xref: /netbsd-src/sys/kern/kern_sig.c (revision 8e6ab8837d8d6b9198e67c1c445300b483e2f304)
1 /*	$NetBSD: kern_sig.c,v 1.145 2003/07/21 22:57:46 nathanw Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.145 2003/07/21 22:57:46 nathanw Exp $");
45 
46 #include "opt_ktrace.h"
47 #include "opt_compat_sunos.h"
48 #include "opt_compat_netbsd32.h"
49 
50 #define	SIGPROP		/* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 
80 #include <machine/cpu.h>
81 
82 #include <sys/user.h>		/* for coredump */
83 
84 #include <uvm/uvm_extern.h>
85 
86 static void	proc_stop(struct proc *p);
87 static int	build_corename(struct proc *, char [MAXPATHLEN]);
88 sigset_t	contsigmask, stopsigmask, sigcantmask;
89 
90 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
91 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
92 
93 /*
94  * Can process p, with pcred pc, send the signal signum to process q?
95  */
96 #define	CANSIGNAL(p, pc, q, signum) \
97 	((pc)->pc_ucred->cr_uid == 0 || \
98 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
99 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
100 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
101 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
102 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
103 
104 /*
105  * Initialize signal-related data structures.
106  */
107 void
108 signal_init(void)
109 {
110 
111 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
112 	    &pool_allocator_nointr);
113 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
114 	    &pool_allocator_nointr);
115 }
116 
117 /*
118  * Create an initial sigctx structure, using the same signal state
119  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
120  * copy it from parent.
121  */
122 void
123 sigactsinit(struct proc *np, struct proc *pp, int share)
124 {
125 	struct sigacts *ps;
126 
127 	if (share) {
128 		np->p_sigacts = pp->p_sigacts;
129 		pp->p_sigacts->sa_refcnt++;
130 	} else {
131 		ps = pool_get(&sigacts_pool, PR_WAITOK);
132 		if (pp)
133 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
134 		else
135 			memset(ps, '\0', sizeof(struct sigacts));
136 		ps->sa_refcnt = 1;
137 		np->p_sigacts = ps;
138 	}
139 }
140 
141 /*
142  * Make this process not share its sigctx, maintaining all
143  * signal state.
144  */
145 void
146 sigactsunshare(struct proc *p)
147 {
148 	struct sigacts *oldps;
149 
150 	if (p->p_sigacts->sa_refcnt == 1)
151 		return;
152 
153 	oldps = p->p_sigacts;
154 	sigactsinit(p, NULL, 0);
155 
156 	if (--oldps->sa_refcnt == 0)
157 		pool_put(&sigacts_pool, oldps);
158 }
159 
160 /*
161  * Release a sigctx structure.
162  */
163 void
164 sigactsfree(struct proc *p)
165 {
166 	struct sigacts *ps;
167 
168 	ps = p->p_sigacts;
169 	if (--ps->sa_refcnt > 0)
170 		return;
171 
172 	pool_put(&sigacts_pool, ps);
173 }
174 
175 int
176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
177 	struct sigaction *osa, void *tramp, int vers)
178 {
179 	struct sigacts	*ps;
180 	int		prop;
181 
182 	ps = p->p_sigacts;
183 	if (signum <= 0 || signum >= NSIG)
184 		return (EINVAL);
185 
186 	/*
187 	 * Trampoline ABI version 0 is reserved for the legacy
188 	 * kernel-provided on-stack trampoline.  Conversely, if
189 	 * we are using a non-0 ABI version, we must have a
190 	 * trampoline.
191 	 */
192 	if ((vers != 0 && tramp == NULL) ||
193 	    (vers == 0 && tramp != NULL))
194 		return (EINVAL);
195 
196 	if (osa)
197 		*osa = SIGACTION_PS(ps, signum);
198 
199 	if (nsa) {
200 		if (nsa->sa_flags & ~SA_ALLBITS)
201 			return (EINVAL);
202 
203 		prop = sigprop[signum];
204 		if (prop & SA_CANTMASK)
205 			return (EINVAL);
206 
207 		(void) splsched();	/* XXXSMP */
208 		SIGACTION_PS(ps, signum) = *nsa;
209 		ps->sa_sigdesc[signum].sd_tramp = tramp;
210 		ps->sa_sigdesc[signum].sd_vers = vers;
211 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
212 		if ((prop & SA_NORESET) != 0)
213 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
214 		if (signum == SIGCHLD) {
215 			if (nsa->sa_flags & SA_NOCLDSTOP)
216 				p->p_flag |= P_NOCLDSTOP;
217 			else
218 				p->p_flag &= ~P_NOCLDSTOP;
219 			if (nsa->sa_flags & SA_NOCLDWAIT) {
220 				/*
221 				 * Paranoia: since SA_NOCLDWAIT is implemented
222 				 * by reparenting the dying child to PID 1 (and
223 				 * trust it to reap the zombie), PID 1 itself
224 				 * is forbidden to set SA_NOCLDWAIT.
225 				 */
226 				if (p->p_pid == 1)
227 					p->p_flag &= ~P_NOCLDWAIT;
228 				else
229 					p->p_flag |= P_NOCLDWAIT;
230 			} else
231 				p->p_flag &= ~P_NOCLDWAIT;
232 		}
233 		if ((nsa->sa_flags & SA_NODEFER) == 0)
234 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
235 		else
236 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
237 		/*
238 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
239 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
240 		 * to ignore. However, don't put SIGCONT in
241 		 * p_sigctx.ps_sigignore, as we have to restart the process.
242 	 	 */
243 		if (nsa->sa_handler == SIG_IGN ||
244 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
245 						/* never to be seen again */
246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
247 			if (signum != SIGCONT) {
248 						/* easier in psignal */
249 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
250 			}
251 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
252 		} else {
253 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
254 			if (nsa->sa_handler == SIG_DFL)
255 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
256 			else
257 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
258 		}
259 		(void) spl0();
260 	}
261 
262 	return (0);
263 }
264 
265 /* ARGSUSED */
266 int
267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
268 {
269 	struct sys___sigaction14_args /* {
270 		syscallarg(int)				signum;
271 		syscallarg(const struct sigaction *)	nsa;
272 		syscallarg(struct sigaction *)		osa;
273 	} */ *uap = v;
274 	struct proc		*p;
275 	struct sigaction	nsa, osa;
276 	int			error;
277 
278 	if (SCARG(uap, nsa)) {
279 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
280 		if (error)
281 			return (error);
282 	}
283 	p = l->l_proc;
284 	error = sigaction1(p, SCARG(uap, signum),
285 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
286 	    NULL, 0);
287 	if (error)
288 		return (error);
289 	if (SCARG(uap, osa)) {
290 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
291 		if (error)
292 			return (error);
293 	}
294 	return (0);
295 }
296 
297 /* ARGSUSED */
298 int
299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
300 {
301 	struct sys___sigaction_sigtramp_args /* {
302 		syscallarg(int)				signum;
303 		syscallarg(const struct sigaction *)	nsa;
304 		syscallarg(struct sigaction *)		osa;
305 		syscallarg(void *)			tramp;
306 		syscallarg(int)				vers;
307 	} */ *uap = v;
308 	struct proc *p = l->l_proc;
309 	struct sigaction nsa, osa;
310 	int error;
311 
312 	if (SCARG(uap, nsa)) {
313 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
314 		if (error)
315 			return (error);
316 	}
317 	error = sigaction1(p, SCARG(uap, signum),
318 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
319 	    SCARG(uap, tramp), SCARG(uap, vers));
320 	if (error)
321 		return (error);
322 	if (SCARG(uap, osa)) {
323 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
324 		if (error)
325 			return (error);
326 	}
327 	return (0);
328 }
329 
330 /*
331  * Initialize signal state for process 0;
332  * set to ignore signals that are ignored by default and disable the signal
333  * stack.
