xref: /netbsd-src/sys/kern/kern_sig.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: kern_sig.c,v 1.258 2007/10/19 12:16:43 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  * (c) UNIX System Laboratories, Inc.
43  * All or some portions of this file are derived from material licensed
44  * to the University of California by American Telephone and Telegraph
45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46  * the permission of UNIX System Laboratories, Inc.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that the following conditions
50  * are met:
51  * 1. Redistributions of source code must retain the above copyright
52  *    notice, this list of conditions and the following disclaimer.
53  * 2. Redistributions in binary form must reproduce the above copyright
54  *    notice, this list of conditions and the following disclaimer in the
55  *    documentation and/or other materials provided with the distribution.
56  * 3. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.258 2007/10/19 12:16:43 ad Exp $");
77 
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84 
85 #define	SIGPROP		/* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 
103 #include <sys/cpu.h>
104 
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108 
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111 
112 static void	ksiginfo_exechook(struct proc *, void *);
113 static void	proc_stop_callout(void *);
114 
115 int	sigunwait(struct proc *, const ksiginfo_t *);
116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int	sigpost(struct lwp *, sig_t, int, int);
118 int	sigchecktrace(sigpend_t **);
119 void	sigswitch(bool, int, int);
120 void	sigrealloc(ksiginfo_t *);
121 
122 sigset_t	contsigmask, stopsigmask, sigcantmask;
123 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
124 static void	sigacts_poolpage_free(struct pool *, void *);
125 static void	*sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127 
128 static struct pool_allocator sigactspool_allocator = {
129         .pa_alloc = sigacts_poolpage_alloc,
130 	.pa_free = sigacts_poolpage_free,
131 };
132 
133 #ifdef DEBUG
134 int	kern_logsigexit = 1;
135 #else
136 int	kern_logsigexit = 0;
137 #endif
138 
139 static	const char logcoredump[] =
140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static	const char lognocoredump[] =
142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143 
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145     &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147     NULL, IPL_VM);
148 
149 /*
150  * signal_init:
151  *
152  * 	Initialize global signal-related data structures.
153  */
154 void
155 signal_init(void)
156 {
157 
158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159 
160 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 	    sizeof(struct sigacts) > PAGE_SIZE ?
162 	    &sigactspool_allocator : &pool_allocator_nointr,
163 	    IPL_NONE);
164 
165 	exechook_establish(ksiginfo_exechook, NULL);
166 
167 	callout_init(&proc_stop_ch, 0);
168 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170 
171 /*
172  * sigacts_poolpage_alloc:
173  *
174  *	 Allocate a page for the sigacts memory pool.
175  */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179 
180 	return (void *)uvm_km_alloc(kernel_map,
181 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 	    | UVM_KMF_WIRED);
184 }
185 
186 /*
187  * sigacts_poolpage_free:
188  *
189  *	 Free a page on behalf of the sigacts memory pool.
190  */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196 
197 /*
198  * sigactsinit:
199  *
200  *	 Create an initial sigctx structure, using the same signal state as
201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
202  *	 copy it from parent.
203  */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 	struct sigacts *ps;
208 
209 	if (pp != NULL) {
210 		KASSERT(mutex_owned(&pp->p_smutex));
211 	}
212 
213 	if (share) {
214 		ps = pp->p_sigacts;
215 		mutex_enter(&ps->sa_mutex);
216 		ps->sa_refcnt++;
217 		mutex_exit(&ps->sa_mutex);
218 	} else {
219 		if (pp)
220 			mutex_exit(&pp->p_smutex);
221 		ps = pool_get(&sigacts_pool, PR_WAITOK);
222 		mutex_init(&ps->sa_mutex, MUTEX_SPIN, IPL_NONE);
223 		if (pp) {
224 			mutex_enter(&pp->p_smutex);
225 			memcpy(&ps->sa_sigdesc, pp->p_sigacts->sa_sigdesc,
226 			    sizeof(ps->sa_sigdesc));
227 		} else
228 			memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
229 		ps->sa_refcnt = 1;
230 	}
231 
232 	return ps;
233 }
234 
235 /*
236  * sigactsunshare:
237  *
238  *	Make this process not share its sigctx, maintaining all
239  *	signal state.
240  */
241 void
242 sigactsunshare(struct proc *p)
243 {
244 	struct sigacts *ps, *oldps;
245 	int refcnt;
246 
247 	KASSERT(mutex_owned(&p->p_smutex));
248 
249 	oldps = p->p_sigacts;
250 
251 	mutex_enter(&oldps->sa_mutex);
252 	refcnt = oldps->sa_refcnt;
253 	mutex_exit(&oldps->sa_mutex);
254 	if (refcnt == 1)
255 		return;
256 
257 	mutex_exit(&p->p_smutex);
258 	ps = sigactsinit(NULL, 0);
259 	mutex_enter(&p->p_smutex);
260 	p->p_sigacts = ps;
261 
262 	sigactsfree(oldps);
263 }
264 
265 /*
266  * sigactsfree;
267  *
268  *	Release a sigctx structure.
269  */
270 void
271 sigactsfree(struct sigacts *ps)
272 {
273 	int refcnt;
274 
275 	mutex_enter(&ps->sa_mutex);
276 	refcnt = --ps->sa_refcnt;
277 	mutex_exit(&ps->sa_mutex);
278 
279 	if (refcnt == 0) {
280 		mutex_destroy(&ps->sa_mutex);
281 		pool_put(&sigacts_pool, ps);
282 	}
283 }
284 
285 /*
286  * siginit:
287  *
288  *	Initialize signal state for process 0; set to ignore signals that
289  *	are ignored by default and disable the signal stack.  Locking not
290  *	required as the system is still cold.
291  */
292 void
293 siginit(struct proc *p)
294 {
295 	struct lwp *l;
296 	struct sigacts *ps;
297 	int signo, prop;
298 
299 	ps = p->p_sigacts;
300 	sigemptyset(&contsigmask);
301 	sigemptyset(&stopsigmask);
302 	sigemptyset(&sigcantmask);
303 	for (signo = 1; signo < NSIG; signo++) {
304 		prop = sigprop[signo];
305 		if (prop & SA_CONT)
306 			sigaddset(&contsigmask, signo);
307 		if (prop & SA_STOP)
308 			sigaddset(&stopsigmask, signo);
309 		if (prop & SA_CANTMASK)
310 			sigaddset(&sigcantmask, signo);
311 		if (prop & SA_IGNORE && signo != SIGCONT)
312 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
313 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
314 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
315 	}
316 	sigemptyset(&p->p_sigctx.ps_sigcatch);
317 	p->p_sflag &= ~PS_NOCLDSTOP;
318 
319 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
320 	sigemptyset(&p->p_sigpend.sp_set);
321 
322 	/*
323 	 * Reset per LWP state.
324 	 */
325 	l = LIST_FIRST(&p->p_lwps);
326 	l->l_sigwaited = NULL;
327 	l->l_sigstk.ss_flags = SS_DISABLE;
328 	l->l_sigstk.ss_size = 0;
329 	l->l_sigstk.ss_sp = 0;
330 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
331 	sigemptyset(&l->l_sigpend.sp_set);
332 
333 	/* One reference. */
334 	ps->sa_refcnt = 1;
335 }
336 
337 /*
338  * execsigs:
339  *
340  *	Reset signals for an exec of the specified process.
341  */
342 void
343 execsigs(struct proc *p)
344 {
345 	struct sigacts *ps;
346 	struct lwp *l;
347 	int signo, prop;
348 	sigset_t tset;
349 	ksiginfoq_t kq;
350 
351 	KASSERT(p->p_nlwps == 1);
352 
353 	mutex_enter(&p->p_smutex);
354 
355 	sigactsunshare(p);
356 
357 	ps = p->p_sigacts;
358 
359 	/*
360 	 * Reset caught signals.  Held signals remain held through
361 	 * l->l_sigmask (unless they were caught, and are now ignored
362 	 * by default).
