1 /* $NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1989, 1991, 1993 41 * The Regents of the University of California. All rights reserved. 42 * (c) UNIX System Laboratories, Inc. 43 * All or some portions of this file are derived from material licensed 44 * to the University of California by American Telephone and Telegraph 45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 46 * the permission of UNIX System Laboratories, Inc. 47 * 48 * Redistribution and use in source and binary forms, with or without 49 * modification, are permitted provided that the following conditions 50 * are met: 51 * 1. Redistributions of source code must retain the above copyright 52 * notice, this list of conditions and the following disclaimer. 53 * 2. Redistributions in binary form must reproduce the above copyright 54 * notice, this list of conditions and the following disclaimer in the 55 * documentation and/or other materials provided with the distribution. 56 * 3. Neither the name of the University nor the names of its contributors 57 * may be used to endorse or promote products derived from this software 58 * without specific prior written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 70 * SUCH DAMAGE. 71 * 72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $"); 77 78 #include "opt_ptrace.h" 79 #include "opt_multiprocessor.h" 80 #include "opt_compat_sunos.h" 81 #include "opt_compat_netbsd.h" 82 #include "opt_compat_netbsd32.h" 83 #include "opt_pax.h" 84 85 #define SIGPROP /* include signal properties table */ 86 #include <sys/param.h> 87 #include <sys/signalvar.h> 88 #include <sys/proc.h> 89 #include <sys/systm.h> 90 #include <sys/wait.h> 91 #include <sys/ktrace.h> 92 #include <sys/syslog.h> 93 #include <sys/filedesc.h> 94 #include <sys/file.h> 95 #include <sys/malloc.h> 96 #include <sys/pool.h> 97 #include <sys/ucontext.h> 98 #include <sys/exec.h> 99 #include <sys/kauth.h> 100 #include <sys/acct.h> 101 #include <sys/callout.h> 102 #include <sys/atomic.h> 103 #include <sys/cpu.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm.h> 110 #include <uvm/uvm_extern.h> 111 112 static void ksiginfo_exechook(struct proc *, void *); 113 static void proc_stop_callout(void *); 114 115 int sigunwait(struct proc *, const ksiginfo_t *); 116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 117 int sigpost(struct lwp *, sig_t, int, int); 118 int sigchecktrace(sigpend_t **); 119 void sigswitch(bool, int, int); 120 void sigrealloc(ksiginfo_t *); 121 122 sigset_t contsigmask, stopsigmask, sigcantmask; 123 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 124 static void sigacts_poolpage_free(struct pool *, void *); 125 static void *sigacts_poolpage_alloc(struct pool *, int); 126 static callout_t proc_stop_ch; 127 128 static struct pool_allocator sigactspool_allocator = { 129 .pa_alloc = sigacts_poolpage_alloc, 130 .pa_free = sigacts_poolpage_free, 131 }; 132 133 #ifdef DEBUG 134 int kern_logsigexit = 1; 135 #else 136 int kern_logsigexit = 0; 137 #endif 138 139 static const char logcoredump[] = 140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 141 static const char lognocoredump[] = 142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 143 144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 145 &pool_allocator_nointr, IPL_NONE); 146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", 147 NULL, IPL_VM); 148 149 /* 150 * signal_init: 151 * 152 * Initialize global signal-related data structures. 153 */ 154 void 155 signal_init(void) 156 { 157 158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 159 160 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 161 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 162 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 163 164 exechook_establish(ksiginfo_exechook, NULL); 165 166 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 167 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 168 } 169 170 /* 171 * sigacts_poolpage_alloc: 172 * 173 * Allocate a page for the sigacts memory pool. 174 */ 175 static void * 176 sigacts_poolpage_alloc(struct pool *pp, int flags) 177 { 178 179 return (void *)uvm_km_alloc(kernel_map, 180 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 181 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 182 | UVM_KMF_WIRED); 183 } 184 185 /* 186 * sigacts_poolpage_free: 187 * 188 * Free a page on behalf of the sigacts memory pool. 189 */ 190 static void 191 sigacts_poolpage_free(struct pool *pp, void *v) 192 { 193 194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 195 } 196 197 /* 198 * sigactsinit: 199 * 200 * Create an initial sigctx structure, using the same signal state as 201 * p. If 'share' is set, share the sigctx_proc part, otherwise just 202 * copy it from parent. 203 */ 204 struct sigacts * 205 sigactsinit(struct proc *pp, int share) 206 { 207 struct sigacts *ps, *ps2; 208 209 ps = pp->p_sigacts; 210 211 if (share) { 212 atomic_inc_uint(&ps->sa_refcnt); 213 ps2 = ps; 214 } else { 215 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 216 /* XXXAD get rid of this */ 217 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 218 mutex_enter(&ps->sa_mutex); 219 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 220 sizeof(ps2->sa_sigdesc)); 221 mutex_exit(&ps->sa_mutex); 222 ps2->sa_refcnt = 1; 223 } 224 225 return ps2; 226 } 227 228 /* 229 * sigactsunshare: 230 * 231 * Make this process not share its sigctx, maintaining all 232 * signal state. 233 */ 234 void 235 sigactsunshare(struct proc *p) 236 { 237 struct sigacts *ps, *oldps; 238 239 oldps = p->p_sigacts; 240 if (oldps->sa_refcnt == 1) 241 return; 242 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 243 /* XXXAD get rid of this */ 244 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 245 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 246 p->p_sigacts = ps; 247 sigactsfree(oldps); 248 } 249 250 /* 251 * sigactsfree; 252 * 253 * Release a sigctx structure. 254 */ 255 void 256 sigactsfree(struct sigacts *ps) 257 { 258 259 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 260 mutex_destroy(&ps->sa_mutex); 261 pool_cache_put(sigacts_cache, ps); 262 } 263 } 264 265 /* 266 * siginit: 267 * 268 * Initialize signal state for process 0; set to ignore signals that 269 * are ignored by default and disable the signal stack. Locking not 270 * required as the system is still cold. 271 */ 272 void 273 siginit(struct proc *p) 274 { 275 struct lwp *l; 276 struct sigacts *ps; 277 int signo, prop; 278 279 ps = p->p_sigacts; 280 sigemptyset(&contsigmask); 281 sigemptyset(&stopsigmask); 282 sigemptyset(&sigcantmask); 283 for (signo = 1; signo < NSIG; signo++) { 284 prop = sigprop[signo]; 285 if (prop & SA_CONT) 286 sigaddset(&contsigmask, signo); 287 if (prop & SA_STOP) 288 sigaddset(&stopsigmask, signo); 289 if (prop & SA_CANTMASK) 290 sigaddset(&sigcantmask, signo); 291 if (prop & SA_IGNORE && signo != SIGCONT) 292 sigaddset(&p->p_sigctx.ps_sigignore, signo); 293 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 294 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 295 } 296 sigemptyset(&p->p_sigctx.ps_sigcatch); 297 p->p_sflag &= ~PS_NOCLDSTOP; 298 299 ksiginfo_queue_init(&p->p_sigpend.sp_info); 300 sigemptyset(&p->p_sigpend.sp_set); 301 302 /* 303 * Reset per LWP state. 