334  */
335 void
336 siginit(struct proc *p)
337 {
338 	struct sigacts	*ps;
339 	int		signum, prop;
340 
341 	ps = p->p_sigacts;
342 	sigemptyset(&contsigmask);
343 	sigemptyset(&stopsigmask);
344 	sigemptyset(&sigcantmask);
345 	for (signum = 1; signum < NSIG; signum++) {
346 		prop = sigprop[signum];
347 		if (prop & SA_CONT)
348 			sigaddset(&contsigmask, signum);
349 		if (prop & SA_STOP)
350 			sigaddset(&stopsigmask, signum);
351 		if (prop & SA_CANTMASK)
352 			sigaddset(&sigcantmask, signum);
353 		if (prop & SA_IGNORE && signum != SIGCONT)
354 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
355 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
356 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
357 	}
358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
359 	p->p_sigctx.ps_sigwaited = 0;
360 	p->p_flag &= ~P_NOCLDSTOP;
361 
362 	/*
363 	 * Reset stack state to the user stack.
364 	 */
365 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
366 	p->p_sigctx.ps_sigstk.ss_size = 0;
367 	p->p_sigctx.ps_sigstk.ss_sp = 0;
368 
369 	/* One reference. */
370 	ps->sa_refcnt = 1;
371 }
372 
373 /*
374  * Reset signals for an exec of the specified process.
375  */
376 void
377 execsigs(struct proc *p)
378 {
379 	struct sigacts	*ps;
380 	int		signum, prop;
381 
382 	sigactsunshare(p);
383 
384 	ps = p->p_sigacts;
385 
386 	/*
387 	 * Reset caught signals.  Held signals remain held
388 	 * through p_sigctx.ps_sigmask (unless they were caught,
389 	 * and are now ignored by default).
390 	 */
391 	for (signum = 1; signum < NSIG; signum++) {
392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
393 			prop = sigprop[signum];
394 			if (prop & SA_IGNORE) {
395 				if ((prop & SA_CONT) == 0)
396 					sigaddset(&p->p_sigctx.ps_sigignore,
397 					    signum);
398 				sigdelset(&p->p_sigctx.ps_siglist, signum);
399 			}
400 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
401 		}
402 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
403 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
404 	}
405 	sigemptyset(&p->p_sigctx.ps_sigcatch);
406 	p->p_sigctx.ps_sigwaited = 0;
407 	p->p_flag &= ~P_NOCLDSTOP;
408 
409 	/*
410 	 * Reset stack state to the user stack.
411 	 */
412 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
413 	p->p_sigctx.ps_sigstk.ss_size = 0;
414 	p->p_sigctx.ps_sigstk.ss_sp = 0;
415 }
416 
417 int
418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
419 {
420 
421 	if (oss)
422 		*oss = p->p_sigctx.ps_sigmask;
423 
424 	if (nss) {
425 		(void)splsched();	/* XXXSMP */
426 		switch (how) {
427 		case SIG_BLOCK:
428 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
429 			break;
430 		case SIG_UNBLOCK:
431 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
432 			CHECKSIGS(p);
433 			break;
434 		case SIG_SETMASK:
435 			p->p_sigctx.ps_sigmask = *nss;
436 			CHECKSIGS(p);
437 			break;
438 		default:
439 			(void)spl0();	/* XXXSMP */
440 			return (EINVAL);
441 		}
442 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
443 		(void)spl0();		/* XXXSMP */
444 	}
445 
446 	return (0);
447 }
448 
449 /*
450  * Manipulate signal mask.
451  * Note that we receive new mask, not pointer,
452  * and return old mask as return value;
453  * the library stub does the rest.
454  */
455 int
456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
457 {
458 	struct sys___sigprocmask14_args /* {
459 		syscallarg(int)			how;
460 		syscallarg(const sigset_t *)	set;
461 		syscallarg(sigset_t *)		oset;
462 	} */ *uap = v;
463 	struct proc	*p;
464 	sigset_t	nss, oss;
465 	int		error;
466 
467 	if (SCARG(uap, set)) {
468 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
469 		if (error)
470 			return (error);
471 	}
472 	p = l->l_proc;
473 	error = sigprocmask1(p, SCARG(uap, how),
474 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
475 	if (error)
476 		return (error);
477 	if (SCARG(uap, oset)) {
478 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
479 		if (error)
480 			return (error);
481 	}
482 	return (0);
483 }
484 
485 void
486 sigpending1(struct proc *p, sigset_t *ss)
487 {
488 
489 	*ss = p->p_sigctx.ps_siglist;
490 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
491 }
492 
493 /* ARGSUSED */
494 int
495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
496 {
497 	struct sys___sigpending14_args /* {
498 		syscallarg(sigset_t *)	set;
499 	} */ *uap = v;
500 	struct proc	*p;
501 	sigset_t	ss;
502 
503 	p = l->l_proc;
504 	sigpending1(p, &ss);
505 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
506 }
507 
508 int
509 sigsuspend1(struct proc *p, const sigset_t *ss)
510 {
511 	struct sigacts *ps;
512 
513 	ps = p->p_sigacts;
514 	if (ss) {
515 		/*
516 		 * When returning from sigpause, we want
517 		 * the old mask to be restored after the
518 		 * signal handler has finished.  Thus, we
519 		 * save it here and mark the sigctx structure
520 		 * to indicate this.
521 		 */
522 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
523 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
524 		(void) splsched();	/* XXXSMP */
525 		p->p_sigctx.ps_sigmask = *ss;
526 		CHECKSIGS(p);
527 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
528 		(void) spl0();		/* XXXSMP */
529 	}
530 
531 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
532 		/* void */;
533 
534 	/* always return EINTR rather than ERESTART... */
535 	return (EINTR);
536 }
537 
538 /*
539  * Suspend process until signal, providing mask to be set
540  * in the meantime.  Note nonstandard calling convention:
541  * libc stub passes mask, not pointer, to save a copyin.
542  */
543 /* ARGSUSED */
544 int
545 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
546 {
547 	struct sys___sigsuspend14_args /* {
548 		syscallarg(const sigset_t *)	set;
549 	} */ *uap = v;
550 	struct proc	*p;
551 	sigset_t	ss;
552 	int		error;
553 
554 	if (SCARG(uap, set)) {
555 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
556 		if (error)
557 			return (error);
558 	}
559 
560 	p = l->l_proc;
561 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
562 }
563 
564 int
565 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
566 	struct sigaltstack *oss)
567 {
568 
569 	if (oss)
570 		*oss = p->p_sigctx.ps_sigstk;
571 
572 	if (nss) {
573 		if (nss->ss_flags & ~SS_ALLBITS)
574 			return (EINVAL);
575 
576 		if (nss->ss_flags & SS_DISABLE) {
577 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
578 				return (EINVAL);
579 		} else {
580 			if (nss->ss_size < MINSIGSTKSZ)
581 				return (ENOMEM);
582 		}
583 		p->p_sigctx.ps_sigstk = *nss;
584 	}
585 
586 	return (0);
587 }
588 
589 /* ARGSUSED */
590 int
591 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
592 {
593 	struct sys___sigaltstack14_args /* {
594 		syscallarg(const struct sigaltstack *)	nss;
595 		syscallarg(struct sigaltstack *)	oss;
596 	} */ *uap = v;
597 	struct proc		*p;
598 	struct sigaltstack	nss, oss;
599 	int			error;
600 
601 	if (SCARG(uap, nss)) {
602 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
603 		if (error)
604 			return (error);
605 	}
606 	p = l->l_proc;
607 	error = sigaltstack1(p,
608 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
609 	if (error)
610 		return (error);
611 	if (SCARG(uap, oss)) {
612 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
613 		if (error)
614 			return (error);
615 	}
616 	return (0);
617 }
618 
619 /* ARGSUSED */
620 int
621 sys_kill(struct lwp *l, void *v, register_t *retval)
622 {
623 	struct sys_kill_args /* {
624 		syscallarg(int)	pid;
625 		syscallarg(int)	signum;
626 	} */ *uap = v;
627 	struct proc	*cp, *p;
628 	struct pcred	*pc;
629 
630 	cp = l->l_proc;
631 	pc = cp->p_cred;
632 	if ((u_int)SCARG(uap, signum) >= NSIG)
633 		return (EINVAL);
634 	if (SCARG(uap, pid) > 0) {
635 		/* kill single process */
636 		if ((p = pfind(SCARG(uap, pid))) == NULL)
637 			return (ESRCH);
638 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
639 			return (EPERM);
640 		if (SCARG(uap, signum))
641 			psignal(p, SCARG(uap, signum));
642 		return (0);
643 	}
644 	switch (SCARG(uap, pid)) {
645 	case -1:		/* broadcast signal */
646 		return (killpg1(cp, SCARG(uap, signum), 0, 1));
647 	case 0:			/* signal own process group */
648 		return (killpg1(cp, SCARG(uap, signum), 0, 0));
649 	default:		/* negative explicit process group */
650 		return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
651 	}
652 	/* NOTREACHED */
653 }
654 
655 /*
656  * Common code for kill process group/broadcast kill.