363 	 */
364 	sigemptyset(&tset);
365 	for (signo = 1; signo < NSIG; signo++) {
366 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
367 			prop = sigprop[signo];
368 			if (prop & SA_IGNORE) {
369 				if ((prop & SA_CONT) == 0)
370 					sigaddset(&p->p_sigctx.ps_sigignore,
371 					    signo);
372 				sigaddset(&tset, signo);
373 			}
374 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
375 		}
376 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
377 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
378 	}
379 	ksiginfo_queue_init(&kq);
380 	sigclearall(p, &tset, &kq);
381 	sigemptyset(&p->p_sigctx.ps_sigcatch);
382 
383 	/*
384 	 * Reset no zombies if child dies flag as Solaris does.
385 	 */
386 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
387 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
388 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
389 
390 	/*
391 	 * Reset per-LWP state.
392 	 */
393 	l = LIST_FIRST(&p->p_lwps);
394 	l->l_sigwaited = NULL;
395 	l->l_sigstk.ss_flags = SS_DISABLE;
396 	l->l_sigstk.ss_size = 0;
397 	l->l_sigstk.ss_sp = 0;
398 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
399 	sigemptyset(&l->l_sigpend.sp_set);
400 
401 	mutex_exit(&p->p_smutex);
402 	ksiginfo_queue_drain(&kq);
403 }
404 
405 /*
406  * ksiginfo_exechook:
407  *
408  *	Free all pending ksiginfo entries from a process on exec.
409  *	Additionally, drain any unused ksiginfo structures in the
410  *	system back to the pool.
411  *
412  *	XXX This should not be a hook, every process has signals.
413  */
414 static void
415 ksiginfo_exechook(struct proc *p, void *v)
416 {
417 	ksiginfoq_t kq;
418 
419 	ksiginfo_queue_init(&kq);
420 
421 	mutex_enter(&p->p_smutex);
422 	sigclearall(p, NULL, &kq);
423 	mutex_exit(&p->p_smutex);
424 
425 	ksiginfo_queue_drain(&kq);
426 }
427 
428 /*
429  * ksiginfo_alloc:
430  *
431  *	Allocate a new ksiginfo structure from the pool, and optionally copy
432  *	an existing one.  If the existing ksiginfo_t is from the pool, and
433  *	has not been queued somewhere, then just return it.  Additionally,
434  *	if the existing ksiginfo_t does not contain any information beyond
435  *	the signal number, then just return it.
436  */
437 ksiginfo_t *
438 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
439 {
440 	ksiginfo_t *kp;
441 	int s;
442 
443 	if (ok != NULL) {
444 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
445 		    KSI_FROMPOOL)
446 		    	return ok;
447 		if (KSI_EMPTY_P(ok))
448 			return ok;
449 	}
450 
451 	s = splvm();
452 	kp = pool_get(&ksiginfo_pool, flags);
453 	splx(s);
454 	if (kp == NULL) {
455 #ifdef DIAGNOSTIC
456 		printf("Out of memory allocating ksiginfo for pid %d\n",
457 		    p->p_pid);
458 #endif
459 		return NULL;
460 	}
461 
462 	if (ok != NULL) {
463 		memcpy(kp, ok, sizeof(*kp));
464 		kp->ksi_flags &= ~KSI_QUEUED;
465 	} else
466 		KSI_INIT_EMPTY(kp);
467 
468 	kp->ksi_flags |= KSI_FROMPOOL;
469 
470 	return kp;
471 }
472 
473 /*
474  * ksiginfo_free:
475  *
476  *	If the given ksiginfo_t is from the pool and has not been queued,
477  *	then free it.
478  */
479 void
480 ksiginfo_free(ksiginfo_t *kp)
481 {
482 	int s;
483 
484 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
485 		return;
486 	s = splvm();
487 	pool_put(&ksiginfo_pool, kp);
488 	splx(s);
489 }
490 
491 /*
492  * ksiginfo_queue_drain:
493  *
494  *	Drain a non-empty ksiginfo_t queue.
495  */
496 void
497 ksiginfo_queue_drain0(ksiginfoq_t *kq)
498 {
499 	ksiginfo_t *ksi;
500 	int s;
501 
502 	KASSERT(!CIRCLEQ_EMPTY(kq));
503 
504 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
505 	while (!CIRCLEQ_EMPTY(kq)) {
506 		ksi = CIRCLEQ_FIRST(kq);
507 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
508 		s = splvm();
509 		pool_put(&ksiginfo_pool, ksi);
510 		splx(s);
511 	}
512 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
513 }
514 
515 /*
516  * sigget:
517  *
518  *	Fetch the first pending signal from a set.  Optionally, also fetch
519  *	or manufacture a ksiginfo element.  Returns the number of the first
520  *	pending signal, or zero.
521  */
522 int
523 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
524 {
525         ksiginfo_t *ksi;
526 	sigset_t tset;
527 
528 	/* If there's no pending set, the signal is from the debugger. */
529 	if (sp == NULL) {
530 		if (out != NULL) {
531 			KSI_INIT(out);
532 			out->ksi_info._signo = signo;
533 			out->ksi_info._code = SI_USER;
534 		}
535 		return signo;
536 	}
537 
538 	/* Construct mask from signo, and 'mask'. */
539 	if (signo == 0) {
540 		if (mask != NULL) {
541 			tset = *mask;
542 			__sigandset(&sp->sp_set, &tset);
543 		} else
544 			tset = sp->sp_set;
545 
546 		/* If there are no signals pending, that's it. */
547 		if ((signo = firstsig(&tset)) == 0)
548 			return 0;
549 	} else {
550 		KASSERT(sigismember(&sp->sp_set, signo));
551 	}
552 
553 	sigdelset(&sp->sp_set, signo);
554 
555 	/* Find siginfo and copy it out. */
556 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
557 		if (ksi->ksi_signo == signo) {
558 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
559 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
560 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
561 			ksi->ksi_flags &= ~KSI_QUEUED;
562 			if (out != NULL) {
563 				memcpy(out, ksi, sizeof(*out));
564 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
565 			}
566 			ksiginfo_free(ksi);
567 			return signo;
568 		}
569 	}
570 
571 	/* If there's no siginfo, then manufacture it. */
572 	if (out != NULL) {
573 		KSI_INIT(out);
574 		out->ksi_info._signo = signo;
575 		out->ksi_info._code = SI_USER;
576 	}
577 
578 	return signo;
579 }
580 
581 /*
582  * sigput:
583  *
584  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
585  *	we need to (e.g. SA_SIGINFO was requested).
586  */
587 void
588 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
589 {
590 	ksiginfo_t *kp;
591 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
592 
593 	KASSERT(mutex_owned(&p->p_smutex));
594 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
595 
596 	sigaddset(&sp->sp_set, ksi->ksi_signo);
597 
598 	/*
599 	 * If siginfo is not required, or there is none, then just mark the
600 	 * signal as pending.
601 	 */
602 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
603 		return;
604 
605 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
606 
607 #ifdef notyet	/* XXX: QUEUING */
608 	if (ksi->ksi_signo < SIGRTMIN)
609 #endif
610 	{
611 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
612 			if (kp->ksi_signo == ksi->ksi_signo) {
613 				KSI_COPY(ksi, kp);
614 				kp->ksi_flags |= KSI_QUEUED;
615 				return;
616 			}
617 		}
618 	}
619 
620 	ksi->ksi_flags |= KSI_QUEUED;
621 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
622 }
623 
624 /*
625  * sigclear:
626  *
627  *	Clear all pending signals in the specified set.
628  */
629 void
630 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
631 {
632 	ksiginfo_t *ksi, *next;
633 
634 	if (mask == NULL)
635 		sigemptyset(&sp->sp_set);
636 	else
637 		sigminusset(mask, &sp->sp_set);
638 
639 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
640 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
641 		next = CIRCLEQ_NEXT(ksi, ksi_list);
642 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
643 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
644 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
645 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
646 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
647 		}
648 	}
649 }
650 
651 /*
652  * sigclearall:
653  *
654  *	Clear all pending signals in the specified set from a process and
655  *	its LWPs.
