1 /* $NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1989, 1991, 1993 41 * The Regents of the University of California. All rights reserved. 42 * (c) UNIX System Laboratories, Inc. 43 * All or some portions of this file are derived from material licensed 44 * to the University of California by American Telephone and Telegraph 45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 46 * the permission of UNIX System Laboratories, Inc. 47 * 48 * Redistribution and use in source and binary forms, with or without 49 * modification, are permitted provided that the following conditions 50 * are met: 51 * 1. Redistributions of source code must retain the above copyright 52 * notice, this list of conditions and the following disclaimer. 53 * 2. Redistributions in binary form must reproduce the above copyright 54 * notice, this list of conditions and the following disclaimer in the 55 * documentation and/or other materials provided with the distribution. 56 * 3. Neither the name of the University nor the names of its contributors 57 * may be used to endorse or promote products derived from this software 58 * without specific prior written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 70 * SUCH DAMAGE. 71 * 72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $"); 77 78 #include "opt_ptrace.h" 79 #include "opt_multiprocessor.h" 80 #include "opt_compat_sunos.h" 81 #include "opt_compat_netbsd.h" 82 #include "opt_compat_netbsd32.h" 83 #include "opt_pax.h" 84 85 #define SIGPROP /* include signal properties table */ 86 #include <sys/param.h> 87 #include <sys/signalvar.h> 88 #include <sys/proc.h> 89 #include <sys/systm.h> 90 #include <sys/wait.h> 91 #include <sys/ktrace.h> 92 #include <sys/syslog.h> 93 #include <sys/filedesc.h> 94 #include <sys/file.h> 95 #include <sys/malloc.h> 96 #include <sys/pool.h> 97 #include <sys/ucontext.h> 98 #include <sys/exec.h> 99 #include <sys/kauth.h> 100 #include <sys/acct.h> 101 #include <sys/callout.h> 102 #include <sys/atomic.h> 103 #include <sys/cpu.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm.h> 110 #include <uvm/uvm_extern.h> 111 112 static void ksiginfo_exechook(struct proc *, void *); 113 static void proc_stop_callout(void *); 114 115 int sigunwait(struct proc *, const ksiginfo_t *); 116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 117 int sigpost(struct lwp *, sig_t, int, int); 118 int sigchecktrace(sigpend_t **); 119 void sigswitch(bool, int, int); 120 void sigrealloc(ksiginfo_t *); 121 122 sigset_t contsigmask, stopsigmask, sigcantmask; 123 struct pool sigacts_pool; /* memory pool for sigacts structures */ 124 static void sigacts_poolpage_free(struct pool *, void *); 125 static void *sigacts_poolpage_alloc(struct pool *, int); 126 static callout_t proc_stop_ch; 127 128 static struct pool_allocator sigactspool_allocator = { 129 .pa_alloc = sigacts_poolpage_alloc, 130 .pa_free = sigacts_poolpage_free, 131 }; 132 133 #ifdef DEBUG 134 int kern_logsigexit = 1; 135 #else 136 int kern_logsigexit = 0; 137 #endif 138 139 static const char logcoredump[] = 140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 141 static const char lognocoredump[] = 142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 143 144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 145 &pool_allocator_nointr, IPL_NONE); 146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", 147 NULL, IPL_VM); 148 149 /* 150 * signal_init: 151 * 152 * Initialize global signal-related data structures. 153 */ 154 void 155 signal_init(void) 156 { 157 158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 159 160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 161 sizeof(struct sigacts) > PAGE_SIZE ? 