts_poolpage_alloc(struct pool *, int);
121 static callout_t proc_stop_ch;
122 static pool_cache_t siginfo_cache;
123 static pool_cache_t ksiginfo_cache;
124 
125 static struct pool_allocator sigactspool_allocator = {
126         .pa_alloc = sigacts_poolpage_alloc,
127 	.pa_free = sigacts_poolpage_free,
128 };
129 
130 #ifdef DEBUG
131 int	kern_logsigexit = 1;
132 #else
133 int	kern_logsigexit = 0;
134 #endif
135 
136 static	const char logcoredump[] =
137     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
138 static	const char lognocoredump[] =
139     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
140 
141 /*
142  * signal_init:
143  *
144  * 	Initialize global signal-related data structures.
145  */
146 void
147 signal_init(void)
148 {
149 
150 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
151 
152 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
153 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
154 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
155 
156 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
157 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
158 
159 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
160 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
161 
162 	exechook_establish(ksiginfo_exechook, NULL);
163 
164 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
165 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
166 }
167 
168 /*
169  * sigacts_poolpage_alloc:
170  *
171  *	 Allocate a page for the sigacts memory pool.
172  */
173 static void *
174 sigacts_poolpage_alloc(struct pool *pp, int flags)
175 {
176 
177 	return (void *)uvm_km_alloc(kernel_map,
178 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
179 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
180 	    | UVM_KMF_WIRED);
181 }
182 
183 /*
184  * sigacts_poolpage_free:
185  *
186  *	 Free a page on behalf of the sigacts memory pool.
187  */
188 static void
189 sigacts_poolpage_free(struct pool *pp, void *v)
190 {
191 
192         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
193 }
194 
195 /*
196  * sigactsinit:
197  *
198  *	 Create an initial sigctx structure, using the same signal state as
199  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
200  *	 copy it from parent.
201  */
202 struct sigacts *
203 sigactsinit(struct proc *pp, int share)
204 {
205 	struct sigacts *ps, *ps2;
206 
207 	ps = pp->p_sigacts;
208 
209 	if (share) {
210 		atomic_inc_uint(&ps->sa_refcnt);
211 		ps2 = ps;
212 	} else {
213 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
214 		/* XXXAD get rid of this */
215 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
216 		mutex_enter(&ps->sa_mutex);
217 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
218 		    sizeof(ps2->sa_sigdesc));
219 		mutex_exit(&ps->sa_mutex);
220 		ps2->sa_refcnt = 1;
221 	}
222 
223 	return ps2;
224 }
225 
226 /*
227  * sigactsunshare:
228  *
229  *	Make this process not share its sigctx, maintaining all
230  *	signal state.
231  */
232 void
233 sigactsunshare(struct proc *p)
234 {
235 	struct sigacts *ps, *oldps;
236 
237 	oldps = p->p_sigacts;
238 	if (oldps->sa_refcnt == 1)
239 		return;
240 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
241 	/* XXXAD get rid of this */
242 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
243 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
244 	p->p_sigacts = ps;
245 	sigactsfree(oldps);
246 }
247 
248 /*
249  * sigactsfree;
250  *
251  *	Release a sigctx structure.
252  */
253 void
254 sigactsfree(struct sigacts *ps)
255 {
256 
257 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
258 		mutex_destroy(&ps->sa_mutex);
259 		pool_cache_put(sigacts_cache, ps);
260 	}
261 }
262 
263 /*
264  * siginit:
265  *
266  *	Initialize signal state for process 0; set to ignore signals that
267  *	are ignored by default and disable the signal stack.  Locking not
268  *	required as the system is still cold.
269  */
270 void
271 siginit(struct proc *p)
272 {
273 	struct lwp *l;
274 	struct sigacts *ps;
275 	int signo, prop;
276 
277 	ps = p->p_sigacts;
278 	sigemptyset(&contsigmask);
279 	sigemptyset(&stopsigmask);
280 	sigemptyset(&sigcantmask);
281 	for (signo = 1; signo < NSIG; signo++) {
282 		prop = sigprop[signo];
283 		if (prop & SA_CONT)
284 			sigaddset(&contsigmask, signo);
285 		if (prop & SA_STOP)
286 			sigaddset(&stopsigmask, signo);
287 		if (prop & SA_CANTMASK)
288 			sigaddset(&sigcantmask, signo);
289 		if (prop & SA_IGNORE && signo != SIGCONT)
290 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
291 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
292 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
293 	}
294 	sigemptyset(&p->p_sigctx.ps_sigcatch);
295 	p->p_sflag &= ~PS_NOCLDSTOP;
296 
297 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
298 	sigemptyset(&p->p_sigpend.sp_set);
299 
300 	/*
301 	 * Reset per LWP state.
302 	 */
303 	l = LIST_FIRST(&p->p_lwps);
304 	l->l_sigwaited = NULL;
305 	l->l_sigstk.ss_flags = SS_DISABLE;
306 	l->l_sigstk.ss_size = 0;
307 	l->l_sigstk.ss_sp = 0;
308 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
309 	sigemptyset(&l->l_sigpend.sp_set);
310 
311 	/* One reference. */
312 	ps->sa_refcnt = 1;
313 }
314 
315 /*
316  * execsigs:
317  *
318  *	Reset signals for an exec of the specified process.
319  */
320 void
321 execsigs(struct proc *p)
322 {
323 	struct sigacts *ps;
324 	struct lwp *l;
325 	int signo, prop;
326 	sigset_t tset;
327 	ksiginfoq_t kq;
328 
329 	KASSERT(p->p_nlwps == 1);
330 
331 	sigactsunshare(p);
332 	ps = p->p_sigacts;
333 
334 	/*
335 	 * Reset caught signals.  Held signals remain held through
336 	 * l->l_sigmask (unless they were caught, and are now ignored
337 	 * by default).
338 	 *
339 	 * No need to lock yet, the process has only one LWP and
340 	 * at this point the sigacts are private to the process.
341 	 */
342 	sigemptyset(&tset);
343 	for (signo = 1; signo < NSIG; signo++) {
344 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
345 			prop = sigprop[signo];
346 			if (prop & SA_IGNORE) {
347 				if ((prop & SA_CONT) == 0)
348 					sigaddset(&p->p_sigctx.ps_sigignore,
349 					    signo);
350 				sigaddset(&tset, signo);
351 			}
352 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
353 		}
354 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
355 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
356 	}
357 	ksiginfo_queue_init(&kq);
358 
359 	mutex_enter(p->p_lock);
360 	sigclearall(p, &tset, &kq);
361 	sigemptyset(&p->p_sigctx.ps_sigcatch);
362 
363 	/*
364 	 * Reset no zombies if child dies flag as Solaris does.
365 	 */
366 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
367 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
368 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
369 
370 	/*
371 	 * Reset per-LWP state.
372 	 */
373 	l = LIST_FIRST(&p->p_lwps);
374 	l->l_sigwaited = NULL;
375 	l->l_sigstk.ss_flags = SS_DISABLE;
376 	l->l_sigstk.ss_size = 0;
377 	l->l_sigstk.ss_sp = 0;
378 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
379 	sigemptyset(&l->l_sigpend.sp_set);
380 	mutex_exit(p->p_lock);
381 
382 	ksiginfo_queue_drain(&kq);
383 }
384 
385 /*
386  * ksiginfo_exechook:
387  *
388  *	Free all pending ksiginfo entries from a process on exec.
389  *	Additionally, drain any unused ksiginfo structures in the
390  *	system back to the pool.
391  *
392  *	XXX This should not be a hook, every process has signals.
393  */
394 static void
395 ksiginfo_exechook(struct proc *p, void *v)
396 {
397 	ksiginfoq_t kq;
398 
399 	ksiginfo_queue_init(&kq);
400 
401 	mutex_enter(p->p_lock);
402 	sigclearall(p, NULL, &kq);
403 	mutex_exit(p->p_lock);
404 
405 	ksiginfo_queue_drain(&kq);
406 }
407 
408 /*
409  * ksiginfo_alloc:
410  *
411  *	Allocate a new ksiginfo structure from the pool, and optionally copy
412  *	an existing one.  If the existing ksiginfo_t is from the pool, and
413  *	has not been queued somewhere, then just return it.  Additionally,
414  *	if the existing ksiginfo_t does not contain any information beyond
415  *	the signal number, then just return it.
