1 /* $NetBSD: kern_sig.c,v 1.308 2011/04/27 00:38:37 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.308 2011/04/27 00:38:37 rmind Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_compat_sunos.h" 77 #include "opt_compat_netbsd.h" 78 #include "opt_compat_netbsd32.h" 79 #include "opt_pax.h" 80 #include "opt_sa.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/systm.h> 87 #include <sys/wait.h> 88 #include <sys/ktrace.h> 89 #include <sys/syslog.h> 90 #include <sys/filedesc.h> 91 #include <sys/file.h> 92 #include <sys/pool.h> 93 #include <sys/ucontext.h> 94 #include <sys/sa.h> 95 #include <sys/savar.h> 96 #include <sys/exec.h> 97 #include <sys/kauth.h> 98 #include <sys/acct.h> 99 #include <sys/callout.h> 100 #include <sys/atomic.h> 101 #include <sys/cpu.h> 102 #include <sys/module.h> 103 #include <sys/sdt.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm_extern.h> 110 #include <uvm/uvm_extern.h> 111 112 static pool_cache_t sigacts_cache __read_mostly; 113 static pool_cache_t ksiginfo_cache __read_mostly; 114 static callout_t proc_stop_ch __cacheline_aligned; 115 116 #ifdef KERN_SA 117 static pool_cache_t siginfo_cache; 118 #endif 119 120 sigset_t contsigmask __cacheline_aligned; 121 static sigset_t stopsigmask __cacheline_aligned; 122 sigset_t sigcantmask __cacheline_aligned; 123 124 static void ksiginfo_exechook(struct proc *, void *); 125 static void proc_stop_callout(void *); 126 static int sigchecktrace(void); 127 static int sigpost(struct lwp *, sig_t, int, int, int); 128 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 129 static int sigunwait(struct proc *, const ksiginfo_t *); 130 static void sigswitch(bool, int, int); 131 132 static void sigacts_poolpage_free(struct pool *, void *); 133 static void *sigacts_poolpage_alloc(struct pool *, int); 134 135 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 136 int (*coredump_vec)(struct lwp *, const char *) = 137 (int (*)(struct lwp *, const char *))enosys; 138 139 /* 140 * DTrace SDT provider definitions 141 */ 142 SDT_PROBE_DEFINE(proc,,,signal_send, 143 "struct lwp *", NULL, /* target thread */ 144 "struct proc *", NULL, /* target process */ 145 "int", NULL, /* signal */ 146 NULL, NULL, NULL, NULL); 147 SDT_PROBE_DEFINE(proc,,,signal_discard, 148 "struct lwp *", NULL, /* target thread */ 149 "struct proc *", NULL, /* target process */ 150 "int", NULL, /* signal */ 151 NULL, NULL, NULL, NULL); 152 SDT_PROBE_DEFINE(proc,,,signal_clear, 153 "int", NULL, /* signal */ 154 NULL, NULL, NULL, NULL, 155 NULL, NULL, NULL, NULL); 156 SDT_PROBE_DEFINE(proc,,,signal_handle, 157 "int", NULL, /* signal */ 158 "ksiginfo_t *", NULL, 159 "void (*)(void)", NULL, /* handler address */ 160 NULL, NULL, NULL, NULL); 161 162 163 static struct pool_allocator sigactspool_allocator = { 164 .pa_alloc = sigacts_poolpage_alloc, 165 .pa_free = sigacts_poolpage_free 166 }; 167 168 #ifdef DEBUG 169 int kern_logsigexit = 1; 170 #else 171 int kern_logsigexit = 0; 172 #endif 173 174 static const char logcoredump[] = 175 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 176 static const char lognocoredump[] = 177 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 178 179 static kauth_listener_t signal_listener; 180 181 static int 182 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 183 void *arg0, void *arg1, void *arg2, void *arg3) 184 { 185 struct proc *p; 186 int result, signum; 187 188 result = KAUTH_RESULT_DEFER; 189 p = arg0; 190 signum = (int)(unsigned long)arg1; 191 192 if (action != KAUTH_PROCESS_SIGNAL) 193 return result; 194 195 if (kauth_cred_uidmatch(cred, p->p_cred) || 196 (signum == SIGCONT && (curproc->p_session == p->p_session))) 197 result = KAUTH_RESULT_ALLOW; 198 199 return result; 200 } 201 202 /* 203 * signal_init: 204 * 205 * Initialize global signal-related data structures. 206 */ 207 void 208 signal_init(void) 209 { 210 211 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 212 213 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 214 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 215 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 216 #ifdef KERN_SA 217 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 218 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 219 #endif 220 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 221 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 222 223 exechook_establish(ksiginfo_exechook, NULL); 224 225 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 226 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 227 228 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 229 signal_listener_cb, NULL); 230 } 231 232 /* 233 * sigacts_poolpage_alloc: 234 * 235 * Allocate a page for the sigacts memory pool. 236 */ 237 static void * 238 sigacts_poolpage_alloc(struct pool *pp, int flags) 239 { 240 241 return (void *)uvm_km_alloc(kernel_map, 242 PAGE_SIZE * 2, PAGE_SIZE * 2, 243 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 244 | UVM_KMF_WIRED); 245 } 246 247 /* 248 * sigacts_poolpage_free: 249 * 250 * Free a page on behalf of the sigacts memory pool. 251 */ 252 static void 253 sigacts_poolpage_free(struct pool *pp, void *v) 254 { 255 256 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 257 } 258 259 /* 260 * sigactsinit: 261 * 262 * Create an initial sigacts structure, using the same signal state 263 * as of specified process. If 'share' is set, share the sigacts by 264 * holding a reference, otherwise just copy it from parent. 265 */ 266 struct sigacts * 267 sigactsinit(struct proc *pp, int share) 268 { 269 struct sigacts *ps = pp->p_sigacts, *ps2; 270 271 if (__predict_false(share)) { 272 atomic_inc_uint(&ps->sa_refcnt); 273 return ps; 274 } 275 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 276 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 277 ps2->sa_refcnt = 1; 278 279 mutex_enter(&ps->sa_mutex); 280 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 281 mutex_exit(&ps->sa_mutex); 282 return ps2; 283 } 284 285 /* 286 * sigactsunshare: 287 * 288 * Make this process not share its sigacts, maintaining all signal state. 289 */ 290 void 291 sigactsunshare(struct proc *p) 292 { 293 struct sigacts *ps, *oldps = p->p_sigacts; 294 295 if (__predict_true(oldps->sa_refcnt == 1)) 296 return; 297 298 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 299 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 300 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 301 ps->sa_refcnt = 1; 302 303 p->p_sigacts = ps; 304 sigactsfree(oldps); 305 } 306 307 /* 308 * sigactsfree; 309 * 310 * Release a sigacts structure. 311 */ 312 void 313 sigactsfree(struct sigacts *ps) 314 { 315 316 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 317 mutex_destroy(&ps->sa_mutex); 318 pool_cache_put(sigacts_cache, ps); 319 } 320 } 321 322 /* 323 * siginit: 324 * 325 * Initialize signal state for process 0; set to ignore signals that 326 * are ignored by default and disable the signal stack. Locking not 327 * required as the system is still cold. 328 */ 329 void 330 siginit(struct proc *p) 331 { 332 struct lwp *l; 333 struct sigacts *ps; 334 int signo, prop; 335 336 ps = p->p_sigacts; 337 sigemptyset(&contsigmask); 338 sigemptyset(&stopsigmask); 339 sigemptyset(&sigcantmask); 340 for (signo = 1; signo < NSIG; signo++) { 341 prop = sigprop[signo]; 342 if (prop & SA_CONT) 343 sigaddset(&contsigmask, signo); 344 if (prop & SA_STOP) 345 sigaddset(&stopsigmask, signo); 346 if (prop & SA_CANTMASK) 347 sigaddset(&sigcantmask, signo); 348 if (prop & SA_IGNORE && signo != SIGCONT) 349 sigaddset(&p->p_sigctx.ps_sigignore, signo); 350 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 351 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 352 } 353 sigemptyset(&p->p_sigctx.ps_sigcatch); 354 p->p_sflag &= ~PS_NOCLDSTOP; 355 356 ksiginfo_queue_init(&p->p_sigpend.sp_info); 357 sigemptyset(&p->p_sigpend.sp_set); 358 359 /* 360 * Reset per LWP state. 