304 */ 305 l = LIST_FIRST(&p->p_lwps); 306 l->l_sigwaited = NULL; 307 l->l_sigstk.ss_flags = SS_DISABLE; 308 l->l_sigstk.ss_size = 0; 309 l->l_sigstk.ss_sp = 0; 310 ksiginfo_queue_init(&l->l_sigpend.sp_info); 311 sigemptyset(&l->l_sigpend.sp_set); 312 313 /* One reference. */ 314 ps->sa_refcnt = 1; 315 } 316 317 /* 318 * execsigs: 319 * 320 * Reset signals for an exec of the specified process. 321 */ 322 void 323 execsigs(struct proc *p) 324 { 325 struct sigacts *ps; 326 struct lwp *l; 327 int signo, prop; 328 sigset_t tset; 329 ksiginfoq_t kq; 330 331 KASSERT(p->p_nlwps == 1); 332 333 sigactsunshare(p); 334 ps = p->p_sigacts; 335 336 /* 337 * Reset caught signals. Held signals remain held through 338 * l->l_sigmask (unless they were caught, and are now ignored 339 * by default). 340 * 341 * No need to lock yet, the process has only one LWP and 342 * at this point the sigacts are private to the process. 343 */ 344 sigemptyset(&tset); 345 for (signo = 1; signo < NSIG; signo++) { 346 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 347 prop = sigprop[signo]; 348 if (prop & SA_IGNORE) { 349 if ((prop & SA_CONT) == 0) 350 sigaddset(&p->p_sigctx.ps_sigignore, 351 signo); 352 sigaddset(&tset, signo); 353 } 354 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 355 } 356 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 357 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 358 } 359 ksiginfo_queue_init(&kq); 360 361 mutex_enter(p->p_lock); 362 sigclearall(p, &tset, &kq); 363 sigemptyset(&p->p_sigctx.ps_sigcatch); 364 365 /* 366 * Reset no zombies if child dies flag as Solaris does. 367 */ 368 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 369 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 370 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 371 372 /* 373 * Reset per-LWP state. 374 */ 375 l = LIST_FIRST(&p->p_lwps); 376 l->l_sigwaited = NULL; 377 l->l_sigstk.ss_flags = SS_DISABLE; 378 l->l_sigstk.ss_size = 0; 379 l->l_sigstk.ss_sp = 0; 380 ksiginfo_queue_init(&l->l_sigpend.sp_info); 381 sigemptyset(&l->l_sigpend.sp_set); 382 mutex_exit(p->p_lock); 383 384 ksiginfo_queue_drain(&kq); 385 } 386 387 /* 388 * ksiginfo_exechook: 389 * 390 * Free all pending ksiginfo entries from a process on exec. 391 * Additionally, drain any unused ksiginfo structures in the 392 * system back to the pool. 393 * 394 * XXX This should not be a hook, every process has signals. 395 */ 396 static void 397 ksiginfo_exechook(struct proc *p, void *v) 398 { 399 ksiginfoq_t kq; 400 401 ksiginfo_queue_init(&kq); 402 403 mutex_enter(p->p_lock); 404 sigclearall(p, NULL, &kq); 405 mutex_exit(p->p_lock); 406 407 ksiginfo_queue_drain(&kq); 408 } 409 410 /* 411 * ksiginfo_alloc: 412 * 413 * Allocate a new ksiginfo structure from the pool, and optionally copy 414 * an existing one. If the existing ksiginfo_t is from the pool, and 415 * has not been queued somewhere, then just return it. Additionally, 416 * if the existing ksiginfo_t does not contain any information beyond 417 * the signal number, then just return it. 418 */ 419 ksiginfo_t * 420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 421 { 422 ksiginfo_t *kp; 423 424 if (ok != NULL) { 425 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 426 KSI_FROMPOOL) 427 return ok; 428 if (KSI_EMPTY_P(ok)) 429 return ok; 430 } 431 432 kp = pool_get(&ksiginfo_pool, flags); 433 if (kp == NULL) { 434 #ifdef DIAGNOSTIC 435 printf("Out of memory allocating ksiginfo for pid %d\n", 436 p->p_pid); 437 #endif 438 return NULL; 439 } 440 441 if (ok != NULL) { 442 memcpy(kp, ok, sizeof(*kp)); 443 kp->ksi_flags &= ~KSI_QUEUED; 444 } else 445 KSI_INIT_EMPTY(kp); 446 447 kp->ksi_flags |= KSI_FROMPOOL; 448 449 return kp; 450 } 451 452 /* 453 * ksiginfo_free: 454 * 455 * If the given ksiginfo_t is from the pool and has not been queued, 456 * then free it. 457 */ 458 void 459 ksiginfo_free(ksiginfo_t *kp) 460 { 461 462 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 463 return; 464 pool_put(&ksiginfo_pool, kp); 465 } 466 467 /* 468 * ksiginfo_queue_drain: 469 * 470 * Drain a non-empty ksiginfo_t queue. 471 */ 472 void 473 ksiginfo_queue_drain0(ksiginfoq_t *kq) 474 { 475 ksiginfo_t *ksi; 476 477 KASSERT(!CIRCLEQ_EMPTY(kq)); 478 479 while (!CIRCLEQ_EMPTY(kq)) { 480 ksi = CIRCLEQ_FIRST(kq); 481 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 482 pool_put(&ksiginfo_pool, ksi); 483 } 484 } 485 486 /* 487 * sigget: 488 * 489 * Fetch the first pending signal from a set. Optionally, also fetch 490 * or manufacture a ksiginfo element. Returns the number of the first 491 * pending signal, or zero. 492 */ 493 int 494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 495 { 496 ksiginfo_t *ksi; 497 sigset_t tset; 498 499 /* If there's no pending set, the signal is from the debugger. */ 500 if (sp == NULL) { 501 if (out != NULL) { 502 KSI_INIT(out); 503 out->ksi_info._signo = signo; 504 out->ksi_info._code = SI_USER; 505 } 506 return signo; 507 } 508 509 /* Construct mask from signo, and 'mask'. */ 510 if (signo == 0) { 511 if (mask != NULL) { 512 tset = *mask; 513 __sigandset(&sp->sp_set, &tset); 514 } else 515 tset = sp->sp_set; 516 517 /* If there are no signals pending, that's it. */ 518 if ((signo = firstsig(&tset)) == 0) 519 return 0; 520 } else { 521 KASSERT(sigismember(&sp->sp_set, signo)); 522 } 523 524 sigdelset(&sp->sp_set, signo); 525 526 /* Find siginfo and copy it out. */ 527 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 528 if (ksi->ksi_signo == signo) { 529 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 530 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 531 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 532 ksi->ksi_flags &= ~KSI_QUEUED; 533 if (out != NULL) { 534 memcpy(out, ksi, sizeof(*out)); 535 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 536 } 537 ksiginfo_free(ksi); 538 return signo; 539 } 540 } 541 542 /* If there's no siginfo, then manufacture it. */ 543 if (out != NULL) { 544 KSI_INIT(out); 545 out->ksi_info._signo = signo; 546 out->ksi_info._code = SI_USER; 547 } 548 549 return signo; 550 } 551 552 /* 553 * sigput: 554 * 555 * Append a new ksiginfo element to the list of pending ksiginfo's, if 556 * we need to (e.g. SA_SIGINFO was requested). 557 */ 558 void 559 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 560 { 561 ksiginfo_t *kp; 562 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 563 564 KASSERT(mutex_owned(p->p_lock)); 565 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 566 567 sigaddset(&sp->sp_set, ksi->ksi_signo); 568 569 /* 570 * If siginfo is not required, or there is none, then just mark the 571 * signal as pending. 