xref: /netbsd-src/sys/kern/kern_sig.c (revision 88fcb00c0357f2d7c1774f86a352637bfda96184)
1 /*	$NetBSD: kern_sig.c,v 1.308 2011/04/27 00:38:37 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.308 2011/04/27 00:38:37 rmind Exp $");
74 
75 #include "opt_ptrace.h"
76 #include "opt_compat_sunos.h"
77 #include "opt_compat_netbsd.h"
78 #include "opt_compat_netbsd32.h"
79 #include "opt_pax.h"
80 #include "opt_sa.h"
81 
82 #define	SIGPROP		/* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/wait.h>
88 #include <sys/ktrace.h>
89 #include <sys/syslog.h>
90 #include <sys/filedesc.h>
91 #include <sys/file.h>
92 #include <sys/pool.h>
93 #include <sys/ucontext.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96 #include <sys/exec.h>
97 #include <sys/kauth.h>
98 #include <sys/acct.h>
99 #include <sys/callout.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/sdt.h>
104 
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108 
109 #include <uvm/uvm_extern.h>
110 #include <uvm/uvm_extern.h>
111 
112 static pool_cache_t	sigacts_cache	__read_mostly;
113 static pool_cache_t	ksiginfo_cache	__read_mostly;
114 static callout_t	proc_stop_ch	__cacheline_aligned;
115 
116 #ifdef KERN_SA
117 static pool_cache_t	siginfo_cache;
118 #endif
119 
120 sigset_t		contsigmask	__cacheline_aligned;
121 static sigset_t		stopsigmask	__cacheline_aligned;
122 sigset_t		sigcantmask	__cacheline_aligned;
123 
124 static void	ksiginfo_exechook(struct proc *, void *);
125 static void	proc_stop_callout(void *);
126 static int	sigchecktrace(void);
127 static int	sigpost(struct lwp *, sig_t, int, int, int);
128 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
129 static int	sigunwait(struct proc *, const ksiginfo_t *);
130 static void	sigswitch(bool, int, int);
131 
132 static void	sigacts_poolpage_free(struct pool *, void *);
133 static void	*sigacts_poolpage_alloc(struct pool *, int);
134 
135 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
136 int (*coredump_vec)(struct lwp *, const char *) =
137     (int (*)(struct lwp *, const char *))enosys;
138 
139 /*
140  * DTrace SDT provider definitions
141  */
142 SDT_PROBE_DEFINE(proc,,,signal_send,
143 	    "struct lwp *", NULL,	/* target thread */
144 	    "struct proc *", NULL,	/* target process */
145 	    "int", NULL, 		/* signal */
146 	    NULL, NULL, NULL, NULL);
147 SDT_PROBE_DEFINE(proc,,,signal_discard,
148 	    "struct lwp *", NULL,	/* target thread */
149 	    "struct proc *", NULL,	/* target process */
150 	    "int", NULL, 		/* signal */
151 	    NULL, NULL, NULL, NULL);
152 SDT_PROBE_DEFINE(proc,,,signal_clear,
153 	    "int", NULL,		/* signal */
154 	    NULL, NULL, NULL, NULL,
155 	    NULL, NULL, NULL, NULL);
156 SDT_PROBE_DEFINE(proc,,,signal_handle,
157 	    "int", NULL,		/* signal */
158 	    "ksiginfo_t *", NULL,
159 	    "void (*)(void)", NULL,	/* handler address */
160 	    NULL, NULL, NULL, NULL);
161 
162 
163 static struct pool_allocator sigactspool_allocator = {
164 	.pa_alloc = sigacts_poolpage_alloc,
165 	.pa_free = sigacts_poolpage_free
166 };
167 
168 #ifdef DEBUG
169 int	kern_logsigexit = 1;
170 #else
171 int	kern_logsigexit = 0;
172 #endif
173 
174 static const char logcoredump[] =
175     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
176 static const char lognocoredump[] =
177     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
178 
179 static kauth_listener_t signal_listener;
180 
181 static int
182 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
183     void *arg0, void *arg1, void *arg2, void *arg3)
184 {
185 	struct proc *p;
186 	int result, signum;
187 
188 	result = KAUTH_RESULT_DEFER;
189 	p = arg0;
190 	signum = (int)(unsigned long)arg1;
191 
192 	if (action != KAUTH_PROCESS_SIGNAL)
193 		return result;
194 
195 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
196 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
197 		result = KAUTH_RESULT_ALLOW;
198 
199 	return result;
200 }
201 
202 /*
203  * signal_init:
204  *
205  *	Initialize global signal-related data structures.
206  */
207 void
208 signal_init(void)
209 {
210 
211 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
212 
213 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
214 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
215 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
216 #ifdef KERN_SA
217 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
218 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
219 #endif
220 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
221 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
222 
223 	exechook_establish(ksiginfo_exechook, NULL);
224 
225 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
226 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
227 
228 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
229 	    signal_listener_cb, NULL);
230 }
231 
232 /*
233  * sigacts_poolpage_alloc:
234  *
235  *	Allocate a page for the sigacts memory pool.
236  */
237 static void *
238 sigacts_poolpage_alloc(struct pool *pp, int flags)
239 {
240 
241 	return (void *)uvm_km_alloc(kernel_map,
242 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
243 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
244 	    | UVM_KMF_WIRED);
245 }
246 
247 /*
248  * sigacts_poolpage_free:
249  *
250  *	Free a page on behalf of the sigacts memory pool.
251  */
252 static void
253 sigacts_poolpage_free(struct pool *pp, void *v)
254 {
255 
256 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
257 }
258 
259 /*
260  * sigactsinit:
261  *
262  *	Create an initial sigacts structure, using the same signal state
263  *	as of specified process.  If 'share' is set, share the sigacts by
264  *	holding a reference, otherwise just copy it from parent.
265  */
266 struct sigacts *
267 sigactsinit(struct proc *pp, int share)
268 {
269 	struct sigacts *ps = pp->p_sigacts, *ps2;
270 
271 	if (__predict_false(share)) {
272 		atomic_inc_uint(&ps->sa_refcnt);
273 		return ps;
274 	}
275 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
276 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
277 	ps2->sa_refcnt = 1;
278 
279 	mutex_enter(&ps->sa_mutex);
280 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
281 	mutex_exit(&ps->sa_mutex);
282 	return ps2;
283 }
284 
285 /*
286  * sigactsunshare:
287  *
288  *	Make this process not share its sigacts, maintaining all signal state.
289  */
290 void
291 sigactsunshare(struct proc *p)
292 {
293 	struct sigacts *ps, *oldps = p->p_sigacts;
294 
295 	if (__predict_true(oldps->sa_refcnt == 1))
296 		return;
297 
298 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
299 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
300 	memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
301 	ps->sa_refcnt = 1;
302 
303 	p->p_sigacts = ps;
304 	sigactsfree(oldps);
305 }
306 
307 /*
308  * sigactsfree;
309  *
310  *	Release a sigacts structure.
311  */
312 void
313 sigactsfree(struct sigacts *ps)
314 {
315 
316 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
317 		mutex_destroy(&ps->sa_mutex);
318 		pool_cache_put(sigacts_cache, ps);
319 	}
320 }
321 
322 /*
323  * siginit:
324  *
325  *	Initialize signal state for process 0; set to ignore signals that
326  *	are ignored by default and disable the signal stack.  Locking not
327  *	required as the system is still cold.
328  */
329 void
330 siginit(struct proc *p)
331 {
332 	struct lwp *l;
333 	struct sigacts *ps;
334 	int signo, prop;
335 
336 	ps = p->p_sigacts;
337 	sigemptyset(&contsigmask);
338 	sigemptyset(&stopsigmask);
339 	sigemptyset(&sigcantmask);
340 	for (signo = 1; signo < NSIG; signo++) {
341 		prop = sigprop[signo];
342 		if (prop & SA_CONT)
343 			sigaddset(&contsigmask, signo);
344 		if (prop & SA_STOP)
345 			sigaddset(&stopsigmask, signo);
346 		if (prop & SA_CANTMASK)
347 			sigaddset(&sigcantmask, signo);
348 		if (prop & SA_IGNORE && signo != SIGCONT)
349 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
350 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
351 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
352 	}
353 	sigemptyset(&p->p_sigctx.ps_sigcatch);
354 	p->p_sflag &= ~PS_NOCLDSTOP;
355 
356 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
357 	sigemptyset(&p->p_sigpend.sp_set);
358 
359 	/*
360 	 * Reset per LWP state.
361 	 */
362 	l = LIST_FIRST(&p->p_lwps);
363 	l->l_sigwaited = NULL;
364 	l->l_sigstk.ss_flags = SS_DISABLE;
365 	l->l_sigstk.ss_size = 0;
366 	l->l_sigstk.ss_sp = 0;
367 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
368 	sigemptyset(&l->l_sigpend.sp_set);
369 
370 	/* One reference. */
371 	ps->sa_refcnt = 1;
372 }
373 
374 /*
375  * execsigs:
376  *
377  *	Reset signals for an exec of the specified process.