361 */ 362 l = LIST_FIRST(&p->p_lwps); 363 l->l_sigwaited = NULL; 364 l->l_sigstk.ss_flags = SS_DISABLE; 365 l->l_sigstk.ss_size = 0; 366 l->l_sigstk.ss_sp = 0; 367 ksiginfo_queue_init(&l->l_sigpend.sp_info); 368 sigemptyset(&l->l_sigpend.sp_set); 369 370 /* One reference. */ 371 ps->sa_refcnt = 1; 372 } 373 374 /* 375 * execsigs: 376 * 377 * Reset signals for an exec of the specified process. 378 */ 379 void 380 execsigs(struct proc *p) 381 { 382 struct sigacts *ps; 383 struct lwp *l; 384 int signo, prop; 385 sigset_t tset; 386 ksiginfoq_t kq; 387 388 KASSERT(p->p_nlwps == 1); 389 390 sigactsunshare(p); 391 ps = p->p_sigacts; 392 393 /* 394 * Reset caught signals. Held signals remain held through 395 * l->l_sigmask (unless they were caught, and are now ignored 396 * by default). 397 * 398 * No need to lock yet, the process has only one LWP and 399 * at this point the sigacts are private to the process. 400 */ 401 sigemptyset(&tset); 402 for (signo = 1; signo < NSIG; signo++) { 403 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 404 prop = sigprop[signo]; 405 if (prop & SA_IGNORE) { 406 if ((prop & SA_CONT) == 0) 407 sigaddset(&p->p_sigctx.ps_sigignore, 408 signo); 409 sigaddset(&tset, signo); 410 } 411 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 412 } 413 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 414 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 415 } 416 ksiginfo_queue_init(&kq); 417 418 mutex_enter(p->p_lock); 419 sigclearall(p, &tset, &kq); 420 sigemptyset(&p->p_sigctx.ps_sigcatch); 421 422 /* 423 * Reset no zombies if child dies flag as Solaris does. 424 */ 425 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 426 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 427 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 428 429 /* 430 * Reset per-LWP state. 431 */ 432 l = LIST_FIRST(&p->p_lwps); 433 l->l_sigwaited = NULL; 434 l->l_sigstk.ss_flags = SS_DISABLE; 435 l->l_sigstk.ss_size = 0; 436 l->l_sigstk.ss_sp = 0; 437 ksiginfo_queue_init(&l->l_sigpend.sp_info); 438 sigemptyset(&l->l_sigpend.sp_set); 439 mutex_exit(p->p_lock); 440 441 ksiginfo_queue_drain(&kq); 442 } 443 444 /* 445 * ksiginfo_exechook: 446 * 447 * Free all pending ksiginfo entries from a process on exec. 448 * Additionally, drain any unused ksiginfo structures in the 449 * system back to the pool. 450 * 451 * XXX This should not be a hook, every process has signals. 452 */ 453 static void 454 ksiginfo_exechook(struct proc *p, void *v) 455 { 456 ksiginfoq_t kq; 457 458 ksiginfo_queue_init(&kq); 459 460 mutex_enter(p->p_lock); 461 sigclearall(p, NULL, &kq); 462 mutex_exit(p->p_lock); 463 464 ksiginfo_queue_drain(&kq); 465 } 466 467 /* 468 * ksiginfo_alloc: 469 * 470 * Allocate a new ksiginfo structure from the pool, and optionally copy 471 * an existing one. If the existing ksiginfo_t is from the pool, and 472 * has not been queued somewhere, then just return it. Additionally, 473 * if the existing ksiginfo_t does not contain any information beyond 474 * the signal number, then just return it. 475 */ 476 ksiginfo_t * 477 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 478 { 479 ksiginfo_t *kp; 480 481 if (ok != NULL) { 482 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 483 KSI_FROMPOOL) 484 return ok; 485 if (KSI_EMPTY_P(ok)) 486 return ok; 487 } 488 489 kp = pool_cache_get(ksiginfo_cache, flags); 490 if (kp == NULL) { 491 #ifdef DIAGNOSTIC 492 printf("Out of memory allocating ksiginfo for pid %d\n", 493 p->p_pid); 494 #endif 495 return NULL; 496 } 497 498 if (ok != NULL) { 499 memcpy(kp, ok, sizeof(*kp)); 500 kp->ksi_flags &= ~KSI_QUEUED; 501 } else 502 KSI_INIT_EMPTY(kp); 503 504 kp->ksi_flags |= KSI_FROMPOOL; 505 506 return kp; 507 } 508 509 /* 510 * ksiginfo_free: 511 * 512 * If the given ksiginfo_t is from the pool and has not been queued, 513 * then free it. 514 */ 515 void 516 ksiginfo_free(ksiginfo_t *kp) 517 { 518 519 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 520 return; 521 pool_cache_put(ksiginfo_cache, kp); 522 } 523 524 /* 525 * ksiginfo_queue_drain: 526 * 527 * Drain a non-empty ksiginfo_t queue. 528 */ 529 void 530 ksiginfo_queue_drain0(ksiginfoq_t *kq) 531 { 532 ksiginfo_t *ksi; 533 534 KASSERT(!CIRCLEQ_EMPTY(kq)); 535 536 while (!CIRCLEQ_EMPTY(kq)) { 537 ksi = CIRCLEQ_FIRST(kq); 538 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 539 pool_cache_put(ksiginfo_cache, ksi); 540 } 541 } 542 543 /* 544 * sigget: 545 * 546 * Fetch the first pending signal from a set. Optionally, also fetch 547 * or manufacture a ksiginfo element. Returns the number of the first 548 * pending signal, or zero. 549 */ 550 int 551 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 552 { 553 ksiginfo_t *ksi; 554 sigset_t tset; 555 556 /* If there's no pending set, the signal is from the debugger. */ 557 if (sp == NULL) 558 goto out; 559 560 /* Construct mask from signo, and 'mask'. */ 561 if (signo == 0) { 562 if (mask != NULL) { 563 tset = *mask; 564 __sigandset(&sp->sp_set, &tset); 565 } else 566 tset = sp->sp_set; 567 568 /* If there are no signals pending - return. */ 569 if ((signo = firstsig(&tset)) == 0) 570 goto out; 571 } else { 572 KASSERT(sigismember(&sp->sp_set, signo)); 573 } 574 575 sigdelset(&sp->sp_set, signo); 576 577 /* Find siginfo and copy it out. */ 578 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 579 if (ksi->ksi_signo != signo) 580 continue; 581 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 582 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 583 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 584 ksi->ksi_flags &= ~KSI_QUEUED; 585 if (out != NULL) { 586 memcpy(out, ksi, sizeof(*out)); 587 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 588 } 589 ksiginfo_free(ksi); /* XXXSMP */ 590 return signo; 591 } 592 out: 593 /* If there is no siginfo, then manufacture it. */ 594 if (out != NULL) { 595 KSI_INIT(out); 596 out->ksi_info._signo = signo; 597 out->ksi_info._code = SI_NOINFO; 598 } 599 return signo; 600 } 601 602 /* 603 * sigput: 604 * 605 * Append a new ksiginfo element to the list of pending ksiginfo's. 606 */ 607 static void 608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 609 { 610 ksiginfo_t *kp; 611 612 KASSERT(mutex_owned(p->p_lock)); 613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 614 615 sigaddset(&sp->sp_set, ksi->ksi_signo); 616 617 /* 618 * If there is no siginfo, we are done. 619 */ 620 if (KSI_EMPTY_P(ksi)) 621 return; 622 623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 624 625 #ifdef notyet /* XXX: QUEUING */ 626 if (ksi->ksi_signo < SIGRTMIN) 627 #endif 628 { 629 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 630 if (kp->ksi_signo == ksi->ksi_signo) { 631 KSI_COPY(ksi, kp); 632 kp->ksi_flags |= KSI_QUEUED; 633 return; 634 } 635 } 636 } 637 638 ksi->ksi_flags |= KSI_QUEUED; 639 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 640 } 641 642 /* 643 * sigclear: 644 * 645 * Clear all pending signals in the specified set. 646 */ 647 void 648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 649 { 650 ksiginfo_t *ksi, *next; 651 652 if (mask == NULL) 653 sigemptyset(&sp->sp_set); 654 else 655 sigminusset(mask, &sp->sp_set); 656 657 ksi = CIRCLEQ_FIRST(&sp->sp_info); 658 for (; ksi != (void *)&sp->sp_info; ksi = next) { 659 next = CIRCLEQ_NEXT(ksi, ksi_list); 660 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 661 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 