572 */ 573 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi)) 574 return; 575 576 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 577 578 #ifdef notyet /* XXX: QUEUING */ 579 if (ksi->ksi_signo < SIGRTMIN) 580 #endif 581 { 582 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 583 if (kp->ksi_signo == ksi->ksi_signo) { 584 KSI_COPY(ksi, kp); 585 kp->ksi_flags |= KSI_QUEUED; 586 return; 587 } 588 } 589 } 590 591 ksi->ksi_flags |= KSI_QUEUED; 592 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 593 } 594 595 /* 596 * sigclear: 597 * 598 * Clear all pending signals in the specified set. 599 */ 600 void 601 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 602 { 603 ksiginfo_t *ksi, *next; 604 605 if (mask == NULL) 606 sigemptyset(&sp->sp_set); 607 else 608 sigminusset(mask, &sp->sp_set); 609 610 ksi = CIRCLEQ_FIRST(&sp->sp_info); 611 for (; ksi != (void *)&sp->sp_info; ksi = next) { 612 next = CIRCLEQ_NEXT(ksi, ksi_list); 613 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 614 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 615 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 616 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 617 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 618 } 619 } 620 } 621 622 /* 623 * sigclearall: 624 * 625 * Clear all pending signals in the specified set from a process and 626 * its LWPs. 627 */ 628 void 629 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 630 { 631 struct lwp *l; 632 633 KASSERT(mutex_owned(p->p_lock)); 634 635 sigclear(&p->p_sigpend, mask, kq); 636 637 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 638 sigclear(&l->l_sigpend, mask, kq); 639 } 640 } 641 642 /* 643 * sigispending: 644 * 645 * Return true if there are pending signals for the current LWP. May 646 * be called unlocked provided that LW_PENDSIG is set, and that the 647 * signal has been posted to the appopriate queue before LW_PENDSIG is 648 * set. 649 */ 650 int 651 sigispending(struct lwp *l, int signo) 652 { 653 struct proc *p = l->l_proc; 654 sigset_t tset; 655 656 membar_consumer(); 657 658 tset = l->l_sigpend.sp_set; 659 sigplusset(&p->p_sigpend.sp_set, &tset); 660 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 661 sigminusset(&l->l_sigmask, &tset); 662 663 if (signo == 0) { 664 if (firstsig(&tset) != 0) 665 return EINTR; 666 } else if (sigismember(&tset, signo)) 667 return EINTR; 668 669 return 0; 670 } 671 672 /* 673 * siginfo_alloc: 674 * 675 * Allocate a new siginfo_t structure from the pool. 676 */ 677 siginfo_t * 678 siginfo_alloc(int flags) 679 { 680 681 return pool_get(&siginfo_pool, flags); 682 } 683 684 /* 685 * siginfo_free: 686 * 687 * Return a siginfo_t structure to the pool. 688 */ 689 void 690 siginfo_free(void *arg) 691 { 692 693 pool_put(&siginfo_pool, arg); 694 } 695 696 void 697 getucontext(struct lwp *l, ucontext_t *ucp) 698 { 699 struct proc *p = l->l_proc; 700 701 KASSERT(mutex_owned(p->p_lock)); 702 703 ucp->uc_flags = 0; 704 ucp->uc_link = l->l_ctxlink; 705 706 ucp->uc_sigmask = l->l_sigmask; 707 ucp->uc_flags |= _UC_SIGMASK; 708 709 /* 710 * The (unsupplied) definition of the `current execution stack' 711 * in the System V Interface Definition appears to allow returning 712 * the main context stack. 713 */ 714 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 715 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 716 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 717 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 718 } else { 719 /* Simply copy alternate signal execution stack. */ 720 ucp->uc_stack = l->l_sigstk; 721 } 722 ucp->uc_flags |= _UC_STACK; 723 mutex_exit(p->p_lock); 724 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 725 mutex_enter(p->p_lock); 726 } 727 728 int 729 setucontext(struct lwp *l, const ucontext_t *ucp) 730 { 731 struct proc *p = l->l_proc; 732 int error; 733 734 KASSERT(mutex_owned(p->p_lock)); 735 736 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 737 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 738 if (error != 0) 739 return error; 740 } 741 742 mutex_exit(p->p_lock); 743 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 744 mutex_enter(p->p_lock); 745 if (error != 0) 746 return (error); 747 748 l->l_ctxlink = ucp->uc_link; 749 750 /* 751 * If there was stack information, update whether or not we are 752 * still running on an alternate signal stack. 753 */ 754 if ((ucp->uc_flags & _UC_STACK) != 0) { 755 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 756 l->l_sigstk.ss_flags |= SS_ONSTACK; 757 else 758 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 759 } 760 761 return 0; 762 } 763 764 /* 765 * Common code for kill process group/broadcast kill. cp is calling 766 * process. 767 */ 768 int 769 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 770 { 771 struct proc *p, *cp; 772 kauth_cred_t pc; 773 struct pgrp *pgrp; 774 int nfound; 775 int signo = ksi->ksi_signo; 776 777 cp = l->l_proc; 778 pc = l->l_cred; 779 nfound = 0; 780 781 mutex_enter(proc_lock); 782 if (all) { 783 /* 784 * broadcast 785 */ 786 PROCLIST_FOREACH(p, &allproc) { 787 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp) 788 continue; 789 mutex_enter(p->p_lock); 790 if (kauth_authorize_process(pc, 791 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 792 NULL) == 0) { 793 nfound++; 794 if (signo) 795 kpsignal2(p, ksi); 796 } 797 mutex_exit(p->p_lock); 798 } 799 } else { 800 if (pgid == 0) 801 /* 802 * zero pgid means send to my process group. 803 */ 804 pgrp = cp->p_pgrp; 805 else { 806 pgrp = pg_find(pgid, PFIND_LOCKED); 807 if (pgrp == NULL) 808 goto out; 809 } 810 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 811 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 812 continue; 813 mutex_enter(p->p_lock); 814 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 815 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 816 nfound++; 817 if (signo && P_ZOMBIE(p) == 0) 818 kpsignal2(p, ksi); 819 } 820 mutex_exit(p->p_lock); 821 } 822 } 823 out: 824 mutex_exit(proc_lock); 825 return (nfound ? 0 : ESRCH); 826 } 827 828 /* 829 * Send a signal to a process group. If checktty is 1, limit to members 830 * which have a controlling terminal. 831 */ 832 void 833 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 834 { 835 ksiginfo_t ksi; 836 837 KASSERT(!cpu_intr_p()); 838 KASSERT(mutex_owned(proc_lock)); 839 840 KSI_INIT_EMPTY(&ksi); 841 ksi.ksi_signo = sig; 842 kpgsignal(pgrp, &ksi, NULL, checkctty); 843 } 844 845 void 846 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 847 { 848 struct proc *p; 849 850 KASSERT(!cpu_intr_p()); 851 KASSERT(mutex_owned(proc_lock)); 852 853 if (pgrp) 854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 855 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 856 kpsignal(p, ksi, data); 857 } 858 859 /* 860 * Send a signal caused by a trap to the current LWP. If it will be caught 861 * immediately, deliver it with correct code. Otherwise, post it normally. 