378  */
379 void
380 execsigs(struct proc *p)
381 {
382 	struct sigacts *ps;
383 	struct lwp *l;
384 	int signo, prop;
385 	sigset_t tset;
386 	ksiginfoq_t kq;
387 
388 	KASSERT(p->p_nlwps == 1);
389 
390 	sigactsunshare(p);
391 	ps = p->p_sigacts;
392 
393 	/*
394 	 * Reset caught signals.  Held signals remain held through
395 	 * l->l_sigmask (unless they were caught, and are now ignored
396 	 * by default).
397 	 *
398 	 * No need to lock yet, the process has only one LWP and
399 	 * at this point the sigacts are private to the process.
400 	 */
401 	sigemptyset(&tset);
402 	for (signo = 1; signo < NSIG; signo++) {
403 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
404 			prop = sigprop[signo];
405 			if (prop & SA_IGNORE) {
406 				if ((prop & SA_CONT) == 0)
407 					sigaddset(&p->p_sigctx.ps_sigignore,
408 					    signo);
409 				sigaddset(&tset, signo);
410 			}
411 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
412 		}
413 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
414 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
415 	}
416 	ksiginfo_queue_init(&kq);
417 
418 	mutex_enter(p->p_lock);
419 	sigclearall(p, &tset, &kq);
420 	sigemptyset(&p->p_sigctx.ps_sigcatch);
421 
422 	/*
423 	 * Reset no zombies if child dies flag as Solaris does.
424 	 */
425 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
426 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
427 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
428 
429 	/*
430 	 * Reset per-LWP state.
431 	 */
432 	l = LIST_FIRST(&p->p_lwps);
433 	l->l_sigwaited = NULL;
434 	l->l_sigstk.ss_flags = SS_DISABLE;
435 	l->l_sigstk.ss_size = 0;
436 	l->l_sigstk.ss_sp = 0;
437 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
438 	sigemptyset(&l->l_sigpend.sp_set);
439 	mutex_exit(p->p_lock);
440 
441 	ksiginfo_queue_drain(&kq);
442 }
443 
444 /*
445  * ksiginfo_exechook:
446  *
447  *	Free all pending ksiginfo entries from a process on exec.
448  *	Additionally, drain any unused ksiginfo structures in the
449  *	system back to the pool.
450  *
451  *	XXX This should not be a hook, every process has signals.
452  */
453 static void
454 ksiginfo_exechook(struct proc *p, void *v)
455 {
456 	ksiginfoq_t kq;
457 
458 	ksiginfo_queue_init(&kq);
459 
460 	mutex_enter(p->p_lock);
461 	sigclearall(p, NULL, &kq);
462 	mutex_exit(p->p_lock);
463 
464 	ksiginfo_queue_drain(&kq);
465 }
466 
467 /*
468  * ksiginfo_alloc:
469  *
470  *	Allocate a new ksiginfo structure from the pool, and optionally copy
471  *	an existing one.  If the existing ksiginfo_t is from the pool, and
472  *	has not been queued somewhere, then just return it.  Additionally,
473  *	if the existing ksiginfo_t does not contain any information beyond
474  *	the signal number, then just return it.
475  */
476 ksiginfo_t *
477 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
478 {
479 	ksiginfo_t *kp;
480 
481 	if (ok != NULL) {
482 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
483 		    KSI_FROMPOOL)
484 			return ok;
485 		if (KSI_EMPTY_P(ok))
486 			return ok;
487 	}
488 
489 	kp = pool_cache_get(ksiginfo_cache, flags);
490 	if (kp == NULL) {
491 #ifdef DIAGNOSTIC
492 		printf("Out of memory allocating ksiginfo for pid %d\n",
493 		    p->p_pid);
494 #endif
495 		return NULL;
496 	}
497 
498 	if (ok != NULL) {
499 		memcpy(kp, ok, sizeof(*kp));
500 		kp->ksi_flags &= ~KSI_QUEUED;
501 	} else
502 		KSI_INIT_EMPTY(kp);
503 
504 	kp->ksi_flags |= KSI_FROMPOOL;
505 
506 	return kp;
507 }
508 
509 /*
510  * ksiginfo_free:
511  *
512  *	If the given ksiginfo_t is from the pool and has not been queued,
513  *	then free it.
514  */
515 void
516 ksiginfo_free(ksiginfo_t *kp)
517 {
518 
519 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
520 		return;
521 	pool_cache_put(ksiginfo_cache, kp);
522 }
523 
524 /*
525  * ksiginfo_queue_drain:
526  *
527  *	Drain a non-empty ksiginfo_t queue.
528  */
529 void
530 ksiginfo_queue_drain0(ksiginfoq_t *kq)
531 {
532 	ksiginfo_t *ksi;
533 
534 	KASSERT(!CIRCLEQ_EMPTY(kq));
535 
536 	while (!CIRCLEQ_EMPTY(kq)) {
537 		ksi = CIRCLEQ_FIRST(kq);
538 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
539 		pool_cache_put(ksiginfo_cache, ksi);
540 	}
541 }
542 
543 /*
544  * sigget:
545  *
546  *	Fetch the first pending signal from a set.  Optionally, also fetch
547  *	or manufacture a ksiginfo element.  Returns the number of the first
548  *	pending signal, or zero.
549  */
550 int
551 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
552 {
553 	ksiginfo_t *ksi;
554 	sigset_t tset;
555 
556 	/* If there's no pending set, the signal is from the debugger. */
557 	if (sp == NULL)
558 		goto out;
559 
560 	/* Construct mask from signo, and 'mask'. */
561 	if (signo == 0) {
562 		if (mask != NULL) {
563 			tset = *mask;
564 			__sigandset(&sp->sp_set, &tset);
565 		} else
566 			tset = sp->sp_set;
567 
568 		/* If there are no signals pending - return. */
569 		if ((signo = firstsig(&tset)) == 0)
570 			goto out;
571 	} else {
572 		KASSERT(sigismember(&sp->sp_set, signo));
573 	}
574 
575 	sigdelset(&sp->sp_set, signo);
576 
577 	/* Find siginfo and copy it out. */
578 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
579 		if (ksi->ksi_signo != signo)
580 			continue;
581 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
582 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
583 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
584 		ksi->ksi_flags &= ~KSI_QUEUED;
585 		if (out != NULL) {
586 			memcpy(out, ksi, sizeof(*out));
587 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
588 		}
589 		ksiginfo_free(ksi);	/* XXXSMP */
590 		return signo;
591 	}
592 out:
593 	/* If there is no siginfo, then manufacture it. */
594 	if (out != NULL) {
595 		KSI_INIT(out);
596 		out->ksi_info._signo = signo;
597 		out->ksi_info._code = SI_NOINFO;
598 	}
599 	return signo;
600 }
601 
602 /*
603  * sigput:
604  *
605  *	Append a new ksiginfo element to the list of pending ksiginfo's.
606  */
607 static void
608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
609 {
610 	ksiginfo_t *kp;
611 
612 	KASSERT(mutex_owned(p->p_lock));
613 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
614 
615 	sigaddset(&sp->sp_set, ksi->ksi_signo);
616 
617 	/*
618 	 * If there is no siginfo, we are done.
619 	 */
620 	if (KSI_EMPTY_P(ksi))
621 		return;
622 
623 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
624 
625 #ifdef notyet	/* XXX: QUEUING */
626 	if (ksi->ksi_signo < SIGRTMIN)
627 #endif
628 	{
629 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 			if (kp->ksi_signo == ksi->ksi_signo) {
631 				KSI_COPY(ksi, kp);
632 				kp->ksi_flags |= KSI_QUEUED;
633 				return;
634 			}
635 		}
636 	}
637 
638 	ksi->ksi_flags |= KSI_QUEUED;
639 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
640 }
641 
642 /*
643  * sigclear:
644  *
645  *	Clear all pending signals in the specified set.
646  */
647 void
648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
649 {
650 	ksiginfo_t *ksi, *next;
651 
652 	if (mask == NULL)
653 		sigemptyset(&sp->sp_set);
654 	else
655 		sigminusset(mask, &sp->sp_set);
656 
657 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
658 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
659 		next = CIRCLEQ_NEXT(ksi, ksi_list);
660 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
661 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
662 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
663 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
664 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
665 		}
666 	}
667 }
668 
669 /*
670  * sigclearall:
671  *
672  *	Clear all pending signals in the specified set from a process and
673  *	its LWPs.