662 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 663 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 664 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 665 } 666 } 667 } 668 669 /* 670 * sigclearall: 671 * 672 * Clear all pending signals in the specified set from a process and 673 * its LWPs. 674 */ 675 void 676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 677 { 678 struct lwp *l; 679 680 KASSERT(mutex_owned(p->p_lock)); 681 682 sigclear(&p->p_sigpend, mask, kq); 683 684 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 685 sigclear(&l->l_sigpend, mask, kq); 686 } 687 } 688 689 /* 690 * sigispending: 691 * 692 * Return true if there are pending signals for the current LWP. May 693 * be called unlocked provided that LW_PENDSIG is set, and that the 694 * signal has been posted to the appopriate queue before LW_PENDSIG is 695 * set. 696 */ 697 int 698 sigispending(struct lwp *l, int signo) 699 { 700 struct proc *p = l->l_proc; 701 sigset_t tset; 702 703 membar_consumer(); 704 705 tset = l->l_sigpend.sp_set; 706 sigplusset(&p->p_sigpend.sp_set, &tset); 707 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 708 sigminusset(&l->l_sigmask, &tset); 709 710 if (signo == 0) { 711 if (firstsig(&tset) != 0) 712 return EINTR; 713 } else if (sigismember(&tset, signo)) 714 return EINTR; 715 716 return 0; 717 } 718 719 #ifdef KERN_SA 720 721 /* 722 * siginfo_alloc: 723 * 724 * Allocate a new siginfo_t structure from the pool. 725 */ 726 siginfo_t * 727 siginfo_alloc(int flags) 728 { 729 730 return pool_cache_get(siginfo_cache, flags); 731 } 732 733 /* 734 * siginfo_free: 735 * 736 * Return a siginfo_t structure to the pool. 737 */ 738 void 739 siginfo_free(void *arg) 740 { 741 742 pool_cache_put(siginfo_cache, arg); 743 } 744 745 #endif 746 747 void 748 getucontext(struct lwp *l, ucontext_t *ucp) 749 { 750 struct proc *p = l->l_proc; 751 752 KASSERT(mutex_owned(p->p_lock)); 753 754 ucp->uc_flags = 0; 755 ucp->uc_link = l->l_ctxlink; 756 757 #if KERN_SA 758 if (p->p_sa != NULL) 759 ucp->uc_sigmask = p->p_sa->sa_sigmask; 760 else 761 #endif /* KERN_SA */ 762 ucp->uc_sigmask = l->l_sigmask; 763 ucp->uc_flags |= _UC_SIGMASK; 764 765 /* 766 * The (unsupplied) definition of the `current execution stack' 767 * in the System V Interface Definition appears to allow returning 768 * the main context stack. 769 */ 770 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 771 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 772 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 773 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 774 } else { 775 /* Simply copy alternate signal execution stack. */ 776 ucp->uc_stack = l->l_sigstk; 777 } 778 ucp->uc_flags |= _UC_STACK; 779 mutex_exit(p->p_lock); 780 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 781 mutex_enter(p->p_lock); 782 } 783 784 /* 785 * getucontext_sa: 786 * Get a ucontext_t for use in SA upcall generation. 787 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 788 * fudge things with uc_link (which is usually NULL for libpthread 789 * code), and 3) we report an empty signal mask. 790 */ 791 void 792 getucontext_sa(struct lwp *l, ucontext_t *ucp) 793 { 794 ucp->uc_flags = 0; 795 ucp->uc_link = l->l_ctxlink; 796 797 sigemptyset(&ucp->uc_sigmask); 798 ucp->uc_flags |= _UC_SIGMASK; 799 800 /* 801 * The (unsupplied) definition of the `current execution stack' 802 * in the System V Interface Definition appears to allow returning 803 * the main context stack. 804 */ 805 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 806 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 807 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 808 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 809 } else { 810 /* Simply copy alternate signal execution stack. */ 811 ucp->uc_stack = l->l_sigstk; 812 } 813 ucp->uc_flags |= _UC_STACK; 814 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 815 } 816 817 int 818 setucontext(struct lwp *l, const ucontext_t *ucp) 819 { 820 struct proc *p = l->l_proc; 821 int error; 822 823 KASSERT(mutex_owned(p->p_lock)); 824 825 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 826 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 827 if (error != 0) 828 return error; 829 } 830 831 mutex_exit(p->p_lock); 832 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 833 mutex_enter(p->p_lock); 834 if (error != 0) 835 return (error); 836 837 l->l_ctxlink = ucp->uc_link; 838 839 /* 840 * If there was stack information, update whether or not we are 841 * still running on an alternate signal stack. 842 */ 843 if ((ucp->uc_flags & _UC_STACK) != 0) { 844 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 845 l->l_sigstk.ss_flags |= SS_ONSTACK; 846 else 847 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 848 } 849 850 return 0; 851 } 852 853 /* 854 * killpg1: common code for kill process group/broadcast kill. 855 */ 856 int 857 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 858 { 859 struct proc *p, *cp; 860 kauth_cred_t pc; 861 struct pgrp *pgrp; 862 int nfound; 863 int signo = ksi->ksi_signo; 864 865 cp = l->l_proc; 866 pc = l->l_cred; 867 nfound = 0; 868 869 mutex_enter(proc_lock); 870 if (all) { 871 /* 872 * Broadcast. 873 */ 874 PROCLIST_FOREACH(p, &allproc) { 875 if (p->p_pid <= 1 || p == cp || 876 (p->p_flag & PK_SYSTEM) != 0) 877 continue; 878 mutex_enter(p->p_lock); 879 if (kauth_authorize_process(pc, 880 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 881 NULL) == 0) { 882 nfound++; 883 if (signo) 884 kpsignal2(p, ksi); 885 } 886 mutex_exit(p->p_lock); 887 } 888 } else { 889 if (pgid == 0) 890 /* Zero pgid means send to my process group. */ 891 pgrp = cp->p_pgrp; 892 else { 893 pgrp = pgrp_find(pgid); 894 if (pgrp == NULL) 895 goto out; 896 } 897 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 898 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 899 continue; 900 mutex_enter(p->p_lock); 901 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 902 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 903 nfound++; 904 if (signo && P_ZOMBIE(p) == 0) 905 kpsignal2(p, ksi); 906 } 907 mutex_exit(p->p_lock); 908 } 909 } 910 out: 911 mutex_exit(proc_lock); 912 return nfound ? 0 : ESRCH; 913 } 914 915 /* 916 * Send a signal to a process group. If checktty is set, limit to members 917 * which have a controlling terminal. 918 */ 919 void 920 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 921 { 922 ksiginfo_t ksi; 923 924 KASSERT(!cpu_intr_p()); 925 KASSERT(mutex_owned(proc_lock)); 926 927 KSI_INIT_EMPTY(&ksi); 928 ksi.ksi_signo = sig; 929 kpgsignal(pgrp, &ksi, NULL, checkctty); 930 } 931 932 void 933 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 934 { 935 struct proc *p; 936 937 KASSERT(!cpu_intr_p()); 938 KASSERT(mutex_owned(proc_lock)); 939 KASSERT(pgrp != NULL); 940 941 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 942 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 943 kpsignal(p, ksi, data); 944 } 945 946 /* 947 * Send a signal caused by a trap to the current LWP. If it will be caught 948 * immediately, deliver it with correct code. Otherwise, post it normally. 