416  */
417 ksiginfo_t *
418 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
419 {
420 	ksiginfo_t *kp;
421 
422 	if (ok != NULL) {
423 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
424 		    KSI_FROMPOOL)
425 		    	return ok;
426 		if (KSI_EMPTY_P(ok))
427 			return ok;
428 	}
429 
430 	kp = pool_cache_get(ksiginfo_cache, flags);
431 	if (kp == NULL) {
432 #ifdef DIAGNOSTIC
433 		printf("Out of memory allocating ksiginfo for pid %d\n",
434 		    p->p_pid);
435 #endif
436 		return NULL;
437 	}
438 
439 	if (ok != NULL) {
440 		memcpy(kp, ok, sizeof(*kp));
441 		kp->ksi_flags &= ~KSI_QUEUED;
442 	} else
443 		KSI_INIT_EMPTY(kp);
444 
445 	kp->ksi_flags |= KSI_FROMPOOL;
446 
447 	return kp;
448 }
449 
450 /*
451  * ksiginfo_free:
452  *
453  *	If the given ksiginfo_t is from the pool and has not been queued,
454  *	then free it.
455  */
456 void
457 ksiginfo_free(ksiginfo_t *kp)
458 {
459 
460 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
461 		return;
462 	pool_cache_put(ksiginfo_cache, kp);
463 }
464 
465 /*
466  * ksiginfo_queue_drain:
467  *
468  *	Drain a non-empty ksiginfo_t queue.
469  */
470 void
471 ksiginfo_queue_drain0(ksiginfoq_t *kq)
472 {
473 	ksiginfo_t *ksi;
474 
475 	KASSERT(!CIRCLEQ_EMPTY(kq));
476 
477 	while (!CIRCLEQ_EMPTY(kq)) {
478 		ksi = CIRCLEQ_FIRST(kq);
479 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
480 		pool_cache_put(ksiginfo_cache, ksi);
481 	}
482 }
483 
484 /*
485  * sigget:
486  *
487  *	Fetch the first pending signal from a set.  Optionally, also fetch
488  *	or manufacture a ksiginfo element.  Returns the number of the first
489  *	pending signal, or zero.
490  */
491 int
492 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
493 {
494         ksiginfo_t *ksi;
495 	sigset_t tset;
496 
497 	/* If there's no pending set, the signal is from the debugger. */
498 	if (sp == NULL)
499 		goto out;
500 
501 	/* Construct mask from signo, and 'mask'. */
502 	if (signo == 0) {
503 		if (mask != NULL) {
504 			tset = *mask;
505 			__sigandset(&sp->sp_set, &tset);
506 		} else
507 			tset = sp->sp_set;
508 
509 		/* If there are no signals pending, that's it. */
510 		if ((signo = firstsig(&tset)) == 0)
511 			goto out;
512 	} else {
513 		KASSERT(sigismember(&sp->sp_set, signo));
514 	}
515 
516 	sigdelset(&sp->sp_set, signo);
517 
518 	/* Find siginfo and copy it out. */
519 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
520 		if (ksi->ksi_signo == signo) {
521 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
522 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
523 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
524 			ksi->ksi_flags &= ~KSI_QUEUED;
525 			if (out != NULL) {
526 				memcpy(out, ksi, sizeof(*out));
527 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
528 			}
529 			ksiginfo_free(ksi);
530 			return signo;
531 		}
532 	}
533 
534 out:
535 	/* If there's no siginfo, then manufacture it. */
536 	if (out != NULL) {
537 		KSI_INIT(out);
538 		out->ksi_info._signo = signo;
539 		out->ksi_info._code = SI_NOINFO;
540 	}
541 
542 	return signo;
543 }
544 
545 /*
546  * sigput:
547  *
548  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
549  *	we need to (e.g. SA_SIGINFO was requested).
550  */
551 void
552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
553 {
554 	ksiginfo_t *kp;
555 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
556 
557 	KASSERT(mutex_owned(p->p_lock));
558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559 
560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
561 
562 	/*
563 	 * If there is no siginfo, or is not required (and we don't add
564 	 * it for the benefit of ktrace, we are done).
565 	 */
566 	if (KSI_EMPTY_P(ksi) ||
567 	    (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
568 		return;
569 
570 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
571 
572 #ifdef notyet	/* XXX: QUEUING */
573 	if (ksi->ksi_signo < SIGRTMIN)
574 #endif
575 	{
576 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
577 			if (kp->ksi_signo == ksi->ksi_signo) {
578 				KSI_COPY(ksi, kp);
579 				kp->ksi_flags |= KSI_QUEUED;
580 				return;
581 			}
582 		}
583 	}
584 
585 	ksi->ksi_flags |= KSI_QUEUED;
586 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
587 }
588 
589 /*
590  * sigclear:
591  *
592  *	Clear all pending signals in the specified set.
593  */
594 void
595 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
596 {
597 	ksiginfo_t *ksi, *next;
598 
599 	if (mask == NULL)
600 		sigemptyset(&sp->sp_set);
601 	else
602 		sigminusset(mask, &sp->sp_set);
603 
604 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
605 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
606 		next = CIRCLEQ_NEXT(ksi, ksi_list);
607 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
608 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
609 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
610 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
611 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
612 		}
613 	}
614 }
615 
616 /*
617  * sigclearall:
618  *
619  *	Clear all pending signals in the specified set from a process and
620  *	its LWPs.
621  */
622 void
623 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
624 {
625 	struct lwp *l;
626 
627 	KASSERT(mutex_owned(p->p_lock));
628 
629 	sigclear(&p->p_sigpend, mask, kq);
630 
631 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
632 		sigclear(&l->l_sigpend, mask, kq);
633 	}
634 }
635 
636 /*
637  * sigispending:
638  *
639  *	Return true if there are pending signals for the current LWP.  May
640  *	be called unlocked provided that LW_PENDSIG is set, and that the
641  *	signal has been posted to the appopriate queue before LW_PENDSIG is
642  *	set.
643  */
644 int
645 sigispending(struct lwp *l, int signo)
646 {
647 	struct proc *p = l->l_proc;
648 	sigset_t tset;
649 
650 	membar_consumer();
651 
652 	tset = l->l_sigpend.sp_set;
653 	sigplusset(&p->p_sigpend.sp_set, &tset);
654 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
655 	sigminusset(&l->l_sigmask, &tset);
656 
657 	if (signo == 0) {
658 		if (firstsig(&tset) != 0)
659 			return EINTR;
660 	} else if (sigismember(&tset, signo))
661 		return EINTR;
662 
663 	return 0;
664 }
665 
666 /*
667  * siginfo_alloc:
668  *
669  *	 Allocate a new siginfo_t structure from the pool.
670  */
671 siginfo_t *
672 siginfo_alloc(int flags)
673 {
674 
675 	return pool_cache_get(siginfo_cache, flags);
676 }
677 
678 /*
679  * siginfo_free:
680  *
681  *	 Return a siginfo_t structure to the pool.
682  */
683 void
684 siginfo_free(void *arg)
685 {
686 
687 	pool_cache_put(siginfo_cache, arg);
688 }
689 
690 void
691 getucontext(struct lwp *l, ucontext_t *ucp)
692 {
693 	struct proc *p = l->l_proc;
694 
695 	KASSERT(mutex_owned(p->p_lock));
696 
697 	ucp->uc_flags = 0;
698 	ucp->uc_link = l->l_ctxlink;
699 
700 #if KERN_SA
701 	if (p->p_sa != NULL)
702 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
703 	else
704 #endif /* KERN_SA */
705 		ucp->uc_sigmask = l->l_sigmask;
706 	ucp->uc_flags |= _UC_SIGMASK;
707 
708 	/*
709 	 * The (unsupplied) definition of the `current execution stack'
710 	 * in the System V Interface Definition appears to allow returning
711 	 * the main context stack.
712 	 */
713 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
714 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
715 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
716 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
717 	} else {
718 		/* Simply copy alternate signal execution stack. */
719 		ucp->uc_stack = l->l_sigstk;
720 	}
721 	ucp->uc_flags |= _UC_STACK;
722 	mutex_exit(p->p_lock);
723 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
724 	mutex_enter(p->p_lock);
725 }
726 
727 /*
728  * getucontext_sa:
729  *      Get a ucontext_t for use in SA upcall generation.