656  */
657 void
658 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
659 {
660 	struct lwp *l;
661 
662 	KASSERT(mutex_owned(&p->p_smutex));
663 
664 	sigclear(&p->p_sigpend, mask, kq);
665 
666 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
667 		sigclear(&l->l_sigpend, mask, kq);
668 	}
669 }
670 
671 /*
672  * sigispending:
673  *
674  *	Return true if there are pending signals for the current LWP.  May
675  *	be called unlocked provided that L_PENDSIG is set, and that the
676  *	signal has been posted to the appopriate queue before L_PENDSIG is
677  *	set.
678  */
679 int
680 sigispending(struct lwp *l, int signo)
681 {
682 	struct proc *p = l->l_proc;
683 	sigset_t tset;
684 
685 	mb_read();
686 
687 	tset = l->l_sigpend.sp_set;
688 	sigplusset(&p->p_sigpend.sp_set, &tset);
689 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
690 	sigminusset(&l->l_sigmask, &tset);
691 
692 	if (signo == 0) {
693 		if (firstsig(&tset) != 0)
694 			return EINTR;
695 	} else if (sigismember(&tset, signo))
696 		return EINTR;
697 
698 	return 0;
699 }
700 
701 /*
702  * siginfo_alloc:
703  *
704  *	 Allocate a new siginfo_t structure from the pool.
705  */
706 siginfo_t *
707 siginfo_alloc(int flags)
708 {
709 
710 	return pool_get(&siginfo_pool, flags);
711 }
712 
713 /*
714  * siginfo_free:
715  *
716  *	 Return a siginfo_t structure to the pool.
717  */
718 void
719 siginfo_free(void *arg)
720 {
721 
722 	pool_put(&siginfo_pool, arg);
723 }
724 
725 void
726 getucontext(struct lwp *l, ucontext_t *ucp)
727 {
728 	struct proc *p = l->l_proc;
729 
730 	KASSERT(mutex_owned(&p->p_smutex));
731 
732 	ucp->uc_flags = 0;
733 	ucp->uc_link = l->l_ctxlink;
734 
735 	ucp->uc_sigmask = l->l_sigmask;
736 	ucp->uc_flags |= _UC_SIGMASK;
737 
738 	/*
739 	 * The (unsupplied) definition of the `current execution stack'
740 	 * in the System V Interface Definition appears to allow returning
741 	 * the main context stack.
742 	 */
743 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
744 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
745 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
746 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
747 	} else {
748 		/* Simply copy alternate signal execution stack. */
749 		ucp->uc_stack = l->l_sigstk;
750 	}
751 	ucp->uc_flags |= _UC_STACK;
752 	mutex_exit(&p->p_smutex);
753 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
754 	mutex_enter(&p->p_smutex);
755 }
756 
757 int
758 setucontext(struct lwp *l, const ucontext_t *ucp)
759 {
760 	struct proc *p = l->l_proc;
761 	int error;
762 
763 	KASSERT(mutex_owned(&p->p_smutex));
764 
765 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
766 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
767 		if (error != 0)
768 			return error;
769 	}
770 
771 	mutex_exit(&p->p_smutex);
772 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
773 	mutex_enter(&p->p_smutex);
774 	if (error != 0)
775 		return (error);
776 
777 	l->l_ctxlink = ucp->uc_link;
778 
779 	/*
780 	 * If there was stack information, update whether or not we are
781 	 * still running on an alternate signal stack.
782 	 */
783 	if ((ucp->uc_flags & _UC_STACK) != 0) {
784 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
785 			l->l_sigstk.ss_flags |= SS_ONSTACK;
786 		else
787 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
788 	}
789 
790 	return 0;
791 }
792 
793 /*
794  * Common code for kill process group/broadcast kill.  cp is calling
795  * process.
796  */
797 int
798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
799 {
800 	struct proc	*p, *cp;
801 	kauth_cred_t	pc;
802 	struct pgrp	*pgrp;
803 	int		nfound;
804 	int		signo = ksi->ksi_signo;
805 
806 	cp = l->l_proc;
807 	pc = l->l_cred;
808 	nfound = 0;
809 
810 	mutex_enter(&proclist_lock);
811 	if (all) {
812 		/*
813 		 * broadcast
814 		 */
815 		PROCLIST_FOREACH(p, &allproc) {
816 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
817 				continue;
818 			mutex_enter(&p->p_mutex);
819 			if (kauth_authorize_process(pc,
820 			    KAUTH_PROCESS_CANSIGNAL, p,
821 			    (void *)(uintptr_t)signo, NULL, NULL) == 0) {
822 				nfound++;
823 				if (signo) {
824 					mutex_enter(&proclist_mutex);
825 					mutex_enter(&p->p_smutex);
826 					kpsignal2(p, ksi);
827 					mutex_exit(&p->p_smutex);
828 					mutex_exit(&proclist_mutex);
829 				}
830 			}
831 			mutex_exit(&p->p_mutex);
832 		}
833 	} else {
834 		if (pgid == 0)
835 			/*
836 			 * zero pgid means send to my process group.
837 			 */
838 			pgrp = cp->p_pgrp;
839 		else {
840 			pgrp = pg_find(pgid, PFIND_LOCKED);
841 			if (pgrp == NULL)
842 				goto out;
843 		}
844 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
845 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
846 				continue;
847 			mutex_enter(&p->p_mutex);
848 			if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
849 			    p, (void *)(uintptr_t)signo, NULL, NULL) == 0) {
850 				nfound++;
851 				if (signo) {
852 					mutex_enter(&proclist_mutex);
853 					mutex_enter(&p->p_smutex);
854 					if (P_ZOMBIE(p) == 0)
855 						kpsignal2(p, ksi);
856 					mutex_exit(&p->p_smutex);
857 					mutex_exit(&proclist_mutex);
858 				}
859 			}
860 			mutex_exit(&p->p_mutex);
861 		}
862 	}
863   out:
864 	mutex_exit(&proclist_lock);
865 	return (nfound ? 0 : ESRCH);
866 }
867 
868 /*
869  * Send a signal to a process group. If checktty is 1, limit to members
870  * which have a controlling terminal.
871  */
872 void
873 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
874 {
875 	ksiginfo_t ksi;
876 
877 	KASSERT(mutex_owned(&proclist_mutex));
878 
879 	KSI_INIT_EMPTY(&ksi);
880 	ksi.ksi_signo = sig;
881 	kpgsignal(pgrp, &ksi, NULL, checkctty);
882 }
883 
884 void
885 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
886 {
887 	struct proc *p;
888 
889 	KASSERT(mutex_owned(&proclist_mutex));
890 
891 	if (pgrp)
892 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
893 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
894 				kpsignal(p, ksi, data);
895 }
896 
897 /*
898  * Send a signal caused by a trap to the current LWP.  If it will be caught
899  * immediately, deliver it with correct code.  Otherwise, post it normally.
900  */
901 void
902 trapsignal(struct lwp *l, ksiginfo_t *ksi)
903 {
904 	struct proc	*p;
905 	struct sigacts	*ps;
906 	int signo = ksi->ksi_signo;
907 
908 	KASSERT(KSI_TRAP_P(ksi));
909 
910 	ksi->ksi_lid = l->l_lid;
911 	p = l->l_proc;
912 
913 	mutex_enter(&proclist_mutex);
914 	mutex_enter(&p->p_smutex);
915 	ps = p->p_sigacts;
916 	if ((p->p_slflag & PSL_TRACED) == 0 &&
917 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
918 	    !sigismember(&l->l_sigmask, signo)) {
919 		mutex_exit(&proclist_mutex);
920 		p->p_stats->p_ru.ru_nsignals++;
921 		kpsendsig(l, ksi, &l->l_sigmask);
922 		mutex_exit(&p->p_smutex);
923 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
924 		    &l->l_sigmask, ksi);
925 	} else {
926 		/* XXX for core dump/debugger */
927 		p->p_sigctx.ps_lwp = l->l_lid;
928 		p->p_sigctx.ps_signo = ksi->ksi_signo;
929 		p->p_sigctx.ps_code = ksi->ksi_trap;
930 		kpsignal2(p, ksi);
931 		mutex_exit(&proclist_mutex);
932 		mutex_exit(&p->p_smutex);
933 	}
934 }
935 
936 /*
937  * Fill in signal information and signal the parent for a child status change.