949 */ 950 void 951 trapsignal(struct lwp *l, ksiginfo_t *ksi) 952 { 953 struct proc *p; 954 struct sigacts *ps; 955 int signo = ksi->ksi_signo; 956 sigset_t *mask; 957 958 KASSERT(KSI_TRAP_P(ksi)); 959 960 ksi->ksi_lid = l->l_lid; 961 p = l->l_proc; 962 963 KASSERT(!cpu_intr_p()); 964 mutex_enter(proc_lock); 965 mutex_enter(p->p_lock); 966 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 967 ps = p->p_sigacts; 968 if ((p->p_slflag & PSL_TRACED) == 0 && 969 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 970 !sigismember(mask, signo)) { 971 mutex_exit(proc_lock); 972 l->l_ru.ru_nsignals++; 973 kpsendsig(l, ksi, mask); 974 mutex_exit(p->p_lock); 975 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 976 } else { 977 /* XXX for core dump/debugger */ 978 p->p_sigctx.ps_lwp = l->l_lid; 979 p->p_sigctx.ps_signo = ksi->ksi_signo; 980 p->p_sigctx.ps_code = ksi->ksi_trap; 981 kpsignal2(p, ksi); 982 mutex_exit(p->p_lock); 983 mutex_exit(proc_lock); 984 } 985 } 986 987 /* 988 * Fill in signal information and signal the parent for a child status change. 989 */ 990 void 991 child_psignal(struct proc *p, int mask) 992 { 993 ksiginfo_t ksi; 994 struct proc *q; 995 int xstat; 996 997 KASSERT(mutex_owned(proc_lock)); 998 KASSERT(mutex_owned(p->p_lock)); 999 1000 xstat = p->p_xstat; 1001 1002 KSI_INIT(&ksi); 1003 ksi.ksi_signo = SIGCHLD; 1004 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 1005 ksi.ksi_pid = p->p_pid; 1006 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 1007 ksi.ksi_status = xstat; 1008 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 1009 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 1010 1011 q = p->p_pptr; 1012 1013 mutex_exit(p->p_lock); 1014 mutex_enter(q->p_lock); 1015 1016 if ((q->p_sflag & mask) == 0) 1017 kpsignal2(q, &ksi); 1018 1019 mutex_exit(q->p_lock); 1020 mutex_enter(p->p_lock); 1021 } 1022 1023 void 1024 psignal(struct proc *p, int signo) 1025 { 1026 ksiginfo_t ksi; 1027 1028 KASSERT(!cpu_intr_p()); 1029 KASSERT(mutex_owned(proc_lock)); 1030 1031 KSI_INIT_EMPTY(&ksi); 1032 ksi.ksi_signo = signo; 1033 mutex_enter(p->p_lock); 1034 kpsignal2(p, &ksi); 1035 mutex_exit(p->p_lock); 1036 } 1037 1038 void 1039 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1040 { 1041 fdfile_t *ff; 1042 file_t *fp; 1043 fdtab_t *dt; 1044 1045 KASSERT(!cpu_intr_p()); 1046 KASSERT(mutex_owned(proc_lock)); 1047 1048 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1049 size_t fd; 1050 filedesc_t *fdp = p->p_fd; 1051 1052 /* XXXSMP locking */ 1053 ksi->ksi_fd = -1; 1054 dt = fdp->fd_dt; 1055 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1056 if ((ff = dt->dt_ff[fd]) == NULL) 1057 continue; 1058 if ((fp = ff->ff_file) == NULL) 1059 continue; 1060 if (fp->f_data == data) { 1061 ksi->ksi_fd = fd; 1062 break; 1063 } 1064 } 1065 } 1066 mutex_enter(p->p_lock); 1067 kpsignal2(p, ksi); 1068 mutex_exit(p->p_lock); 1069 } 1070 1071 /* 1072 * sigismasked: 1073 * 1074 * Returns true if signal is ignored or masked for the specified LWP. 1075 */ 1076 int 1077 sigismasked(struct lwp *l, int sig) 1078 { 1079 struct proc *p = l->l_proc; 1080 1081 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1082 sigismember(&l->l_sigmask, sig) 1083 #if KERN_SA 1084 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1085 #endif /* KERN_SA */ 1086 ); 1087 } 1088 1089 /* 1090 * sigpost: 1091 * 1092 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1093 * be able to take the signal. 1094 */ 1095 static int 1096 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1097 { 1098 int rv, masked; 1099 struct proc *p = l->l_proc; 1100 1101 KASSERT(mutex_owned(p->p_lock)); 1102 1103 /* 1104 * If the LWP is on the way out, sigclear() will be busy draining all 1105 * pending signals. Don't give it more. 1106 */ 1107 if (l->l_refcnt == 0) 1108 return 0; 1109 1110 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1111 1112 /* 1113 * Have the LWP check for signals. This ensures that even if no LWP 1114 * is found to take the signal immediately, it should be taken soon. 1115 */ 1116 lwp_lock(l); 1117 l->l_flag |= LW_PENDSIG; 1118 1119 /* 1120 * When sending signals to SA processes, we first try to find an 1121 * idle VP to take it. 1122 */ 1123 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1124 lwp_unlock(l); 1125 return 0; 1126 } 1127 1128 /* 1129 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1130 * Note: SIGKILL and SIGSTOP cannot be masked. 1131 */ 1132 #if KERN_SA 1133 if (p->p_sa != NULL) 1134 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1135 else 1136 #endif 1137 masked = sigismember(&l->l_sigmask, sig); 1138 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1139 lwp_unlock(l); 1140 return 0; 1141 } 1142 1143 /* 1144 * If killing the process, make it run fast. 1145 */ 1146 if (__predict_false((prop & SA_KILL) != 0) && 1147 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1148 KASSERT(l->l_class == SCHED_OTHER); 1149 lwp_changepri(l, MAXPRI_USER); 1150 } 1151 1152 /* 1153 * If the LWP is running or on a run queue, then we win. If it's 1154 * sleeping interruptably, wake it and make it take the signal. If 1155 * the sleep isn't interruptable, then the chances are it will get 1156 * to see the signal soon anyhow. If suspended, it can't take the 1157 * signal right now. If it's LWP private or for all LWPs, save it 1158 * for later; otherwise punt. 1159 */ 1160 rv = 0; 1161 1162 switch (l->l_stat) { 1163 case LSRUN: 1164 case LSONPROC: 1165 lwp_need_userret(l); 1166 rv = 1; 1167 break; 1168 1169 case LSSLEEP: 1170 if ((l->l_flag & LW_SINTR) != 0) { 1171 /* setrunnable() will release the lock. */ 1172 setrunnable(l); 1173 return 1; 1174 } 1175 break; 1176 1177 case LSSUSPENDED: 1178 if ((prop & SA_KILL) != 0) { 1179 /* lwp_continue() will release the lock. */ 1180 lwp_continue(l); 1181 return 1; 1182 } 1183 break; 1184 1185 case LSSTOP: 1186 if ((prop & SA_STOP) != 0) 1187 break; 1188 1189 /* 1190 * If the LWP is stopped and we are sending a continue 1191 * signal, then start it again. 1192 */ 1193 if ((prop & SA_CONT) != 0) { 1194 if (l->l_wchan != NULL) { 1195 l->l_stat = LSSLEEP; 1196 p->p_nrlwps++; 1197 rv = 1; 1198 break; 1199 } 1200 /* setrunnable() will release the lock. */ 1201 setrunnable(l); 1202 return 1; 1203 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1204 /* setrunnable() will release the lock. */ 1205 setrunnable(l); 1206 return 1; 1207 } 1208 break; 1209 1210 default: 1211 break; 1212 } 1213 1214 lwp_unlock(l); 1215 return rv; 1216 } 1217 1218 /* 1219 * Notify an LWP that it has a pending signal. 1220 */ 1221 void 1222 signotify(struct lwp *l) 1223 { 1224 KASSERT(lwp_locked(l, NULL)); 1225 1226 l->l_flag |= LW_PENDSIG; 1227 lwp_need_userret(l); 1228 } 1229 1230 /* 1231 * Find an LWP within process p that is waiting on signal ksi, and hand 1232 * it on. 1233 */ 1234 static int 1235 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1236 { 1237 struct lwp *l; 1238 int signo; 1239 1240 KASSERT(mutex_owned(p->p_lock)); 1241 1242 signo = ksi->ksi_signo; 1243 1244 if (ksi->ksi_lid != 0) { 1245 /* 1246 * Signal came via _lwp_kill(). Find the LWP and see if 1247 * it's interested. 1248 */ 1249 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1250 return 0; 1251 if (l->l_sigwaited == NULL || 1252 !sigismember(&l->l_sigwaitset, signo)) 1253 return 0; 1254 } else { 1255 /* 1256 * Look for any LWP that may be interested. 1257 */ 1258 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1259 KASSERT(l->l_sigwaited != NULL); 1260 if (sigismember(&l->l_sigwaitset, signo)) 1261 break; 1262 } 1263 } 1264 1265 if (l != NULL) { 1266 l->l_sigwaited->ksi_info = ksi->ksi_info; 1267 l->l_sigwaited = NULL; 1268 LIST_REMOVE(l, l_sigwaiter); 1269 cv_signal(&l->l_sigcv); 1270 return 1; 1271 } 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Send the signal to the process. If the signal has an action, the action 1278 * is usually performed by the target process rather than the caller; we add 1279 * the signal to the set of pending signals for the process. 1280 * 1281 * Exceptions: 1282 * o When a stop signal is sent to a sleeping process that takes the 1283 * default action, the process is stopped without awakening it. 1284 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1285 * regardless of the signal action (eg, blocked or ignored). 