730  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
731  * fudge things with uc_link (which is usually NULL for libpthread
732  * code), and 3) we report an empty signal mask.
733  */
734 void
735 getucontext_sa(struct lwp *l, ucontext_t *ucp)
736 {
737 	ucp->uc_flags = 0;
738 	ucp->uc_link = l->l_ctxlink;
739 
740 	sigemptyset(&ucp->uc_sigmask);
741 	ucp->uc_flags |= _UC_SIGMASK;
742 
743 	/*
744 	 * The (unsupplied) definition of the `current execution stack'
745 	 * in the System V Interface Definition appears to allow returning
746 	 * the main context stack.
747 	 */
748 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
749 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
750 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
751 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
752 	} else {
753 		/* Simply copy alternate signal execution stack. */
754 		ucp->uc_stack = l->l_sigstk;
755 	}
756 	ucp->uc_flags |= _UC_STACK;
757 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
758 }
759 
760 int
761 setucontext(struct lwp *l, const ucontext_t *ucp)
762 {
763 	struct proc *p = l->l_proc;
764 	int error;
765 
766 	KASSERT(mutex_owned(p->p_lock));
767 
768 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
769 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
770 		if (error != 0)
771 			return error;
772 	}
773 
774 	mutex_exit(p->p_lock);
775 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
776 	mutex_enter(p->p_lock);
777 	if (error != 0)
778 		return (error);
779 
780 	l->l_ctxlink = ucp->uc_link;
781 
782 	/*
783 	 * If there was stack information, update whether or not we are
784 	 * still running on an alternate signal stack.
785 	 */
786 	if ((ucp->uc_flags & _UC_STACK) != 0) {
787 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
788 			l->l_sigstk.ss_flags |= SS_ONSTACK;
789 		else
790 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
791 	}
792 
793 	return 0;
794 }
795 
796 /*
797  * Common code for kill process group/broadcast kill.  cp is calling
798  * process.
799  */
800 int
801 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
802 {
803 	struct proc	*p, *cp;
804 	kauth_cred_t	pc;
805 	struct pgrp	*pgrp;
806 	int		nfound;
807 	int		signo = ksi->ksi_signo;
808 
809 	cp = l->l_proc;
810 	pc = l->l_cred;
811 	nfound = 0;
812 
813 	mutex_enter(proc_lock);
814 	if (all) {
815 		/*
816 		 * broadcast
817 		 */
818 		PROCLIST_FOREACH(p, &allproc) {
819 			if (p->p_pid <= 1 || p == cp ||
820 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
821 				continue;
822 			mutex_enter(p->p_lock);
823 			if (kauth_authorize_process(pc,
824 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
825 			    NULL) == 0) {
826 				nfound++;
827 				if (signo)
828 					kpsignal2(p, ksi);
829 			}
830 			mutex_exit(p->p_lock);
831 		}
832 	} else {
833 		if (pgid == 0)
834 			/*
835 			 * zero pgid means send to my process group.
836 			 */
837 			pgrp = cp->p_pgrp;
838 		else {
839 			pgrp = pg_find(pgid, PFIND_LOCKED);
840 			if (pgrp == NULL)
841 				goto out;
842 		}
843 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
844 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
845 				continue;
846 			mutex_enter(p->p_lock);
847 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
848 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
849 				nfound++;
850 				if (signo && P_ZOMBIE(p) == 0)
851 					kpsignal2(p, ksi);
852 			}
853 			mutex_exit(p->p_lock);
854 		}
855 	}
856   out:
857 	mutex_exit(proc_lock);
858 	return (nfound ? 0 : ESRCH);
859 }
860 
861 /*
862  * Send a signal to a process group. If checktty is 1, limit to members
863  * which have a controlling terminal.
864  */
865 void
866 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
867 {
868 	ksiginfo_t ksi;
869 
870 	KASSERT(!cpu_intr_p());
871 	KASSERT(mutex_owned(proc_lock));
872 
873 	KSI_INIT_EMPTY(&ksi);
874 	ksi.ksi_signo = sig;
875 	kpgsignal(pgrp, &ksi, NULL, checkctty);
876 }
877 
878 void
879 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
880 {
881 	struct proc *p;
882 
883 	KASSERT(!cpu_intr_p());
884 	KASSERT(mutex_owned(proc_lock));
885 
886 	if (pgrp)
887 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
888 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
889 				kpsignal(p, ksi, data);
890 }
891 
892 /*
893  * Send a signal caused by a trap to the current LWP.  If it will be caught
894  * immediately, deliver it with correct code.  Otherwise, post it normally.
895  */
896 void
897 trapsignal(struct lwp *l, ksiginfo_t *ksi)
898 {
899 	struct proc	*p;
900 	struct sigacts	*ps;
901 	int signo = ksi->ksi_signo;
902 	sigset_t *mask;
903 
904 	KASSERT(KSI_TRAP_P(ksi));
905 
906 	ksi->ksi_lid = l->l_lid;
907 	p = l->l_proc;
908 
909 	KASSERT(!cpu_intr_p());
910 	mutex_enter(proc_lock);
911 	mutex_enter(p->p_lock);
912 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
913 	ps = p->p_sigacts;
914 	if ((p->p_slflag & PSL_TRACED) == 0 &&
915 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
916 	    !sigismember(mask, signo)) {
917 		mutex_exit(proc_lock);
918 		l->l_ru.ru_nsignals++;
919 		kpsendsig(l, ksi, mask);
920 		mutex_exit(p->p_lock);
921 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
922 		    mask, ksi);
923 	} else {
924 		/* XXX for core dump/debugger */
925 		p->p_sigctx.ps_lwp = l->l_lid;
926 		p->p_sigctx.ps_signo = ksi->ksi_signo;
927 		p->p_sigctx.ps_code = ksi->ksi_trap;
928 		kpsignal2(p, ksi);
929 		mutex_exit(p->p_lock);
930 		mutex_exit(proc_lock);
931 	}
932 }
933 
934 /*
935  * Fill in signal information and signal the parent for a child status change.
936  */
937 void
938 child_psignal(struct proc *p, int mask)
939 {
940 	ksiginfo_t ksi;
941 	struct proc *q;
942 	int xstat;
943 
944 	KASSERT(mutex_owned(proc_lock));
945 	KASSERT(mutex_owned(p->p_lock));
946 
947 	xstat = p->p_xstat;
948 
949 	KSI_INIT(&ksi);
950 	ksi.ksi_signo = SIGCHLD;
951 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
952 	ksi.ksi_pid = p->p_pid;
953 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
954 	ksi.ksi_status = xstat;
955 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
956 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
957 
958 	q = p->p_pptr;
959 
960 	mutex_exit(p->p_lock);
961 	mutex_enter(q->p_lock);
962 
963 	if ((q->p_sflag & mask) == 0)
964 		kpsignal2(q, &ksi);
965 
966 	mutex_exit(q->p_lock);
967 	mutex_enter(p->p_lock);
968 }
969 
970 void
971 psignal(struct proc *p, int signo)
972 {
973 	ksiginfo_t ksi;
974 
975 	KASSERT(!cpu_intr_p());
976 	KASSERT(mutex_owned(proc_lock));
977 
978 	KSI_INIT_EMPTY(&ksi);
979 	ksi.ksi_signo = signo;
980 	mutex_enter(p->p_lock);
981 	kpsignal2(p, &ksi);
982 	mutex_exit(p->p_lock);
983 }
984 
985 void
986 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
987 {
988 	fdfile_t *ff;
989 	file_t *fp;
990 
991 	KASSERT(!cpu_intr_p());
992 	KASSERT(mutex_owned(proc_lock));
993 
994 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
995 		size_t fd;
996 		filedesc_t *fdp = p->p_fd;
997 
998 		/* XXXSMP locking */
999 		ksi->ksi_fd = -1;
1000 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1001 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
1002 				continue;
1003 			if ((fp = ff->ff_file) == NULL)
1004 				continue;
1005 			if (fp->f_data == data) {
1006 				ksi->ksi_fd = fd;
1007 				break;
1008 			}
1009 		}
1010 	}
1011 	mutex_enter(p->p_lock);
1012 	kpsignal2(p, ksi);
1013 	mutex_exit(p->p_lock);
1014 }
1015 
1016 /*
1017  * sigismasked:
1018  *
1019  *	 Returns true if signal is ignored or masked for the specified LWP.