162 &sigactspool_allocator : &pool_allocator_nointr, 163 IPL_NONE); 164 165 exechook_establish(ksiginfo_exechook, NULL); 166 167 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 169 } 170 171 /* 172 * sigacts_poolpage_alloc: 173 * 174 * Allocate a page for the sigacts memory pool. 175 */ 176 static void * 177 sigacts_poolpage_alloc(struct pool *pp, int flags) 178 { 179 180 return (void *)uvm_km_alloc(kernel_map, 181 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 183 | UVM_KMF_WIRED); 184 } 185 186 /* 187 * sigacts_poolpage_free: 188 * 189 * Free a page on behalf of the sigacts memory pool. 190 */ 191 static void 192 sigacts_poolpage_free(struct pool *pp, void *v) 193 { 194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 195 } 196 197 /* 198 * sigactsinit: 199 * 200 * Create an initial sigctx structure, using the same signal state as 201 * p. If 'share' is set, share the sigctx_proc part, otherwise just 202 * copy it from parent. 203 */ 204 struct sigacts * 205 sigactsinit(struct proc *pp, int share) 206 { 207 struct sigacts *ps, *ps2; 208 209 ps = pp->p_sigacts; 210 211 if (share) { 212 mutex_enter(&ps->sa_mutex); 213 ps->sa_refcnt++; 214 mutex_exit(&ps->sa_mutex); 215 ps2 = ps; 216 } else { 217 ps2 = pool_get(&sigacts_pool, PR_WAITOK); 218 /* XXX IPL_SCHED to match p_smutex */ 219 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 220 mutex_enter(&ps->sa_mutex); 221 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 222 sizeof(ps2->sa_sigdesc)); 223 mutex_exit(&ps->sa_mutex); 224 ps2->sa_refcnt = 1; 225 } 226 227 return ps2; 228 } 229 230 /* 231 * sigactsunshare: 232 * 233 * Make this process not share its sigctx, maintaining all 234 * signal state. 235 */ 236 void 237 sigactsunshare(struct proc *p) 238 { 239 struct sigacts *ps, *oldps; 240 241 oldps = p->p_sigacts; 242 if (oldps->sa_refcnt == 1) 243 return; 244 ps = pool_get(&sigacts_pool, PR_WAITOK); 245 /* XXX IPL_SCHED to match p_smutex */ 246 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 247 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 248 p->p_sigacts = ps; 249 sigactsfree(oldps); 250 } 251 252 /* 253 * sigactsfree; 254 * 255 * Release a sigctx structure. 256 */ 257 void 258 sigactsfree(struct sigacts *ps) 259 { 260 int refcnt; 261 262 mutex_enter(&ps->sa_mutex); 263 refcnt = --ps->sa_refcnt; 264 mutex_exit(&ps->sa_mutex); 265 266 if (refcnt == 0) { 267 mutex_destroy(&ps->sa_mutex); 268 pool_put(&sigacts_pool, ps); 269 } 270 } 271 272 /* 273 * siginit: 274 * 275 * Initialize signal state for process 0; set to ignore signals that 276 * are ignored by default and disable the signal stack. Locking not 277 * required as the system is still cold. 278 */ 279 void 280 siginit(struct proc *p) 281 { 282 struct lwp *l; 283 struct sigacts *ps; 284 int signo, prop; 285 286 ps = p->p_sigacts; 287 sigemptyset(&contsigmask); 288 sigemptyset(&stopsigmask); 289 sigemptyset(&sigcantmask); 290 for (signo = 1; signo < NSIG; signo++) { 291 prop = sigprop[signo]; 292 if (prop & SA_CONT) 293 sigaddset(&contsigmask, signo); 294 if (prop & SA_STOP) 295 sigaddset(&stopsigmask, signo); 296 if (prop & SA_CANTMASK) 297 sigaddset(&sigcantmask, signo); 298 if (prop & SA_IGNORE && signo != SIGCONT) 299 sigaddset(&p->p_sigctx.ps_sigignore, signo); 300 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 301 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 302 } 303 sigemptyset(&p->p_sigctx.ps_sigcatch); 304 p->p_sflag &= ~PS_NOCLDSTOP; 305 306 ksiginfo_queue_init(&p->p_sigpend.sp_info); 307 sigemptyset(&p->p_sigpend.sp_set); 308 309 /* 310 * Reset per LWP state. 311 */ 312 l = LIST_FIRST(&p->p_lwps); 313 l->l_sigwaited = NULL; 314 l->l_sigstk.ss_flags = SS_DISABLE; 315 l->l_sigstk.ss_size = 0; 316 l->l_sigstk.ss_sp = 0; 317 ksiginfo_queue_init(&l->l_sigpend.sp_info); 318 sigemptyset(&l->l_sigpend.sp_set); 319 320 /* One reference. */ 321 ps->sa_refcnt = 1; 322 } 323 324 /* 325 * execsigs: 326 * 327 * Reset signals for an exec of the specified process. 