1286 * 1287 * Other ignored signals are discarded immediately. 1288 */ 1289 void 1290 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1291 { 1292 int prop, signo = ksi->ksi_signo; 1293 struct sigacts *sa; 1294 struct lwp *l; 1295 ksiginfo_t *kp; 1296 lwpid_t lid; 1297 sig_t action; 1298 bool toall; 1299 1300 KASSERT(!cpu_intr_p()); 1301 KASSERT(mutex_owned(proc_lock)); 1302 KASSERT(mutex_owned(p->p_lock)); 1303 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1304 KASSERT(signo > 0 && signo < NSIG); 1305 1306 /* 1307 * If the process is being created by fork, is a zombie or is 1308 * exiting, then just drop the signal here and bail out. 1309 */ 1310 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1311 return; 1312 1313 /* 1314 * Notify any interested parties of the signal. 1315 */ 1316 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1317 1318 /* 1319 * Some signals including SIGKILL must act on the entire process. 1320 */ 1321 kp = NULL; 1322 prop = sigprop[signo]; 1323 toall = ((prop & SA_TOALL) != 0); 1324 lid = toall ? 0 : ksi->ksi_lid; 1325 1326 /* 1327 * If proc is traced, always give parent a chance. 1328 */ 1329 if (p->p_slflag & PSL_TRACED) { 1330 action = SIG_DFL; 1331 1332 if (lid == 0) { 1333 /* 1334 * If the process is being traced and the signal 1335 * is being caught, make sure to save any ksiginfo. 1336 */ 1337 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1338 return; 1339 sigput(&p->p_sigpend, p, kp); 1340 } 1341 } else { 1342 /* 1343 * If the signal was the result of a trap and is not being 1344 * caught, then reset it to default action so that the 1345 * process dumps core immediately. 1346 */ 1347 if (KSI_TRAP_P(ksi)) { 1348 sa = p->p_sigacts; 1349 mutex_enter(&sa->sa_mutex); 1350 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1351 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1352 SIGACTION(p, signo).sa_handler = SIG_DFL; 1353 } 1354 mutex_exit(&sa->sa_mutex); 1355 } 1356 1357 /* 1358 * If the signal is being ignored, then drop it. Note: we 1359 * don't set SIGCONT in ps_sigignore, and if it is set to 1360 * SIG_IGN, action will be SIG_DFL here. 1361 */ 1362 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1363 return; 1364 1365 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1366 action = SIG_CATCH; 1367 else { 1368 action = SIG_DFL; 1369 1370 /* 1371 * If sending a tty stop signal to a member of an 1372 * orphaned process group, discard the signal here if 1373 * the action is default; don't stop the process below 1374 * if sleeping, and don't clear any pending SIGCONT. 1375 */ 1376 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1377 return; 1378 1379 if (prop & SA_KILL && p->p_nice > NZERO) 1380 p->p_nice = NZERO; 1381 } 1382 } 1383 1384 /* 1385 * If stopping or continuing a process, discard any pending 1386 * signals that would do the inverse. 1387 */ 1388 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1389 ksiginfoq_t kq; 1390 1391 ksiginfo_queue_init(&kq); 1392 if ((prop & SA_CONT) != 0) 1393 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1394 if ((prop & SA_STOP) != 0) 1395 sigclear(&p->p_sigpend, &contsigmask, &kq); 1396 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1397 } 1398 1399 /* 1400 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1401 * please!), check if any LWPs are waiting on it. If yes, pass on 1402 * the signal info. The signal won't be processed further here. 1403 */ 1404 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1405 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1406 sigunwait(p, ksi)) 1407 return; 1408 1409 /* 1410 * XXXSMP Should be allocated by the caller, we're holding locks 1411 * here. 1412 */ 1413 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1414 return; 1415 1416 /* 1417 * LWP private signals are easy - just find the LWP and post 1418 * the signal to it. 1419 */ 1420 if (lid != 0) { 1421 l = lwp_find(p, lid); 1422 if (l != NULL) { 1423 sigput(&l->l_sigpend, p, kp); 1424 membar_producer(); 1425 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1426 } 1427 goto out; 1428 } 1429 1430 /* 1431 * Some signals go to all LWPs, even if posted with _lwp_kill() 1432 * or for an SA process. 1433 */ 1434 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1435 if ((p->p_slflag & PSL_TRACED) != 0) 1436 goto deliver; 1437 1438 /* 1439 * If SIGCONT is default (or ignored) and process is 1440 * asleep, we are finished; the process should not 1441 * be awakened. 1442 */ 1443 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1444 goto out; 1445 } else { 1446 /* 1447 * Process is stopped or stopping. 1448 * - If traced, then no action is needed, unless killing. 1449 * - Run the process only if sending SIGCONT or SIGKILL. 1450 */ 1451 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1452 goto out; 1453 } 1454 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1455 /* 1456 * Re-adjust p_nstopchild if the process wasn't 1457 * collected by its parent. 1458 */ 1459 p->p_stat = SACTIVE; 1460 p->p_sflag &= ~PS_STOPPING; 1461 if (!p->p_waited) { 1462 p->p_pptr->p_nstopchild--; 1463 } 1464 if (p->p_slflag & PSL_TRACED) { 1465 KASSERT(signo == SIGKILL); 1466 goto deliver; 1467 } 1468 /* 1469 * Do not make signal pending if SIGCONT is default. 1470 * 1471 * If the process catches SIGCONT, let it handle the 1472 * signal itself (if waiting on event - process runs, 1473 * otherwise continues sleeping). 1474 */ 1475 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1476 KASSERT(signo != SIGKILL); 1477 goto deliver; 1478 } 1479 } else if ((prop & SA_STOP) != 0) { 1480 /* 1481 * Already stopped, don't need to stop again. 1482 * (If we did the shell could get confused.) 1483 */ 1484 goto out; 1485 } 1486 } 1487 /* 1488 * Make signal pending. 1489 */ 1490 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1491 sigput(&p->p_sigpend, p, kp); 1492 1493 deliver: 1494 /* 1495 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1496 * visible on the per process list (for sigispending()). This 1497 * is unlikely to be needed in practice, but... 1498 */ 1499 membar_producer(); 1500 1501 /* 1502 * Try to find an LWP that can take the signal. 1503 */ 1504 #if KERN_SA 1505 if ((p->p_sa != NULL) && !toall) { 1506 struct sadata_vp *vp; 1507 /* 1508 * If we're in this delivery path, we are delivering a 1509 * signal that needs to go to one thread in the process. 1510 * 1511 * In the SA case, we try to find an idle LWP that can take 1512 * the signal. If that fails, only then do we consider 1513 * interrupting active LWPs. Since the signal's going to 1514 * just one thread, we need only look at "blessed" lwps, 1515 * so scan the vps for them. 1516 */ 1517 l = NULL; 1518 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1519 l = vp->savp_lwp; 1520 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1521 break; 1522 } 1523 1524 if (l == NULL) { 1525 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1526 l = vp->savp_lwp; 1527 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1528 break; 1529 } 1530 } 1531 /* Delivered, skip next. */ 1532 goto out; 1533 } 1534 #endif 1535 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1536 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1537 break; 1538 } 1539 out: 1540 /* 1541 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1542 * with locks held. The caller should take care of this. 1543 */ 1544 ksiginfo_free(kp); 1545 } 1546 1547 void 1548 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1549 { 1550 struct proc *p = l->l_proc; 1551 #ifdef KERN_SA 1552 struct lwp *le, *li; 1553 siginfo_t *si; 1554 int f; 1555 #endif /* KERN_SA */ 1556 1557 KASSERT(mutex_owned(p->p_lock)); 1558 1559 #ifdef KERN_SA 1560 if (p->p_sflag & PS_SA) { 1561 /* f indicates if we should clear LP_SA_NOBLOCK */ 1562 f = ~l->l_pflag & LP_SA_NOBLOCK; 1563 l->l_pflag |= LP_SA_NOBLOCK; 1564 1565 mutex_exit(p->p_lock); 1566 /* XXXUPSXXX What if not on sa_vp? */ 1567 /* 1568 * WRS: I think it won't matter, beyond the 1569 * question of what exactly we do with a signal 1570 * to a blocked user thread. Also, we try hard to always 1571 * send signals to blessed lwps, so we would only send 1572 * to a non-blessed lwp under special circumstances. 