1020  */
1021 int
1022 sigismasked(struct lwp *l, int sig)
1023 {
1024 	struct proc *p = l->l_proc;
1025 
1026 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1027 	    sigismember(&l->l_sigmask, sig)
1028 #if KERN_SA
1029 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1030 #endif /* KERN_SA */
1031 	    );
1032 }
1033 
1034 /*
1035  * sigpost:
1036  *
1037  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
1038  *	 able to take the signal.
1039  */
1040 int
1041 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1042 {
1043 	int rv, masked;
1044 	struct proc *p = l->l_proc;
1045 
1046 	KASSERT(mutex_owned(p->p_lock));
1047 
1048 	/*
1049 	 * If the LWP is on the way out, sigclear() will be busy draining all
1050 	 * pending signals.  Don't give it more.
1051 	 */
1052 	if (l->l_refcnt == 0)
1053 		return 0;
1054 
1055 	lwp_lock(l);
1056 
1057 	/*
1058 	 * Have the LWP check for signals.  This ensures that even if no LWP
1059 	 * is found to take the signal immediately, it should be taken soon.
1060 	 */
1061 	l->l_flag |= LW_PENDSIG;
1062 
1063 	/*
1064 	 * When sending signals to SA processes, we first try to find an
1065 	 * idle VP to take it.
1066 	 */
1067 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1068 		lwp_unlock(l);
1069 		return 0;
1070 	}
1071 
1072 	/*
1073 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1074 	 */
1075 #if KERN_SA
1076 	if (p->p_sa != NULL)
1077 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1078 	else
1079 #endif /* KERN_SA */
1080 		masked = sigismember(&l->l_sigmask, sig);
1081 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1082 		lwp_unlock(l);
1083 		return 0;
1084 	}
1085 
1086 	/*
1087 	 * If killing the process, make it run fast.
1088 	 */
1089 	if (__predict_false((prop & SA_KILL) != 0) &&
1090 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1091 		KASSERT(l->l_class == SCHED_OTHER);
1092 		lwp_changepri(l, MAXPRI_USER);
1093 	}
1094 
1095 	/*
1096 	 * If the LWP is running or on a run queue, then we win.  If it's
1097 	 * sleeping interruptably, wake it and make it take the signal.  If
1098 	 * the sleep isn't interruptable, then the chances are it will get
1099 	 * to see the signal soon anyhow.  If suspended, it can't take the
1100 	 * signal right now.  If it's LWP private or for all LWPs, save it
1101 	 * for later; otherwise punt.
1102 	 */
1103 	rv = 0;
1104 
1105 	switch (l->l_stat) {
1106 	case LSRUN:
1107 	case LSONPROC:
1108 		lwp_need_userret(l);
1109 		rv = 1;
1110 		break;
1111 
1112 	case LSSLEEP:
1113 		if ((l->l_flag & LW_SINTR) != 0) {
1114 			/* setrunnable() will release the lock. */
1115 			setrunnable(l);
1116 			return 1;
1117 		}
1118 		break;
1119 
1120 	case LSSUSPENDED:
1121 		if ((prop & SA_KILL) != 0) {
1122 			/* lwp_continue() will release the lock. */
1123 			lwp_continue(l);
1124 			return 1;
1125 		}
1126 		break;
1127 
1128 	case LSSTOP:
1129 		if ((prop & SA_STOP) != 0)
1130 			break;
1131 
1132 		/*
1133 		 * If the LWP is stopped and we are sending a continue
1134 		 * signal, then start it again.
1135 		 */
1136 		if ((prop & SA_CONT) != 0) {
1137 			if (l->l_wchan != NULL) {
1138 				l->l_stat = LSSLEEP;
1139 				p->p_nrlwps++;
1140 				rv = 1;
1141 				break;
1142 			}
1143 			/* setrunnable() will release the lock. */
1144 			setrunnable(l);
1145 			return 1;
1146 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1147 			/* setrunnable() will release the lock. */
1148 			setrunnable(l);
1149 			return 1;
1150 		}
1151 		break;
1152 
1153 	default:
1154 		break;
1155 	}
1156 
1157 	lwp_unlock(l);
1158 	return rv;
1159 }
1160 
1161 /*
1162  * Notify an LWP that it has a pending signal.
1163  */
1164 void
1165 signotify(struct lwp *l)
1166 {
1167 	KASSERT(lwp_locked(l, NULL));
1168 
1169 	l->l_flag |= LW_PENDSIG;
1170 	lwp_need_userret(l);
1171 }
1172 
1173 /*
1174  * Find an LWP within process p that is waiting on signal ksi, and hand
1175  * it on.
1176  */
1177 int
1178 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1179 {
1180 	struct lwp *l;
1181 	int signo;
1182 
1183 	KASSERT(mutex_owned(p->p_lock));
1184 
1185 	signo = ksi->ksi_signo;
1186 
1187 	if (ksi->ksi_lid != 0) {
1188 		/*
1189 		 * Signal came via _lwp_kill().  Find the LWP and see if
1190 		 * it's interested.
1191 		 */
1192 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1193 			return 0;
1194 		if (l->l_sigwaited == NULL ||
1195 		    !sigismember(&l->l_sigwaitset, signo))
1196 			return 0;
1197 	} else {
1198 		/*
1199 		 * Look for any LWP that may be interested.
1200 		 */
1201 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1202 			KASSERT(l->l_sigwaited != NULL);
1203 			if (sigismember(&l->l_sigwaitset, signo))
1204 				break;
1205 		}
1206 	}
1207 
1208 	if (l != NULL) {
1209 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1210 		l->l_sigwaited = NULL;
1211 		LIST_REMOVE(l, l_sigwaiter);
1212 		cv_signal(&l->l_sigcv);
1213 		return 1;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Send the signal to the process.  If the signal has an action, the action
1221  * is usually performed by the target process rather than the caller; we add
1222  * the signal to the set of pending signals for the process.
1223  *
1224  * Exceptions:
1225  *   o When a stop signal is sent to a sleeping process that takes the
1226  *     default action, the process is stopped without awakening it.
1227  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1228  *     regardless of the signal action (eg, blocked or ignored).
1229  *
1230  * Other ignored signals are discarded immediately.
1231  */
1232 void
1233 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1234 {
1235 	int prop, lid, toall, signo = ksi->ksi_signo;
1236 	struct sigacts *sa;
1237 	struct lwp *l;
1238 	ksiginfo_t *kp;
1239 	ksiginfoq_t kq;
1240 	sig_t action;
1241 #ifdef KERN_SA
1242 	struct sadata_vp *vp;
1243 #endif
1244 
1245 	KASSERT(!cpu_intr_p());
1246 	KASSERT(mutex_owned(proc_lock));
1247 	KASSERT(mutex_owned(p->p_lock));
1248 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1249 	KASSERT(signo > 0 && signo < NSIG);
1250 
1251 	/*
1252 	 * If the process is being created by fork, is a zombie or is
1253 	 * exiting, then just drop the signal here and bail out.
1254 	 */
1255 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1256 		return;
1257 
1258 	/*
1259 	 * Notify any interested parties of the signal.
1260 	 */
1261 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1262 
1263 	/*
1264 	 * Some signals including SIGKILL must act on the entire process.
1265 	 */
1266 	kp = NULL;
1267 	prop = sigprop[signo];
1268 	toall = ((prop & SA_TOALL) != 0);
1269 
1270 	if (toall)
1271 		lid = 0;
1272 	else
1273 		lid = ksi->ksi_lid;
1274 
1275 	/*
1276 	 * If proc is traced, always give parent a chance.
1277 	 */
1278 	if (p->p_slflag & PSL_TRACED) {
1279 		action = SIG_DFL;
1280 
1281 		if (lid == 0) {
1282 			/*
1283 			 * If the process is being traced and the signal
1284 			 * is being caught, make sure to save any ksiginfo.