862 */ 863 void 864 trapsignal(struct lwp *l, ksiginfo_t *ksi) 865 { 866 struct proc *p; 867 struct sigacts *ps; 868 int signo = ksi->ksi_signo; 869 870 KASSERT(KSI_TRAP_P(ksi)); 871 872 ksi->ksi_lid = l->l_lid; 873 p = l->l_proc; 874 875 KASSERT(!cpu_intr_p()); 876 mutex_enter(proc_lock); 877 mutex_enter(p->p_lock); 878 ps = p->p_sigacts; 879 if ((p->p_slflag & PSL_TRACED) == 0 && 880 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 881 !sigismember(&l->l_sigmask, signo)) { 882 mutex_exit(proc_lock); 883 l->l_ru.ru_nsignals++; 884 kpsendsig(l, ksi, &l->l_sigmask); 885 mutex_exit(p->p_lock); 886 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 887 &l->l_sigmask, ksi); 888 } else { 889 /* XXX for core dump/debugger */ 890 p->p_sigctx.ps_lwp = l->l_lid; 891 p->p_sigctx.ps_signo = ksi->ksi_signo; 892 p->p_sigctx.ps_code = ksi->ksi_trap; 893 kpsignal2(p, ksi); 894 mutex_exit(p->p_lock); 895 mutex_exit(proc_lock); 896 } 897 } 898 899 /* 900 * Fill in signal information and signal the parent for a child status change. 901 */ 902 void 903 child_psignal(struct proc *p, int mask) 904 { 905 ksiginfo_t ksi; 906 struct proc *q; 907 int xstat; 908 909 KASSERT(mutex_owned(proc_lock)); 910 KASSERT(mutex_owned(p->p_lock)); 911 912 xstat = p->p_xstat; 913 914 KSI_INIT(&ksi); 915 ksi.ksi_signo = SIGCHLD; 916 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 917 ksi.ksi_pid = p->p_pid; 918 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 919 ksi.ksi_status = xstat; 920 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 921 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 922 923 q = p->p_pptr; 924 925 mutex_exit(p->p_lock); 926 mutex_enter(q->p_lock); 927 928 if ((q->p_sflag & mask) == 0) 929 kpsignal2(q, &ksi); 930 931 mutex_exit(q->p_lock); 932 mutex_enter(p->p_lock); 933 } 934 935 void 936 psignal(struct proc *p, int signo) 937 { 938 ksiginfo_t ksi; 939 940 KASSERT(!cpu_intr_p()); 941 KASSERT(mutex_owned(proc_lock)); 942 943 KSI_INIT_EMPTY(&ksi); 944 ksi.ksi_signo = signo; 945 mutex_enter(p->p_lock); 946 kpsignal2(p, &ksi); 947 mutex_exit(p->p_lock); 948 } 949 950 void 951 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 952 { 953 fdfile_t *ff; 954 file_t *fp; 955 956 KASSERT(!cpu_intr_p()); 957 KASSERT(mutex_owned(proc_lock)); 958 959 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 960 size_t fd; 961 filedesc_t *fdp = p->p_fd; 962 963 /* XXXSMP locking */ 964 ksi->ksi_fd = -1; 965 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 966 if ((ff = fdp->fd_ofiles[fd]) == NULL) 967 continue; 968 if ((fp = ff->ff_file) == NULL) 969 continue; 970 if (fp->f_data == data) { 971 ksi->ksi_fd = fd; 972 break; 973 } 974 } 975 } 976 mutex_enter(p->p_lock); 977 kpsignal2(p, ksi); 978 mutex_exit(p->p_lock); 979 } 980 981 /* 982 * sigismasked: 983 * 984 * Returns true if signal is ignored or masked for the specified LWP. 985 */ 986 int 987 sigismasked(struct lwp *l, int sig) 988 { 989 struct proc *p = l->l_proc; 990 991 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 992 sigismember(&l->l_sigmask, sig)); 993 } 994 995 /* 996 * sigpost: 997 * 998 * Post a pending signal to an LWP. Returns non-zero if the LWP was 999 * able to take the signal. 1000 */ 1001 int 1002 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1003 { 1004 int rv, masked; 1005 1006 KASSERT(mutex_owned(l->l_proc->p_lock)); 1007 1008 /* 1009 * If the LWP is on the way out, sigclear() will be busy draining all 1010 * pending signals. Don't give it more. 1011 */ 1012 if (l->l_refcnt == 0) 1013 return 0; 1014 1015 lwp_lock(l); 1016 1017 /* 1018 * Have the LWP check for signals. This ensures that even if no LWP 1019 * is found to take the signal immediately, it should be taken soon. 1020 */ 1021 l->l_flag |= LW_PENDSIG; 1022 1023 /* 1024 * SIGCONT can be masked, but must always restart stopped LWPs. 1025 */ 1026 masked = sigismember(&l->l_sigmask, sig); 1027 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1028 lwp_unlock(l); 1029 return 0; 1030 } 1031 1032 /* 1033 * If killing the process, make it run fast. 1034 */ 1035 if (__predict_false((prop & SA_KILL) != 0) && 1036 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1037 KASSERT(l->l_class == SCHED_OTHER); 1038 lwp_changepri(l, MAXPRI_USER); 1039 } 1040 1041 /* 1042 * If the LWP is running or on a run queue, then we win. If it's 1043 * sleeping interruptably, wake it and make it take the signal. If 1044 * the sleep isn't interruptable, then the chances are it will get 1045 * to see the signal soon anyhow. If suspended, it can't take the 1046 * signal right now. If it's LWP private or for all LWPs, save it 1047 * for later; otherwise punt. 1048 */ 1049 rv = 0; 1050 1051 switch (l->l_stat) { 1052 case LSRUN: 1053 case LSONPROC: 1054 lwp_need_userret(l); 1055 rv = 1; 1056 break; 1057 1058 case LSSLEEP: 1059 if ((l->l_flag & LW_SINTR) != 0) { 1060 /* setrunnable() will release the lock. */ 1061 setrunnable(l); 1062 return 1; 1063 } 1064 break; 1065 1066 case LSSUSPENDED: 1067 if ((prop & SA_KILL) != 0) { 1068 /* lwp_continue() will release the lock. */ 1069 lwp_continue(l); 1070 return 1; 1071 } 1072 break; 1073 1074 case LSSTOP: 1075 if ((prop & SA_STOP) != 0) 1076 break; 1077 1078 /* 1079 * If the LWP is stopped and we are sending a continue 1080 * signal, then start it again. 1081 */ 1082 if ((prop & SA_CONT) != 0) { 1083 if (l->l_wchan != NULL) { 1084 l->l_stat = LSSLEEP; 1085 l->l_proc->p_nrlwps++; 1086 rv = 1; 1087 break; 1088 } 1089 /* setrunnable() will release the lock. */ 1090 setrunnable(l); 1091 return 1; 1092 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1093 /* setrunnable() will release the lock. */ 1094 setrunnable(l); 1095 return 1; 1096 } 1097 break; 1098 1099 default: 1100 break; 1101 } 1102 1103 lwp_unlock(l); 1104 return rv; 1105 } 1106 1107 /* 1108 * Notify an LWP that it has a pending signal. 1109 */ 1110 void 1111 signotify(struct lwp *l) 1112 { 1113 KASSERT(lwp_locked(l, NULL)); 1114 1115 l->l_flag |= LW_PENDSIG; 1116 lwp_need_userret(l); 1117 } 1118 1119 /* 1120 * Find an LWP within process p that is waiting on signal ksi, and hand 1121 * it on. 1122 */ 1123 int 1124 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1125 { 1126 struct lwp *l; 1127 int signo; 1128 1129 KASSERT(mutex_owned(p->p_lock)); 1130 1131 signo = ksi->ksi_signo; 1132 1133 if (ksi->ksi_lid != 0) { 1134 /* 1135 * Signal came via _lwp_kill(). Find the LWP and see if 1136 * it's interested. 1137 */ 1138 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1139 return 0; 1140 if (l->l_sigwaited == NULL || 1141 !sigismember(&l->l_sigwaitset, signo)) 1142 return 0; 1143 } else { 1144 /* 1145 * Look for any LWP that may be interested. 