1573 */ 1574 si = siginfo_alloc(PR_WAITOK); 1575 1576 si->_info = ksi->ksi_info; 1577 1578 /* 1579 * Figure out if we're the innocent victim or the main 1580 * perpitrator. 1581 */ 1582 le = li = NULL; 1583 if (KSI_TRAP_P(ksi)) 1584 le = l; 1585 else 1586 li = l; 1587 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1588 sizeof(*si), si, siginfo_free) != 0) { 1589 siginfo_free(si); 1590 #if 0 1591 if (KSI_TRAP_P(ksi)) 1592 /* XXX What dowe do here? The signal 1593 * didn't make it 1594 */; 1595 #endif 1596 } 1597 l->l_pflag ^= f; 1598 mutex_enter(p->p_lock); 1599 return; 1600 } 1601 #endif /* KERN_SA */ 1602 1603 (*p->p_emul->e_sendsig)(ksi, mask); 1604 } 1605 1606 /* 1607 * Stop any LWPs sleeping interruptably. 1608 */ 1609 static void 1610 proc_stop_lwps(struct proc *p) 1611 { 1612 struct lwp *l; 1613 1614 KASSERT(mutex_owned(p->p_lock)); 1615 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1616 1617 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1618 lwp_lock(l); 1619 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1620 l->l_stat = LSSTOP; 1621 p->p_nrlwps--; 1622 } 1623 lwp_unlock(l); 1624 } 1625 } 1626 1627 /* 1628 * Finish stopping of a process. Mark it stopped and notify the parent. 1629 * 1630 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1631 */ 1632 static void 1633 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1634 { 1635 1636 KASSERT(mutex_owned(proc_lock)); 1637 KASSERT(mutex_owned(p->p_lock)); 1638 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1639 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1640 1641 p->p_sflag &= ~PS_STOPPING; 1642 p->p_stat = SSTOP; 1643 p->p_waited = 0; 1644 p->p_pptr->p_nstopchild++; 1645 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1646 if (ppsig) { 1647 /* child_psignal drops p_lock briefly. */ 1648 child_psignal(p, ppmask); 1649 } 1650 cv_broadcast(&p->p_pptr->p_waitcv); 1651 } 1652 } 1653 1654 /* 1655 * Stop the current process and switch away when being stopped or traced. 1656 */ 1657 static void 1658 sigswitch(bool ppsig, int ppmask, int signo) 1659 { 1660 struct lwp *l = curlwp; 1661 struct proc *p = l->l_proc; 1662 int biglocks; 1663 1664 KASSERT(mutex_owned(p->p_lock)); 1665 KASSERT(l->l_stat == LSONPROC); 1666 KASSERT(p->p_nrlwps > 0); 1667 1668 /* 1669 * On entry we know that the process needs to stop. If it's 1670 * the result of a 'sideways' stop signal that has been sourced 1671 * through issignal(), then stop other LWPs in the process too. 1672 */ 1673 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1674 KASSERT(signo != 0); 1675 proc_stop(p, 1, signo); 1676 KASSERT(p->p_nrlwps > 0); 1677 } 1678 1679 /* 1680 * If we are the last live LWP, and the stop was a result of 1681 * a new signal, then signal the parent. 1682 */ 1683 if ((p->p_sflag & PS_STOPPING) != 0) { 1684 if (!mutex_tryenter(proc_lock)) { 1685 mutex_exit(p->p_lock); 1686 mutex_enter(proc_lock); 1687 mutex_enter(p->p_lock); 1688 } 1689 1690 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1691 /* 1692 * Note that proc_stop_done() can drop 1693 * p->p_lock briefly. 1694 */ 1695 proc_stop_done(p, ppsig, ppmask); 1696 } 1697 1698 mutex_exit(proc_lock); 1699 } 1700 1701 /* 1702 * Unlock and switch away. 1703 */ 1704 KERNEL_UNLOCK_ALL(l, &biglocks); 1705 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1706 p->p_nrlwps--; 1707 lwp_lock(l); 1708 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1709 l->l_stat = LSSTOP; 1710 lwp_unlock(l); 1711 } 1712 1713 mutex_exit(p->p_lock); 1714 lwp_lock(l); 1715 mi_switch(l); 1716 KERNEL_LOCK(biglocks, l); 1717 mutex_enter(p->p_lock); 1718 } 1719 1720 /* 1721 * Check for a signal from the debugger. 1722 */ 1723 static int 1724 sigchecktrace(void) 1725 { 1726 struct lwp *l = curlwp; 1727 struct proc *p = l->l_proc; 1728 sigset_t *mask; 1729 int signo; 1730 1731 KASSERT(mutex_owned(p->p_lock)); 1732 1733 /* If there's a pending SIGKILL, process it immediately. */ 1734 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1735 return 0; 1736 1737 /* 1738 * If we are no longer being traced, or the parent didn't 1739 * give us a signal, or we're stopping, look for more signals. 1740 */ 1741 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 || 1742 (p->p_sflag & PS_STOPPING) != 0) 1743 return 0; 1744 1745 /* 1746 * If the new signal is being masked, look for other signals. 1747 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1748 */ 1749 signo = p->p_xstat; 1750 p->p_xstat = 0; 1751 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1752 if (sigismember(mask, signo)) 1753 signo = 0; 1754 1755 return signo; 1756 } 1757 1758 /* 1759 * If the current process has received a signal (should be caught or cause 1760 * termination, should interrupt current syscall), return the signal number. 1761 * 1762 * Stop signals with default action are processed immediately, then cleared; 1763 * they aren't returned. This is checked after each entry to the system for 1764 * a syscall or trap. 1765 * 1766 * We will also return -1 if the process is exiting and the current LWP must 1767 * follow suit. 1768 */ 1769 int 1770 issignal(struct lwp *l) 1771 { 1772 struct proc *p; 1773 int signo, prop; 1774 sigpend_t *sp; 1775 sigset_t ss; 1776 1777 p = l->l_proc; 1778 sp = NULL; 1779 signo = 0; 1780 1781 KASSERT(p == curproc); 1782 KASSERT(mutex_owned(p->p_lock)); 1783 1784 for (;;) { 1785 /* Discard any signals that we have decided not to take. */ 1786 if (signo != 0) 1787 (void)sigget(sp, NULL, signo, NULL); 1788 1789 /* Bail out if we do not own the virtual processor */ 1790 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1791 break; 1792 1793 /* 1794 * If the process is stopped/stopping, then stop ourselves 1795 * now that we're on the kernel/userspace boundary. When 1796 * we awaken, check for a signal from the debugger. 1797 */ 1798 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1799 sigswitch(true, PS_NOCLDSTOP, 0); 1800 signo = sigchecktrace(); 1801 } else 1802 signo = 0; 1803 1804 /* Signals from the debugger are "out of band". */ 1805 sp = NULL; 1806 1807 /* 1808 * If the debugger didn't provide a signal, find a pending 1809 * signal from our set. Check per-LWP signals first, and 1810 * then per-process. 1811 */ 1812 if (signo == 0) { 1813 sp = &l->l_sigpend; 1814 ss = sp->sp_set; 1815 if ((p->p_lflag & PL_PPWAIT) != 0) 1816 sigminusset(&stopsigmask, &ss); 1817 sigminusset(&l->l_sigmask, &ss); 1818 1819 if ((signo = firstsig(&ss)) == 0) { 1820 sp = &p->p_sigpend; 1821 ss = sp->sp_set; 1822 if ((p->p_lflag & PL_PPWAIT) != 0) 1823 sigminusset(&stopsigmask, &ss); 1824 sigminusset(&l->l_sigmask, &ss); 1825 1826 if ((signo = firstsig(&ss)) == 0) { 1827 /* 1828 * No signal pending - clear the 1829 * indicator and bail out. 1830 */ 1831 lwp_lock(l); 1832 l->l_flag &= ~LW_PENDSIG; 1833 lwp_unlock(l); 1834 sp = NULL; 1835 break; 1836 } 1837 } 1838 } 1839 1840 /* 1841 * We should see pending but ignored signals only if 1842 * we are being traced. 