657  * cp is calling process.
658  */
659 int
660 killpg1(struct proc *cp, int signum, int pgid, int all)
661 {
662 	struct proc	*p;
663 	struct pcred	*pc;
664 	struct pgrp	*pgrp;
665 	int		nfound;
666 
667 	pc = cp->p_cred;
668 	nfound = 0;
669 	if (all) {
670 		/*
671 		 * broadcast
672 		 */
673 		proclist_lock_read();
674 		LIST_FOREACH(p, &allproc, p_list) {
675 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
676 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
677 				continue;
678 			nfound++;
679 			if (signum)
680 				psignal(p, signum);
681 		}
682 		proclist_unlock_read();
683 	} else {
684 		if (pgid == 0)
685 			/*
686 			 * zero pgid means send to my process group.
687 			 */
688 			pgrp = cp->p_pgrp;
689 		else {
690 			pgrp = pgfind(pgid);
691 			if (pgrp == NULL)
692 				return (ESRCH);
693 		}
694 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
695 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
696 			    !CANSIGNAL(cp, pc, p, signum))
697 				continue;
698 			nfound++;
699 			if (signum && P_ZOMBIE(p) == 0)
700 				psignal(p, signum);
701 		}
702 	}
703 	return (nfound ? 0 : ESRCH);
704 }
705 
706 /*
707  * Send a signal to a process group.
708  */
709 void
710 gsignal(int pgid, int signum)
711 {
712 	struct pgrp *pgrp;
713 
714 	if (pgid && (pgrp = pgfind(pgid)))
715 		pgsignal(pgrp, signum, 0);
716 }
717 
718 /*
719  * Send a signal to a process group. If checktty is 1,
720  * limit to members which have a controlling terminal.
721  */
722 void
723 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
724 {
725 	struct proc *p;
726 
727 	if (pgrp)
728 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
729 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
730 				psignal(p, signum);
731 }
732 
733 /*
734  * Send a signal caused by a trap to the current process.
735  * If it will be caught immediately, deliver it with correct code.
736  * Otherwise, post it normally.
737  */
738 void
739 trapsignal(struct lwp *l, int signum, u_long code)
740 {
741 	struct proc	*p;
742 	struct sigacts	*ps;
743 
744 	p = l->l_proc;
745 	ps = p->p_sigacts;
746 	if ((p->p_flag & P_TRACED) == 0 &&
747 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
748 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
749 		p->p_stats->p_ru.ru_nsignals++;
750 #ifdef KTRACE
751 		if (KTRPOINT(p, KTR_PSIG))
752 			ktrpsig(p, signum,
753 			    SIGACTION_PS(ps, signum).sa_handler,
754 			    &p->p_sigctx.ps_sigmask, code);
755 #endif
756 		psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
757 		(void) splsched();	/* XXXSMP */
758 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
759 		    &p->p_sigctx.ps_sigmask);
760 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
761 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
762 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
763 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
764 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
765 		}
766 		(void) spl0();		/* XXXSMP */
767 	} else {
768 		p->p_sigctx.ps_code = code;	/* XXX for core dump/debugger */
769 		p->p_sigctx.ps_sig = signum;	/* XXX to verify code */
770 		p->p_sigctx.ps_lwp = l->l_lid;
771 		psignal(p, signum);
772 	}
773 }
774 
775 /*
776  * Send the signal to the process.  If the signal has an action, the action
777  * is usually performed by the target process rather than the caller; we add
778  * the signal to the set of pending signals for the process.
779  *
780  * Exceptions:
781  *   o When a stop signal is sent to a sleeping process that takes the
782  *     default action, the process is stopped without awakening it.
783  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
784  *     regardless of the signal action (eg, blocked or ignored).
785  *
786  * Other ignored signals are discarded immediately.
787  *
788  * XXXSMP: Invoked as psignal() or sched_psignal().
789  */
790 void
791 psignal1(struct proc *p, int signum,
792 	int dolock)		/* XXXSMP: works, but icky */
793 {
794 	struct lwp *l, *suspended;
795 	int	s = 0, prop, allsusp;
796 	sig_t	action;
797 
798 #ifdef DIAGNOSTIC
799 	if (signum <= 0 || signum >= NSIG)
800 		panic("psignal signal number");
801 
802 	/* XXXSMP: works, but icky */
803 	if (dolock)
804 		SCHED_ASSERT_UNLOCKED();
805 	else
806 		SCHED_ASSERT_LOCKED();
807 #endif
808 	/*
809 	 * Notify any interested parties in the signal.
810 	 */
811 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
812 
813 	prop = sigprop[signum];
814 
815 	/*
816 	 * If proc is traced, always give parent a chance.
817 	 */
818 	if (p->p_flag & P_TRACED)
819 		action = SIG_DFL;
820 	else {
821 		/*
822 		 * If the signal is being ignored,
823 		 * then we forget about it immediately.
824 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
825 		 * and if it is set to SIG_IGN,
826 		 * action will be SIG_DFL here.)
827 		 */
828 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
829 			return;
830 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
831 			action = SIG_HOLD;
832 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
833 			action = SIG_CATCH;
834 		else {
835 			action = SIG_DFL;
836 
837 			if (prop & SA_KILL && p->p_nice > NZERO)
838 				p->p_nice = NZERO;
839 
840 			/*
841 			 * If sending a tty stop signal to a member of an
842 			 * orphaned process group, discard the signal here if
843 			 * the action is default; don't stop the process below
844 			 * if sleeping, and don't clear any pending SIGCONT.
845 			 */
846 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
847 				return;
848 		}
849 	}
850 
851 	if (prop & SA_CONT)
852 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
853 
854 	if (prop & SA_STOP)
855 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
856 
857 	sigaddset(&p->p_sigctx.ps_siglist, signum);
858 
859 	/* CHECKSIGS() is "inlined" here. */
860 	p->p_sigctx.ps_sigcheck = 1;
861 
862 	/*
863 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
864 	 * please!), check if anything waits on it. If yes, clear the
865 	 * pending signal from siglist set, save it to ps_sigwaited,
866 	 * clear sigwait list, and wakeup any sigwaiters.
867 	 * The signal won't be processed further here.