674  */
675 void
676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
677 {
678 	struct lwp *l;
679 
680 	KASSERT(mutex_owned(p->p_lock));
681 
682 	sigclear(&p->p_sigpend, mask, kq);
683 
684 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
685 		sigclear(&l->l_sigpend, mask, kq);
686 	}
687 }
688 
689 /*
690  * sigispending:
691  *
692  *	Return true if there are pending signals for the current LWP.  May
693  *	be called unlocked provided that LW_PENDSIG is set, and that the
694  *	signal has been posted to the appopriate queue before LW_PENDSIG is
695  *	set.
696  */
697 int
698 sigispending(struct lwp *l, int signo)
699 {
700 	struct proc *p = l->l_proc;
701 	sigset_t tset;
702 
703 	membar_consumer();
704 
705 	tset = l->l_sigpend.sp_set;
706 	sigplusset(&p->p_sigpend.sp_set, &tset);
707 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
708 	sigminusset(&l->l_sigmask, &tset);
709 
710 	if (signo == 0) {
711 		if (firstsig(&tset) != 0)
712 			return EINTR;
713 	} else if (sigismember(&tset, signo))
714 		return EINTR;
715 
716 	return 0;
717 }
718 
719 #ifdef KERN_SA
720 
721 /*
722  * siginfo_alloc:
723  *
724  *	Allocate a new siginfo_t structure from the pool.
725  */
726 siginfo_t *
727 siginfo_alloc(int flags)
728 {
729 
730 	return pool_cache_get(siginfo_cache, flags);
731 }
732 
733 /*
734  * siginfo_free:
735  *
736  *	Return a siginfo_t structure to the pool.
737  */
738 void
739 siginfo_free(void *arg)
740 {
741 
742 	pool_cache_put(siginfo_cache, arg);
743 }
744 
745 #endif
746 
747 void
748 getucontext(struct lwp *l, ucontext_t *ucp)
749 {
750 	struct proc *p = l->l_proc;
751 
752 	KASSERT(mutex_owned(p->p_lock));
753 
754 	ucp->uc_flags = 0;
755 	ucp->uc_link = l->l_ctxlink;
756 
757 #if KERN_SA
758 	if (p->p_sa != NULL)
759 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
760 	else
761 #endif /* KERN_SA */
762 		ucp->uc_sigmask = l->l_sigmask;
763 	ucp->uc_flags |= _UC_SIGMASK;
764 
765 	/*
766 	 * The (unsupplied) definition of the `current execution stack'
767 	 * in the System V Interface Definition appears to allow returning
768 	 * the main context stack.
769 	 */
770 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
771 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
772 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
773 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
774 	} else {
775 		/* Simply copy alternate signal execution stack. */
776 		ucp->uc_stack = l->l_sigstk;
777 	}
778 	ucp->uc_flags |= _UC_STACK;
779 	mutex_exit(p->p_lock);
780 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
781 	mutex_enter(p->p_lock);
782 }
783 
784 /*
785  * getucontext_sa:
786  *      Get a ucontext_t for use in SA upcall generation.
787  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
788  * fudge things with uc_link (which is usually NULL for libpthread
789  * code), and 3) we report an empty signal mask.
790  */
791 void
792 getucontext_sa(struct lwp *l, ucontext_t *ucp)
793 {
794 	ucp->uc_flags = 0;
795 	ucp->uc_link = l->l_ctxlink;
796 
797 	sigemptyset(&ucp->uc_sigmask);
798 	ucp->uc_flags |= _UC_SIGMASK;
799 
800 	/*
801 	 * The (unsupplied) definition of the `current execution stack'
802 	 * in the System V Interface Definition appears to allow returning
803 	 * the main context stack.
804 	 */
805 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
806 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
807 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
808 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
809 	} else {
810 		/* Simply copy alternate signal execution stack. */
811 		ucp->uc_stack = l->l_sigstk;
812 	}
813 	ucp->uc_flags |= _UC_STACK;
814 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
815 }
816 
817 int
818 setucontext(struct lwp *l, const ucontext_t *ucp)
819 {
820 	struct proc *p = l->l_proc;
821 	int error;
822 
823 	KASSERT(mutex_owned(p->p_lock));
824 
825 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
826 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
827 		if (error != 0)
828 			return error;
829 	}
830 
831 	mutex_exit(p->p_lock);
832 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
833 	mutex_enter(p->p_lock);
834 	if (error != 0)
835 		return (error);
836 
837 	l->l_ctxlink = ucp->uc_link;
838 
839 	/*
840 	 * If there was stack information, update whether or not we are
841 	 * still running on an alternate signal stack.
842 	 */
843 	if ((ucp->uc_flags & _UC_STACK) != 0) {
844 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
845 			l->l_sigstk.ss_flags |= SS_ONSTACK;
846 		else
847 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
848 	}
849 
850 	return 0;
851 }
852 
853 /*
854  * killpg1: common code for kill process group/broadcast kill.
855  */
856 int
857 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
858 {
859 	struct proc	*p, *cp;
860 	kauth_cred_t	pc;
861 	struct pgrp	*pgrp;
862 	int		nfound;
863 	int		signo = ksi->ksi_signo;
864 
865 	cp = l->l_proc;
866 	pc = l->l_cred;
867 	nfound = 0;
868 
869 	mutex_enter(proc_lock);
870 	if (all) {
871 		/*
872 		 * Broadcast.
873 		 */
874 		PROCLIST_FOREACH(p, &allproc) {
875 			if (p->p_pid <= 1 || p == cp ||
876 			    (p->p_flag & PK_SYSTEM) != 0)
877 				continue;
878 			mutex_enter(p->p_lock);
879 			if (kauth_authorize_process(pc,
880 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
881 			    NULL) == 0) {
882 				nfound++;
883 				if (signo)
884 					kpsignal2(p, ksi);
885 			}
886 			mutex_exit(p->p_lock);
887 		}
888 	} else {
889 		if (pgid == 0)
890 			/* Zero pgid means send to my process group. */
891 			pgrp = cp->p_pgrp;
892 		else {
893 			pgrp = pgrp_find(pgid);
894 			if (pgrp == NULL)
895 				goto out;
896 		}
897 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
898 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
899 				continue;
900 			mutex_enter(p->p_lock);
901 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
902 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
903 				nfound++;
904 				if (signo && P_ZOMBIE(p) == 0)
905 					kpsignal2(p, ksi);
906 			}
907 			mutex_exit(p->p_lock);
908 		}
909 	}
910 out:
911 	mutex_exit(proc_lock);
912 	return nfound ? 0 : ESRCH;
913 }
914 
915 /*
916  * Send a signal to a process group.  If checktty is set, limit to members
917  * which have a controlling terminal.
918  */
919 void
920 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
921 {
922 	ksiginfo_t ksi;
923 
924 	KASSERT(!cpu_intr_p());
925 	KASSERT(mutex_owned(proc_lock));
926 
927 	KSI_INIT_EMPTY(&ksi);
928 	ksi.ksi_signo = sig;
929 	kpgsignal(pgrp, &ksi, NULL, checkctty);
930 }
931 
932 void
933 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
934 {
935 	struct proc *p;
936 
937 	KASSERT(!cpu_intr_p());
938 	KASSERT(mutex_owned(proc_lock));
939 	KASSERT(pgrp != NULL);
940 
941 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
942 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
943 			kpsignal(p, ksi, data);
944 }
945 
946 /*
947  * Send a signal caused by a trap to the current LWP.  If it will be caught
948  * immediately, deliver it with correct code.  Otherwise, post it normally.
949  */
950 void
951 trapsignal(struct lwp *l, ksiginfo_t *ksi)
952 {
953 	struct proc	*p;
954 	struct sigacts	*ps;
955 	int signo = ksi->ksi_signo;
956 	sigset_t *mask;
957 
958 	KASSERT(KSI_TRAP_P(ksi));
959 
960 	ksi->ksi_lid = l->l_lid;
961 	p = l->l_proc;
962 
963 	KASSERT(!cpu_intr_p());
964 	mutex_enter(proc_lock);
965 	mutex_enter(p->p_lock);
966 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
967 	ps = p->p_sigacts;
968 	if ((p->p_slflag & PSL_TRACED) == 0 &&
969 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
970 	    !sigismember(mask, signo)) {
971 		mutex_exit(proc_lock);
972 		l->l_ru.ru_nsignals++;
973 		kpsendsig(l, ksi, mask);
974 		mutex_exit(p->p_lock);
975 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
976 	} else {
977 		/* XXX for core dump/debugger */
978 		p->p_sigctx.ps_lwp = l->l_lid;
979 		p->p_sigctx.ps_signo = ksi->ksi_signo;
980 		p->p_sigctx.ps_code = ksi->ksi_trap;
981 		kpsignal2(p, ksi);
982 		mutex_exit(p->p_lock);
983 		mutex_exit(proc_lock);
984 	}
985 }
986 
987 /*
988  * Fill in signal information and signal the parent for a child status change.