1285 			 */
1286 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1287 				return;
1288 			sigput(&p->p_sigpend, p, kp);
1289 		}
1290 	} else {
1291 		/*
1292 		 * If the signal was the result of a trap and is not being
1293 		 * caught, then reset it to default action so that the
1294 		 * process dumps core immediately.
1295 		 */
1296 		if (KSI_TRAP_P(ksi)) {
1297 			sa = p->p_sigacts;
1298 			mutex_enter(&sa->sa_mutex);
1299 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1300 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1301 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1302 			}
1303 			mutex_exit(&sa->sa_mutex);
1304 		}
1305 
1306 		/*
1307 		 * If the signal is being ignored, then drop it.  Note: we
1308 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1309 		 * SIG_IGN, action will be SIG_DFL here.
1310 		 */
1311 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1312 			return;
1313 
1314 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1315 			action = SIG_CATCH;
1316 		else {
1317 			action = SIG_DFL;
1318 
1319 			/*
1320 			 * If sending a tty stop signal to a member of an
1321 			 * orphaned process group, discard the signal here if
1322 			 * the action is default; don't stop the process below
1323 			 * if sleeping, and don't clear any pending SIGCONT.
1324 			 */
1325 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1326 				return;
1327 
1328 			if (prop & SA_KILL && p->p_nice > NZERO)
1329 				p->p_nice = NZERO;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * If stopping or continuing a process, discard any pending
1335 	 * signals that would do the inverse.
1336 	 */
1337 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1338 		ksiginfo_queue_init(&kq);
1339 		if ((prop & SA_CONT) != 0)
1340 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1341 		if ((prop & SA_STOP) != 0)
1342 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1343 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1344 	}
1345 
1346 	/*
1347 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1348 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1349 	 * the signal info.  The signal won't be processed further here.
1350 	 */
1351 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1352 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1353 	    sigunwait(p, ksi))
1354 		return;
1355 
1356 	/*
1357 	 * XXXSMP Should be allocated by the caller, we're holding locks
1358 	 * here.
1359 	 */
1360 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1361 		return;
1362 
1363 	/*
1364 	 * LWP private signals are easy - just find the LWP and post
1365 	 * the signal to it.
1366 	 */
1367 	if (lid != 0) {
1368 		l = lwp_find(p, lid);
1369 		if (l != NULL) {
1370 			sigput(&l->l_sigpend, p, kp);
1371 			membar_producer();
1372 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1373 		}
1374 		goto out;
1375 	}
1376 
1377 	/*
1378 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1379 	 * or for an SA process.
1380 	 */
1381 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1382 		if ((p->p_slflag & PSL_TRACED) != 0)
1383 			goto deliver;
1384 
1385 		/*
1386 		 * If SIGCONT is default (or ignored) and process is
1387 		 * asleep, we are finished; the process should not
1388 		 * be awakened.
1389 		 */
1390 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1391 			goto out;
1392 
1393 		sigput(&p->p_sigpend, p, kp);
1394 	} else {
1395 		/*
1396 		 * Process is stopped or stopping.  If traced, then no
1397 		 * further action is necessary.
1398 		 */
1399 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1400 			goto out;
1401 
1402 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1403 			/*
1404 			 * Re-adjust p_nstopchild if the process wasn't
1405 			 * collected by its parent.
1406 			 */
1407 			p->p_stat = SACTIVE;
1408 			p->p_sflag &= ~PS_STOPPING;
1409 			if (!p->p_waited)
1410 				p->p_pptr->p_nstopchild--;
1411 
1412 			/*
1413 			 * If SIGCONT is default (or ignored), we continue
1414 			 * the process but don't leave the signal in
1415 			 * ps_siglist, as it has no further action.  If
1416 			 * SIGCONT is held, we continue the process and
1417 			 * leave the signal in ps_siglist.  If the process
1418 			 * catches SIGCONT, let it handle the signal itself.
1419 			 * If it isn't waiting on an event, then it goes
1420 			 * back to run state.  Otherwise, process goes back
1421 			 * to sleep state.
1422 			 */
1423 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1424 				sigput(&p->p_sigpend, p, kp);
1425 		} else if ((prop & SA_STOP) != 0) {
1426 			/*
1427 			 * Already stopped, don't need to stop again.
1428 			 * (If we did the shell could get confused.)
1429 			 */
1430 			goto out;
1431 		} else
1432 			sigput(&p->p_sigpend, p, kp);
1433 	}
1434 
1435  deliver:
1436 	/*
1437 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1438 	 * visible on the per process list (for sigispending()).  This
1439 	 * is unlikely to be needed in practice, but...
1440 	 */
1441 	membar_producer();
1442 
1443 	/*
1444 	 * Try to find an LWP that can take the signal.
1445 	 */
1446 #if KERN_SA
1447 	if (p->p_sa != NULL) {
1448 		/*
1449 		 * In the SA case, we try to find an idle LWP that can take
1450 		 * the signal.  If that fails, only then do we consider
1451 		 * interrupting active LWPs.
1452 		 */
1453 		l = NULL;
1454 		if (!toall) {
1455 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1456 				l = vp->savp_lwp;
1457 				if (sigpost(l, action, prop, kp->ksi_signo, 1))
1458 					break;
1459 			}
1460 		}
1461 
1462 		if (l == NULL) {
1463 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1464 				l = vp->savp_lwp;
1465 				if (sigpost(l, action, prop, kp->ksi_signo, 0)
1466 				    && !toall)
1467 					break;
1468 			}
1469 		}
1470 	} else	/* Catch the brace below if we're defined */
1471 #endif /* KERN_SA */
1472 	    {
1473 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
1474 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1475 				break;
1476 	}
1477 
1478  out:
1479  	/*
1480  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1481  	 * with locks held.  The caller should take care of this.
1482  	 */
1483  	ksiginfo_free(kp);
1484 }
1485 
1486 void
1487 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1488 {
1489 	struct proc *p = l->l_proc;
1490 #ifdef KERN_SA
1491 	struct lwp *le, *li;
1492 	siginfo_t *si;
1493 	int f;
1494 #endif /* KERN_SA */
1495 
1496 	KASSERT(mutex_owned(p->p_lock));
1497 
1498 #ifdef KERN_SA
1499 	if (p->p_sflag & PS_SA) {
1500 		/* f indicates if we should clear LP_SA_NOBLOCK */
1501 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1502 		l->l_pflag |= LP_SA_NOBLOCK;
1503 
1504 		mutex_exit(p->p_lock);
1505 		/* XXXUPSXXX What if not on sa_vp? */
1506 		/*
1507 		 * WRS: I think it won't matter, beyond the
1508 		 * question of what exactly we do with a signal
1509 		 * to a blocked user thread. Also, we try hard to always
1510 		 * send signals to blessed lwps, so we would only send
1511 		 * to a non-blessed lwp under special circumstances.
1512 		 */
1513 		si = siginfo_alloc(PR_WAITOK);
1514 
1515 		si->_info = ksi->ksi_info;
1516 
1517 		/*
1518 		 * Figure out if we're the innocent victim or the main
1519 		 * perpitrator.
1520 		 */
1521 		le = li = NULL;
1522 		if (KSI_TRAP_P(ksi))
1523 			le = l;
1524 		else
1525 			li = l;
1526 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1527 		    sizeof(*si), si, siginfo_free) != 0) {
1528 			siginfo_free(si);
1529 #if 0
1530 			if (KSI_TRAP_P(ksi))
1531 				/* XXX What dowe do here? The signal
1532 				 * didn't make it
1533 				 */;
1534 #endif
1535 		}
1536 		l->l_pflag ^= f;
1537 		mutex_enter(p->p_lock);
1538 		return;
1539 	}
1540 #endif /* KERN_SA */
1541 
1542 	(*p->p_emul->e_sendsig)(ksi, mask);
1543 }
1544 
1545 /*
1546  * Stop any LWPs sleeping interruptably.
1547  */
1548 static void
1549 proc_stop_lwps(struct proc *p)
1550 {
1551 	struct lwp *l;
1552 
1553 	KASSERT(mutex_owned(p->p_lock));
1554 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1555 
1556 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1557 		lwp_lock(l);
1558 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1559 			l->l_stat = LSSTOP;
1560 			p->p_nrlwps--;
1561 		}
1562 		lwp_unlock(l);
1563 	}
1564 }
1565 
1566 /*
1567  * Finish stopping of a process.  Mark it stopped and notify the parent.