868 	 */
869 	if ((prop & SA_CANTMASK) == 0
870 	    && p->p_sigctx.ps_sigwaited < 0
871 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
872 	    &&  p->p_stat != SSTOP) {
873 		sigdelset(&p->p_sigctx.ps_siglist, signum);
874 		p->p_sigctx.ps_sigwaited = signum;
875 		sigemptyset(&p->p_sigctx.ps_sigwait);
876 
877 		if (dolock)
878 			wakeup_one(&p->p_sigctx.ps_sigwait);
879 		else
880 			sched_wakeup(&p->p_sigctx.ps_sigwait);
881 		return;
882 	}
883 
884 	/*
885 	 * Defer further processing for signals which are held,
886 	 * except that stopped processes must be continued by SIGCONT.
887 	 */
888 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
889 		return;
890 	/* XXXSMP: works, but icky */
891 	if (dolock)
892 		SCHED_LOCK(s);
893 
894 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
895 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
896 		/*
897 		 * At least one LWP is running or on a run queue.
898 		 * The signal will be noticed when one of them returns
899 		 * to userspace.
900 		 */
901 		signotify(p);
902 		/*
903 		 * The signal will be noticed very soon.
904 		 */
905 		goto out;
906 	} else {
907 		/* Process is sleeping or stopped */
908 		if (p->p_flag & P_SA) {
909 			struct lwp *l2 = p->p_sa->sa_vp;
910 			l = NULL;
911 			allsusp = 1;
912 
913 			if ((l2->l_stat == LSSLEEP) &&  (l2->l_flag & L_SINTR))
914 				l = l2;
915 			else if (l2->l_stat == LSSUSPENDED)
916 				suspended = l2;
917 			else if ((l2->l_stat != LSZOMB) &&
918 				 (l2->l_stat != LSDEAD))
919 				allsusp = 0;
920 		} else {
921 			/*
922 			 * Find out if any of the sleeps are interruptable,
923 			 * and if all the live LWPs remaining are suspended.
924 			 */
925 			allsusp = 1;
926 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
927 				if (l->l_stat == LSSLEEP &&
928 				    l->l_flag & L_SINTR)
929 					break;
930 				if (l->l_stat == LSSUSPENDED)
931 					suspended = l;
932 				else if ((l->l_stat != LSZOMB) &&
933 				         (l->l_stat != LSDEAD))
934 					allsusp = 0;
935 			}
936 		}
937 		if (p->p_stat == SACTIVE) {
938 			/* All LWPs must be sleeping */
939 			KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
940 
941 			if (l != NULL && (p->p_flag & P_TRACED))
942 				goto run;
943 
944 			/*
945 			 * If SIGCONT is default (or ignored) and process is
946 			 * asleep, we are finished; the process should not
947 			 * be awakened.
948 			 */
949 			if ((prop & SA_CONT) && action == SIG_DFL) {
950 				sigdelset(&p->p_sigctx.ps_siglist, signum);
951 				goto out;
952 			}
953 
954 			/*
955 			 * When a sleeping process receives a stop
956 			 * signal, process immediately if possible.
957 			 */
958 			if ((prop & SA_STOP) && action == SIG_DFL) {
959 				/*
960 				 * If a child holding parent blocked,
961 				 * stopping could cause deadlock.
962 				 */
963 				if (p->p_flag & P_PPWAIT)
964 					goto out;
965 				sigdelset(&p->p_sigctx.ps_siglist, signum);
966 				p->p_xstat = signum;
967 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
968 					/*
969 					 * XXXSMP: recursive call; don't lock
970 					 * the second time around.
971 					 */
972 					sched_psignal(p->p_pptr, SIGCHLD);
973 				}
974 				proc_stop(p);	/* XXXSMP: recurse? */
975 				goto out;
976 			}
977 
978 			if (l == NULL) {
979 				/*
980 				 * Special case: SIGKILL of a process
981 				 * which is entirely composed of
982 				 * suspended LWPs should succeed. We
983 				 * make this happen by unsuspending one of
984 				 * them.
985 				 */
986 				if (allsusp && (signum == SIGKILL))
987 					lwp_continue(suspended);
988 				goto out;
989 			}
990 			/*
991 			 * All other (caught or default) signals
992 			 * cause the process to run.
993 			 */
994 			goto runfast;
995 			/*NOTREACHED*/
996 		} else if (p->p_stat == SSTOP) {
997 			/* Process is stopped */
998 			/*
999 			 * If traced process is already stopped,
1000 			 * then no further action is necessary.
1001 			 */
1002 			if (p->p_flag & P_TRACED)
1003 				goto out;
1004 
1005 			/*
1006 			 * Kill signal always sets processes running,
1007 			 * if possible.
1008 			 */
1009 			if (signum == SIGKILL) {
1010 				l = proc_unstop(p);
1011 				if (l)
1012 					goto runfast;
1013 				goto out;
1014 			}
1015 
1016 			if (prop & SA_CONT) {
1017 				/*
1018 				 * If SIGCONT is default (or ignored),
1019 				 * we continue the process but don't
1020 				 * leave the signal in ps_siglist, as
1021 				 * it has no further action.  If
1022 				 * SIGCONT is held, we continue the
1023 				 * process and leave the signal in
1024 				 * ps_siglist.  If the process catches
1025 				 * SIGCONT, let it handle the signal
1026 				 * itself.  If it isn't waiting on an
1027 				 * event, then it goes back to run
1028 				 * state.  Otherwise, process goes
1029 				 * back to sleep state.
1030 				 */
1031 				if (action == SIG_DFL)
1032 					sigdelset(&p->p_sigctx.ps_siglist,
1033 					signum);
1034 				l = proc_unstop(p);
1035 				if (l && (action == SIG_CATCH))
1036 					goto runfast;
1037 				goto out;
1038 			}
1039 
1040 			if (prop & SA_STOP) {
1041 				/*
1042 				 * Already stopped, don't need to stop again.
1043 				 * (If we did the shell could get confused.)
1044 				 */
1045 				sigdelset(&p->p_sigctx.ps_siglist, signum);
1046 				goto out;
1047 			}
1048 
1049 			/*
1050 			 * If a lwp is sleeping interruptibly, then
1051 			 * wake it up; it will run until the kernel
1052 			 * boundary, where it will stop in issignal(),
1053 			 * since p->p_stat is still SSTOP. When the
1054 			 * process is continued, it will be made
1055 			 * runnable and can look at the signal.
1056 			 */
1057 			if (l)
1058 				goto run;
1059 			goto out;
1060 		} else {
1061 			/* Else what? */
1062 			panic("psignal: Invalid process state %d.",
1063 				p->p_stat);
1064 		}
1065 	}
1066 	/*NOTREACHED*/
1067 
1068  runfast:
1069 	/*
1070 	 * Raise priority to at least PUSER.
1071 	 */
1072 	if (l->l_priority > PUSER)
1073 		l->l_priority = PUSER;
1074  run:
1075 
1076 	setrunnable(l);		/* XXXSMP: recurse? */
1077  out:
1078 	/* XXXSMP: works, but icky */
1079 	if (dolock)
1080 		SCHED_UNLOCK(s);
1081 }
1082 
1083 void
1084 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
1085 {
1086 	struct proc *p = l->l_proc;
1087 	struct lwp *le, *li;
1088 	siginfo_t *si;
1089 
1090 	if (p->p_flag & P_SA) {
1091 
1092 		/* XXXUPSXXX What if not on sa_vp ? */
1093 
1094 		int s = l->l_flag & L_SA;
1095 		l->l_flag &= ~L_SA;
1096 		si = pool_get(&siginfo_pool, PR_WAITOK);
1097 		si->si_signo = sig;
1098 		si->si_errno = 0;
1099 		si->si_code = code;
1100 		le = li = NULL;
1101 		if (code)
1102 			le = l;
1103 		else
1104 			li = l;
1105 
1106 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1107 			    sizeof(siginfo_t), si);
1108 		l->l_flag |= s;
1109 		return;
1110 	}
1111 
1112 	(*p->p_emul->e_sendsig)(sig, mask, code);
1113 }
1114 
1115 static __inline int firstsig(const sigset_t *);
1116 
1117 static __inline int
1118 firstsig(const sigset_t *ss)
1119 {
1120 	int sig;
1121 
1122 	sig = ffs(ss->__bits[0]);
1123 	if (sig != 0)
1124 		return (sig);
1125 #if NSIG > 33
1126 	sig = ffs(ss->__bits[1]);
1127 	if (sig != 0)
1128 		return (sig + 32);
1129 #endif
1130 #if NSIG > 65
1131 	sig = ffs(ss->__bits[2]);
1132 	if (sig != 0)
1133 		return (sig + 64);
1134 #endif
1135 #if NSIG > 97
1136 	sig = ffs(ss->__bits[3]);
1137 	if (sig != 0)
1138 		return (sig + 96);
1139 #endif
1140 	return (0);
1141 }
1142 
1143 /*
1144  * If the current process has received a signal (should be caught or cause
1145  * termination, should interrupt current syscall), return the signal number.