989  */
990 void
991 child_psignal(struct proc *p, int mask)
992 {
993 	ksiginfo_t ksi;
994 	struct proc *q;
995 	int xstat;
996 
997 	KASSERT(mutex_owned(proc_lock));
998 	KASSERT(mutex_owned(p->p_lock));
999 
1000 	xstat = p->p_xstat;
1001 
1002 	KSI_INIT(&ksi);
1003 	ksi.ksi_signo = SIGCHLD;
1004 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1005 	ksi.ksi_pid = p->p_pid;
1006 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1007 	ksi.ksi_status = xstat;
1008 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1009 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1010 
1011 	q = p->p_pptr;
1012 
1013 	mutex_exit(p->p_lock);
1014 	mutex_enter(q->p_lock);
1015 
1016 	if ((q->p_sflag & mask) == 0)
1017 		kpsignal2(q, &ksi);
1018 
1019 	mutex_exit(q->p_lock);
1020 	mutex_enter(p->p_lock);
1021 }
1022 
1023 void
1024 psignal(struct proc *p, int signo)
1025 {
1026 	ksiginfo_t ksi;
1027 
1028 	KASSERT(!cpu_intr_p());
1029 	KASSERT(mutex_owned(proc_lock));
1030 
1031 	KSI_INIT_EMPTY(&ksi);
1032 	ksi.ksi_signo = signo;
1033 	mutex_enter(p->p_lock);
1034 	kpsignal2(p, &ksi);
1035 	mutex_exit(p->p_lock);
1036 }
1037 
1038 void
1039 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1040 {
1041 	fdfile_t *ff;
1042 	file_t *fp;
1043 	fdtab_t *dt;
1044 
1045 	KASSERT(!cpu_intr_p());
1046 	KASSERT(mutex_owned(proc_lock));
1047 
1048 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1049 		size_t fd;
1050 		filedesc_t *fdp = p->p_fd;
1051 
1052 		/* XXXSMP locking */
1053 		ksi->ksi_fd = -1;
1054 		dt = fdp->fd_dt;
1055 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1056 			if ((ff = dt->dt_ff[fd]) == NULL)
1057 				continue;
1058 			if ((fp = ff->ff_file) == NULL)
1059 				continue;
1060 			if (fp->f_data == data) {
1061 				ksi->ksi_fd = fd;
1062 				break;
1063 			}
1064 		}
1065 	}
1066 	mutex_enter(p->p_lock);
1067 	kpsignal2(p, ksi);
1068 	mutex_exit(p->p_lock);
1069 }
1070 
1071 /*
1072  * sigismasked:
1073  *
1074  *	Returns true if signal is ignored or masked for the specified LWP.
1075  */
1076 int
1077 sigismasked(struct lwp *l, int sig)
1078 {
1079 	struct proc *p = l->l_proc;
1080 
1081 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1082 	    sigismember(&l->l_sigmask, sig)
1083 #if KERN_SA
1084 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1085 #endif /* KERN_SA */
1086 	    );
1087 }
1088 
1089 /*
1090  * sigpost:
1091  *
1092  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1093  *	be able to take the signal.
1094  */
1095 static int
1096 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1097 {
1098 	int rv, masked;
1099 	struct proc *p = l->l_proc;
1100 
1101 	KASSERT(mutex_owned(p->p_lock));
1102 
1103 	/*
1104 	 * If the LWP is on the way out, sigclear() will be busy draining all
1105 	 * pending signals.  Don't give it more.
1106 	 */
1107 	if (l->l_refcnt == 0)
1108 		return 0;
1109 
1110 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
1111 
1112 	/*
1113 	 * Have the LWP check for signals.  This ensures that even if no LWP
1114 	 * is found to take the signal immediately, it should be taken soon.
1115 	 */
1116 	lwp_lock(l);
1117 	l->l_flag |= LW_PENDSIG;
1118 
1119 	/*
1120 	 * When sending signals to SA processes, we first try to find an
1121 	 * idle VP to take it.
1122 	 */
1123 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1124 		lwp_unlock(l);
1125 		return 0;
1126 	}
1127 
1128 	/*
1129 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1130 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1131 	 */
1132 #if KERN_SA
1133 	if (p->p_sa != NULL)
1134 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1135 	else
1136 #endif
1137 		masked = sigismember(&l->l_sigmask, sig);
1138 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1139 		lwp_unlock(l);
1140 		return 0;
1141 	}
1142 
1143 	/*
1144 	 * If killing the process, make it run fast.
1145 	 */
1146 	if (__predict_false((prop & SA_KILL) != 0) &&
1147 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1148 		KASSERT(l->l_class == SCHED_OTHER);
1149 		lwp_changepri(l, MAXPRI_USER);
1150 	}
1151 
1152 	/*
1153 	 * If the LWP is running or on a run queue, then we win.  If it's
1154 	 * sleeping interruptably, wake it and make it take the signal.  If
1155 	 * the sleep isn't interruptable, then the chances are it will get
1156 	 * to see the signal soon anyhow.  If suspended, it can't take the
1157 	 * signal right now.  If it's LWP private or for all LWPs, save it
1158 	 * for later; otherwise punt.
1159 	 */
1160 	rv = 0;
1161 
1162 	switch (l->l_stat) {
1163 	case LSRUN:
1164 	case LSONPROC:
1165 		lwp_need_userret(l);
1166 		rv = 1;
1167 		break;
1168 
1169 	case LSSLEEP:
1170 		if ((l->l_flag & LW_SINTR) != 0) {
1171 			/* setrunnable() will release the lock. */
1172 			setrunnable(l);
1173 			return 1;
1174 		}
1175 		break;
1176 
1177 	case LSSUSPENDED:
1178 		if ((prop & SA_KILL) != 0) {
1179 			/* lwp_continue() will release the lock. */
1180 			lwp_continue(l);
1181 			return 1;
1182 		}
1183 		break;
1184 
1185 	case LSSTOP:
1186 		if ((prop & SA_STOP) != 0)
1187 			break;
1188 
1189 		/*
1190 		 * If the LWP is stopped and we are sending a continue
1191 		 * signal, then start it again.
1192 		 */
1193 		if ((prop & SA_CONT) != 0) {
1194 			if (l->l_wchan != NULL) {
1195 				l->l_stat = LSSLEEP;
1196 				p->p_nrlwps++;
1197 				rv = 1;
1198 				break;
1199 			}
1200 			/* setrunnable() will release the lock. */
1201 			setrunnable(l);
1202 			return 1;
1203 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1204 			/* setrunnable() will release the lock. */
1205 			setrunnable(l);
1206 			return 1;
1207 		}
1208 		break;
1209 
1210 	default:
1211 		break;
1212 	}
1213 
1214 	lwp_unlock(l);
1215 	return rv;
1216 }
1217 
1218 /*
1219  * Notify an LWP that it has a pending signal.
1220  */
1221 void
1222 signotify(struct lwp *l)
1223 {
1224 	KASSERT(lwp_locked(l, NULL));
1225 
1226 	l->l_flag |= LW_PENDSIG;
1227 	lwp_need_userret(l);
1228 }
1229 
1230 /*
1231  * Find an LWP within process p that is waiting on signal ksi, and hand
1232  * it on.
1233  */
1234 static int
1235 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1236 {
1237 	struct lwp *l;
1238 	int signo;
1239 
1240 	KASSERT(mutex_owned(p->p_lock));
1241 
1242 	signo = ksi->ksi_signo;
1243 
1244 	if (ksi->ksi_lid != 0) {
1245 		/*
1246 		 * Signal came via _lwp_kill().  Find the LWP and see if
1247 		 * it's interested.
1248 		 */
1249 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1250 			return 0;
1251 		if (l->l_sigwaited == NULL ||
1252 		    !sigismember(&l->l_sigwaitset, signo))
1253 			return 0;
1254 	} else {
1255 		/*
1256 		 * Look for any LWP that may be interested.
1257 		 */
1258 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1259 			KASSERT(l->l_sigwaited != NULL);
1260 			if (sigismember(&l->l_sigwaitset, signo))
1261 				break;
1262 		}
1263 	}
1264 
1265 	if (l != NULL) {
1266 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1267 		l->l_sigwaited = NULL;
1268 		LIST_REMOVE(l, l_sigwaiter);
1269 		cv_signal(&l->l_sigcv);
1270 		return 1;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Send the signal to the process.  If the signal has an action, the action
1278  * is usually performed by the target process rather than the caller; we add
1279  * the signal to the set of pending signals for the process.
1280  *
1281  * Exceptions:
1282  *   o When a stop signal is sent to a sleeping process that takes the
1283  *     default action, the process is stopped without awakening it.
1284  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1285  *     regardless of the signal action (eg, blocked or ignored).
1286  *
1287  * Other ignored signals are discarded immediately.