938  */
939 void
940 child_psignal(struct proc *p, int mask)
941 {
942 	ksiginfo_t ksi;
943 	struct proc *q;
944 	int xstat;
945 
946 	KASSERT(mutex_owned(&proclist_mutex));
947 	KASSERT(mutex_owned(&p->p_smutex));
948 
949 	xstat = p->p_xstat;
950 
951 	KSI_INIT(&ksi);
952 	ksi.ksi_signo = SIGCHLD;
953 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
954 	ksi.ksi_pid = p->p_pid;
955 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
956 	ksi.ksi_status = xstat;
957 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
958 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
959 
960 	q = p->p_pptr;
961 
962 	mutex_exit(&p->p_smutex);
963 	mutex_enter(&q->p_smutex);
964 
965 	if ((q->p_sflag & mask) == 0)
966 		kpsignal2(q, &ksi);
967 
968 	mutex_exit(&q->p_smutex);
969 	mutex_enter(&p->p_smutex);
970 }
971 
972 void
973 psignal(struct proc *p, int signo)
974 {
975 	ksiginfo_t ksi;
976 
977 	KASSERT(mutex_owned(&proclist_mutex));
978 
979 	KSI_INIT_EMPTY(&ksi);
980 	ksi.ksi_signo = signo;
981 	mutex_enter(&p->p_smutex);
982 	kpsignal2(p, &ksi);
983 	mutex_exit(&p->p_smutex);
984 }
985 
986 void
987 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
988 {
989 
990 	KASSERT(mutex_owned(&proclist_mutex));
991 
992 	/* XXXSMP Why is this here? */
993 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
994 		size_t fd;
995 		struct filedesc *fdp = p->p_fd;
996 
997 		ksi->ksi_fd = -1;
998 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
999 			struct file *fp = fdp->fd_ofiles[fd];
1000 			/* XXX: lock? */
1001 			if (fp && fp->f_data == data) {
1002 				ksi->ksi_fd = fd;
1003 				break;
1004 			}
1005 		}
1006 	}
1007 	mutex_enter(&p->p_smutex);
1008 	kpsignal2(p, ksi);
1009 	mutex_exit(&p->p_smutex);
1010 }
1011 
1012 /*
1013  * sigismasked:
1014  *
1015  *	 Returns true if signal is ignored or masked for the specified LWP.
1016  */
1017 int
1018 sigismasked(struct lwp *l, int sig)
1019 {
1020 	struct proc *p = l->l_proc;
1021 
1022 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1023 	    sigismember(&l->l_sigmask, sig));
1024 }
1025 
1026 /*
1027  * sigpost:
1028  *
1029  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
1030  *	 able to take the signal.
1031  */
1032 int
1033 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1034 {
1035 	int rv, masked;
1036 
1037 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
1038 
1039 	/*
1040 	 * If the LWP is on the way out, sigclear() will be busy draining all
1041 	 * pending signals.  Don't give it more.
1042 	 */
1043 	if (l->l_refcnt == 0)
1044 		return 0;
1045 
1046 	lwp_lock(l);
1047 
1048 	/*
1049 	 * Have the LWP check for signals.  This ensures that even if no LWP
1050 	 * is found to take the signal immediately, it should be taken soon.
1051 	 */
1052 	l->l_flag |= LW_PENDSIG;
1053 
1054 	/*
1055 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1056 	 */
1057 	masked = sigismember(&l->l_sigmask, sig);
1058 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1059 		lwp_unlock(l);
1060 		return 0;
1061 	}
1062 
1063 	/*
1064 	 * If killing the process, make it run fast.
1065 	 */
1066 	if (__predict_false((prop & SA_KILL) != 0) &&
1067 	    action == SIG_DFL && l->l_priority > PUSER)
1068 		lwp_changepri(l, PUSER);
1069 
1070 	/*
1071 	 * If the LWP is running or on a run queue, then we win.  If it's
1072 	 * sleeping interruptably, wake it and make it take the signal.  If
1073 	 * the sleep isn't interruptable, then the chances are it will get
1074 	 * to see the signal soon anyhow.  If suspended, it can't take the
1075 	 * signal right now.  If it's LWP private or for all LWPs, save it
1076 	 * for later; otherwise punt.
1077 	 */
1078 	rv = 0;
1079 
1080 	switch (l->l_stat) {
1081 	case LSRUN:
1082 	case LSONPROC:
1083 		lwp_need_userret(l);
1084 		rv = 1;
1085 		break;
1086 
1087 	case LSSLEEP:
1088 		if ((l->l_flag & LW_SINTR) != 0) {
1089 			/* setrunnable() will release the lock. */
1090 			setrunnable(l);
1091 			return 1;
1092 		}
1093 		break;
1094 
1095 	case LSSUSPENDED:
1096 		if ((prop & SA_KILL) != 0) {
1097 			/* lwp_continue() will release the lock. */
1098 			lwp_continue(l);
1099 			return 1;
1100 		}
1101 		break;
1102 
1103 	case LSSTOP:
1104 		if ((prop & SA_STOP) != 0)
1105 			break;
1106 
1107 		/*
1108 		 * If the LWP is stopped and we are sending a continue
1109 		 * signal, then start it again.
1110 		 */
1111 		if ((prop & SA_CONT) != 0) {
1112 			if (l->l_wchan != NULL) {
1113 				l->l_stat = LSSLEEP;
1114 				l->l_proc->p_nrlwps++;
1115 				rv = 1;
1116 				break;
1117 			}
1118 			/* setrunnable() will release the lock. */
1119 			setrunnable(l);
1120 			return 1;
1121 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1122 			/* setrunnable() will release the lock. */
1123 			setrunnable(l);
1124 			return 1;
1125 		}
1126 		break;
1127 
1128 	default:
1129 		break;
1130 	}
1131 
1132 	lwp_unlock(l);
1133 	return rv;
1134 }
1135 
1136 /*
1137  * Notify an LWP that it has a pending signal.
1138  */
1139 void
1140 signotify(struct lwp *l)
1141 {
1142 	KASSERT(lwp_locked(l, NULL));
1143 
1144 	l->l_flag |= LW_PENDSIG;
1145 	lwp_need_userret(l);
1146 }
1147 
1148 /*
1149  * Find an LWP within process p that is waiting on signal ksi, and hand
1150  * it on.
1151  */
1152 int
1153 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1154 {
1155 	struct lwp *l;
1156 	int signo;
1157 
1158 	KASSERT(mutex_owned(&p->p_smutex));
1159 
1160 	signo = ksi->ksi_signo;
1161 
1162 	if (ksi->ksi_lid != 0) {
1163 		/*
1164 		 * Signal came via _lwp_kill().  Find the LWP and see if
1165 		 * it's interested.
1166 		 */
1167 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1168 			return 0;
1169 		if (l->l_sigwaited == NULL ||
1170 		    !sigismember(&l->l_sigwaitset, signo))
1171 			return 0;
1172 	} else {
1173 		/*
1174 		 * Look for any LWP that may be interested.
1175 		 */
1176 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1177 			KASSERT(l->l_sigwaited != NULL);
1178 			if (sigismember(&l->l_sigwaitset, signo))
1179 				break;
1180 		}
1181 	}
1182 
1183 	if (l != NULL) {
1184 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1185 		l->l_sigwaited = NULL;
1186 		LIST_REMOVE(l, l_sigwaiter);
1187 		cv_signal(&l->l_sigcv);
1188 		return 1;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 /*
1195  * Send the signal to the process.  If the signal has an action, the action
1196  * is usually performed by the target process rather than the caller; we add
1197  * the signal to the set of pending signals for the process.
1198  *
1199  * Exceptions:
1200  *   o When a stop signal is sent to a sleeping process that takes the
1201  *     default action, the process is stopped without awakening it.
1202  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1203  *     regardless of the signal action (eg, blocked or ignored).
1204  *
1205  * Other ignored signals are discarded immediately.
1206  */
1207 void
1208 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1209 {
1210 	int prop, lid, toall, signo = ksi->ksi_signo;
1211 	struct lwp *l;
1212 	ksiginfo_t *kp;
1213 	ksiginfoq_t kq;
1214 	sig_t action;
1215 
1216 	KASSERT(mutex_owned(&proclist_mutex));
1217 	KASSERT(mutex_owned(&p->p_smutex));
1218 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1219 	KASSERT(signo > 0 && signo < NSIG);
1220 
1221 	/*
1222 	 * If the process is being created by fork, is a zombie or is
1223 	 * exiting, then just drop the signal here and bail out.