1843 */ 1844 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1845 (p->p_slflag & PSL_TRACED) == 0) { 1846 /* Discard the signal. */ 1847 continue; 1848 } 1849 1850 /* 1851 * If traced, always stop, and stay stopped until released 1852 * by the debugger. If the our parent process is waiting 1853 * for us, don't hang as we could deadlock. 1854 */ 1855 if ((p->p_slflag & PSL_TRACED) != 0 && 1856 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1857 /* Take the signal. */ 1858 (void)sigget(sp, NULL, signo, NULL); 1859 p->p_xstat = signo; 1860 1861 /* Emulation-specific handling of signal trace */ 1862 if (p->p_emul->e_tracesig == NULL || 1863 (*p->p_emul->e_tracesig)(p, signo) == 0) 1864 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1865 signo); 1866 1867 /* Check for a signal from the debugger. */ 1868 if ((signo = sigchecktrace()) == 0) 1869 continue; 1870 1871 /* Signals from the debugger are "out of band". */ 1872 sp = NULL; 1873 } 1874 1875 prop = sigprop[signo]; 1876 1877 /* XXX no siginfo? */ 1878 SDT_PROBE(proc,,,signal_handle, signo, 0, 1879 SIGACTION(p, signo).sa_handler, 0, 0); 1880 1881 /* 1882 * Decide whether the signal should be returned. 1883 */ 1884 switch ((long)SIGACTION(p, signo).sa_handler) { 1885 case (long)SIG_DFL: 1886 /* 1887 * Don't take default actions on system processes. 1888 */ 1889 if (p->p_pid <= 1) { 1890 #ifdef DIAGNOSTIC 1891 /* 1892 * Are you sure you want to ignore SIGSEGV 1893 * in init? XXX 1894 */ 1895 printf_nolog("Process (pid %d) got sig %d\n", 1896 p->p_pid, signo); 1897 #endif 1898 continue; 1899 } 1900 1901 /* 1902 * If there is a pending stop signal to process with 1903 * default action, stop here, then clear the signal. 1904 * However, if process is member of an orphaned 1905 * process group, ignore tty stop signals. 1906 */ 1907 if (prop & SA_STOP) { 1908 /* 1909 * XXX Don't hold proc_lock for p_lflag, 1910 * but it's not a big deal. 1911 */ 1912 if (p->p_slflag & PSL_TRACED || 1913 ((p->p_lflag & PL_ORPHANPG) != 0 && 1914 prop & SA_TTYSTOP)) { 1915 /* Ignore the signal. */ 1916 continue; 1917 } 1918 /* Take the signal. */ 1919 (void)sigget(sp, NULL, signo, NULL); 1920 p->p_xstat = signo; 1921 signo = 0; 1922 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1923 } else if (prop & SA_IGNORE) { 1924 /* 1925 * Except for SIGCONT, shouldn't get here. 1926 * Default action is to ignore; drop it. 1927 */ 1928 continue; 1929 } 1930 break; 1931 1932 case (long)SIG_IGN: 1933 #ifdef DEBUG_ISSIGNAL 1934 /* 1935 * Masking above should prevent us ever trying 1936 * to take action on an ignored signal other 1937 * than SIGCONT, unless process is traced. 1938 */ 1939 if ((prop & SA_CONT) == 0 && 1940 (p->p_slflag & PSL_TRACED) == 0) 1941 printf_nolog("issignal\n"); 1942 #endif 1943 continue; 1944 1945 default: 1946 /* 1947 * This signal has an action, let postsig() process 1948 * it. 1949 */ 1950 break; 1951 } 1952 1953 break; 1954 } 1955 1956 l->l_sigpendset = sp; 1957 return signo; 1958 } 1959 1960 /* 1961 * Take the action for the specified signal 1962 * from the current set of pending signals. 1963 */ 1964 void 1965 postsig(int signo) 1966 { 1967 struct lwp *l; 1968 struct proc *p; 1969 struct sigacts *ps; 1970 sig_t action; 1971 sigset_t *returnmask; 1972 ksiginfo_t ksi; 1973 1974 l = curlwp; 1975 p = l->l_proc; 1976 ps = p->p_sigacts; 1977 1978 KASSERT(mutex_owned(p->p_lock)); 1979 KASSERT(signo > 0); 1980 1981 /* 1982 * Set the new mask value and also defer further occurrences of this 1983 * signal. 1984 * 1985 * Special case: user has done a sigsuspend. Here the current mask is 1986 * not of interest, but rather the mask from before the sigsuspend is 1987 * what we want restored after the signal processing is completed. 1988 */ 1989 if (l->l_sigrestore) { 1990 returnmask = &l->l_sigoldmask; 1991 l->l_sigrestore = 0; 1992 } else 1993 returnmask = &l->l_sigmask; 1994 1995 /* 1996 * Commit to taking the signal before releasing the mutex. 1997 */ 1998 action = SIGACTION_PS(ps, signo).sa_handler; 1999 l->l_ru.ru_nsignals++; 2000 sigget(l->l_sigpendset, &ksi, signo, NULL); 2001 2002 if (ktrpoint(KTR_PSIG)) { 2003 mutex_exit(p->p_lock); 2004 ktrpsig(signo, action, returnmask, &ksi); 2005 mutex_enter(p->p_lock); 2006 } 2007 2008 if (action == SIG_DFL) { 2009 /* 2010 * Default action, where the default is to kill 2011 * the process. (Other cases were ignored above.) 2012 */ 2013 sigexit(l, signo); 2014 return; 2015 } 2016 2017 /* 2018 * If we get here, the signal must be caught. 2019 */ 2020 #ifdef DIAGNOSTIC 2021 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2022 panic("postsig action"); 2023 #endif 2024 2025 kpsendsig(l, &ksi, returnmask); 2026 } 2027 2028 /* 2029 * sendsig: 2030 * 2031 * Default signal delivery method for NetBSD. 2032 */ 2033 void 2034 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2035 { 2036 struct sigacts *sa; 2037 int sig; 2038 2039 sig = ksi->ksi_signo; 2040 sa = curproc->p_sigacts; 2041 2042 switch (sa->sa_sigdesc[sig].sd_vers) { 2043 case 0: 2044 case 1: 2045 /* Compat for 1.6 and earlier. */ 2046 if (sendsig_sigcontext_vec == NULL) { 2047 break; 2048 } 2049 (*sendsig_sigcontext_vec)(ksi, mask); 2050 return; 2051 case 2: 2052 case 3: 2053 sendsig_siginfo(ksi, mask); 2054 return; 2055 default: 2056 break; 2057 } 2058 2059 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2060 sigexit(curlwp, SIGILL); 2061 } 2062 2063 /* 2064 * sendsig_reset: 2065 * 2066 * Reset the signal action. Called from emulation specific sendsig() 2067 * before unlocking to deliver the signal. 2068 */ 2069 void 2070 sendsig_reset(struct lwp *l, int signo) 2071 { 2072 struct proc *p = l->l_proc; 2073 struct sigacts *ps = p->p_sigacts; 2074 sigset_t *mask; 2075 2076 KASSERT(mutex_owned(p->p_lock)); 2077 2078 p->p_sigctx.ps_lwp = 0; 2079 p->p_sigctx.ps_code = 0; 2080 p->p_sigctx.ps_signo = 0; 2081 2082 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2083 2084 mutex_enter(&ps->sa_mutex); 2085 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2086 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2087 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2088 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2089 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2090 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2091 } 2092 mutex_exit(&ps->sa_mutex); 2093 } 2094 2095 /* 2096 * Kill the current process for stated reason. 2097 */ 2098 void 2099 killproc(struct proc *p, const char *why) 2100 { 2101 2102 KASSERT(mutex_owned(proc_lock)); 2103 2104 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2105 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2106 psignal(p, SIGKILL); 2107 } 2108 2109 /* 2110 * Force the current process to exit with the specified signal, dumping core 2111 * if appropriate. We bypass the normal tests for masked and caught 2112 * signals, allowing unrecoverable failures to terminate the process without 2113 * changing signal state. Mark the accounting record with the signal 2114 * termination. If dumping core, save the signal number for the debugger. 2115 * Calls exit and does not return. 2116 */ 2117 void 2118 sigexit(struct lwp *l, int signo) 2119 { 2120 int exitsig, error, docore; 2121 struct proc *p; 2122 struct lwp *t; 2123 2124 p = l->l_proc; 2125 2126 KASSERT(mutex_owned(p->p_lock)); 2127 KERNEL_UNLOCK_ALL(l, NULL); 2128 2129 /* 2130 * Don't permit coredump() multiple times in the same process. 