1146  * Stop signals with default action are processed immediately, then cleared;
1147  * they aren't returned.  This is checked after each entry to the system for
1148  * a syscall or trap (though this can usually be done without calling issignal
1149  * by checking the pending signal masks in the CURSIG macro.) The normal call
1150  * sequence is
1151  *
1152  *	while (signum = CURSIG(curlwp))
1153  *		postsig(signum);
1154  */
1155 int
1156 issignal(struct lwp *l)
1157 {
1158 	struct proc	*p = l->l_proc;
1159 	int		s = 0, signum, prop;
1160 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1161 	sigset_t	ss;
1162 
1163 	if (l->l_flag & L_SA) {
1164 		struct sadata *sa = p->p_sa;
1165 
1166 		/* Bail out if we do not own the virtual processor */
1167 		if (sa->sa_vp != l)
1168 			return 0;
1169 	}
1170 
1171 	if (p->p_stat == SSTOP) {
1172 		/*
1173 		 * The process is stopped/stopping. Stop ourselves now that
1174 		 * we're on the kernel/userspace boundary.
1175 		 */
1176 		if (dolock)
1177 			SCHED_LOCK(s);
1178 		l->l_stat = LSSTOP;
1179 		p->p_nrlwps--;
1180 		if (p->p_flag & P_TRACED)
1181 			goto sigtraceswitch;
1182 		else
1183 			goto sigswitch;
1184 	}
1185 	for (;;) {
1186 		sigpending1(p, &ss);
1187 		if (p->p_flag & P_PPWAIT)
1188 			sigminusset(&stopsigmask, &ss);
1189 		signum = firstsig(&ss);
1190 		if (signum == 0) {		 	/* no signal to send */
1191 			p->p_sigctx.ps_sigcheck = 0;
1192 			if (locked && dolock)
1193 				SCHED_LOCK(s);
1194 			return (0);
1195 		}
1196 							/* take the signal! */
1197 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1198 
1199 		/*
1200 		 * We should see pending but ignored signals
1201 		 * only if P_TRACED was on when they were posted.
1202 		 */
1203 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1204 		    (p->p_flag & P_TRACED) == 0)
1205 			continue;
1206 
1207 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1208 			/*
1209 			 * If traced, always stop, and stay
1210 			 * stopped until released by the debugger.
1211 			 */
1212 			p->p_xstat = signum;
1213 			if ((p->p_flag & P_FSTRACE) == 0)
1214 				psignal1(p->p_pptr, SIGCHLD, dolock);
1215 			if (dolock)
1216 				SCHED_LOCK(s);
1217 			proc_stop(p);
1218 		sigtraceswitch:
1219 			mi_switch(l, NULL);
1220 			SCHED_ASSERT_UNLOCKED();
1221 			if (dolock)
1222 				splx(s);
1223 			else
1224 				dolock = 1;
1225 
1226 			/*
1227 			 * If we are no longer being traced, or the parent
1228 			 * didn't give us a signal, look for more signals.
1229 			 */
1230 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1231 				continue;
1232 
1233 			/*
1234 			 * If the new signal is being masked, look for other
1235 			 * signals.
1236 			 */
1237 			signum = p->p_xstat;
1238 			p->p_xstat = 0;
1239 			/*
1240 			 * `p->p_sigctx.ps_siglist |= mask' is done
1241 			 * in setrunnable().
1242 			 */
1243 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1244 				continue;
1245 							/* take the signal! */
1246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1247 		}
1248 
1249 		prop = sigprop[signum];
1250 
1251 		/*
1252 		 * Decide whether the signal should be returned.
1253 		 * Return the signal's number, or fall through
1254 		 * to clear it from the pending mask.
1255 		 */
1256 		switch ((long)SIGACTION(p, signum).sa_handler) {
1257 
1258 		case (long)SIG_DFL:
1259 			/*
1260 			 * Don't take default actions on system processes.
1261 			 */
1262 			if (p->p_pid <= 1) {
1263 #ifdef DIAGNOSTIC
1264 				/*
1265 				 * Are you sure you want to ignore SIGSEGV
1266 				 * in init? XXX
1267 				 */
1268 				printf("Process (pid %d) got signal %d\n",
1269 				    p->p_pid, signum);
1270 #endif
1271 				break;		/* == ignore */
1272 			}
1273 			/*
1274 			 * If there is a pending stop signal to process
1275 			 * with default action, stop here,
1276 			 * then clear the signal.  However,
1277 			 * if process is member of an orphaned
1278 			 * process group, ignore tty stop signals.
1279 			 */
1280 			if (prop & SA_STOP) {
1281 				if (p->p_flag & P_TRACED ||
1282 		    		    (p->p_pgrp->pg_jobc == 0 &&
1283 				    prop & SA_TTYSTOP))
1284 					break;	/* == ignore */
1285 				p->p_xstat = signum;
1286 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1287 					psignal1(p->p_pptr, SIGCHLD, dolock);
1288 				if (dolock)
1289 					SCHED_LOCK(s);
1290 				proc_stop(p);
1291 			sigswitch:
1292 				mi_switch(l, NULL);
1293 				SCHED_ASSERT_UNLOCKED();
1294 				if (dolock)
1295 					splx(s);
1296 				else
1297 					dolock = 1;
1298 				break;
1299 			} else if (prop & SA_IGNORE) {
1300 				/*
1301 				 * Except for SIGCONT, shouldn't get here.
1302 				 * Default action is to ignore; drop it.
1303 				 */
1304 				break;		/* == ignore */
1305 			} else
1306 				goto keep;
1307 			/*NOTREACHED*/
1308 
1309 		case (long)SIG_IGN:
1310 			/*
1311 			 * Masking above should prevent us ever trying
1312 			 * to take action on an ignored signal other
1313 			 * than SIGCONT, unless process is traced.
1314 			 */
1315 #ifdef DEBUG_ISSIGNAL
1316 			if ((prop & SA_CONT) == 0 &&
1317 			    (p->p_flag & P_TRACED) == 0)
1318 				printf("issignal\n");
1319 #endif
1320 			break;		/* == ignore */
1321 
1322 		default:
1323 			/*
1324 			 * This signal has an action, let
1325 			 * postsig() process it.
1326 			 */
1327 			goto keep;
1328 		}
1329 	}
1330 	/* NOTREACHED */
1331 
1332  keep:
1333 						/* leave the signal for later */
1334 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1335 	CHECKSIGS(p);
1336 	if (locked && dolock)
1337 		SCHED_LOCK(s);
1338 	return (signum);
1339 }
1340 
1341 /*
1342  * Put the argument process into the stopped state and notify the parent
1343  * via wakeup.  Signals are handled elsewhere.  The process must not be
1344  * on the run queue.