1224 	 */
1225 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1226 		return;
1227 
1228 	/*
1229 	 * Notify any interested parties of the signal.
1230 	 */
1231 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1232 
1233 	/*
1234 	 * Some signals including SIGKILL must act on the entire process.
1235 	 */
1236 	kp = NULL;
1237 	prop = sigprop[signo];
1238 	toall = ((prop & SA_TOALL) != 0);
1239 
1240 	if (toall)
1241 		lid = 0;
1242 	else
1243 		lid = ksi->ksi_lid;
1244 
1245 	/*
1246 	 * If proc is traced, always give parent a chance.
1247 	 */
1248 	if (p->p_slflag & PSL_TRACED) {
1249 		action = SIG_DFL;
1250 
1251 		if (lid == 0) {
1252 			/*
1253 			 * If the process is being traced and the signal
1254 			 * is being caught, make sure to save any ksiginfo.
1255 			 */
1256 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1257 				return;
1258 			sigput(&p->p_sigpend, p, kp);
1259 		}
1260 	} else {
1261 		/*
1262 		 * If the signal was the result of a trap and is not being
1263 		 * caught, then reset it to default action so that the
1264 		 * process dumps core immediately.
1265 		 */
1266 		if (KSI_TRAP_P(ksi)) {
1267 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1268 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1269 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1270 			}
1271 		}
1272 
1273 		/*
1274 		 * If the signal is being ignored, then drop it.  Note: we
1275 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1276 		 * SIG_IGN, action will be SIG_DFL here.
1277 		 */
1278 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1279 			return;
1280 
1281 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1282 			action = SIG_CATCH;
1283 		else {
1284 			action = SIG_DFL;
1285 
1286 			/*
1287 			 * If sending a tty stop signal to a member of an
1288 			 * orphaned process group, discard the signal here if
1289 			 * the action is default; don't stop the process below
1290 			 * if sleeping, and don't clear any pending SIGCONT.
1291 			 */
1292 			if (prop & SA_TTYSTOP &&
1293 			    (p->p_sflag & PS_ORPHANPG) != 0)
1294 				return;
1295 
1296 			if (prop & SA_KILL && p->p_nice > NZERO)
1297 				p->p_nice = NZERO;
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * If stopping or continuing a process, discard any pending
1303 	 * signals that would do the inverse.
1304 	 */
1305 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1306 		ksiginfo_queue_init(&kq);
1307 		if ((prop & SA_CONT) != 0)
1308 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1309 		if ((prop & SA_STOP) != 0)
1310 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1311 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1312 	}
1313 
1314 	/*
1315 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1316 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1317 	 * the signal info.  The signal won't be processed further here.
1318 	 */
1319 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1320 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1321 	    sigunwait(p, ksi))
1322 		return;
1323 
1324 	/*
1325 	 * XXXSMP Should be allocated by the caller, we're holding locks
1326 	 * here.
1327 	 */
1328 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1329 		return;
1330 
1331 	/*
1332 	 * LWP private signals are easy - just find the LWP and post
1333 	 * the signal to it.
1334 	 */
1335 	if (lid != 0) {
1336 		l = lwp_find(p, lid);
1337 		if (l != NULL) {
1338 			sigput(&l->l_sigpend, p, kp);
1339 			mb_write();
1340 			(void)sigpost(l, action, prop, kp->ksi_signo);
1341 		}
1342 		goto out;
1343 	}
1344 
1345 	/*
1346 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
1347 	 */
1348 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1349 		if ((p->p_slflag & PSL_TRACED) != 0)
1350 			goto deliver;
1351 
1352 		/*
1353 		 * If SIGCONT is default (or ignored) and process is
1354 		 * asleep, we are finished; the process should not
1355 		 * be awakened.
1356 		 */
1357 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1358 			goto out;
1359 
1360 		if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
1361 			/*
1362 			 * If a child holding parent blocked, stopping could
1363 			 * cause deadlock: discard the signal.
1364 			 */
1365 			if ((p->p_sflag & PS_PPWAIT) == 0) {
1366 				p->p_xstat = signo;
1367 				proc_stop(p, 1, signo);
1368 			}
1369 			goto out;
1370 		} else {
1371 			/*
1372 			 * Stop signals with the default action are handled
1373 			 * specially in issignal(), and so are not enqueued.
1374 			 */
1375 			sigput(&p->p_sigpend, p, kp);
1376 		}
1377 	} else {
1378 		/*
1379 		 * Process is stopped or stopping.  If traced, then no
1380 		 * further action is necessary.
1381 		 */
1382 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1383 			goto out;
1384 
1385 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1386 			/*
1387 			 * Re-adjust p_nstopchild if the process wasn't
1388 			 * collected by its parent.
1389 			 */
1390 			p->p_stat = SACTIVE;
1391 			p->p_sflag &= ~PS_STOPPING;
1392 			if (!p->p_waited)
1393 				p->p_pptr->p_nstopchild--;
1394 
1395 			/*
1396 			 * If SIGCONT is default (or ignored), we continue
1397 			 * the process but don't leave the signal in
1398 			 * ps_siglist, as it has no further action.  If
1399 			 * SIGCONT is held, we continue the process and
1400 			 * leave the signal in ps_siglist.  If the process
1401 			 * catches SIGCONT, let it handle the signal itself.
1402 			 * If it isn't waiting on an event, then it goes
1403 			 * back to run state.  Otherwise, process goes back
1404 			 * to sleep state.
1405 			 */
1406 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1407 				sigput(&p->p_sigpend, p, kp);
1408 		} else if ((prop & SA_STOP) != 0) {
1409 			/*
1410 			 * Already stopped, don't need to stop again.
1411 			 * (If we did the shell could get confused.)
1412 			 */
1413 			goto out;
1414 		} else
1415 			sigput(&p->p_sigpend, p, kp);
1416 	}
1417 
1418  deliver:
1419 	/*
1420 	 * Before we set L_PENDSIG on any LWP, ensure that the signal is
1421 	 * visible on the per process list (for sigispending()).  This
1422 	 * is unlikely to be needed in practice, but...
1423 	 */
1424 	mb_write();
1425 
1426 	/*
1427 	 * Try to find an LWP that can take the signal.
1428 	 */
1429 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1430 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1431 			break;
1432 
1433  out:
1434  	/*
1435  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1436  	 * with locks held.  The caller should take care of this.
1437  	 */
1438  	ksiginfo_free(kp);
1439 }
1440 
1441 void
1442 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1443 {
1444 	struct proc *p = l->l_proc;
1445 
1446 	KASSERT(mutex_owned(&p->p_smutex));
1447 
1448 	(*p->p_emul->e_sendsig)(ksi, mask);
1449 }
1450 
1451 /*
1452  * Stop the current process and switch away when being stopped or traced.
1453  */
1454 void
1455 sigswitch(bool ppsig, int ppmask, int signo)
1456 {
1457 	struct lwp *l = curlwp, *l2;
1458 	struct proc *p = l->l_proc;
1459 #ifdef MULTIPROCESSOR
1460 	int biglocks;
1461 #endif
1462 
1463 	KASSERT(mutex_owned(&p->p_smutex));
1464 	KASSERT(l->l_stat == LSONPROC);
1465 	KASSERT(p->p_nrlwps > 0);
1466 
1467 	/*
1468 	 * On entry we know that the process needs to stop.  If it's
1469 	 * the result of a 'sideways' stop signal that has been sourced
1470 	 * through issignal(), then stop other LWPs in the process too.
1471 	 */
1472 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1473 		/*
1474 		 * Set the stopping indicator and bring all sleeping LWPs
1475 		 * to a halt so they are included in p->p_nrlwps
1476 		 */
1477 		p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
1478 		mb_write();
1479 
1480 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1481 			lwp_lock(l2);
1482 			if (l2->l_stat == LSSLEEP &&
1483 			    (l2->l_flag & LW_SINTR) != 0) {
1484 				l2->l_stat = LSSTOP;
1485 				p->p_nrlwps--;
1486 			}
1487 			lwp_unlock(l2);
1488 		}
1489 
1490 		/*
1491 		 * Have the remaining LWPs come to a halt, and trigger
1492 		 * proc_stop_callout() to ensure that they do.