328 */ 329 void 330 execsigs(struct proc *p) 331 { 332 struct sigacts *ps; 333 struct lwp *l; 334 int signo, prop; 335 sigset_t tset; 336 ksiginfoq_t kq; 337 338 KASSERT(p->p_nlwps == 1); 339 340 sigactsunshare(p); 341 ps = p->p_sigacts; 342 343 /* 344 * Reset caught signals. Held signals remain held through 345 * l->l_sigmask (unless they were caught, and are now ignored 346 * by default). 347 * 348 * No need to lock yet, the process has only one LWP and 349 * at this point the sigacts are private to the process. 350 */ 351 sigemptyset(&tset); 352 for (signo = 1; signo < NSIG; signo++) { 353 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 354 prop = sigprop[signo]; 355 if (prop & SA_IGNORE) { 356 if ((prop & SA_CONT) == 0) 357 sigaddset(&p->p_sigctx.ps_sigignore, 358 signo); 359 sigaddset(&tset, signo); 360 } 361 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 362 } 363 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 364 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 365 } 366 ksiginfo_queue_init(&kq); 367 368 mutex_enter(&p->p_smutex); 369 sigclearall(p, &tset, &kq); 370 sigemptyset(&p->p_sigctx.ps_sigcatch); 371 372 /* 373 * Reset no zombies if child dies flag as Solaris does. 374 */ 375 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 376 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 377 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 378 379 /* 380 * Reset per-LWP state. 381 */ 382 l = LIST_FIRST(&p->p_lwps); 383 l->l_sigwaited = NULL; 384 l->l_sigstk.ss_flags = SS_DISABLE; 385 l->l_sigstk.ss_size = 0; 386 l->l_sigstk.ss_sp = 0; 387 ksiginfo_queue_init(&l->l_sigpend.sp_info); 388 sigemptyset(&l->l_sigpend.sp_set); 389 mutex_exit(&p->p_smutex); 390 391 ksiginfo_queue_drain(&kq); 392 } 393 394 /* 395 * ksiginfo_exechook: 396 * 397 * Free all pending ksiginfo entries from a process on exec. 398 * Additionally, drain any unused ksiginfo structures in the 399 * system back to the pool. 400 * 401 * XXX This should not be a hook, every process has signals. 402 */ 403 static void 404 ksiginfo_exechook(struct proc *p, void *v) 405 { 406 ksiginfoq_t kq; 407 408 ksiginfo_queue_init(&kq); 409 410 mutex_enter(&p->p_smutex); 411 sigclearall(p, NULL, &kq); 412 mutex_exit(&p->p_smutex); 413 414 ksiginfo_queue_drain(&kq); 415 } 416 417 /* 418 * ksiginfo_alloc: 419 * 420 * Allocate a new ksiginfo structure from the pool, and optionally copy 421 * an existing one. If the existing ksiginfo_t is from the pool, and 422 * has not been queued somewhere, then just return it. Additionally, 423 * if the existing ksiginfo_t does not contain any information beyond 424 * the signal number, then just return it. 425 */ 426 ksiginfo_t * 427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 428 { 429 ksiginfo_t *kp; 430 int s; 431 432 if (ok != NULL) { 433 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 434 KSI_FROMPOOL) 435 return ok; 436 if (KSI_EMPTY_P(ok)) 437 return ok; 438 } 439 440 s = splvm(); 441 kp = pool_get(&ksiginfo_pool, flags); 442 splx(s); 443 if (kp == NULL) { 444 #ifdef DIAGNOSTIC 445 printf("Out of memory allocating ksiginfo for pid %d\n", 446 p->p_pid); 447 #endif 448 return NULL; 449 } 450 451 if (ok != NULL) { 452 memcpy(kp, ok, sizeof(*kp)); 453 kp->ksi_flags &= ~KSI_QUEUED; 454 } else 455 KSI_INIT_EMPTY(kp); 456 457 kp->ksi_flags |= KSI_FROMPOOL; 458 459 return kp; 460 } 461 462 /* 463 * ksiginfo_free: 464 * 465 * If the given ksiginfo_t is from the pool and has not been queued, 466 * then free it. 467 */ 468 void 469 ksiginfo_free(ksiginfo_t *kp) 470 { 471 int s; 472 473 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 474 return; 475 s = splvm(); 476 pool_put(&ksiginfo_pool, kp); 477 splx(s); 478 } 479 480 /* 481 * ksiginfo_queue_drain: 482 * 483 * Drain a non-empty ksiginfo_t queue. 