1146 */ 1147 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1148 KASSERT(l->l_sigwaited != NULL); 1149 if (sigismember(&l->l_sigwaitset, signo)) 1150 break; 1151 } 1152 } 1153 1154 if (l != NULL) { 1155 l->l_sigwaited->ksi_info = ksi->ksi_info; 1156 l->l_sigwaited = NULL; 1157 LIST_REMOVE(l, l_sigwaiter); 1158 cv_signal(&l->l_sigcv); 1159 return 1; 1160 } 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * Send the signal to the process. If the signal has an action, the action 1167 * is usually performed by the target process rather than the caller; we add 1168 * the signal to the set of pending signals for the process. 1169 * 1170 * Exceptions: 1171 * o When a stop signal is sent to a sleeping process that takes the 1172 * default action, the process is stopped without awakening it. 1173 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1174 * regardless of the signal action (eg, blocked or ignored). 1175 * 1176 * Other ignored signals are discarded immediately. 1177 */ 1178 void 1179 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1180 { 1181 int prop, lid, toall, signo = ksi->ksi_signo; 1182 struct sigacts *sa; 1183 struct lwp *l; 1184 ksiginfo_t *kp; 1185 ksiginfoq_t kq; 1186 sig_t action; 1187 1188 KASSERT(!cpu_intr_p()); 1189 KASSERT(mutex_owned(proc_lock)); 1190 KASSERT(mutex_owned(p->p_lock)); 1191 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1192 KASSERT(signo > 0 && signo < NSIG); 1193 1194 /* 1195 * If the process is being created by fork, is a zombie or is 1196 * exiting, then just drop the signal here and bail out. 1197 */ 1198 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1199 return; 1200 1201 /* 1202 * Notify any interested parties of the signal. 1203 */ 1204 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1205 1206 /* 1207 * Some signals including SIGKILL must act on the entire process. 1208 */ 1209 kp = NULL; 1210 prop = sigprop[signo]; 1211 toall = ((prop & SA_TOALL) != 0); 1212 1213 if (toall) 1214 lid = 0; 1215 else 1216 lid = ksi->ksi_lid; 1217 1218 /* 1219 * If proc is traced, always give parent a chance. 1220 */ 1221 if (p->p_slflag & PSL_TRACED) { 1222 action = SIG_DFL; 1223 1224 if (lid == 0) { 1225 /* 1226 * If the process is being traced and the signal 1227 * is being caught, make sure to save any ksiginfo. 1228 */ 1229 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1230 return; 1231 sigput(&p->p_sigpend, p, kp); 1232 } 1233 } else { 1234 /* 1235 * If the signal was the result of a trap and is not being 1236 * caught, then reset it to default action so that the 1237 * process dumps core immediately. 1238 */ 1239 if (KSI_TRAP_P(ksi)) { 1240 sa = p->p_sigacts; 1241 mutex_enter(&sa->sa_mutex); 1242 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1243 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1244 SIGACTION(p, signo).sa_handler = SIG_DFL; 1245 } 1246 mutex_exit(&sa->sa_mutex); 1247 } 1248 1249 /* 1250 * If the signal is being ignored, then drop it. Note: we 1251 * don't set SIGCONT in ps_sigignore, and if it is set to 1252 * SIG_IGN, action will be SIG_DFL here. 1253 */ 1254 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1255 return; 1256 1257 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1258 action = SIG_CATCH; 1259 else { 1260 action = SIG_DFL; 1261 1262 /* 1263 * If sending a tty stop signal to a member of an 1264 * orphaned process group, discard the signal here if 1265 * the action is default; don't stop the process below 1266 * if sleeping, and don't clear any pending SIGCONT. 1267 */ 1268 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1269 return; 1270 1271 if (prop & SA_KILL && p->p_nice > NZERO) 1272 p->p_nice = NZERO; 1273 } 1274 } 1275 1276 /* 1277 * If stopping or continuing a process, discard any pending 1278 * signals that would do the inverse. 1279 */ 1280 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1281 ksiginfo_queue_init(&kq); 1282 if ((prop & SA_CONT) != 0) 1283 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1284 if ((prop & SA_STOP) != 0) 1285 sigclear(&p->p_sigpend, &contsigmask, &kq); 1286 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1287 } 1288 1289 /* 1290 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1291 * please!), check if any LWPs are waiting on it. If yes, pass on 1292 * the signal info. The signal won't be processed further here. 1293 */ 1294 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1295 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1296 sigunwait(p, ksi)) 1297 return; 1298 1299 /* 1300 * XXXSMP Should be allocated by the caller, we're holding locks 1301 * here. 1302 */ 1303 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1304 return; 1305 1306 /* 1307 * LWP private signals are easy - just find the LWP and post 1308 * the signal to it. 1309 */ 1310 if (lid != 0) { 1311 l = lwp_find(p, lid); 1312 if (l != NULL) { 1313 sigput(&l->l_sigpend, p, kp); 1314 membar_producer(); 1315 (void)sigpost(l, action, prop, kp->ksi_signo); 1316 } 1317 goto out; 1318 } 1319 1320 /* 1321 * Some signals go to all LWPs, even if posted with _lwp_kill(). 1322 */ 1323 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1324 if ((p->p_slflag & PSL_TRACED) != 0) 1325 goto deliver; 1326 1327 /* 1328 * If SIGCONT is default (or ignored) and process is 1329 * asleep, we are finished; the process should not 1330 * be awakened. 1331 */ 1332 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1333 goto out; 1334 1335 sigput(&p->p_sigpend, p, kp); 1336 } else { 1337 /* 1338 * Process is stopped or stopping. If traced, then no 1339 * further action is necessary. 1340 */ 1341 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1342 goto out; 1343 1344 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1345 /* 1346 * Re-adjust p_nstopchild if the process wasn't 1347 * collected by its parent. 1348 */ 1349 p->p_stat = SACTIVE; 1350 p->p_sflag &= ~PS_STOPPING; 1351 if (!p->p_waited) 1352 p->p_pptr->p_nstopchild--; 1353 1354 /* 1355 * If SIGCONT is default (or ignored), we continue 1356 * the process but don't leave the signal in 1357 * ps_siglist, as it has no further action. If 1358 * SIGCONT is held, we continue the process and 1359 * leave the signal in ps_siglist. If the process 1360 * catches SIGCONT, let it handle the signal itself. 1361 * If it isn't waiting on an event, then it goes 1362 * back to run state. Otherwise, process goes back 1363 * to sleep state. 1364 */ 1365 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1366 sigput(&p->p_sigpend, p, kp); 1367 } else if ((prop & SA_STOP) != 0) { 1368 /* 1369 * Already stopped, don't need to stop again. 1370 * (If we did the shell could get confused.) 1371 */ 1372 goto out; 1373 } else 1374 sigput(&p->p_sigpend, p, kp); 1375 } 1376 1377 deliver: 1378 /* 1379 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1380 * visible on the per process list (for sigispending()). This 1381 * is unlikely to be needed in practice, but... 1382 */ 1383 membar_producer(); 1384 1385 /* 1386 * Try to find an LWP that can take the signal. 