1568  *
1569  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1570  */
1571 static void
1572 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1573 {
1574 
1575 	KASSERT(mutex_owned(proc_lock));
1576 	KASSERT(mutex_owned(p->p_lock));
1577 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1578 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1579 
1580 	p->p_sflag &= ~PS_STOPPING;
1581 	p->p_stat = SSTOP;
1582 	p->p_waited = 0;
1583 	p->p_pptr->p_nstopchild++;
1584 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1585 		if (ppsig) {
1586 			/* child_psignal drops p_lock briefly. */
1587 			child_psignal(p, ppmask);
1588 		}
1589 		cv_broadcast(&p->p_pptr->p_waitcv);
1590 	}
1591 }
1592 
1593 /*
1594  * Stop the current process and switch away when being stopped or traced.
1595  */
1596 void
1597 sigswitch(bool ppsig, int ppmask, int signo)
1598 {
1599 	struct lwp *l = curlwp;
1600 	struct proc *p = l->l_proc;
1601 	int biglocks;
1602 
1603 	KASSERT(mutex_owned(p->p_lock));
1604 	KASSERT(l->l_stat == LSONPROC);
1605 	KASSERT(p->p_nrlwps > 0);
1606 
1607 	/*
1608 	 * On entry we know that the process needs to stop.  If it's
1609 	 * the result of a 'sideways' stop signal that has been sourced
1610 	 * through issignal(), then stop other LWPs in the process too.
1611 	 */
1612 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1613 		KASSERT(signo != 0);
1614 		proc_stop(p, 1, signo);
1615 		KASSERT(p->p_nrlwps > 0);
1616 	}
1617 
1618 	/*
1619 	 * If we are the last live LWP, and the stop was a result of
1620 	 * a new signal, then signal the parent.
1621 	 */
1622 	if ((p->p_sflag & PS_STOPPING) != 0) {
1623 		if (!mutex_tryenter(proc_lock)) {
1624 			mutex_exit(p->p_lock);
1625 			mutex_enter(proc_lock);
1626 			mutex_enter(p->p_lock);
1627 		}
1628 
1629 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1630 			/*
1631 			 * Note that proc_stop_done() can drop
1632 			 * p->p_lock briefly.
1633 			 */
1634 			proc_stop_done(p, ppsig, ppmask);
1635 		}
1636 
1637 		mutex_exit(proc_lock);
1638 	}
1639 
1640 	/*
1641 	 * Unlock and switch away.
1642 	 */
1643 	KERNEL_UNLOCK_ALL(l, &biglocks);
1644 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1645 		p->p_nrlwps--;
1646 		lwp_lock(l);
1647 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1648 		l->l_stat = LSSTOP;
1649 		lwp_unlock(l);
1650 	}
1651 
1652 	mutex_exit(p->p_lock);
1653 	lwp_lock(l);
1654 	mi_switch(l);
1655 	KERNEL_LOCK(biglocks, l);
1656 	mutex_enter(p->p_lock);
1657 }
1658 
1659 /*
1660  * Check for a signal from the debugger.
1661  */
1662 int
1663 sigchecktrace(sigpend_t **spp)
1664 {
1665 	struct lwp *l = curlwp;
1666 	struct proc *p = l->l_proc;
1667 	sigset_t *mask;
1668 	int signo;
1669 
1670 	KASSERT(mutex_owned(p->p_lock));
1671 
1672 	/*
1673 	 * If we are no longer being traced, or the parent didn't
1674 	 * give us a signal, look for more signals.
1675 	 */
1676 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1677 		return 0;
1678 
1679 	/* If there's a pending SIGKILL, process it immediately. */
1680 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1681 		return 0;
1682 
1683 	/*
1684 	 * If the new signal is being masked, look for other signals.
1685 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1686 	 */
1687 	signo = p->p_xstat;
1688 	p->p_xstat = 0;
1689 	if ((sigprop[signo] & SA_TOLWP) != 0)
1690 		*spp = &l->l_sigpend;
1691 	else
1692 		*spp = &p->p_sigpend;
1693 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1694 	if (sigismember(mask, signo))
1695 		signo = 0;
1696 
1697 	return signo;
1698 }
1699 
1700 /*
1701  * If the current process has received a signal (should be caught or cause
1702  * termination, should interrupt current syscall), return the signal number.
1703  *
1704  * Stop signals with default action are processed immediately, then cleared;
1705  * they aren't returned.  This is checked after each entry to the system for
1706  * a syscall or trap.
1707  *
1708  * We will also return -1 if the process is exiting and the current LWP must
1709  * follow suit.
1710  *
1711  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1712  * can switch away, though.
1713  */
1714 int
1715 issignal(struct lwp *l)
1716 {
1717 	struct proc *p = l->l_proc;
1718 	int signo = 0, prop;
1719 	sigpend_t *sp = NULL;
1720 	sigset_t ss;
1721 
1722 	KASSERT(mutex_owned(p->p_lock));
1723 
1724 	for (;;) {
1725 		/* Discard any signals that we have decided not to take. */
1726 		if (signo != 0)
1727 			(void)sigget(sp, NULL, signo, NULL);
1728 
1729 		/* Bail out if we do not own the virtual processor */
1730 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1731 			break;
1732 
1733 		/*
1734 		 * If the process is stopped/stopping, then stop ourselves
1735 		 * now that we're on the kernel/userspace boundary.  When
1736 		 * we awaken, check for a signal from the debugger.
1737 		 */
1738 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1739 			sigswitch(true, PS_NOCLDSTOP, 0);
1740 			signo = sigchecktrace(&sp);
1741 		} else
1742 			signo = 0;
1743 
1744 		/*
1745 		 * If the debugger didn't provide a signal, find a pending
1746 		 * signal from our set.  Check per-LWP signals first, and
1747 		 * then per-process.
1748 		 */
1749 		if (signo == 0) {
1750 			sp = &l->l_sigpend;
1751 			ss = sp->sp_set;
1752 			if ((p->p_lflag & PL_PPWAIT) != 0)
1753 				sigminusset(&stopsigmask, &ss);
1754 			sigminusset(&l->l_sigmask, &ss);
1755 
1756 			if ((signo = firstsig(&ss)) == 0) {
1757 				sp = &p->p_sigpend;
1758 				ss = sp->sp_set;
1759 				if ((p->p_lflag & PL_PPWAIT) != 0)
1760 					sigminusset(&stopsigmask, &ss);
1761 				sigminusset(&l->l_sigmask, &ss);
1762 
1763 				if ((signo = firstsig(&ss)) == 0) {
1764 					/*
1765 					 * No signal pending - clear the
1766 					 * indicator and bail out.
1767 					 */
1768 					lwp_lock(l);
1769 					l->l_flag &= ~LW_PENDSIG;
1770 					lwp_unlock(l);
1771 					sp = NULL;
1772 					break;
1773 				}
1774 			}
1775 		}
1776 
1777 		/*
1778 		 * We should see pending but ignored signals only if
1779 		 * we are being traced.
1780 		 */
1781 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1782 		    (p->p_slflag & PSL_TRACED) == 0) {
1783 			/* Discard the signal. */
1784 			continue;
1785 		}
1786 
1787 		/*
1788 		 * If traced, always stop, and stay stopped until released
1789 		 * by the debugger.  If the our parent process is waiting
1790 		 * for us, don't hang as we could deadlock.
1791 		 */
1792 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1793 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1794 			/* Take the signal. */
1795 			(void)sigget(sp, NULL, signo, NULL);
1796 			p->p_xstat = signo;
1797 
1798 			/* Emulation-specific handling of signal trace */
1799 			if (p->p_emul->e_tracesig == NULL ||
1800 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1801 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1802 				    signo);
1803 
1804 			/* Check for a signal from the debugger. */
1805 			if ((signo = sigchecktrace(&sp)) == 0)
1806 				continue;
1807 		}
1808 
1809 		prop = sigprop[signo];
1810 
1811 		/*
1812 		 * Decide whether the signal should be returned.