1345  */
1346 static void
1347 proc_stop(struct proc *p)
1348 {
1349 	struct lwp *l;
1350 
1351 	SCHED_ASSERT_LOCKED();
1352 
1353 	/* XXX lock process LWP state */
1354 	p->p_stat = SSTOP;
1355 	p->p_flag &= ~P_WAITED;
1356 
1357 	/*
1358 	 * Put as many LWP's as possible in stopped state.
1359 	 * Sleeping ones will notice the stopped state as they try to
1360 	 * return to userspace.
1361 	 */
1362 
1363 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1364 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1365 			/* XXX SMP this assumes that a LWP that is LSONPROC
1366 			 * is curlwp and hence is about to be mi_switched
1367 			 * away; the only callers of proc_stop() are:
1368 			 * - psignal
1369 			 * - issignal()
1370 			 * For the former, proc_stop() is only called when
1371 			 * no processes are running, so we don't worry.
1372 			 * For the latter, proc_stop() is called right
1373 			 * before mi_switch().
1374 			 */
1375 			l->l_stat = LSSTOP;
1376 			p->p_nrlwps--;
1377 		}
1378 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1379 			setrunnable(l);
1380 		}
1381 
1382 /* !!!UPS!!! FIX ME */
1383 #if 0
1384 else if (l->l_stat == LSRUN) {
1385 			/* Remove LWP from the run queue */
1386 			remrunqueue(l);
1387 			l->l_stat = LSSTOP;
1388 			p->p_nrlwps--;
1389 		} else if ((l->l_stat == LSSLEEP) ||
1390 		    (l->l_stat == LSSUSPENDED) ||
1391 		    (l->l_stat == LSZOMB) ||
1392 		    (l->l_stat == LSDEAD)) {
1393 			/*
1394 			 * Don't do anything; let sleeping LWPs
1395 			 * discover the stopped state of the process
1396 			 * on their way out of the kernel; otherwise,
1397 			 * things like NFS threads that sleep with
1398 			 * locks will block the rest of the system
1399 			 * from getting any work done.
1400 			 *
1401 			 * Suspended/dead/zombie LWPs aren't going
1402 			 * anywhere, so we don't need to touch them.
1403 			 */
1404 		}
1405 #ifdef DIAGNOSTIC
1406 		else {
1407 			panic("proc_stop: process %d lwp %d "
1408 			      "in unstoppable state %d.\n",
1409 			    p->p_pid, l->l_lid, l->l_stat);
1410 		}
1411 #endif
1412 #endif
1413 	}
1414 	/* XXX unlock process LWP state */
1415 
1416 	sched_wakeup((caddr_t)p->p_pptr);
1417 }
1418 
1419 /*
1420  * Given a process in state SSTOP, set the state back to SACTIVE and
1421  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1422  *
1423  * If no LWPs ended up runnable (and therefore able to take a signal),
1424  * return a LWP that is sleeping interruptably. The caller can wake
1425  * that LWP up to take a signal.
1426  */
1427 struct lwp *
1428 proc_unstop(struct proc *p)
1429 {
1430 	struct lwp *l, *lr = NULL;
1431 	int cantake = 0;
1432 
1433 	SCHED_ASSERT_LOCKED();
1434 
1435 	/*
1436 	 * Our caller wants to be informed if there are only sleeping
1437 	 * and interruptable LWPs left after we have run so that it
1438 	 * can invoke setrunnable() if required - return one of the
1439 	 * interruptable LWPs if this is the case.
1440 	 */
1441 
1442 	p->p_stat = SACTIVE;
1443 	if (p->p_flag & P_SA) {
1444 		/*
1445 		 * Preferentially select the idle LWP as the interruptable
1446 		 * LWP to return if it exists.
1447 		 */
1448 		lr = p->p_sa->sa_idle;
1449 		if (lr != NULL)
1450 			cantake = 1;
1451 	}
1452 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1453 		if (l->l_stat == LSRUN) {
1454 			lr = NULL;
1455 			cantake = 1;
1456 		}
1457 		if (l->l_stat != LSSTOP)
1458 			continue;
1459 
1460 		if (l->l_wchan != NULL) {
1461 			l->l_stat = LSSLEEP;
1462 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1463 				lr = l;
1464 				cantake = 1;
1465 			}
1466 		} else {
1467 			setrunnable(l);
1468 			lr = NULL;
1469 			cantake = 1;
1470 		}
1471 	}
1472 
1473 	return lr;
1474 }
1475 
1476 /*
1477  * Take the action for the specified signal
1478  * from the current set of pending signals.
1479  */
1480 void
1481 postsig(int signum)
1482 {
1483 	struct lwp *l;
1484 	struct proc	*p;
1485 	struct sigacts	*ps;
1486 	sig_t		action;
1487 	u_long		code;
1488 	sigset_t	*returnmask;
1489 
1490 	l = curlwp;
1491 	p = l->l_proc;
1492 	ps = p->p_sigacts;
1493 #ifdef DIAGNOSTIC
1494 	if (signum == 0)
1495 		panic("postsig");
1496 #endif
1497 
1498 	KERNEL_PROC_LOCK(l);
1499 
1500 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1501 	action = SIGACTION_PS(ps, signum).sa_handler;
1502 #ifdef KTRACE
1503 	if (KTRPOINT(p, KTR_PSIG))
1504 		ktrpsig(p,
1505 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1506 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1507 #endif
1508 	if (action == SIG_DFL) {
1509 		/*
1510 		 * Default action, where the default is to kill
1511 		 * the process.  (Other cases were ignored above.)
1512 		 */
1513 		sigexit(l, signum);
1514 		/* NOTREACHED */
1515 	} else {
1516 		/*
1517 		 * If we get here, the signal must be caught.
1518 		 */
1519 #ifdef DIAGNOSTIC
1520 		if (action == SIG_IGN ||
1521 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1522 			panic("postsig action");
1523 #endif
1524 		/*
1525 		 * Set the new mask value and also defer further
1526 		 * occurrences of this signal.
1527 		 *
1528 		 * Special case: user has done a sigpause.  Here the
1529 		 * current mask is not of interest, but rather the
1530 		 * mask from before the sigpause is what we want
1531 		 * restored after the signal processing is completed.
1532 		 */
1533 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1534 			returnmask = &p->p_sigctx.ps_oldmask;
1535 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1536 		} else
1537 			returnmask = &p->p_sigctx.ps_sigmask;
1538 		p->p_stats->p_ru.ru_nsignals++;
1539 		if (p->p_sigctx.ps_sig != signum) {
1540 			code = 0;
1541 		} else {
1542 			code = p->p_sigctx.ps_code;
1543 			p->p_sigctx.ps_code = 0;
1544 			p->p_sigctx.ps_lwp = 0;
1545 			p->p_sigctx.ps_sig = 0;
1546 		}
1547 		psendsig(l, signum, returnmask, code);
1548 		(void) splsched();	/* XXXSMP */
1549 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1550 		    &p->p_sigctx.ps_sigmask);
1551 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1552 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1553 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1554 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1555 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1556 		}
1557 		(void) spl0();		/* XXXSMP */
1558 	}
1559 
1560 	KERNEL_PROC_UNLOCK(l);
1561 }
1562 
1563 /*
1564  * Kill the current process for stated reason.
1565  */
1566 void
1567 killproc(struct proc *p, const char *why)
1568 {
1569 
1570 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1571 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1572 	psignal(p, SIGKILL);
1573 }
1574 
1575 /*
1576  * Force the current process to exit with the specified signal, dumping core
1577  * if appropriate.  We bypass the normal tests for masked and caught signals,
1578  * allowing unrecoverable failures to terminate the process without changing
1579  * signal state.  Mark the accounting record with the signal termination.
1580  * If dumping core, save the signal number for the debugger.  Calls exit and
1581  * does not return.