1288  */
1289 void
1290 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1291 {
1292 	int prop, signo = ksi->ksi_signo;
1293 	struct sigacts *sa;
1294 	struct lwp *l;
1295 	ksiginfo_t *kp;
1296 	lwpid_t lid;
1297 	sig_t action;
1298 	bool toall;
1299 
1300 	KASSERT(!cpu_intr_p());
1301 	KASSERT(mutex_owned(proc_lock));
1302 	KASSERT(mutex_owned(p->p_lock));
1303 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1304 	KASSERT(signo > 0 && signo < NSIG);
1305 
1306 	/*
1307 	 * If the process is being created by fork, is a zombie or is
1308 	 * exiting, then just drop the signal here and bail out.
1309 	 */
1310 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1311 		return;
1312 
1313 	/*
1314 	 * Notify any interested parties of the signal.
1315 	 */
1316 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1317 
1318 	/*
1319 	 * Some signals including SIGKILL must act on the entire process.
1320 	 */
1321 	kp = NULL;
1322 	prop = sigprop[signo];
1323 	toall = ((prop & SA_TOALL) != 0);
1324 	lid = toall ? 0 : ksi->ksi_lid;
1325 
1326 	/*
1327 	 * If proc is traced, always give parent a chance.
1328 	 */
1329 	if (p->p_slflag & PSL_TRACED) {
1330 		action = SIG_DFL;
1331 
1332 		if (lid == 0) {
1333 			/*
1334 			 * If the process is being traced and the signal
1335 			 * is being caught, make sure to save any ksiginfo.
1336 			 */
1337 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1338 				return;
1339 			sigput(&p->p_sigpend, p, kp);
1340 		}
1341 	} else {
1342 		/*
1343 		 * If the signal was the result of a trap and is not being
1344 		 * caught, then reset it to default action so that the
1345 		 * process dumps core immediately.
1346 		 */
1347 		if (KSI_TRAP_P(ksi)) {
1348 			sa = p->p_sigacts;
1349 			mutex_enter(&sa->sa_mutex);
1350 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1351 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1352 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1353 			}
1354 			mutex_exit(&sa->sa_mutex);
1355 		}
1356 
1357 		/*
1358 		 * If the signal is being ignored, then drop it.  Note: we
1359 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1360 		 * SIG_IGN, action will be SIG_DFL here.
1361 		 */
1362 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1363 			return;
1364 
1365 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1366 			action = SIG_CATCH;
1367 		else {
1368 			action = SIG_DFL;
1369 
1370 			/*
1371 			 * If sending a tty stop signal to a member of an
1372 			 * orphaned process group, discard the signal here if
1373 			 * the action is default; don't stop the process below
1374 			 * if sleeping, and don't clear any pending SIGCONT.
1375 			 */
1376 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1377 				return;
1378 
1379 			if (prop & SA_KILL && p->p_nice > NZERO)
1380 				p->p_nice = NZERO;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * If stopping or continuing a process, discard any pending
1386 	 * signals that would do the inverse.
1387 	 */
1388 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1389 		ksiginfoq_t kq;
1390 
1391 		ksiginfo_queue_init(&kq);
1392 		if ((prop & SA_CONT) != 0)
1393 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1394 		if ((prop & SA_STOP) != 0)
1395 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1396 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1397 	}
1398 
1399 	/*
1400 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1401 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1402 	 * the signal info.  The signal won't be processed further here.
1403 	 */
1404 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1405 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1406 	    sigunwait(p, ksi))
1407 		return;
1408 
1409 	/*
1410 	 * XXXSMP Should be allocated by the caller, we're holding locks
1411 	 * here.
1412 	 */
1413 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1414 		return;
1415 
1416 	/*
1417 	 * LWP private signals are easy - just find the LWP and post
1418 	 * the signal to it.
1419 	 */
1420 	if (lid != 0) {
1421 		l = lwp_find(p, lid);
1422 		if (l != NULL) {
1423 			sigput(&l->l_sigpend, p, kp);
1424 			membar_producer();
1425 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1426 		}
1427 		goto out;
1428 	}
1429 
1430 	/*
1431 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1432 	 * or for an SA process.
1433 	 */
1434 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1435 		if ((p->p_slflag & PSL_TRACED) != 0)
1436 			goto deliver;
1437 
1438 		/*
1439 		 * If SIGCONT is default (or ignored) and process is
1440 		 * asleep, we are finished; the process should not
1441 		 * be awakened.
1442 		 */
1443 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1444 			goto out;
1445 	} else {
1446 		/*
1447 		 * Process is stopped or stopping.
1448 		 * - If traced, then no action is needed, unless killing.
1449 		 * - Run the process only if sending SIGCONT or SIGKILL.
1450 		 */
1451 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1452 			goto out;
1453 		}
1454 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1455 			/*
1456 			 * Re-adjust p_nstopchild if the process wasn't
1457 			 * collected by its parent.
1458 			 */
1459 			p->p_stat = SACTIVE;
1460 			p->p_sflag &= ~PS_STOPPING;
1461 			if (!p->p_waited) {
1462 				p->p_pptr->p_nstopchild--;
1463 			}
1464 			if (p->p_slflag & PSL_TRACED) {
1465 				KASSERT(signo == SIGKILL);
1466 				goto deliver;
1467 			}
1468 			/*
1469 			 * Do not make signal pending if SIGCONT is default.
1470 			 *
1471 			 * If the process catches SIGCONT, let it handle the
1472 			 * signal itself (if waiting on event - process runs,
1473 			 * otherwise continues sleeping).
1474 			 */
1475 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1476 				KASSERT(signo != SIGKILL);
1477 				goto deliver;
1478 			}
1479 		} else if ((prop & SA_STOP) != 0) {
1480 			/*
1481 			 * Already stopped, don't need to stop again.
1482 			 * (If we did the shell could get confused.)
1483 			 */
1484 			goto out;
1485 		}
1486 	}
1487 	/*
1488 	 * Make signal pending.
1489 	 */
1490 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1491 	sigput(&p->p_sigpend, p, kp);
1492 
1493 deliver:
1494 	/*
1495 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1496 	 * visible on the per process list (for sigispending()).  This
1497 	 * is unlikely to be needed in practice, but...
1498 	 */
1499 	membar_producer();
1500 
1501 	/*
1502 	 * Try to find an LWP that can take the signal.
1503 	 */
1504 #if KERN_SA
1505 	if ((p->p_sa != NULL) && !toall) {
1506 		struct sadata_vp *vp;
1507 		/*
1508 		 * If we're in this delivery path, we are delivering a
1509 		 * signal that needs to go to one thread in the process.
1510 		 *
1511 		 * In the SA case, we try to find an idle LWP that can take
1512 		 * the signal.  If that fails, only then do we consider
1513 		 * interrupting active LWPs. Since the signal's going to
1514 		 * just one thread, we need only look at "blessed" lwps,
1515 		 * so scan the vps for them.
1516 		 */
1517 		l = NULL;
1518 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1519 			l = vp->savp_lwp;
1520 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1521 				break;
1522 		}
1523 
1524 		if (l == NULL) {
1525 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1526 				l = vp->savp_lwp;
1527 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1528 					break;
1529 			}
1530 		}
1531 		/* Delivered, skip next. */
1532 		goto out;
1533 	}
1534 #endif
1535 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1536 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1537 			break;
1538 	}
1539 out:
1540 	/*
1541 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1542 	 * with locks held.  The caller should take care of this.
1543 	 */
1544 	ksiginfo_free(kp);
1545 }
1546 
1547 void
1548 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1549 {
1550 	struct proc *p = l->l_proc;
1551 #ifdef KERN_SA
1552 	struct lwp *le, *li;
1553 	siginfo_t *si;
1554 	int f;
1555 #endif /* KERN_SA */
1556 
1557 	KASSERT(mutex_owned(p->p_lock));
1558 
1559 #ifdef KERN_SA
1560 	if (p->p_sflag & PS_SA) {
1561 		/* f indicates if we should clear LP_SA_NOBLOCK */
1562 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1563 		l->l_pflag |= LP_SA_NOBLOCK;
1564 
1565 		mutex_exit(p->p_lock);
1566 		/* XXXUPSXXX What if not on sa_vp? */
1567 		/*
1568 		 * WRS: I think it won't matter, beyond the
1569 		 * question of what exactly we do with a signal
1570 		 * to a blocked user thread. Also, we try hard to always
1571 		 * send signals to blessed lwps, so we would only send
1572 		 * to a non-blessed lwp under special circumstances.
1573 		 */
1574 		si = siginfo_alloc(PR_WAITOK);
1575 
1576 		si->_info = ksi->ksi_info;
1577 
1578 		/*
1579 		 * Figure out if we're the innocent victim or the main
1580 		 * perpitrator.