2131 * Call back into sigexit, where we will be suspended until 2132 * the deed is done. Note that this is a recursive call, but 2133 * LW_WCORE will prevent us from coming back this way. 2134 */ 2135 if ((p->p_sflag & PS_WCORE) != 0) { 2136 lwp_lock(l); 2137 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2138 lwp_unlock(l); 2139 mutex_exit(p->p_lock); 2140 lwp_userret(l); 2141 panic("sigexit 1"); 2142 /* NOTREACHED */ 2143 } 2144 2145 /* If process is already on the way out, then bail now. */ 2146 if ((p->p_sflag & PS_WEXIT) != 0) { 2147 mutex_exit(p->p_lock); 2148 lwp_exit(l); 2149 panic("sigexit 2"); 2150 /* NOTREACHED */ 2151 } 2152 2153 /* 2154 * Prepare all other LWPs for exit. If dumping core, suspend them 2155 * so that their registers are available long enough to be dumped. 2156 */ 2157 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2158 p->p_sflag |= PS_WCORE; 2159 for (;;) { 2160 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2161 lwp_lock(t); 2162 if (t == l) { 2163 t->l_flag &= ~LW_WSUSPEND; 2164 lwp_unlock(t); 2165 continue; 2166 } 2167 t->l_flag |= (LW_WCORE | LW_WEXIT); 2168 lwp_suspend(l, t); 2169 } 2170 2171 if (p->p_nrlwps == 1) 2172 break; 2173 2174 /* 2175 * Kick any LWPs sitting in lwp_wait1(), and wait 2176 * for everyone else to stop before proceeding. 2177 */ 2178 p->p_nlwpwait++; 2179 cv_broadcast(&p->p_lwpcv); 2180 cv_wait(&p->p_lwpcv, p->p_lock); 2181 p->p_nlwpwait--; 2182 } 2183 } 2184 2185 exitsig = signo; 2186 p->p_acflag |= AXSIG; 2187 p->p_sigctx.ps_signo = signo; 2188 2189 if (docore) { 2190 mutex_exit(p->p_lock); 2191 if ((error = (*coredump_vec)(l, NULL)) == 0) 2192 exitsig |= WCOREFLAG; 2193 2194 if (kern_logsigexit) { 2195 int uid = l->l_cred ? 2196 (int)kauth_cred_geteuid(l->l_cred) : -1; 2197 2198 if (error) 2199 log(LOG_INFO, lognocoredump, p->p_pid, 2200 p->p_comm, uid, signo, error); 2201 else 2202 log(LOG_INFO, logcoredump, p->p_pid, 2203 p->p_comm, uid, signo); 2204 } 2205 2206 #ifdef PAX_SEGVGUARD 2207 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2208 #endif /* PAX_SEGVGUARD */ 2209 /* Acquire the sched state mutex. exit1() will release it. */ 2210 mutex_enter(p->p_lock); 2211 } 2212 2213 /* No longer dumping core. */ 2214 p->p_sflag &= ~PS_WCORE; 2215 2216 exit1(l, W_EXITCODE(0, exitsig)); 2217 /* NOTREACHED */ 2218 } 2219 2220 /* 2221 * Put process 'p' into the stopped state and optionally, notify the parent. 2222 */ 2223 void 2224 proc_stop(struct proc *p, int notify, int signo) 2225 { 2226 struct lwp *l; 2227 2228 KASSERT(mutex_owned(p->p_lock)); 2229 2230 /* 2231 * First off, set the stopping indicator and bring all sleeping 2232 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2233 * unlock between here and the p->p_nrlwps check below. 2234 */ 2235 p->p_sflag |= PS_STOPPING; 2236 if (notify) 2237 p->p_sflag |= PS_NOTIFYSTOP; 2238 else 2239 p->p_sflag &= ~PS_NOTIFYSTOP; 2240 membar_producer(); 2241 2242 proc_stop_lwps(p); 2243 2244 /* 2245 * If there are no LWPs available to take the signal, then we 2246 * signal the parent process immediately. Otherwise, the last 2247 * LWP to stop will take care of it. 2248 */ 2249 2250 if (p->p_nrlwps == 0) { 2251 proc_stop_done(p, true, PS_NOCLDSTOP); 2252 } else { 2253 /* 2254 * Have the remaining LWPs come to a halt, and trigger 2255 * proc_stop_callout() to ensure that they do. 2256 */ 2257 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2258 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2259 callout_schedule(&proc_stop_ch, 1); 2260 } 2261 } 2262 2263 /* 2264 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2265 * but wait for them to come to a halt at the kernel-user boundary. This is 2266 * to allow LWPs to release any locks that they may hold before stopping. 2267 * 2268 * Non-interruptable sleeps can be long, and there is the potential for an 2269 * LWP to begin sleeping interruptably soon after the process has been set 2270 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2271 * stopping, and so complete halt of the process and the return of status 2272 * information to the parent could be delayed indefinitely. 2273 * 2274 * To handle this race, proc_stop_callout() runs once per tick while there 2275 * are stopping processes in the system. It sets LWPs that are sleeping 2276 * interruptably into the LSSTOP state. 2277 * 2278 * Note that we are not concerned about keeping all LWPs stopped while the 2279 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2280 * What we do need to ensure is that all LWPs in a stopping process have 2281 * stopped at least once, so that notification can be sent to the parent 2282 * process. 2283 */ 2284 static void 2285 proc_stop_callout(void *cookie) 2286 { 2287 bool more, restart; 2288 struct proc *p; 2289 2290 (void)cookie; 2291 2292 do { 2293 restart = false; 2294 more = false; 2295 2296 mutex_enter(proc_lock); 2297 PROCLIST_FOREACH(p, &allproc) { 2298 mutex_enter(p->p_lock); 2299 2300 if ((p->p_sflag & PS_STOPPING) == 0) { 2301 mutex_exit(p->p_lock); 2302 continue; 2303 } 2304 2305 /* Stop any LWPs sleeping interruptably. */ 2306 proc_stop_lwps(p); 2307 if (p->p_nrlwps == 0) { 2308 /* 2309 * We brought the process to a halt. 2310 * Mark it as stopped and notify the 2311 * parent. 2312 */ 2313 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2314 /* 2315 * Note that proc_stop_done() will 2316 * drop p->p_lock briefly. 2317 * Arrange to restart and check 2318 * all processes again. 2319 */ 2320 restart = true; 2321 } 2322 proc_stop_done(p, true, PS_NOCLDSTOP); 2323 } else 2324 more = true; 2325 2326 mutex_exit(p->p_lock); 2327 if (restart) 2328 break; 2329 } 2330 mutex_exit(proc_lock); 2331 } while (restart); 2332 2333 /* 2334 * If we noted processes that are stopping but still have 2335 * running LWPs, then arrange to check again in 1 tick. 2336 */ 2337 if (more) 2338 callout_schedule(&proc_stop_ch, 1); 2339 } 2340 2341 /* 2342 * Given a process in state SSTOP, set the state back to SACTIVE and 2343 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2344 */ 2345 void 2346 proc_unstop(struct proc *p) 2347 { 2348 struct lwp *l; 2349 int sig; 2350 2351 KASSERT(mutex_owned(proc_lock)); 2352 KASSERT(mutex_owned(p->p_lock)); 2353 2354 p->p_stat = SACTIVE; 2355 p->p_sflag &= ~PS_STOPPING; 2356 sig = p->p_xstat; 2357 2358 if (!p->p_waited) 2359 p->p_pptr->p_nstopchild--; 2360 2361 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2362 lwp_lock(l); 2363 if (l->l_stat != LSSTOP) { 2364 lwp_unlock(l); 2365 continue; 2366 } 2367 if (l->l_wchan == NULL) { 2368 setrunnable(l); 2369 continue; 2370 } 2371 if (sig && (l->l_flag & LW_SINTR) != 0) { 2372 setrunnable(l); 2373 sig = 0; 2374 } else { 2375 l->l_stat = LSSLEEP; 2376 p->p_nrlwps++; 2377 lwp_unlock(l); 2378 } 2379 } 2380 } 2381 2382 static int 2383 filt_sigattach(struct knote *kn) 2384 { 2385 struct proc *p = curproc; 2386 2387 kn->kn_obj = p; 2388 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2389 2390 mutex_enter(p->p_lock); 2391 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2392 mutex_exit(p->p_lock); 2393 2394 return 0; 2395 } 2396 2397 static void 2398 filt_sigdetach(struct knote *kn) 2399 { 2400 struct proc *p = kn->kn_obj; 2401 2402 mutex_enter(p->p_lock); 2403 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2404 mutex_exit(p->p_lock); 2405 } 2406 2407 /* 2408 * Signal knotes are shared with proc knotes, so we apply a mask to 2409 * the hint in order to differentiate them from process hints. This 2410 * could be avoided by using a signal-specific knote list, but probably 2411 * isn't worth the trouble. 2412 */ 2413 static int 2414 filt_signal(struct knote *kn, long hint) 2415 { 2416 2417 if (hint & NOTE_SIGNAL) { 2418 hint &= ~NOTE_SIGNAL; 2419 2420 if (kn->kn_id == hint) 2421 kn->kn_data++; 2422 } 2423 return (kn->kn_data != 0); 2424 } 2425 2426 const struct filterops sig_filtops = { 2427 0, filt_sigattach, filt_sigdetach, filt_signal 2428 }; 2429