1387 */ 1388 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1389 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1390 break; 1391 1392 out: 1393 /* 1394 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1395 * with locks held. The caller should take care of this. 1396 */ 1397 ksiginfo_free(kp); 1398 } 1399 1400 void 1401 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1402 { 1403 struct proc *p = l->l_proc; 1404 1405 KASSERT(mutex_owned(p->p_lock)); 1406 1407 (*p->p_emul->e_sendsig)(ksi, mask); 1408 } 1409 1410 /* 1411 * Stop any LWPs sleeping interruptably. 1412 */ 1413 static void 1414 proc_stop_lwps(struct proc *p) 1415 { 1416 struct lwp *l; 1417 1418 KASSERT(mutex_owned(p->p_lock)); 1419 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1420 1421 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1422 lwp_lock(l); 1423 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1424 l->l_stat = LSSTOP; 1425 p->p_nrlwps--; 1426 } 1427 lwp_unlock(l); 1428 } 1429 } 1430 1431 /* 1432 * Finish stopping of a process. Mark it stopped and notify the parent. 1433 * 1434 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1435 */ 1436 static void 1437 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1438 { 1439 1440 KASSERT(mutex_owned(proc_lock)); 1441 KASSERT(mutex_owned(p->p_lock)); 1442 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1443 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1444 1445 p->p_sflag &= ~PS_STOPPING; 1446 p->p_stat = SSTOP; 1447 p->p_waited = 0; 1448 p->p_pptr->p_nstopchild++; 1449 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1450 if (ppsig) { 1451 /* child_psignal drops p_lock briefly. */ 1452 child_psignal(p, ppmask); 1453 } 1454 cv_broadcast(&p->p_pptr->p_waitcv); 1455 } 1456 } 1457 1458 /* 1459 * Stop the current process and switch away when being stopped or traced. 1460 */ 1461 void 1462 sigswitch(bool ppsig, int ppmask, int signo) 1463 { 1464 struct lwp *l = curlwp; 1465 struct proc *p = l->l_proc; 1466 #ifdef MULTIPROCESSOR 1467 int biglocks; 1468 #endif 1469 1470 KASSERT(mutex_owned(p->p_lock)); 1471 KASSERT(l->l_stat == LSONPROC); 1472 KASSERT(p->p_nrlwps > 0); 1473 1474 /* 1475 * On entry we know that the process needs to stop. If it's 1476 * the result of a 'sideways' stop signal that has been sourced 1477 * through issignal(), then stop other LWPs in the process too. 1478 */ 1479 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1480 KASSERT(signo != 0); 1481 proc_stop(p, 1, signo); 1482 KASSERT(p->p_nrlwps > 0); 1483 } 1484 1485 /* 1486 * If we are the last live LWP, and the stop was a result of 1487 * a new signal, then signal the parent. 1488 */ 1489 if ((p->p_sflag & PS_STOPPING) != 0) { 1490 if (!mutex_tryenter(proc_lock)) { 1491 mutex_exit(p->p_lock); 1492 mutex_enter(proc_lock); 1493 mutex_enter(p->p_lock); 1494 } 1495 1496 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1497 /* 1498 * Note that proc_stop_done() can drop 1499 * p->p_lock briefly. 1500 */ 1501 proc_stop_done(p, ppsig, ppmask); 1502 } 1503 1504 mutex_exit(proc_lock); 1505 } 1506 1507 /* 1508 * Unlock and switch away. 1509 */ 1510 KERNEL_UNLOCK_ALL(l, &biglocks); 1511 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1512 p->p_nrlwps--; 1513 lwp_lock(l); 1514 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1515 l->l_stat = LSSTOP; 1516 lwp_unlock(l); 1517 } 1518 1519 mutex_exit(p->p_lock); 1520 lwp_lock(l); 1521 mi_switch(l); 1522 KERNEL_LOCK(biglocks, l); 1523 mutex_enter(p->p_lock); 1524 } 1525 1526 /* 1527 * Check for a signal from the debugger. 1528 */ 1529 int 1530 sigchecktrace(sigpend_t **spp) 1531 { 1532 struct lwp *l = curlwp; 1533 struct proc *p = l->l_proc; 1534 int signo; 1535 1536 KASSERT(mutex_owned(p->p_lock)); 1537 1538 /* 1539 * If we are no longer being traced, or the parent didn't 1540 * give us a signal, look for more signals. 1541 */ 1542 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1543 return 0; 1544 1545 /* If there's a pending SIGKILL, process it immediately. */ 1546 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1547 return 0; 1548 1549 /* 1550 * If the new signal is being masked, look for other signals. 1551 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1552 */ 1553 signo = p->p_xstat; 1554 p->p_xstat = 0; 1555 if ((sigprop[signo] & SA_TOLWP) != 0) 1556 *spp = &l->l_sigpend; 1557 else 1558 *spp = &p->p_sigpend; 1559 if (sigismember(&l->l_sigmask, signo)) 1560 signo = 0; 1561 1562 return signo; 1563 } 1564 1565 /* 1566 * If the current process has received a signal (should be caught or cause 1567 * termination, should interrupt current syscall), return the signal number. 1568 * 1569 * Stop signals with default action are processed immediately, then cleared; 1570 * they aren't returned. This is checked after each entry to the system for 1571 * a syscall or trap. 1572 * 1573 * We will also return -1 if the process is exiting and the current LWP must 1574 * follow suit. 1575 * 1576 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We 1577 * can switch away, though. 1578 */ 1579 int 1580 issignal(struct lwp *l) 1581 { 1582 struct proc *p = l->l_proc; 1583 int signo = 0, prop; 1584 sigpend_t *sp = NULL; 1585 sigset_t ss; 1586 1587 KASSERT(mutex_owned(p->p_lock)); 1588 1589 for (;;) { 1590 /* Discard any signals that we have decided not to take. */ 1591 if (signo != 0) 1592 (void)sigget(sp, NULL, signo, NULL); 1593 1594 /* 1595 * If the process is stopped/stopping, then stop ourselves 1596 * now that we're on the kernel/userspace boundary. When 1597 * we awaken, check for a signal from the debugger. 1598 */ 1599 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1600 sigswitch(true, PS_NOCLDSTOP, 0); 1601 signo = sigchecktrace(&sp); 1602 } else 1603 signo = 0; 1604 1605 /* 1606 * If the debugger didn't provide a signal, find a pending 1607 * signal from our set. Check per-LWP signals first, and 1608 * then per-process. 1609 */ 1610 if (signo == 0) { 1611 sp = &l->l_sigpend; 1612 ss = sp->sp_set; 1613 if ((p->p_sflag & PS_PPWAIT) != 0) 1614 sigminusset(&stopsigmask, &ss); 1615 sigminusset(&l->l_sigmask, &ss); 1616 1617 if ((signo = firstsig(&ss)) == 0) { 1618 sp = &p->p_sigpend; 1619 ss = sp->sp_set; 1620 if ((p->p_sflag & PS_PPWAIT) != 0) 1621 sigminusset(&stopsigmask, &ss); 1622 sigminusset(&l->l_sigmask, &ss); 1623 1624 if ((signo = firstsig(&ss)) == 0) { 1625 /* 1626 * No signal pending - clear the 1627 * indicator and bail out. 1628 */ 1629 lwp_lock(l); 1630 l->l_flag &= ~LW_PENDSIG; 1631 lwp_unlock(l); 1632 sp = NULL; 1633 break; 1634 } 1635 } 1636 } 1637 1638 /* 1639 * We should see pending but ignored signals only if 1640 * we are being traced. 1641 */ 1642 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1643 (p->p_slflag & PSL_TRACED) == 0) { 1644 /* Discard the signal. */ 1645 continue; 1646 } 1647 1648 /* 1649 * If traced, always stop, and stay stopped until released 1650 * by the debugger. If the our parent process is waiting 1651 * for us, don't hang as we could deadlock. 