1581 		 */
1582 		le = li = NULL;
1583 		if (KSI_TRAP_P(ksi))
1584 			le = l;
1585 		else
1586 			li = l;
1587 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1588 		    sizeof(*si), si, siginfo_free) != 0) {
1589 			siginfo_free(si);
1590 #if 0
1591 			if (KSI_TRAP_P(ksi))
1592 				/* XXX What dowe do here? The signal
1593 				 * didn't make it
1594 				 */;
1595 #endif
1596 		}
1597 		l->l_pflag ^= f;
1598 		mutex_enter(p->p_lock);
1599 		return;
1600 	}
1601 #endif /* KERN_SA */
1602 
1603 	(*p->p_emul->e_sendsig)(ksi, mask);
1604 }
1605 
1606 /*
1607  * Stop any LWPs sleeping interruptably.
1608  */
1609 static void
1610 proc_stop_lwps(struct proc *p)
1611 {
1612 	struct lwp *l;
1613 
1614 	KASSERT(mutex_owned(p->p_lock));
1615 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1616 
1617 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1618 		lwp_lock(l);
1619 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1620 			l->l_stat = LSSTOP;
1621 			p->p_nrlwps--;
1622 		}
1623 		lwp_unlock(l);
1624 	}
1625 }
1626 
1627 /*
1628  * Finish stopping of a process.  Mark it stopped and notify the parent.
1629  *
1630  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1631  */
1632 static void
1633 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1634 {
1635 
1636 	KASSERT(mutex_owned(proc_lock));
1637 	KASSERT(mutex_owned(p->p_lock));
1638 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1639 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1640 
1641 	p->p_sflag &= ~PS_STOPPING;
1642 	p->p_stat = SSTOP;
1643 	p->p_waited = 0;
1644 	p->p_pptr->p_nstopchild++;
1645 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1646 		if (ppsig) {
1647 			/* child_psignal drops p_lock briefly. */
1648 			child_psignal(p, ppmask);
1649 		}
1650 		cv_broadcast(&p->p_pptr->p_waitcv);
1651 	}
1652 }
1653 
1654 /*
1655  * Stop the current process and switch away when being stopped or traced.
1656  */
1657 static void
1658 sigswitch(bool ppsig, int ppmask, int signo)
1659 {
1660 	struct lwp *l = curlwp;
1661 	struct proc *p = l->l_proc;
1662 	int biglocks;
1663 
1664 	KASSERT(mutex_owned(p->p_lock));
1665 	KASSERT(l->l_stat == LSONPROC);
1666 	KASSERT(p->p_nrlwps > 0);
1667 
1668 	/*
1669 	 * On entry we know that the process needs to stop.  If it's
1670 	 * the result of a 'sideways' stop signal that has been sourced
1671 	 * through issignal(), then stop other LWPs in the process too.
1672 	 */
1673 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1674 		KASSERT(signo != 0);
1675 		proc_stop(p, 1, signo);
1676 		KASSERT(p->p_nrlwps > 0);
1677 	}
1678 
1679 	/*
1680 	 * If we are the last live LWP, and the stop was a result of
1681 	 * a new signal, then signal the parent.
1682 	 */
1683 	if ((p->p_sflag & PS_STOPPING) != 0) {
1684 		if (!mutex_tryenter(proc_lock)) {
1685 			mutex_exit(p->p_lock);
1686 			mutex_enter(proc_lock);
1687 			mutex_enter(p->p_lock);
1688 		}
1689 
1690 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1691 			/*
1692 			 * Note that proc_stop_done() can drop
1693 			 * p->p_lock briefly.
1694 			 */
1695 			proc_stop_done(p, ppsig, ppmask);
1696 		}
1697 
1698 		mutex_exit(proc_lock);
1699 	}
1700 
1701 	/*
1702 	 * Unlock and switch away.
1703 	 */
1704 	KERNEL_UNLOCK_ALL(l, &biglocks);
1705 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1706 		p->p_nrlwps--;
1707 		lwp_lock(l);
1708 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1709 		l->l_stat = LSSTOP;
1710 		lwp_unlock(l);
1711 	}
1712 
1713 	mutex_exit(p->p_lock);
1714 	lwp_lock(l);
1715 	mi_switch(l);
1716 	KERNEL_LOCK(biglocks, l);
1717 	mutex_enter(p->p_lock);
1718 }
1719 
1720 /*
1721  * Check for a signal from the debugger.
1722  */
1723 static int
1724 sigchecktrace(void)
1725 {
1726 	struct lwp *l = curlwp;
1727 	struct proc *p = l->l_proc;
1728 	sigset_t *mask;
1729 	int signo;
1730 
1731 	KASSERT(mutex_owned(p->p_lock));
1732 
1733 	/* If there's a pending SIGKILL, process it immediately. */
1734 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1735 		return 0;
1736 
1737 	/*
1738 	 * If we are no longer being traced, or the parent didn't
1739 	 * give us a signal, or we're stopping, look for more signals.
1740 	 */
1741 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1742 	    (p->p_sflag & PS_STOPPING) != 0)
1743 		return 0;
1744 
1745 	/*
1746 	 * If the new signal is being masked, look for other signals.
1747 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1748 	 */
1749 	signo = p->p_xstat;
1750 	p->p_xstat = 0;
1751 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1752 	if (sigismember(mask, signo))
1753 		signo = 0;
1754 
1755 	return signo;
1756 }
1757 
1758 /*
1759  * If the current process has received a signal (should be caught or cause
1760  * termination, should interrupt current syscall), return the signal number.
1761  *
1762  * Stop signals with default action are processed immediately, then cleared;
1763  * they aren't returned.  This is checked after each entry to the system for
1764  * a syscall or trap.
1765  *
1766  * We will also return -1 if the process is exiting and the current LWP must
1767  * follow suit.
1768  */
1769 int
1770 issignal(struct lwp *l)
1771 {
1772 	struct proc *p;
1773 	int signo, prop;
1774 	sigpend_t *sp;
1775 	sigset_t ss;
1776 
1777 	p = l->l_proc;
1778 	sp = NULL;
1779 	signo = 0;
1780 
1781 	KASSERT(p == curproc);
1782 	KASSERT(mutex_owned(p->p_lock));
1783 
1784 	for (;;) {
1785 		/* Discard any signals that we have decided not to take. */
1786 		if (signo != 0)
1787 			(void)sigget(sp, NULL, signo, NULL);
1788 
1789 		/* Bail out if we do not own the virtual processor */
1790 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1791 			break;
1792 
1793 		/*
1794 		 * If the process is stopped/stopping, then stop ourselves
1795 		 * now that we're on the kernel/userspace boundary.  When
1796 		 * we awaken, check for a signal from the debugger.
1797 		 */
1798 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1799 			sigswitch(true, PS_NOCLDSTOP, 0);
1800 			signo = sigchecktrace();
1801 		} else
1802 			signo = 0;
1803 
1804 		/* Signals from the debugger are "out of band". */
1805 		sp = NULL;
1806 
1807 		/*
1808 		 * If the debugger didn't provide a signal, find a pending
1809 		 * signal from our set.  Check per-LWP signals first, and
1810 		 * then per-process.
1811 		 */
1812 		if (signo == 0) {
1813 			sp = &l->l_sigpend;
1814 			ss = sp->sp_set;
1815 			if ((p->p_lflag & PL_PPWAIT) != 0)
1816 				sigminusset(&stopsigmask, &ss);
1817 			sigminusset(&l->l_sigmask, &ss);
1818 
1819 			if ((signo = firstsig(&ss)) == 0) {
1820 				sp = &p->p_sigpend;
1821 				ss = sp->sp_set;
1822 				if ((p->p_lflag & PL_PPWAIT) != 0)
1823 					sigminusset(&stopsigmask, &ss);
1824 				sigminusset(&l->l_sigmask, &ss);
1825 
1826 				if ((signo = firstsig(&ss)) == 0) {
1827 					/*
1828 					 * No signal pending - clear the
1829 					 * indicator and bail out.
1830 					 */
1831 					lwp_lock(l);
1832 					l->l_flag &= ~LW_PENDSIG;
1833 					lwp_unlock(l);
1834 					sp = NULL;
1835 					break;
1836 				}
1837 			}
1838 		}
1839 
1840 		/*
1841 		 * We should see pending but ignored signals only if
1842 		 * we are being traced.
1843 		 */
1844 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1845 		    (p->p_slflag & PSL_TRACED) == 0) {
1846 			/* Discard the signal. */
1847 			continue;
1848 		}
1849 
1850 		/*
1851 		 * If traced, always stop, and stay stopped until released
1852 		 * by the debugger.  If the our parent process is waiting
1853 		 * for us, don't hang as we could deadlock.