1582  */
1583 
1584 #if defined(DEBUG)
1585 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1586 #else
1587 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1588 #endif
1589 
1590 static	const char logcoredump[] =
1591 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1592 static	const char lognocoredump[] =
1593 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1594 
1595 /* Wrapper function for use in p_userret */
1596 static void
1597 lwp_coredump_hook(struct lwp *l, void *arg)
1598 {
1599 	int s;
1600 
1601 	/*
1602 	 * Suspend ourselves, so that the kernel stack and therefore
1603 	 * the userland registers saved in the trapframe are around
1604 	 * for coredump() to write them out.
1605 	 */
1606 	KERNEL_PROC_LOCK(l);
1607 	l->l_flag &= ~L_DETACHED;
1608 	SCHED_LOCK(s);
1609 	l->l_stat = LSSUSPENDED;
1610 	l->l_proc->p_nrlwps--;
1611 	/* XXX NJWLWP check if this makes sense here: */
1612 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1613 	mi_switch(l, NULL);
1614 	SCHED_ASSERT_UNLOCKED();
1615 	splx(s);
1616 
1617 	lwp_exit(l);
1618 }
1619 
1620 void
1621 sigexit(struct lwp *l, int signum)
1622 {
1623 	struct proc	*p;
1624 #if 0
1625 	struct lwp	*l2;
1626 #endif
1627 	int		error, exitsig;
1628 
1629 	p = l->l_proc;
1630 
1631 	/*
1632 	 * Don't permit coredump() or exit1() multiple times
1633 	 * in the same process.
1634 	 */
1635 	if (p->p_flag & P_WEXIT) {
1636 		KERNEL_PROC_UNLOCK(l);
1637 		(*p->p_userret)(l, p->p_userret_arg);
1638 	}
1639 	p->p_flag |= P_WEXIT;
1640 	/* We don't want to switch away from exiting. */
1641 	/* XXX multiprocessor: stop LWPs on other processors. */
1642 #if 0
1643 	if (p->p_flag & P_SA) {
1644 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1645 		    l2->l_flag &= ~L_SA;
1646 		p->p_flag &= ~P_SA;
1647 	}
1648 #endif
1649 
1650 	/* Make other LWPs stick around long enough to be dumped */
1651 	p->p_userret = lwp_coredump_hook;
1652 	p->p_userret_arg = NULL;
1653 
1654 	exitsig = signum;
1655 	p->p_acflag |= AXSIG;
1656 	if (sigprop[signum] & SA_CORE) {
1657 		p->p_sigctx.ps_sig = signum;
1658 		if ((error = coredump(l)) == 0)
1659 			exitsig |= WCOREFLAG;
1660 
1661 		if (kern_logsigexit) {
1662 			/* XXX What if we ever have really large UIDs? */
1663 			int uid = p->p_cred && p->p_ucred ?
1664 				(int) p->p_ucred->cr_uid : -1;
1665 
1666 			if (error)
1667 				log(LOG_INFO, lognocoredump, p->p_pid,
1668 				    p->p_comm, uid, signum, error);
1669 			else
1670 				log(LOG_INFO, logcoredump, p->p_pid,
1671 				    p->p_comm, uid, signum);
1672 		}
1673 
1674 	}
1675 
1676 	exit1(l, W_EXITCODE(0, exitsig));
1677 	/* NOTREACHED */
1678 }
1679 
1680 /*
1681  * Dump core, into a file named "progname.core" or "core" (depending on the
1682  * value of shortcorename), unless the process was setuid/setgid.
1683  */
1684 int
1685 coredump(struct lwp *l)
1686 {
1687 	struct vnode		*vp;
1688 	struct proc		*p;
1689 	struct vmspace		*vm;
1690 	struct ucred		*cred;
1691 	struct nameidata	nd;
1692 	struct vattr		vattr;
1693 	int			error, error1;
1694 	char			name[MAXPATHLEN];
1695 
1696 	p = l->l_proc;
1697 	vm = p->p_vmspace;
1698 	cred = p->p_cred->pc_ucred;
1699 
1700 	/*
1701 	 * Make sure the process has not set-id, to prevent data leaks.
1702 	 */
1703 	if (p->p_flag & P_SUGID)
1704 		return (EPERM);
1705 
1706 	/*
1707 	 * Refuse to core if the data + stack + user size is larger than
1708 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
1709 	 * data.
1710 	 */
1711 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1712 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1713 		return (EFBIG);		/* better error code? */
1714 
1715 	/*
1716 	 * The core dump will go in the current working directory.  Make
1717 	 * sure that the directory is still there and that the mount flags
1718 	 * allow us to write core dumps there.
1719 	 */
1720 	vp = p->p_cwdi->cwdi_cdir;
1721 	if (vp->v_mount == NULL ||
1722 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1723 		return (EPERM);
1724 
1725 	error = build_corename(p, name);
1726 	if (error)
1727 		return error;
1728 
1729 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1730 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1731 	if (error)
1732 		return (error);
1733 	vp = nd.ni_vp;
1734 
1735 	/* Don't dump to non-regular files or files with links. */
1736 	if (vp->v_type != VREG ||
1737 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1738 		error = EINVAL;
1739 		goto out;
1740 	}
1741 	VATTR_NULL(&vattr);
1742 	vattr.va_size = 0;
1743 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
1744 	VOP_SETATTR(vp, &vattr, cred, p);
1745 	p->p_acflag |= ACORE;
1746 
1747 	/* Now dump the actual core file. */
1748 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
1749  out:
1750 	VOP_UNLOCK(vp, 0);
1751 	error1 = vn_close(vp, FWRITE, cred, p);
1752 	if (error == 0)
1753 		error = error1;
1754 	return (error);
1755 }
1756 
1757 /*
1758  * Nonexistent system call-- signal process (may want to handle it).
1759  * Flag error in case process won't see signal immediately (blocked or ignored).
1760  */
1761 /* ARGSUSED */
1762 int
1763 sys_nosys(struct lwp *l, void *v, register_t *retval)
1764 {
1765 	struct proc 	*p;
1766 
1767 	p = l->l_proc;
1768 	psignal(p, SIGSYS);
1769 	return (ENOSYS);
1770 }
1771 
1772 static int
1773 build_corename(struct proc *p, char dst[MAXPATHLEN])
1774 {
1775 	const char	*s;
1776 	char		*d, *end;
1777 	int		i;
1778 
1779 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1780 	    *s != '\0'; s++) {
1781 		if (*s == '%') {
1782 			switch (*(s + 1)) {
1783 			case 'n':
1784 				i = snprintf(d, end - d, "%s", p->p_comm);
1785 				break;
1786 			case 'p':
1787 				i = snprintf(d, end - d, "%d", p->p_pid);
1788 				break;
1789 			case 'u':
1790 				i = snprintf(d, end - d, "%.*s",
1791 				    (int)sizeof p->p_pgrp->pg_session->s_login,
1792 				    p->p_pgrp->pg_session->s_login);
1793 				break;
1794 			case 't':
1795 				i = snprintf(d, end - d, "%ld",
1796 				    p->p_stats->p_start.tv_sec);
1797 				break;
1798 			default:
1799 				goto copy;
1800 			}
1801 			d += i;
1802 			s++;
1803 		} else {
1804  copy:			*d = *s;
1805 			d++;
1806 		}
1807 		if (d >= end)
1808 			return (ENAMETOOLONG);
1809 	}
1810 	*d = '\0';
1811 	return 0;
1812 }
1813 
1814 void
1815 getucontext(struct lwp *l, ucontext_t *ucp)
1816 {
1817 	struct proc	*p;
1818 
1819 	p = l->l_proc;
1820 
1821 	ucp->uc_flags = 0;
1822 	ucp->uc_link = l->l_ctxlink;
1823 
1824 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
1825 	ucp->uc_flags |= _UC_SIGMASK;
1826 
1827 	/*
1828 	 * The (unsupplied) definition of the `current execution stack'
1829 	 * in the System V Interface Definition appears to allow returning
1830 	 * the main context stack.