1493 		 */
1494 		KASSERT(signo != 0);
1495 		KASSERT(p->p_nrlwps > 0);
1496 
1497 		if (p->p_nrlwps > 1) {
1498 			LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1499 				sigpost(l2, SIG_DFL, SA_STOP, signo);
1500 			callout_schedule(&proc_stop_ch, 1);
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * If we are the last live LWP, and the stop was a result of
1506 	 * a new signal, then signal the parent.
1507 	 */
1508 	if ((p->p_sflag & PS_STOPPING) != 0) {
1509 		if (!mutex_tryenter(&proclist_mutex)) {
1510 			mutex_exit(&p->p_smutex);
1511 			mutex_enter(&proclist_mutex);
1512 			mutex_enter(&p->p_smutex);
1513 		}
1514 
1515 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1516 			p->p_sflag &= ~PS_STOPPING;
1517 			p->p_stat = SSTOP;
1518 			p->p_waited = 0;
1519 			p->p_pptr->p_nstopchild++;
1520 			if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1521 				/*
1522 				 * Note that child_psignal() will drop
1523 				 * p->p_smutex briefly.
1524 				 */
1525 				if (ppsig)
1526 					child_psignal(p, ppmask);
1527 				cv_broadcast(&p->p_pptr->p_waitcv);
1528 			}
1529 		}
1530 
1531 		mutex_exit(&proclist_mutex);
1532 	}
1533 
1534 	/*
1535 	 * Unlock and switch away.
1536 	 */
1537 	KERNEL_UNLOCK_ALL(l, &biglocks);
1538 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1539 		p->p_nrlwps--;
1540 		lwp_lock(l);
1541 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1542 		l->l_stat = LSSTOP;
1543 		lwp_unlock(l);
1544 	}
1545 
1546 	mutex_exit(&p->p_smutex);
1547 	lwp_lock(l);
1548 	mi_switch(l);
1549 	KERNEL_LOCK(biglocks, l);
1550 	mutex_enter(&p->p_smutex);
1551 }
1552 
1553 /*
1554  * Check for a signal from the debugger.
1555  */
1556 int
1557 sigchecktrace(sigpend_t **spp)
1558 {
1559 	struct lwp *l = curlwp;
1560 	struct proc *p = l->l_proc;
1561 	int signo;
1562 
1563 	KASSERT(mutex_owned(&p->p_smutex));
1564 
1565 	/*
1566 	 * If we are no longer being traced, or the parent didn't
1567 	 * give us a signal, look for more signals.
1568 	 */
1569 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1570 		return 0;
1571 
1572 	/* If there's a pending SIGKILL, process it immediately. */
1573 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1574 		return 0;
1575 
1576 	/*
1577 	 * If the new signal is being masked, look for other signals.
1578 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1579 	 */
1580 	signo = p->p_xstat;
1581 	p->p_xstat = 0;
1582 	if ((sigprop[signo] & SA_TOLWP) != 0)
1583 		*spp = &l->l_sigpend;
1584 	else
1585 		*spp = &p->p_sigpend;
1586 	if (sigismember(&l->l_sigmask, signo))
1587 		signo = 0;
1588 
1589 	return signo;
1590 }
1591 
1592 /*
1593  * If the current process has received a signal (should be caught or cause
1594  * termination, should interrupt current syscall), return the signal number.
1595  *
1596  * Stop signals with default action are processed immediately, then cleared;
1597  * they aren't returned.  This is checked after each entry to the system for
1598  * a syscall or trap.
1599  *
1600  * We will also return -1 if the process is exiting and the current LWP must
1601  * follow suit.
1602  *
1603  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1604  * can switch away, though.
1605  */
1606 int
1607 issignal(struct lwp *l)
1608 {
1609 	struct proc *p = l->l_proc;
1610 	int signo = 0, prop;
1611 	sigpend_t *sp = NULL;
1612 	sigset_t ss;
1613 
1614 	KASSERT(mutex_owned(&p->p_smutex));
1615 
1616 	for (;;) {
1617 		/* Discard any signals that we have decided not to take. */
1618 		if (signo != 0)
1619 			(void)sigget(sp, NULL, signo, NULL);
1620 
1621 		/*
1622 		 * If the process is stopped/stopping, then stop ourselves
1623 		 * now that we're on the kernel/userspace boundary.  When
1624 		 * we awaken, check for a signal from the debugger.
1625 		 */
1626 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1627 			sigswitch(true, PS_NOCLDSTOP, 0);
1628 			signo = sigchecktrace(&sp);
1629 		} else
1630 			signo = 0;
1631 
1632 		/*
1633 		 * If the debugger didn't provide a signal, find a pending
1634 		 * signal from our set.  Check per-LWP signals first, and
1635 		 * then per-process.
1636 		 */
1637 		if (signo == 0) {
1638 			sp = &l->l_sigpend;
1639 			ss = sp->sp_set;
1640 			if ((p->p_sflag & PS_PPWAIT) != 0)
1641 				sigminusset(&stopsigmask, &ss);
1642 			sigminusset(&l->l_sigmask, &ss);
1643 
1644 			if ((signo = firstsig(&ss)) == 0) {
1645 				sp = &p->p_sigpend;
1646 				ss = sp->sp_set;
1647 				if ((p->p_sflag & PS_PPWAIT) != 0)
1648 					sigminusset(&stopsigmask, &ss);
1649 				sigminusset(&l->l_sigmask, &ss);
1650 
1651 				if ((signo = firstsig(&ss)) == 0) {
1652 					/*
1653 					 * No signal pending - clear the
1654 					 * indicator and bail out.
1655 					 */
1656 					lwp_lock(l);
1657 					l->l_flag &= ~LW_PENDSIG;
1658 					lwp_unlock(l);
1659 					sp = NULL;
1660 					break;
1661 				}
1662 			}
1663 		}
1664 
1665 		/*
1666 		 * We should see pending but ignored signals only if
1667 		 * we are being traced.
1668 		 */
1669 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1670 		    (p->p_slflag & PSL_TRACED) == 0) {
1671 			/* Discard the signal. */
1672 			continue;
1673 		}
1674 
1675 		/*
1676 		 * If traced, always stop, and stay stopped until released
1677 		 * by the debugger.  If the our parent process is waiting
1678 		 * for us, don't hang as we could deadlock.
1679 		 */
1680 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1681 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1682 			/* Take the signal. */
1683 			(void)sigget(sp, NULL, signo, NULL);
1684 			p->p_xstat = signo;
1685 
1686 			/* Emulation-specific handling of signal trace */
1687 			if (p->p_emul->e_tracesig == NULL ||
1688 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1689 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1690 				    signo);
1691 
1692 			/* Check for a signal from the debugger. */
1693 			if ((signo = sigchecktrace(&sp)) == 0)
1694 				continue;
1695 		}
1696 
1697 		prop = sigprop[signo];
1698 
1699 		/*
1700 		 * Decide whether the signal should be returned.
1701 		 */
1702 		switch ((long)SIGACTION(p, signo).sa_handler) {
1703 		case (long)SIG_DFL:
1704 			/*
1705 			 * Don't take default actions on system processes.
1706 			 */
1707 			if (p->p_pid <= 1) {
1708 #ifdef DIAGNOSTIC
1709 				/*
1710 				 * Are you sure you want to ignore SIGSEGV
1711 				 * in init? XXX
1712 				 */
1713 				printf_nolog("Process (pid %d) got sig %d\n",
1714 				    p->p_pid, signo);
1715 #endif
1716 				continue;
1717 			}
1718 
1719 			/*
1720 			 * If there is a pending stop signal to process with
1721 			 * default action, stop here, then clear the signal.
1722 			 * However, if process is member of an orphaned
1723 			 * process group, ignore tty stop signals.