1854 		 */
1855 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1856 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1857 			/* Take the signal. */
1858 			(void)sigget(sp, NULL, signo, NULL);
1859 			p->p_xstat = signo;
1860 
1861 			/* Emulation-specific handling of signal trace */
1862 			if (p->p_emul->e_tracesig == NULL ||
1863 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1864 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1865 				    signo);
1866 
1867 			/* Check for a signal from the debugger. */
1868 			if ((signo = sigchecktrace()) == 0)
1869 				continue;
1870 
1871 			/* Signals from the debugger are "out of band". */
1872 			sp = NULL;
1873 		}
1874 
1875 		prop = sigprop[signo];
1876 
1877 		/* XXX no siginfo? */
1878 		SDT_PROBE(proc,,,signal_handle, signo, 0,
1879 			SIGACTION(p, signo).sa_handler, 0, 0);
1880 
1881 		/*
1882 		 * Decide whether the signal should be returned.
1883 		 */
1884 		switch ((long)SIGACTION(p, signo).sa_handler) {
1885 		case (long)SIG_DFL:
1886 			/*
1887 			 * Don't take default actions on system processes.
1888 			 */
1889 			if (p->p_pid <= 1) {
1890 #ifdef DIAGNOSTIC
1891 				/*
1892 				 * Are you sure you want to ignore SIGSEGV
1893 				 * in init? XXX
1894 				 */
1895 				printf_nolog("Process (pid %d) got sig %d\n",
1896 				    p->p_pid, signo);
1897 #endif
1898 				continue;
1899 			}
1900 
1901 			/*
1902 			 * If there is a pending stop signal to process with
1903 			 * default action, stop here, then clear the signal.
1904 			 * However, if process is member of an orphaned
1905 			 * process group, ignore tty stop signals.
1906 			 */
1907 			if (prop & SA_STOP) {
1908 				/*
1909 				 * XXX Don't hold proc_lock for p_lflag,
1910 				 * but it's not a big deal.
1911 				 */
1912 				if (p->p_slflag & PSL_TRACED ||
1913 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1914 				    prop & SA_TTYSTOP)) {
1915 					/* Ignore the signal. */
1916 					continue;
1917 				}
1918 				/* Take the signal. */
1919 				(void)sigget(sp, NULL, signo, NULL);
1920 				p->p_xstat = signo;
1921 				signo = 0;
1922 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1923 			} else if (prop & SA_IGNORE) {
1924 				/*
1925 				 * Except for SIGCONT, shouldn't get here.
1926 				 * Default action is to ignore; drop it.
1927 				 */
1928 				continue;
1929 			}
1930 			break;
1931 
1932 		case (long)SIG_IGN:
1933 #ifdef DEBUG_ISSIGNAL
1934 			/*
1935 			 * Masking above should prevent us ever trying
1936 			 * to take action on an ignored signal other
1937 			 * than SIGCONT, unless process is traced.
1938 			 */
1939 			if ((prop & SA_CONT) == 0 &&
1940 			    (p->p_slflag & PSL_TRACED) == 0)
1941 				printf_nolog("issignal\n");
1942 #endif
1943 			continue;
1944 
1945 		default:
1946 			/*
1947 			 * This signal has an action, let postsig() process
1948 			 * it.
1949 			 */
1950 			break;
1951 		}
1952 
1953 		break;
1954 	}
1955 
1956 	l->l_sigpendset = sp;
1957 	return signo;
1958 }
1959 
1960 /*
1961  * Take the action for the specified signal
1962  * from the current set of pending signals.
1963  */
1964 void
1965 postsig(int signo)
1966 {
1967 	struct lwp	*l;
1968 	struct proc	*p;
1969 	struct sigacts	*ps;
1970 	sig_t		action;
1971 	sigset_t	*returnmask;
1972 	ksiginfo_t	ksi;
1973 
1974 	l = curlwp;
1975 	p = l->l_proc;
1976 	ps = p->p_sigacts;
1977 
1978 	KASSERT(mutex_owned(p->p_lock));
1979 	KASSERT(signo > 0);
1980 
1981 	/*
1982 	 * Set the new mask value and also defer further occurrences of this
1983 	 * signal.
1984 	 *
1985 	 * Special case: user has done a sigsuspend.  Here the current mask is
1986 	 * not of interest, but rather the mask from before the sigsuspend is
1987 	 * what we want restored after the signal processing is completed.
1988 	 */
1989 	if (l->l_sigrestore) {
1990 		returnmask = &l->l_sigoldmask;
1991 		l->l_sigrestore = 0;
1992 	} else
1993 		returnmask = &l->l_sigmask;
1994 
1995 	/*
1996 	 * Commit to taking the signal before releasing the mutex.
1997 	 */
1998 	action = SIGACTION_PS(ps, signo).sa_handler;
1999 	l->l_ru.ru_nsignals++;
2000 	sigget(l->l_sigpendset, &ksi, signo, NULL);
2001 
2002 	if (ktrpoint(KTR_PSIG)) {
2003 		mutex_exit(p->p_lock);
2004 		ktrpsig(signo, action, returnmask, &ksi);
2005 		mutex_enter(p->p_lock);
2006 	}
2007 
2008 	if (action == SIG_DFL) {
2009 		/*
2010 		 * Default action, where the default is to kill
2011 		 * the process.  (Other cases were ignored above.)
2012 		 */
2013 		sigexit(l, signo);
2014 		return;
2015 	}
2016 
2017 	/*
2018 	 * If we get here, the signal must be caught.
2019 	 */
2020 #ifdef DIAGNOSTIC
2021 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2022 		panic("postsig action");
2023 #endif
2024 
2025 	kpsendsig(l, &ksi, returnmask);
2026 }
2027 
2028 /*
2029  * sendsig:
2030  *
2031  *	Default signal delivery method for NetBSD.
2032  */
2033 void
2034 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2035 {
2036 	struct sigacts *sa;
2037 	int sig;
2038 
2039 	sig = ksi->ksi_signo;
2040 	sa = curproc->p_sigacts;
2041 
2042 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2043 	case 0:
2044 	case 1:
2045 		/* Compat for 1.6 and earlier. */
2046 		if (sendsig_sigcontext_vec == NULL) {
2047 			break;
2048 		}
2049 		(*sendsig_sigcontext_vec)(ksi, mask);
2050 		return;
2051 	case 2:
2052 	case 3:
2053 		sendsig_siginfo(ksi, mask);
2054 		return;
2055 	default:
2056 		break;
2057 	}
2058 
2059 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2060 	sigexit(curlwp, SIGILL);
2061 }
2062 
2063 /*
2064  * sendsig_reset:
2065  *
2066  *	Reset the signal action.  Called from emulation specific sendsig()
2067  *	before unlocking to deliver the signal.
2068  */
2069 void
2070 sendsig_reset(struct lwp *l, int signo)
2071 {
2072 	struct proc *p = l->l_proc;
2073 	struct sigacts *ps = p->p_sigacts;
2074 	sigset_t *mask;
2075 
2076 	KASSERT(mutex_owned(p->p_lock));
2077 
2078 	p->p_sigctx.ps_lwp = 0;
2079 	p->p_sigctx.ps_code = 0;
2080 	p->p_sigctx.ps_signo = 0;
2081 
2082 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2083 
2084 	mutex_enter(&ps->sa_mutex);
2085 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2086 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2087 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2088 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2089 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2090 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2091 	}
2092 	mutex_exit(&ps->sa_mutex);
2093 }
2094 
2095 /*
2096  * Kill the current process for stated reason.
2097  */
2098 void
2099 killproc(struct proc *p, const char *why)
2100 {
2101 
2102 	KASSERT(mutex_owned(proc_lock));
2103 
2104 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2105 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2106 	psignal(p, SIGKILL);
2107 }
2108 
2109 /*
2110  * Force the current process to exit with the specified signal, dumping core
2111  * if appropriate.  We bypass the normal tests for masked and caught
2112  * signals, allowing unrecoverable failures to terminate the process without
2113  * changing signal state.  Mark the accounting record with the signal
2114  * termination.  If dumping core, save the signal number for the debugger.
2115  * Calls exit and does not return.
2116  */
2117 void
2118 sigexit(struct lwp *l, int signo)
2119 {
2120 	int exitsig, error, docore;
2121 	struct proc *p;
2122 	struct lwp *t;
2123 
2124 	p = l->l_proc;
2125 
2126 	KASSERT(mutex_owned(p->p_lock));
2127 	KERNEL_UNLOCK_ALL(l, NULL);
2128 
2129 	/*
2130 	 * Don't permit coredump() multiple times in the same process.
2131 	 * Call back into sigexit, where we will be suspended until
2132 	 * the deed is done.  Note that this is a recursive call, but
2133 	 * LW_WCORE will prevent us from coming back this way.
2134 	 */
2135 	if ((p->p_sflag & PS_WCORE) != 0) {
2136 		lwp_lock(l);
2137 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2138 		lwp_unlock(l);
2139 		mutex_exit(p->p_lock);
2140 		lwp_userret(l);
2141 		panic("sigexit 1");
2142 		/* NOTREACHED */
2143 	}
2144 
2145 	/* If process is already on the way out, then bail now. */
2146 	if ((p->p_sflag & PS_WEXIT) != 0) {
2147 		mutex_exit(p->p_lock);
2148 		lwp_exit(l);
2149 		panic("sigexit 2");
2150 		/* NOTREACHED */
2151 	}
2152 
2153 	/*
2154 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2155 	 * so that their registers are available long enough to be dumped.