1813 		 */
1814 		switch ((long)SIGACTION(p, signo).sa_handler) {
1815 		case (long)SIG_DFL:
1816 			/*
1817 			 * Don't take default actions on system processes.
1818 			 */
1819 			if (p->p_pid <= 1) {
1820 #ifdef DIAGNOSTIC
1821 				/*
1822 				 * Are you sure you want to ignore SIGSEGV
1823 				 * in init? XXX
1824 				 */
1825 				printf_nolog("Process (pid %d) got sig %d\n",
1826 				    p->p_pid, signo);
1827 #endif
1828 				continue;
1829 			}
1830 
1831 			/*
1832 			 * If there is a pending stop signal to process with
1833 			 * default action, stop here, then clear the signal.
1834 			 * However, if process is member of an orphaned
1835 			 * process group, ignore tty stop signals.
1836 			 */
1837 			if (prop & SA_STOP) {
1838 				/*
1839 				 * XXX Don't hold proc_lock for p_lflag,
1840 				 * but it's not a big deal.
1841 				 */
1842 				if (p->p_slflag & PSL_TRACED ||
1843 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1844 				    prop & SA_TTYSTOP)) {
1845 				    	/* Ignore the signal. */
1846 					continue;
1847 				}
1848 				/* Take the signal. */
1849 				(void)sigget(sp, NULL, signo, NULL);
1850 				p->p_xstat = signo;
1851 				signo = 0;
1852 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1853 			} else if (prop & SA_IGNORE) {
1854 				/*
1855 				 * Except for SIGCONT, shouldn't get here.
1856 				 * Default action is to ignore; drop it.
1857 				 */
1858 				continue;
1859 			}
1860 			break;
1861 
1862 		case (long)SIG_IGN:
1863 #ifdef DEBUG_ISSIGNAL
1864 			/*
1865 			 * Masking above should prevent us ever trying
1866 			 * to take action on an ignored signal other
1867 			 * than SIGCONT, unless process is traced.
1868 			 */
1869 			if ((prop & SA_CONT) == 0 &&
1870 			    (p->p_slflag & PSL_TRACED) == 0)
1871 				printf_nolog("issignal\n");
1872 #endif
1873 			continue;
1874 
1875 		default:
1876 			/*
1877 			 * This signal has an action, let postsig() process
1878 			 * it.
1879 			 */
1880 			break;
1881 		}
1882 
1883 		break;
1884 	}
1885 
1886 	l->l_sigpendset = sp;
1887 	return signo;
1888 }
1889 
1890 /*
1891  * Take the action for the specified signal
1892  * from the current set of pending signals.
1893  */
1894 void
1895 postsig(int signo)
1896 {
1897 	struct lwp	*l;
1898 	struct proc	*p;
1899 	struct sigacts	*ps;
1900 	sig_t		action;
1901 	sigset_t	*returnmask;
1902 	ksiginfo_t	ksi;
1903 
1904 	l = curlwp;
1905 	p = l->l_proc;
1906 	ps = p->p_sigacts;
1907 
1908 	KASSERT(mutex_owned(p->p_lock));
1909 	KASSERT(signo > 0);
1910 
1911 	/*
1912 	 * Set the new mask value and also defer further occurrences of this
1913 	 * signal.
1914 	 *
1915 	 * Special case: user has done a sigsuspend.  Here the current mask is
1916 	 * not of interest, but rather the mask from before the sigsuspen is
1917 	 * what we want restored after the signal processing is completed.
1918 	 */
1919 	if (l->l_sigrestore) {
1920 		returnmask = &l->l_sigoldmask;
1921 		l->l_sigrestore = 0;
1922 	} else
1923 		returnmask = &l->l_sigmask;
1924 
1925 	/*
1926 	 * Commit to taking the signal before releasing the mutex.
1927 	 */
1928 	action = SIGACTION_PS(ps, signo).sa_handler;
1929 	l->l_ru.ru_nsignals++;
1930 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1931 
1932 	if (ktrpoint(KTR_PSIG)) {
1933 		mutex_exit(p->p_lock);
1934 		ktrpsig(signo, action, returnmask, &ksi);
1935 		mutex_enter(p->p_lock);
1936 	}
1937 
1938 	if (action == SIG_DFL) {
1939 		/*
1940 		 * Default action, where the default is to kill
1941 		 * the process.  (Other cases were ignored above.)
1942 		 */
1943 		sigexit(l, signo);
1944 		return;
1945 	}
1946 
1947 	/*
1948 	 * If we get here, the signal must be caught.
1949 	 */
1950 #ifdef DIAGNOSTIC
1951 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1952 		panic("postsig action");
1953 #endif
1954 
1955 	kpsendsig(l, &ksi, returnmask);
1956 }
1957 
1958 /*
1959  * sendsig_reset:
1960  *
1961  *	Reset the signal action.  Called from emulation specific sendsig()
1962  *	before unlocking to deliver the signal.
1963  */
1964 void
1965 sendsig_reset(struct lwp *l, int signo)
1966 {
1967 	struct proc *p = l->l_proc;
1968 	struct sigacts *ps = p->p_sigacts;
1969 	sigset_t *mask;
1970 
1971 	KASSERT(mutex_owned(p->p_lock));
1972 
1973 	p->p_sigctx.ps_lwp = 0;
1974 	p->p_sigctx.ps_code = 0;
1975 	p->p_sigctx.ps_signo = 0;
1976 
1977 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1978 
1979 	mutex_enter(&ps->sa_mutex);
1980 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
1981 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1982 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1983 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1984 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1985 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1986 	}
1987 	mutex_exit(&ps->sa_mutex);
1988 }
1989 
1990 /*
1991  * Kill the current process for stated reason.
1992  */
1993 void
1994 killproc(struct proc *p, const char *why)
1995 {
1996 
1997 	KASSERT(mutex_owned(proc_lock));
1998 
1999 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2000 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2001 	psignal(p, SIGKILL);
2002 }
2003 
2004 /*
2005  * Force the current process to exit with the specified signal, dumping core
2006  * if appropriate.  We bypass the normal tests for masked and caught
2007  * signals, allowing unrecoverable failures to terminate the process without
2008  * changing signal state.  Mark the accounting record with the signal
2009  * termination.  If dumping core, save the signal number for the debugger.
2010  * Calls exit and does not return.
2011  */
2012 void
2013 sigexit(struct lwp *l, int signo)
2014 {
2015 	int exitsig, error, docore;
2016 	struct proc *p;
2017 	struct lwp *t;
2018 
2019 	p = l->l_proc;
2020 
2021 	KASSERT(mutex_owned(p->p_lock));
2022 	KERNEL_UNLOCK_ALL(l, NULL);
2023 
2024 	/*
2025 	 * Don't permit coredump() multiple times in the same process.
2026 	 * Call back into sigexit, where we will be suspended until
2027 	 * the deed is done.  Note that this is a recursive call, but
2028 	 * LW_WCORE will prevent us from coming back this way.
2029 	 */
2030 	if ((p->p_sflag & PS_WCORE) != 0) {
2031 		lwp_lock(l);
2032 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2033 		lwp_unlock(l);
2034 		mutex_exit(p->p_lock);
2035 		lwp_userret(l);
2036 		panic("sigexit 1");
2037 		/* NOTREACHED */
2038 	}
2039 
2040 	/* If process is already on the way out, then bail now. */
2041 	if ((p->p_sflag & PS_WEXIT) != 0) {
2042 		mutex_exit(p->p_lock);
2043 		lwp_exit(l);
2044 		panic("sigexit 2");
2045 		/* NOTREACHED */
2046 	}
2047 
2048 	/*
2049 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2050 	 * so that their registers are available long enough to be dumped.
2051  	 */
2052 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2053 		p->p_sflag |= PS_WCORE;
2054 		for (;;) {
2055 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2056 				lwp_lock(t);
2057 				if (t == l) {
2058 					t->l_flag &= ~LW_WSUSPEND;
2059 					lwp_unlock(t);
2060 					continue;
2061 				}
2062 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2063 				lwp_suspend(l, t);
2064 			}
2065 
2066 			if (p->p_nrlwps == 1)
2067 				break;
2068 
2069 			/*
2070 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2071 			 * for everyone else to stop before proceeding.