1724 			 */
1725 			if (prop & SA_STOP) {
1726 				if (p->p_slflag & PSL_TRACED ||
1727 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
1728 				    prop & SA_TTYSTOP)) {
1729 				    	/* Ignore the signal. */
1730 					continue;
1731 				}
1732 				/* Take the signal. */
1733 				(void)sigget(sp, NULL, signo, NULL);
1734 				p->p_xstat = signo;
1735 				signo = 0;
1736 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1737 			} else if (prop & SA_IGNORE) {
1738 				/*
1739 				 * Except for SIGCONT, shouldn't get here.
1740 				 * Default action is to ignore; drop it.
1741 				 */
1742 				continue;
1743 			}
1744 			break;
1745 
1746 		case (long)SIG_IGN:
1747 #ifdef DEBUG_ISSIGNAL
1748 			/*
1749 			 * Masking above should prevent us ever trying
1750 			 * to take action on an ignored signal other
1751 			 * than SIGCONT, unless process is traced.
1752 			 */
1753 			if ((prop & SA_CONT) == 0 &&
1754 			    (p->p_slflag & PSL_TRACED) == 0)
1755 				printf_nolog("issignal\n");
1756 #endif
1757 			continue;
1758 
1759 		default:
1760 			/*
1761 			 * This signal has an action, let postsig() process
1762 			 * it.
1763 			 */
1764 			break;
1765 		}
1766 
1767 		break;
1768 	}
1769 
1770 	l->l_sigpendset = sp;
1771 	return signo;
1772 }
1773 
1774 /*
1775  * Take the action for the specified signal
1776  * from the current set of pending signals.
1777  */
1778 void
1779 postsig(int signo)
1780 {
1781 	struct lwp	*l;
1782 	struct proc	*p;
1783 	struct sigacts	*ps;
1784 	sig_t		action;
1785 	sigset_t	*returnmask;
1786 	ksiginfo_t	ksi;
1787 
1788 	l = curlwp;
1789 	p = l->l_proc;
1790 	ps = p->p_sigacts;
1791 
1792 	KASSERT(mutex_owned(&p->p_smutex));
1793 	KASSERT(signo > 0);
1794 
1795 	/*
1796 	 * Set the new mask value and also defer further occurrences of this
1797 	 * signal.
1798 	 *
1799 	 * Special case: user has done a sigpause.  Here the current mask is
1800 	 * not of interest, but rather the mask from before the sigpause is
1801 	 * what we want restored after the signal processing is completed.
1802 	 */
1803 	if (l->l_sigrestore) {
1804 		returnmask = &l->l_sigoldmask;
1805 		l->l_sigrestore = 0;
1806 	} else
1807 		returnmask = &l->l_sigmask;
1808 
1809 	/*
1810 	 * Commit to taking the signal before releasing the mutex.
1811 	 */
1812 	action = SIGACTION_PS(ps, signo).sa_handler;
1813 	p->p_stats->p_ru.ru_nsignals++;
1814 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1815 
1816 	if (ktrpoint(KTR_PSIG)) {
1817 		mutex_exit(&p->p_smutex);
1818 		ktrpsig(signo, action, returnmask, NULL);
1819 		mutex_enter(&p->p_smutex);
1820 	}
1821 
1822 	if (action == SIG_DFL) {
1823 		/*
1824 		 * Default action, where the default is to kill
1825 		 * the process.  (Other cases were ignored above.)
1826 		 */
1827 		sigexit(l, signo);
1828 		return;
1829 	}
1830 
1831 	/*
1832 	 * If we get here, the signal must be caught.
1833 	 */
1834 #ifdef DIAGNOSTIC
1835 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1836 		panic("postsig action");
1837 #endif
1838 
1839 	kpsendsig(l, &ksi, returnmask);
1840 }
1841 
1842 /*
1843  * sendsig_reset:
1844  *
1845  *	Reset the signal action.  Called from emulation specific sendsig()
1846  *	before unlocking to deliver the signal.
1847  */
1848 void
1849 sendsig_reset(struct lwp *l, int signo)
1850 {
1851 	struct proc *p = l->l_proc;
1852 	struct sigacts *ps = p->p_sigacts;
1853 
1854 	KASSERT(mutex_owned(&p->p_smutex));
1855 
1856 	p->p_sigctx.ps_lwp = 0;
1857 	p->p_sigctx.ps_code = 0;
1858 	p->p_sigctx.ps_signo = 0;
1859 
1860 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1861 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1862 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1863 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1864 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1865 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1866 	}
1867 }
1868 
1869 /*
1870  * Kill the current process for stated reason.
1871  */
1872 void
1873 killproc(struct proc *p, const char *why)
1874 {
1875 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1876 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1877 	mutex_enter(&proclist_mutex);	/* XXXSMP */
1878 	psignal(p, SIGKILL);
1879 	mutex_exit(&proclist_mutex);	/* XXXSMP */
1880 }
1881 
1882 /*
1883  * Force the current process to exit with the specified signal, dumping core
1884  * if appropriate.  We bypass the normal tests for masked and caught
1885  * signals, allowing unrecoverable failures to terminate the process without
1886  * changing signal state.  Mark the accounting record with the signal
1887  * termination.  If dumping core, save the signal number for the debugger.
1888  * Calls exit and does not return.
1889  */
1890 void
1891 sigexit(struct lwp *l, int signo)
1892 {
1893 	int exitsig, error, docore;
1894 	struct proc *p;
1895 	struct lwp *t;
1896 
1897 	p = l->l_proc;
1898 
1899 	KASSERT(mutex_owned(&p->p_smutex));
1900 	KERNEL_UNLOCK_ALL(l, NULL);
1901 
1902 	/*
1903 	 * Don't permit coredump() multiple times in the same process.
1904 	 * Call back into sigexit, where we will be suspended until
1905 	 * the deed is done.  Note that this is a recursive call, but
1906 	 * LW_WCORE will prevent us from coming back this way.
1907 	 */
1908 	if ((p->p_sflag & PS_WCORE) != 0) {
1909 		lwp_lock(l);
1910 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1911 		lwp_unlock(l);
1912 		mutex_exit(&p->p_smutex);
1913 		lwp_userret(l);
1914 #ifdef DIAGNOSTIC
1915 		panic("sigexit");
1916 #endif
1917 		/* NOTREACHED */
1918 	}
1919 
1920 	/*
1921 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
1922 	 * so that their registers are available long enough to be dumped.
1923  	 */
1924 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1925 		p->p_sflag |= PS_WCORE;
1926 		for (;;) {
1927 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1928 				lwp_lock(t);
1929 				if (t == l) {
1930 					t->l_flag &= ~LW_WSUSPEND;
1931 					lwp_unlock(t);
1932 					continue;
1933 				}
1934 				t->l_flag |= (LW_WCORE | LW_WEXIT);
1935 				lwp_suspend(l, t);
1936 			}
1937 
1938 			if (p->p_nrlwps == 1)
1939 				break;
1940 
1941 			/*
1942 			 * Kick any LWPs sitting in lwp_wait1(), and wait
1943 			 * for everyone else to stop before proceeding.
1944 			 */
1945 			p->p_nlwpwait++;
1946 			cv_broadcast(&p->p_lwpcv);
1947 			cv_wait(&p->p_lwpcv, &p->p_smutex);
1948 			p->p_nlwpwait--;
1949 		}
1950 	}
1951 
1952 	exitsig = signo;
1953 	p->p_acflag |= AXSIG;
1954 	p->p_sigctx.ps_signo = signo;
1955 	mutex_exit(&p->p_smutex);
1956 
1957 	KERNEL_LOCK(1, l);
1958 
1959 	if (docore) {
1960 		if ((error = coredump(l, NULL)) == 0)
1961 			exitsig |= WCOREFLAG;
1962 
1963 		if (kern_logsigexit) {
1964 			int uid = l->l_cred ?