1831 	 */
1832 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
1833 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
1834 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
1835 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
1836 	} else {
1837 		/* Simply copy alternate signal execution stack. */
1838 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
1839 	}
1840 	ucp->uc_flags |= _UC_STACK;
1841 
1842 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
1843 }
1844 
1845 /* ARGSUSED */
1846 int
1847 sys_getcontext(struct lwp *l, void *v, register_t *retval)
1848 {
1849 	struct sys_getcontext_args /* {
1850 		syscallarg(struct __ucontext *) ucp;
1851 	} */ *uap = v;
1852 	ucontext_t uc;
1853 
1854 	getucontext(l, &uc);
1855 
1856 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
1857 }
1858 
1859 int
1860 setucontext(struct lwp *l, const ucontext_t *ucp)
1861 {
1862 	struct proc	*p;
1863 	int		error;
1864 
1865 	p = l->l_proc;
1866 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
1867 		return (error);
1868 	l->l_ctxlink = ucp->uc_link;
1869 	/*
1870 	 * We might want to take care of the stack portion here but currently
1871 	 * don't; see the comment in getucontext().
1872 	 */
1873 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
1874 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
1875 
1876 	return 0;
1877 }
1878 
1879 /* ARGSUSED */
1880 int
1881 sys_setcontext(struct lwp *l, void *v, register_t *retval)
1882 {
1883 	struct sys_setcontext_args /* {
1884 		syscallarg(const ucontext_t *) ucp;
1885 	} */ *uap = v;
1886 	ucontext_t uc;
1887 	int error;
1888 
1889 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
1890 		exit1(l, W_EXITCODE(0, 0));
1891 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
1892 	    (error = setucontext(l, &uc)) != 0)
1893 		return (error);
1894 
1895 	return (EJUSTRETURN);
1896 }
1897 
1898 /*
1899  * sigtimedwait(2) system call, used also for implementation
1900  * of sigwaitinfo() and sigwait().
1901  *
1902  * This only handles single LWP in signal wait. libpthread provides
1903  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
1904  *
1905  * XXX no support for queued signals, si_code is always SI_USER.
1906  */
1907 int
1908 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
1909 {
1910 	struct sys___sigtimedwait_args /* {
1911 		syscallarg(const sigset_t *) set;
1912 		syscallarg(siginfo_t *) info;
1913 		syscallarg(struct timespec *) timeout;
1914 	} */ *uap = v;
1915 	sigset_t waitset, twaitset;
1916 	struct proc *p = l->l_proc;
1917 	int error, signum, s;
1918 	int timo = 0;
1919 	struct timeval tvstart;
1920 	struct timespec ts;
1921 
1922 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
1923 		return (error);
1924 
1925 	/*
1926 	 * Silently ignore SA_CANTMASK signals. psignal1() would
1927 	 * ignore SA_CANTMASK signals in waitset, we do this
1928 	 * only for the below siglist check.
1929 	 */
1930 	sigminusset(&sigcantmask, &waitset);
1931 
1932 	/*
1933 	 * First scan siglist and check if there is signal from
1934 	 * our waitset already pending.
1935 	 */
1936 	twaitset = waitset;
1937 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
1938 	if ((signum = firstsig(&twaitset))) {
1939 		/* found pending signal */
1940 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1941 		goto sig;
1942 	}
1943 
1944 	/*
1945 	 * Calculate timeout, if it was specified.
1946 	 */
1947 	if (SCARG(uap, timeout)) {
1948 		uint64_t ms;
1949 
1950 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
1951 			return (error);
1952 
1953 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
1954 		timo = mstohz(ms);
1955 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
1956 			timo = 1;
1957 		if (timo <= 0)
1958 			return (EAGAIN);
1959 
1960 		/*
1961 		 * Remember current mono_time, it would be used in
1962 		 * ECANCELED/ERESTART case.
1963 		 */
1964 		s = splclock();
1965 		tvstart = mono_time;
1966 		splx(s);
1967 	}
1968 
1969 	/*
1970 	 * Setup ps_sigwait list.
1971 	 */
1972 	p->p_sigctx.ps_sigwaited = -1;
1973 	p->p_sigctx.ps_sigwait = waitset;
1974 
1975 	/*
1976 	 * Wait for signal to arrive. We can either be woken up or
1977 	 * time out.
1978 	 */
1979 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
1980 
1981 	/*
1982 	 * Check if a signal from our wait set has arrived, or if it
1983 	 * was mere wakeup.
1984 	 */
1985 	if (!error) {
1986 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
1987 			/* wakeup via _lwp_wakeup() */
1988 			error = ECANCELED;
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * On error, clear sigwait indication. psignal1() sets it
1994 	 * in !error case.
1995 	 */
1996 	if (error) {
1997 		p->p_sigctx.ps_sigwaited = 0;
1998 
1999 		/*
2000 		 * If the sleep was interrupted (either by signal or wakeup),
2001 		 * update the timeout and copyout new value back.
2002 		 * It would be used when the syscall would be restarted
2003 		 * or called again.
2004 		 */
2005 		if (timo && (error == ERESTART || error == ECANCELED)) {
2006 			struct timeval tvnow, tvtimo;
2007 			int err;
2008 
2009 			s = splclock();
2010 			tvnow = mono_time;
2011 			splx(s);
2012 
2013 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2014 
2015 			/* compute how much time has passed since start */
2016 			timersub(&tvnow, &tvstart, &tvnow);
2017 			/* substract passed time from timeout */
2018 			timersub(&tvtimo, &tvnow, &tvtimo);
2019 
2020 			if (tvtimo.tv_sec < 0)
2021 				return (EAGAIN);
2022 
2023 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2024 
2025 			/* copy updated timeout to userland */
2026 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2027 				return (err);
2028 		}
2029 
2030 		return (error);
2031 	}
2032 
2033 	/*
2034 	 * If a signal from the wait set arrived, copy it to userland.
2035 	 * XXX no queued signals for now
2036 	 */
2037 	if (signum > 0) {
2038 		siginfo_t si;
2039 
2040  sig:
2041 		memset(&si, 0, sizeof(si));
2042 		si.si_signo = signum;
2043 		si.si_code = SI_USER;
2044 
2045 		error = copyout(&si, SCARG(uap, info), sizeof(si));
2046 		if (error)
2047 			return (error);
2048 	}
2049 
2050 	return (0);
2051 }
2052 
2053 /*
2054  * Returns true if signal is ignored or masked for passed process.
2055  */
2056 int
2057 sigismasked(struct proc *p, int sig)
2058 {
2059 
2060 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2061 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2062 }
2063 
2064 static int
2065 filt_sigattach(struct knote *kn)
2066 {
2067 	struct proc *p = curproc;
2068 
2069 	kn->kn_ptr.p_proc = p;
2070 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2071 
2072 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2073 
2074 	return (0);
2075 }
2076 
2077 static void
2078 filt_sigdetach(struct knote *kn)
2079 {
2080 	struct proc *p = kn->kn_ptr.p_proc;
2081 
2082 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2083 }
2084 
2085 /*
2086  * signal knotes are shared with proc knotes, so we apply a mask to
2087  * the hint in order to differentiate them from process hints.  This
2088  * could be avoided by using a signal-specific knote list, but probably
2089  * isn't worth the trouble.
2090  */
2091 static int
2092 filt_signal(struct knote *kn, long hint)
2093 {
2094 
2095 	if (hint & NOTE_SIGNAL) {
2096 		hint &= ~NOTE_SIGNAL;
2097 
2098 		if (kn->kn_id == hint)
2099 			kn->kn_data++;
2100 	}
2101 	return (kn->kn_data != 0);
2102 }
2103 
2104 const struct filterops sig_filtops = {
2105 	0, filt_sigattach, filt_sigdetach, filt_signal
2106 };
2107