1652 */ 1653 if ((p->p_slflag & PSL_TRACED) != 0 && 1654 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) { 1655 /* Take the signal. */ 1656 (void)sigget(sp, NULL, signo, NULL); 1657 p->p_xstat = signo; 1658 1659 /* Emulation-specific handling of signal trace */ 1660 if (p->p_emul->e_tracesig == NULL || 1661 (*p->p_emul->e_tracesig)(p, signo) == 0) 1662 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1663 signo); 1664 1665 /* Check for a signal from the debugger. */ 1666 if ((signo = sigchecktrace(&sp)) == 0) 1667 continue; 1668 } 1669 1670 prop = sigprop[signo]; 1671 1672 /* 1673 * Decide whether the signal should be returned. 1674 */ 1675 switch ((long)SIGACTION(p, signo).sa_handler) { 1676 case (long)SIG_DFL: 1677 /* 1678 * Don't take default actions on system processes. 1679 */ 1680 if (p->p_pid <= 1) { 1681 #ifdef DIAGNOSTIC 1682 /* 1683 * Are you sure you want to ignore SIGSEGV 1684 * in init? XXX 1685 */ 1686 printf_nolog("Process (pid %d) got sig %d\n", 1687 p->p_pid, signo); 1688 #endif 1689 continue; 1690 } 1691 1692 /* 1693 * If there is a pending stop signal to process with 1694 * default action, stop here, then clear the signal. 1695 * However, if process is member of an orphaned 1696 * process group, ignore tty stop signals. 1697 */ 1698 if (prop & SA_STOP) { 1699 /* 1700 * XXX Don't hold proc_lock for p_lflag, 1701 * but it's not a big deal. 1702 */ 1703 if (p->p_slflag & PSL_TRACED || 1704 ((p->p_lflag & PL_ORPHANPG) != 0 && 1705 prop & SA_TTYSTOP)) { 1706 /* Ignore the signal. */ 1707 continue; 1708 } 1709 /* Take the signal. */ 1710 (void)sigget(sp, NULL, signo, NULL); 1711 p->p_xstat = signo; 1712 signo = 0; 1713 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1714 } else if (prop & SA_IGNORE) { 1715 /* 1716 * Except for SIGCONT, shouldn't get here. 1717 * Default action is to ignore; drop it. 1718 */ 1719 continue; 1720 } 1721 break; 1722 1723 case (long)SIG_IGN: 1724 #ifdef DEBUG_ISSIGNAL 1725 /* 1726 * Masking above should prevent us ever trying 1727 * to take action on an ignored signal other 1728 * than SIGCONT, unless process is traced. 1729 */ 1730 if ((prop & SA_CONT) == 0 && 1731 (p->p_slflag & PSL_TRACED) == 0) 1732 printf_nolog("issignal\n"); 1733 #endif 1734 continue; 1735 1736 default: 1737 /* 1738 * This signal has an action, let postsig() process 1739 * it. 1740 */ 1741 break; 1742 } 1743 1744 break; 1745 } 1746 1747 l->l_sigpendset = sp; 1748 return signo; 1749 } 1750 1751 /* 1752 * Take the action for the specified signal 1753 * from the current set of pending signals. 1754 */ 1755 void 1756 postsig(int signo) 1757 { 1758 struct lwp *l; 1759 struct proc *p; 1760 struct sigacts *ps; 1761 sig_t action; 1762 sigset_t *returnmask; 1763 ksiginfo_t ksi; 1764 1765 l = curlwp; 1766 p = l->l_proc; 1767 ps = p->p_sigacts; 1768 1769 KASSERT(mutex_owned(p->p_lock)); 1770 KASSERT(signo > 0); 1771 1772 /* 1773 * Set the new mask value and also defer further occurrences of this 1774 * signal. 1775 * 1776 * Special case: user has done a sigsuspend. Here the current mask is 1777 * not of interest, but rather the mask from before the sigsuspen is 1778 * what we want restored after the signal processing is completed. 1779 */ 1780 if (l->l_sigrestore) { 1781 returnmask = &l->l_sigoldmask; 1782 l->l_sigrestore = 0; 1783 } else 1784 returnmask = &l->l_sigmask; 1785 1786 /* 1787 * Commit to taking the signal before releasing the mutex. 1788 */ 1789 action = SIGACTION_PS(ps, signo).sa_handler; 1790 l->l_ru.ru_nsignals++; 1791 sigget(l->l_sigpendset, &ksi, signo, NULL); 1792 1793 if (ktrpoint(KTR_PSIG)) { 1794 mutex_exit(p->p_lock); 1795 ktrpsig(signo, action, returnmask, NULL); 1796 mutex_enter(p->p_lock); 1797 } 1798 1799 if (action == SIG_DFL) { 1800 /* 1801 * Default action, where the default is to kill 1802 * the process. (Other cases were ignored above.) 1803 */ 1804 sigexit(l, signo); 1805 return; 1806 } 1807 1808 /* 1809 * If we get here, the signal must be caught. 1810 */ 1811 #ifdef DIAGNOSTIC 1812 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1813 panic("postsig action"); 1814 #endif 1815 1816 kpsendsig(l, &ksi, returnmask); 1817 } 1818 1819 /* 1820 * sendsig_reset: 1821 * 1822 * Reset the signal action. Called from emulation specific sendsig() 1823 * before unlocking to deliver the signal. 1824 */ 1825 void 1826 sendsig_reset(struct lwp *l, int signo) 1827 { 1828 struct proc *p = l->l_proc; 1829 struct sigacts *ps = p->p_sigacts; 1830 1831 KASSERT(mutex_owned(p->p_lock)); 1832 1833 p->p_sigctx.ps_lwp = 0; 1834 p->p_sigctx.ps_code = 0; 1835 p->p_sigctx.ps_signo = 0; 1836 1837 mutex_enter(&ps->sa_mutex); 1838 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1839 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1840 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1841 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1842 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1843 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1844 } 1845 mutex_exit(&ps->sa_mutex); 1846 } 1847 1848 /* 1849 * Kill the current process for stated reason. 1850 */ 1851 void 1852 killproc(struct proc *p, const char *why) 1853 { 1854 1855 KASSERT(mutex_owned(proc_lock)); 1856 1857 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1858 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1859 psignal(p, SIGKILL); 1860 } 1861 1862 /* 1863 * Force the current process to exit with the specified signal, dumping core 1864 * if appropriate. We bypass the normal tests for masked and caught 1865 * signals, allowing unrecoverable failures to terminate the process without 1866 * changing signal state. Mark the accounting record with the signal 1867 * termination. If dumping core, save the signal number for the debugger. 1868 * Calls exit and does not return. 1869 */ 1870 void 1871 sigexit(struct lwp *l, int signo) 1872 { 1873 int exitsig, error, docore; 1874 struct proc *p; 1875 struct lwp *t; 1876 1877 p = l->l_proc; 1878 1879 KASSERT(mutex_owned(p->p_lock)); 1880 KERNEL_UNLOCK_ALL(l, NULL); 1881 1882 /* 1883 * Don't permit coredump() multiple times in the same process. 1884 * Call back into sigexit, where we will be suspended until 1885 * the deed is done. Note that this is a recursive call, but 1886 * LW_WCORE will prevent us from coming back this way. 1887 */ 1888 if ((p->p_sflag & PS_WCORE) != 0) { 1889 lwp_lock(l); 1890 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1891 lwp_unlock(l); 1892 mutex_exit(p->p_lock); 1893 lwp_userret(l); 1894 #ifdef DIAGNOSTIC 1895 panic("sigexit"); 1896 #endif 1897 /* NOTREACHED */ 1898 } 1899 1900 /* 1901 * Prepare all other LWPs for exit. If dumping core, suspend them 1902 * so that their registers are available long enough to be dumped. 