2156  	 */
2157 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2158 		p->p_sflag |= PS_WCORE;
2159 		for (;;) {
2160 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2161 				lwp_lock(t);
2162 				if (t == l) {
2163 					t->l_flag &= ~LW_WSUSPEND;
2164 					lwp_unlock(t);
2165 					continue;
2166 				}
2167 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2168 				lwp_suspend(l, t);
2169 			}
2170 
2171 			if (p->p_nrlwps == 1)
2172 				break;
2173 
2174 			/*
2175 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2176 			 * for everyone else to stop before proceeding.
2177 			 */
2178 			p->p_nlwpwait++;
2179 			cv_broadcast(&p->p_lwpcv);
2180 			cv_wait(&p->p_lwpcv, p->p_lock);
2181 			p->p_nlwpwait--;
2182 		}
2183 	}
2184 
2185 	exitsig = signo;
2186 	p->p_acflag |= AXSIG;
2187 	p->p_sigctx.ps_signo = signo;
2188 
2189 	if (docore) {
2190 		mutex_exit(p->p_lock);
2191 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2192 			exitsig |= WCOREFLAG;
2193 
2194 		if (kern_logsigexit) {
2195 			int uid = l->l_cred ?
2196 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2197 
2198 			if (error)
2199 				log(LOG_INFO, lognocoredump, p->p_pid,
2200 				    p->p_comm, uid, signo, error);
2201 			else
2202 				log(LOG_INFO, logcoredump, p->p_pid,
2203 				    p->p_comm, uid, signo);
2204 		}
2205 
2206 #ifdef PAX_SEGVGUARD
2207 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2208 #endif /* PAX_SEGVGUARD */
2209 		/* Acquire the sched state mutex.  exit1() will release it. */
2210 		mutex_enter(p->p_lock);
2211 	}
2212 
2213 	/* No longer dumping core. */
2214 	p->p_sflag &= ~PS_WCORE;
2215 
2216 	exit1(l, W_EXITCODE(0, exitsig));
2217 	/* NOTREACHED */
2218 }
2219 
2220 /*
2221  * Put process 'p' into the stopped state and optionally, notify the parent.
2222  */
2223 void
2224 proc_stop(struct proc *p, int notify, int signo)
2225 {
2226 	struct lwp *l;
2227 
2228 	KASSERT(mutex_owned(p->p_lock));
2229 
2230 	/*
2231 	 * First off, set the stopping indicator and bring all sleeping
2232 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2233 	 * unlock between here and the p->p_nrlwps check below.
2234 	 */
2235 	p->p_sflag |= PS_STOPPING;
2236 	if (notify)
2237 		p->p_sflag |= PS_NOTIFYSTOP;
2238 	else
2239 		p->p_sflag &= ~PS_NOTIFYSTOP;
2240 	membar_producer();
2241 
2242 	proc_stop_lwps(p);
2243 
2244 	/*
2245 	 * If there are no LWPs available to take the signal, then we
2246 	 * signal the parent process immediately.  Otherwise, the last
2247 	 * LWP to stop will take care of it.
2248 	 */
2249 
2250 	if (p->p_nrlwps == 0) {
2251 		proc_stop_done(p, true, PS_NOCLDSTOP);
2252 	} else {
2253 		/*
2254 		 * Have the remaining LWPs come to a halt, and trigger
2255 		 * proc_stop_callout() to ensure that they do.
2256 		 */
2257 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2258 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2259 		callout_schedule(&proc_stop_ch, 1);
2260 	}
2261 }
2262 
2263 /*
2264  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2265  * but wait for them to come to a halt at the kernel-user boundary.  This is
2266  * to allow LWPs to release any locks that they may hold before stopping.
2267  *
2268  * Non-interruptable sleeps can be long, and there is the potential for an
2269  * LWP to begin sleeping interruptably soon after the process has been set
2270  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2271  * stopping, and so complete halt of the process and the return of status
2272  * information to the parent could be delayed indefinitely.
2273  *
2274  * To handle this race, proc_stop_callout() runs once per tick while there
2275  * are stopping processes in the system.  It sets LWPs that are sleeping
2276  * interruptably into the LSSTOP state.
2277  *
2278  * Note that we are not concerned about keeping all LWPs stopped while the
2279  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2280  * What we do need to ensure is that all LWPs in a stopping process have
2281  * stopped at least once, so that notification can be sent to the parent
2282  * process.
2283  */
2284 static void
2285 proc_stop_callout(void *cookie)
2286 {
2287 	bool more, restart;
2288 	struct proc *p;
2289 
2290 	(void)cookie;
2291 
2292 	do {
2293 		restart = false;
2294 		more = false;
2295 
2296 		mutex_enter(proc_lock);
2297 		PROCLIST_FOREACH(p, &allproc) {
2298 			mutex_enter(p->p_lock);
2299 
2300 			if ((p->p_sflag & PS_STOPPING) == 0) {
2301 				mutex_exit(p->p_lock);
2302 				continue;
2303 			}
2304 
2305 			/* Stop any LWPs sleeping interruptably. */
2306 			proc_stop_lwps(p);
2307 			if (p->p_nrlwps == 0) {
2308 				/*
2309 				 * We brought the process to a halt.
2310 				 * Mark it as stopped and notify the
2311 				 * parent.
2312 				 */
2313 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2314 					/*
2315 					 * Note that proc_stop_done() will
2316 					 * drop p->p_lock briefly.
2317 					 * Arrange to restart and check
2318 					 * all processes again.
2319 					 */
2320 					restart = true;
2321 				}
2322 				proc_stop_done(p, true, PS_NOCLDSTOP);
2323 			} else
2324 				more = true;
2325 
2326 			mutex_exit(p->p_lock);
2327 			if (restart)
2328 				break;
2329 		}
2330 		mutex_exit(proc_lock);
2331 	} while (restart);
2332 
2333 	/*
2334 	 * If we noted processes that are stopping but still have
2335 	 * running LWPs, then arrange to check again in 1 tick.
2336 	 */
2337 	if (more)
2338 		callout_schedule(&proc_stop_ch, 1);
2339 }
2340 
2341 /*
2342  * Given a process in state SSTOP, set the state back to SACTIVE and
2343  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2344  */
2345 void
2346 proc_unstop(struct proc *p)
2347 {
2348 	struct lwp *l;
2349 	int sig;
2350 
2351 	KASSERT(mutex_owned(proc_lock));
2352 	KASSERT(mutex_owned(p->p_lock));
2353 
2354 	p->p_stat = SACTIVE;
2355 	p->p_sflag &= ~PS_STOPPING;
2356 	sig = p->p_xstat;
2357 
2358 	if (!p->p_waited)
2359 		p->p_pptr->p_nstopchild--;
2360 
2361 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2362 		lwp_lock(l);
2363 		if (l->l_stat != LSSTOP) {
2364 			lwp_unlock(l);
2365 			continue;
2366 		}
2367 		if (l->l_wchan == NULL) {
2368 			setrunnable(l);
2369 			continue;
2370 		}
2371 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2372 			setrunnable(l);
2373 			sig = 0;
2374 		} else {
2375 			l->l_stat = LSSLEEP;
2376 			p->p_nrlwps++;
2377 			lwp_unlock(l);
2378 		}
2379 	}
2380 }
2381 
2382 static int
2383 filt_sigattach(struct knote *kn)
2384 {
2385 	struct proc *p = curproc;
2386 
2387 	kn->kn_obj = p;
2388 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2389 
2390 	mutex_enter(p->p_lock);
2391 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2392 	mutex_exit(p->p_lock);
2393 
2394 	return 0;
2395 }
2396 
2397 static void
2398 filt_sigdetach(struct knote *kn)
2399 {
2400 	struct proc *p = kn->kn_obj;
2401 
2402 	mutex_enter(p->p_lock);
2403 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2404 	mutex_exit(p->p_lock);
2405 }
2406 
2407 /*
2408  * Signal knotes are shared with proc knotes, so we apply a mask to
2409  * the hint in order to differentiate them from process hints.  This
2410  * could be avoided by using a signal-specific knote list, but probably
2411  * isn't worth the trouble.
2412  */
2413 static int
2414 filt_signal(struct knote *kn, long hint)
2415 {
2416 
2417 	if (hint & NOTE_SIGNAL) {
2418 		hint &= ~NOTE_SIGNAL;
2419 
2420 		if (kn->kn_id == hint)
2421 			kn->kn_data++;
2422 	}
2423 	return (kn->kn_data != 0);
2424 }
2425 
2426 const struct filterops sig_filtops = {
2427 	0, filt_sigattach, filt_sigdetach, filt_signal
2428 };
2429