2072 			 */
2073 			p->p_nlwpwait++;
2074 			cv_broadcast(&p->p_lwpcv);
2075 			cv_wait(&p->p_lwpcv, p->p_lock);
2076 			p->p_nlwpwait--;
2077 		}
2078 	}
2079 
2080 	exitsig = signo;
2081 	p->p_acflag |= AXSIG;
2082 	p->p_sigctx.ps_signo = signo;
2083 
2084 	if (docore) {
2085 		mutex_exit(p->p_lock);
2086 		if ((error = coredump(l, NULL)) == 0)
2087 			exitsig |= WCOREFLAG;
2088 
2089 		if (kern_logsigexit) {
2090 			int uid = l->l_cred ?
2091 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2092 
2093 			if (error)
2094 				log(LOG_INFO, lognocoredump, p->p_pid,
2095 				    p->p_comm, uid, signo, error);
2096 			else
2097 				log(LOG_INFO, logcoredump, p->p_pid,
2098 				    p->p_comm, uid, signo);
2099 		}
2100 
2101 #ifdef PAX_SEGVGUARD
2102 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2103 #endif /* PAX_SEGVGUARD */
2104 		/* Acquire the sched state mutex.  exit1() will release it. */
2105 		mutex_enter(p->p_lock);
2106 	}
2107 
2108 	/* No longer dumping core. */
2109 	p->p_sflag &= ~PS_WCORE;
2110 
2111 	exit1(l, W_EXITCODE(0, exitsig));
2112 	/* NOTREACHED */
2113 }
2114 
2115 /*
2116  * Put process 'p' into the stopped state and optionally, notify the parent.
2117  */
2118 void
2119 proc_stop(struct proc *p, int notify, int signo)
2120 {
2121 	struct lwp *l;
2122 
2123 	KASSERT(mutex_owned(p->p_lock));
2124 
2125 	/*
2126 	 * First off, set the stopping indicator and bring all sleeping
2127 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2128 	 * unlock between here and the p->p_nrlwps check below.
2129 	 */
2130 	p->p_sflag |= PS_STOPPING;
2131 	if (notify)
2132 		p->p_sflag |= PS_NOTIFYSTOP;
2133 	else
2134 		p->p_sflag &= ~PS_NOTIFYSTOP;
2135 	membar_producer();
2136 
2137 	proc_stop_lwps(p);
2138 
2139 	/*
2140 	 * If there are no LWPs available to take the signal, then we
2141 	 * signal the parent process immediately.  Otherwise, the last
2142 	 * LWP to stop will take care of it.
2143 	 */
2144 
2145 	if (p->p_nrlwps == 0) {
2146 		proc_stop_done(p, true, PS_NOCLDSTOP);
2147 	} else {
2148 		/*
2149 		 * Have the remaining LWPs come to a halt, and trigger
2150 		 * proc_stop_callout() to ensure that they do.
2151 		 */
2152 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2153 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2154 		callout_schedule(&proc_stop_ch, 1);
2155 	}
2156 }
2157 
2158 /*
2159  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2160  * but wait for them to come to a halt at the kernel-user boundary.  This is
2161  * to allow LWPs to release any locks that they may hold before stopping.
2162  *
2163  * Non-interruptable sleeps can be long, and there is the potential for an
2164  * LWP to begin sleeping interruptably soon after the process has been set
2165  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2166  * stopping, and so complete halt of the process and the return of status
2167  * information to the parent could be delayed indefinitely.
2168  *
2169  * To handle this race, proc_stop_callout() runs once per tick while there
2170  * are stopping processes in the system.  It sets LWPs that are sleeping
2171  * interruptably into the LSSTOP state.
2172  *
2173  * Note that we are not concerned about keeping all LWPs stopped while the
2174  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2175  * What we do need to ensure is that all LWPs in a stopping process have
2176  * stopped at least once, so that notification can be sent to the parent
2177  * process.
2178  */
2179 static void
2180 proc_stop_callout(void *cookie)
2181 {
2182 	bool more, restart;
2183 	struct proc *p;
2184 
2185 	(void)cookie;
2186 
2187 	do {
2188 		restart = false;
2189 		more = false;
2190 
2191 		mutex_enter(proc_lock);
2192 		PROCLIST_FOREACH(p, &allproc) {
2193 			if ((p->p_flag & PK_MARKER) != 0)
2194 				continue;
2195 			mutex_enter(p->p_lock);
2196 
2197 			if ((p->p_sflag & PS_STOPPING) == 0) {
2198 				mutex_exit(p->p_lock);
2199 				continue;
2200 			}
2201 
2202 			/* Stop any LWPs sleeping interruptably. */
2203 			proc_stop_lwps(p);
2204 			if (p->p_nrlwps == 0) {
2205 				/*
2206 				 * We brought the process to a halt.
2207 				 * Mark it as stopped and notify the
2208 				 * parent.
2209 				 */
2210 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2211 					/*
2212 					 * Note that proc_stop_done() will
2213 					 * drop p->p_lock briefly.
2214 					 * Arrange to restart and check
2215 					 * all processes again.
2216 					 */
2217 					restart = true;
2218 				}
2219 				proc_stop_done(p, true, PS_NOCLDSTOP);
2220 			} else
2221 				more = true;
2222 
2223 			mutex_exit(p->p_lock);
2224 			if (restart)
2225 				break;
2226 		}
2227 		mutex_exit(proc_lock);
2228 	} while (restart);
2229 
2230 	/*
2231 	 * If we noted processes that are stopping but still have
2232 	 * running LWPs, then arrange to check again in 1 tick.
2233 	 */
2234 	if (more)
2235 		callout_schedule(&proc_stop_ch, 1);
2236 }
2237 
2238 /*
2239  * Given a process in state SSTOP, set the state back to SACTIVE and
2240  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2241  */
2242 void
2243 proc_unstop(struct proc *p)
2244 {
2245 	struct lwp *l;
2246 	int sig;
2247 
2248 	KASSERT(mutex_owned(proc_lock));
2249 	KASSERT(mutex_owned(p->p_lock));
2250 
2251 	p->p_stat = SACTIVE;
2252 	p->p_sflag &= ~PS_STOPPING;
2253 	sig = p->p_xstat;
2254 
2255 	if (!p->p_waited)
2256 		p->p_pptr->p_nstopchild--;
2257 
2258 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2259 		lwp_lock(l);
2260 		if (l->l_stat != LSSTOP) {
2261 			lwp_unlock(l);
2262 			continue;
2263 		}
2264 		if (l->l_wchan == NULL) {
2265 			setrunnable(l);
2266 			continue;
2267 		}
2268 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2269 		        setrunnable(l);
2270 		        sig = 0;
2271 		} else {
2272 			l->l_stat = LSSLEEP;
2273 			p->p_nrlwps++;
2274 			lwp_unlock(l);
2275 		}
2276 	}
2277 }
2278 
2279 static int
2280 filt_sigattach(struct knote *kn)
2281 {
2282 	struct proc *p = curproc;
2283 
2284 	kn->kn_obj = p;
2285 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2286 
2287 	mutex_enter(p->p_lock);
2288 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2289 	mutex_exit(p->p_lock);
2290 
2291 	return (0);
2292 }
2293 
2294 static void
2295 filt_sigdetach(struct knote *kn)
2296 {
2297 	struct proc *p = kn->kn_obj;
2298 
2299 	mutex_enter(p->p_lock);
2300 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2301 	mutex_exit(p->p_lock);
2302 }
2303 
2304 /*
2305  * signal knotes are shared with proc knotes, so we apply a mask to
2306  * the hint in order to differentiate them from process hints.  This
2307  * could be avoided by using a signal-specific knote list, but probably
2308  * isn't worth the trouble.
2309  */
2310 static int
2311 filt_signal(struct knote *kn, long hint)
2312 {
2313 
2314 	if (hint & NOTE_SIGNAL) {
2315 		hint &= ~NOTE_SIGNAL;
2316 
2317 		if (kn->kn_id == hint)
2318 			kn->kn_data++;
2319 	}
2320 	return (kn->kn_data != 0);
2321 }
2322 
2323 const struct filterops sig_filtops = {
2324 	0, filt_sigattach, filt_sigdetach, filt_signal
2325 };
2326