1903 */ 1904 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1905 p->p_sflag |= PS_WCORE; 1906 for (;;) { 1907 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1908 lwp_lock(t); 1909 if (t == l) { 1910 t->l_flag &= ~LW_WSUSPEND; 1911 lwp_unlock(t); 1912 continue; 1913 } 1914 t->l_flag |= (LW_WCORE | LW_WEXIT); 1915 lwp_suspend(l, t); 1916 } 1917 1918 if (p->p_nrlwps == 1) 1919 break; 1920 1921 /* 1922 * Kick any LWPs sitting in lwp_wait1(), and wait 1923 * for everyone else to stop before proceeding. 1924 */ 1925 p->p_nlwpwait++; 1926 cv_broadcast(&p->p_lwpcv); 1927 cv_wait(&p->p_lwpcv, p->p_lock); 1928 p->p_nlwpwait--; 1929 } 1930 } 1931 1932 exitsig = signo; 1933 p->p_acflag |= AXSIG; 1934 p->p_sigctx.ps_signo = signo; 1935 mutex_exit(p->p_lock); 1936 1937 if (docore) { 1938 if ((error = coredump(l, NULL)) == 0) 1939 exitsig |= WCOREFLAG; 1940 1941 if (kern_logsigexit) { 1942 int uid = l->l_cred ? 1943 (int)kauth_cred_geteuid(l->l_cred) : -1; 1944 1945 if (error) 1946 log(LOG_INFO, lognocoredump, p->p_pid, 1947 p->p_comm, uid, signo, error); 1948 else 1949 log(LOG_INFO, logcoredump, p->p_pid, 1950 p->p_comm, uid, signo); 1951 } 1952 1953 #ifdef PAX_SEGVGUARD 1954 pax_segvguard(l, p->p_textvp, p->p_comm, true); 1955 #endif /* PAX_SEGVGUARD */ 1956 } 1957 1958 /* Acquire the sched state mutex. exit1() will release it. */ 1959 mutex_enter(p->p_lock); 1960 1961 /* No longer dumping core. */ 1962 p->p_sflag &= ~PS_WCORE; 1963 1964 exit1(l, W_EXITCODE(0, exitsig)); 1965 /* NOTREACHED */ 1966 } 1967 1968 /* 1969 * Put process 'p' into the stopped state and optionally, notify the parent. 1970 */ 1971 void 1972 proc_stop(struct proc *p, int notify, int signo) 1973 { 1974 struct lwp *l; 1975 1976 KASSERT(mutex_owned(p->p_lock)); 1977 1978 /* 1979 * First off, set the stopping indicator and bring all sleeping 1980 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 1981 * unlock between here and the p->p_nrlwps check below. 1982 */ 1983 p->p_sflag |= PS_STOPPING; 1984 if (notify) 1985 p->p_sflag |= PS_NOTIFYSTOP; 1986 else 1987 p->p_sflag &= ~PS_NOTIFYSTOP; 1988 membar_producer(); 1989 1990 proc_stop_lwps(p); 1991 1992 /* 1993 * If there are no LWPs available to take the signal, then we 1994 * signal the parent process immediately. Otherwise, the last 1995 * LWP to stop will take care of it. 1996 */ 1997 1998 if (p->p_nrlwps == 0) { 1999 proc_stop_done(p, true, PS_NOCLDSTOP); 2000 } else { 2001 /* 2002 * Have the remaining LWPs come to a halt, and trigger 2003 * proc_stop_callout() to ensure that they do. 2004 */ 2005 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2006 sigpost(l, SIG_DFL, SA_STOP, signo); 2007 callout_schedule(&proc_stop_ch, 1); 2008 } 2009 } 2010 2011 /* 2012 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2013 * but wait for them to come to a halt at the kernel-user boundary. This is 2014 * to allow LWPs to release any locks that they may hold before stopping. 2015 * 2016 * Non-interruptable sleeps can be long, and there is the potential for an 2017 * LWP to begin sleeping interruptably soon after the process has been set 2018 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2019 * stopping, and so complete halt of the process and the return of status 2020 * information to the parent could be delayed indefinitely. 2021 * 2022 * To handle this race, proc_stop_callout() runs once per tick while there 2023 * are stopping processes in the system. It sets LWPs that are sleeping 2024 * interruptably into the LSSTOP state. 2025 * 2026 * Note that we are not concerned about keeping all LWPs stopped while the 2027 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2028 * What we do need to ensure is that all LWPs in a stopping process have 2029 * stopped at least once, so that notification can be sent to the parent 2030 * process. 2031 */ 2032 static void 2033 proc_stop_callout(void *cookie) 2034 { 2035 bool more, restart; 2036 struct proc *p; 2037 2038 (void)cookie; 2039 2040 do { 2041 restart = false; 2042 more = false; 2043 2044 mutex_enter(proc_lock); 2045 PROCLIST_FOREACH(p, &allproc) { 2046 mutex_enter(p->p_lock); 2047 2048 if ((p->p_sflag & PS_STOPPING) == 0) { 2049 mutex_exit(p->p_lock); 2050 continue; 2051 } 2052 2053 /* Stop any LWPs sleeping interruptably. */ 2054 proc_stop_lwps(p); 2055 if (p->p_nrlwps == 0) { 2056 /* 2057 * We brought the process to a halt. 2058 * Mark it as stopped and notify the 2059 * parent. 2060 */ 2061 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2062 /* 2063 * Note that proc_stop_done() will 2064 * drop p->p_lock briefly. 2065 * Arrange to restart and check 2066 * all processes again. 2067 */ 2068 restart = true; 2069 } 2070 proc_stop_done(p, true, PS_NOCLDSTOP); 2071 } else 2072 more = true; 2073 2074 mutex_exit(p->p_lock); 2075 if (restart) 2076 break; 2077 } 2078 mutex_exit(proc_lock); 2079 } while (restart); 2080 2081 /* 2082 * If we noted processes that are stopping but still have 2083 * running LWPs, then arrange to check again in 1 tick. 2084 */ 2085 if (more) 2086 callout_schedule(&proc_stop_ch, 1); 2087 } 2088 2089 /* 2090 * Given a process in state SSTOP, set the state back to SACTIVE and 2091 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2092 */ 2093 void 2094 proc_unstop(struct proc *p) 2095 { 2096 struct lwp *l; 2097 int sig; 2098 2099 KASSERT(mutex_owned(proc_lock)); 2100 KASSERT(mutex_owned(p->p_lock)); 2101 2102 p->p_stat = SACTIVE; 2103 p->p_sflag &= ~PS_STOPPING; 2104 sig = p->p_xstat; 2105 2106 if (!p->p_waited) 2107 p->p_pptr->p_nstopchild--; 2108 2109 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2110 lwp_lock(l); 2111 if (l->l_stat != LSSTOP) { 2112 lwp_unlock(l); 2113 continue; 2114 } 2115 if (l->l_wchan == NULL) { 2116 setrunnable(l); 2117 continue; 2118 } 2119 if (sig && (l->l_flag & LW_SINTR) != 0) { 2120 setrunnable(l); 2121 sig = 0; 2122 } else { 2123 l->l_stat = LSSLEEP; 2124 p->p_nrlwps++; 2125 lwp_unlock(l); 2126 } 2127 } 2128 } 2129 2130 static int 2131 filt_sigattach(struct knote *kn) 2132 { 2133 struct proc *p = curproc; 2134 2135 kn->kn_obj = p; 2136 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2137 2138 mutex_enter(p->p_lock); 2139 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2140 mutex_exit(p->p_lock); 2141 2142 return (0); 2143 } 2144 2145 static void 2146 filt_sigdetach(struct knote *kn) 2147 { 2148 struct proc *p = kn->kn_obj; 2149 2150 mutex_enter(p->p_lock); 2151 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2152 mutex_exit(p->p_lock); 2153 } 2154 2155 /* 2156 * signal knotes are shared with proc knotes, so we apply a mask to 2157 * the hint in order to differentiate them from process hints. This 2158 * could be avoided by using a signal-specific knote list, but probably 2159 * isn't worth the trouble. 2160 */ 2161 static int 2162 filt_signal(struct knote *kn, long hint) 2163 { 2164 2165 if (hint & NOTE_SIGNAL) { 2166 hint &= ~NOTE_SIGNAL; 2167 2168 if (kn->kn_id == hint) 2169 kn->kn_data++; 2170 } 2171 return (kn->kn_data != 0); 2172 } 2173 2174 const struct filterops sig_filtops = { 2175 0, filt_sigattach, filt_sigdetach, filt_signal 2176 }; 2177