1965 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
1966 
1967 			if (error)
1968 				log(LOG_INFO, lognocoredump, p->p_pid,
1969 				    p->p_comm, uid, signo, error);
1970 			else
1971 				log(LOG_INFO, logcoredump, p->p_pid,
1972 				    p->p_comm, uid, signo);
1973 		}
1974 
1975 #ifdef PAX_SEGVGUARD
1976 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
1977 #endif /* PAX_SEGVGUARD */
1978 	}
1979 
1980 	/* Acquire the sched state mutex.  exit1() will release it. */
1981 	mutex_enter(&p->p_smutex);
1982 
1983 	/* No longer dumping core. */
1984 	p->p_sflag &= ~PS_WCORE;
1985 
1986 	exit1(l, W_EXITCODE(0, exitsig));
1987 	/* NOTREACHED */
1988 }
1989 
1990 /*
1991  * Put process 'p' into the stopped state and optionally, notify the parent.
1992  */
1993 void
1994 proc_stop(struct proc *p, int notify, int signo)
1995 {
1996 	struct lwp *l;
1997 
1998 	KASSERT(mutex_owned(&proclist_mutex));
1999 	KASSERT(mutex_owned(&p->p_smutex));
2000 
2001 	/*
2002 	 * First off, set the stopping indicator and bring all sleeping
2003 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2004 	 * unlock between here and the p->p_nrlwps check below.
2005 	 */
2006 	p->p_sflag |= PS_STOPPING;
2007 	mb_write();
2008 
2009 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2010 		lwp_lock(l);
2011 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
2012 			l->l_stat = LSSTOP;
2013 			p->p_nrlwps--;
2014 		}
2015 		lwp_unlock(l);
2016 	}
2017 
2018 	/*
2019 	 * If there are no LWPs available to take the signal, then we
2020 	 * signal the parent process immediately.  Otherwise, the last
2021 	 * LWP to stop will take care of it.
2022 	 */
2023 	if (notify)
2024 		p->p_sflag |= PS_NOTIFYSTOP;
2025 	else
2026 		p->p_sflag &= ~PS_NOTIFYSTOP;
2027 
2028 	if (p->p_nrlwps == 0) {
2029 		p->p_sflag &= ~PS_STOPPING;
2030 		p->p_stat = SSTOP;
2031 		p->p_waited = 0;
2032 		p->p_pptr->p_nstopchild++;
2033 
2034 		if (notify) {
2035 			child_psignal(p, PS_NOCLDSTOP);
2036 			cv_broadcast(&p->p_pptr->p_waitcv);
2037 		}
2038 	} else {
2039 		/*
2040 		 * Have the remaining LWPs come to a halt, and trigger
2041 		 * proc_stop_callout() to ensure that they do.
2042 		 */
2043 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2044 			sigpost(l, SIG_DFL, SA_STOP, signo);
2045 		callout_schedule(&proc_stop_ch, 1);
2046 	}
2047 }
2048 
2049 /*
2050  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2051  * but wait for them to come to a halt at the kernel-user boundary.  This is
2052  * to allow LWPs to release any locks that they may hold before stopping.
2053  *
2054  * Non-interruptable sleeps can be long, and there is the potential for an
2055  * LWP to begin sleeping interruptably soon after the process has been set
2056  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2057  * stopping, and so complete halt of the process and the return of status
2058  * information to the parent could be delayed indefinitely.
2059  *
2060  * To handle this race, proc_stop_callout() runs once per tick while there
2061  * are stopping processes in the system.  It sets LWPs that are sleeping
2062  * interruptably into the LSSTOP state.
2063  *
2064  * Note that we are not concerned about keeping all LWPs stopped while the
2065  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2066  * What we do need to ensure is that all LWPs in a stopping process have
2067  * stopped at least once, so that notification can be sent to the parent
2068  * process.
2069  */
2070 static void
2071 proc_stop_callout(void *cookie)
2072 {
2073 	bool more, restart;
2074 	struct proc *p;
2075 	struct lwp *l;
2076 
2077 	(void)cookie;
2078 
2079 	do {
2080 		restart = false;
2081 		more = false;
2082 
2083 		mutex_enter(&proclist_mutex);
2084 		PROCLIST_FOREACH(p, &allproc) {
2085 			mutex_enter(&p->p_smutex);
2086 
2087 			if ((p->p_sflag & PS_STOPPING) == 0) {
2088 				mutex_exit(&p->p_smutex);
2089 				continue;
2090 			}
2091 
2092 			/* Stop any LWPs sleeping interruptably. */
2093 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2094 				lwp_lock(l);
2095 				if (l->l_stat == LSSLEEP &&
2096 				    (l->l_flag & LW_SINTR) != 0) {
2097 				    	l->l_stat = LSSTOP;
2098 				    	p->p_nrlwps--;
2099 				}
2100 				lwp_unlock(l);
2101 			}
2102 
2103 			if (p->p_nrlwps == 0) {
2104 				/*
2105 				 * We brought the process to a halt.
2106 				 * Mark it as stopped and notify the
2107 				 * parent.
2108 				 */
2109 				p->p_sflag &= ~PS_STOPPING;
2110 				p->p_stat = SSTOP;
2111 				p->p_waited = 0;
2112 				p->p_pptr->p_nstopchild++;
2113 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2114 					/*
2115 					 * Note that child_psignal() will
2116 					 * drop p->p_smutex briefly.
2117 					 * Arrange to restart and check
2118 					 * all processes again.
2119 					 */
2120 					restart = true;
2121 					child_psignal(p, PS_NOCLDSTOP);
2122 					cv_broadcast(&p->p_pptr->p_waitcv);
2123 				}
2124 			} else
2125 				more = true;
2126 
2127 			mutex_exit(&p->p_smutex);
2128 			if (restart)
2129 				break;
2130 		}
2131 		mutex_exit(&proclist_mutex);
2132 	} while (restart);
2133 
2134 	/*
2135 	 * If we noted processes that are stopping but still have
2136 	 * running LWPs, then arrange to check again in 1 tick.
2137 	 */
2138 	if (more)
2139 		callout_schedule(&proc_stop_ch, 1);
2140 }
2141 
2142 /*
2143  * Given a process in state SSTOP, set the state back to SACTIVE and
2144  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2145  */
2146 void
2147 proc_unstop(struct proc *p)
2148 {
2149 	struct lwp *l;
2150 	int sig;
2151 
2152 	KASSERT(mutex_owned(&proclist_mutex));
2153 	KASSERT(mutex_owned(&p->p_smutex));
2154 
2155 	p->p_stat = SACTIVE;
2156 	p->p_sflag &= ~PS_STOPPING;
2157 	sig = p->p_xstat;
2158 
2159 	if (!p->p_waited)
2160 		p->p_pptr->p_nstopchild--;
2161 
2162 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2163 		lwp_lock(l);
2164 		if (l->l_stat != LSSTOP) {
2165 			lwp_unlock(l);
2166 			continue;
2167 		}
2168 		if (l->l_wchan == NULL) {
2169 			setrunnable(l);
2170 			continue;
2171 		}
2172 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2173 		        setrunnable(l);
2174 		        sig = 0;
2175 		} else {
2176 			l->l_stat = LSSLEEP;
2177 			p->p_nrlwps++;
2178 			lwp_unlock(l);
2179 		}
2180 	}
2181 }
2182 
2183 static int
2184 filt_sigattach(struct knote *kn)
2185 {
2186 	struct proc *p = curproc;
2187 
2188 	kn->kn_ptr.p_proc = p;
2189 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2190 
2191 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2192 
2193 	return (0);
2194 }
2195 
2196 static void
2197 filt_sigdetach(struct knote *kn)
2198 {
2199 	struct proc *p = kn->kn_ptr.p_proc;
2200 
2201 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2202 }
2203 
2204 /*
2205  * signal knotes are shared with proc knotes, so we apply a mask to
2206  * the hint in order to differentiate them from process hints.  This
2207  * could be avoided by using a signal-specific knote list, but probably
2208  * isn't worth the trouble.
2209  */
2210 static int
2211 filt_signal(struct knote *kn, long hint)
2212 {
2213 
2214 	if (hint & NOTE_SIGNAL) {
2215 		hint &= ~NOTE_SIGNAL;
2216 
2217 		if (kn->kn_id == hint)
2218 			kn->kn_data++;
2219 	}
2220 	return (kn->kn_data != 0);
2221 }
2222 
2223 const struct filterops sig_filtops = {
2224 	0, filt_sigattach, filt_sigdetach, filt_signal
2225 };
2226