484 */ 485 void 486 ksiginfo_queue_drain0(ksiginfoq_t *kq) 487 { 488 ksiginfo_t *ksi; 489 int s; 490 491 KASSERT(!CIRCLEQ_EMPTY(kq)); 492 493 KERNEL_LOCK(1, curlwp); /* XXXSMP */ 494 while (!CIRCLEQ_EMPTY(kq)) { 495 ksi = CIRCLEQ_FIRST(kq); 496 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 497 s = splvm(); 498 pool_put(&ksiginfo_pool, ksi); 499 splx(s); 500 } 501 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */ 502 } 503 504 /* 505 * sigget: 506 * 507 * Fetch the first pending signal from a set. Optionally, also fetch 508 * or manufacture a ksiginfo element. Returns the number of the first 509 * pending signal, or zero. 510 */ 511 int 512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 513 { 514 ksiginfo_t *ksi; 515 sigset_t tset; 516 517 /* If there's no pending set, the signal is from the debugger. */ 518 if (sp == NULL) { 519 if (out != NULL) { 520 KSI_INIT(out); 521 out->ksi_info._signo = signo; 522 out->ksi_info._code = SI_USER; 523 } 524 return signo; 525 } 526 527 /* Construct mask from signo, and 'mask'. */ 528 if (signo == 0) { 529 if (mask != NULL) { 530 tset = *mask; 531 __sigandset(&sp->sp_set, &tset); 532 } else 533 tset = sp->sp_set; 534 535 /* If there are no signals pending, that's it. */ 536 if ((signo = firstsig(&tset)) == 0) 537 return 0; 538 } else { 539 KASSERT(sigismember(&sp->sp_set, signo)); 540 } 541 542 sigdelset(&sp->sp_set, signo); 543 544 /* Find siginfo and copy it out. */ 545 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 546 if (ksi->ksi_signo == signo) { 547 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 548 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 549 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 550 ksi->ksi_flags &= ~KSI_QUEUED; 551 if (out != NULL) { 552 memcpy(out, ksi, sizeof(*out)); 553 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 554 } 555 ksiginfo_free(ksi); 556 return signo; 557 } 558 } 559 560 /* If there's no siginfo, then manufacture it. */ 561 if (out != NULL) { 562 KSI_INIT(out); 563 out->ksi_info._signo = signo; 564 out->ksi_info._code = SI_USER; 565 } 566 567 return signo; 568 } 569 570 /* 571 * sigput: 572 * 573 * Append a new ksiginfo element to the list of pending ksiginfo's, if 574 * we need to (e.g. SA_SIGINFO was requested). 575 */ 576 void 577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 578 { 579 ksiginfo_t *kp; 580 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 581 582 KASSERT(mutex_owned(&p->p_smutex)); 583 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 584 585 sigaddset(&sp->sp_set, ksi->ksi_signo); 586 587 /* 588 * If siginfo is not required, or there is none, then just mark the 589 * signal as pending. 590 */ 591 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi)) 592 return; 593 594 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 595 596 #ifdef notyet /* XXX: QUEUING */ 597 if (ksi->ksi_signo < SIGRTMIN) 598 #endif 599 { 600 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 601 if (kp->ksi_signo == ksi->ksi_signo) { 602 KSI_COPY(ksi, kp); 603 kp->ksi_flags |= KSI_QUEUED; 604 return; 605 } 606 } 607 } 608 609 ksi->ksi_flags |= KSI_QUEUED; 610 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 611 } 612 613 /* 614 * sigclear: 615 * 616 * Clear all pending signals in the specified set. 617 */ 618 void 619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 620 { 621 ksiginfo_t *ksi, *next; 622 623 if (mask == NULL) 624 sigemptyset(&sp->sp_set); 625 else 626 sigminusset(mask, &sp->sp_set); 627 628 ksi = CIRCLEQ_FIRST(&sp->sp_info); 629 for (; ksi != (void *)&sp->sp_info; ksi = next) { 630 next = CIRCLEQ_NEXT(ksi, ksi_list); 631 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 632 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 633 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 634 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 635 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 636 } 637 } 638 } 639 640 /* 641 * sigclearall: 642 * 643 * Clear all pending signals in the specified set from a process and 644 * its LWPs. 645 */ 646 void 647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 648 { 649 struct lwp *l; 650 651 KASSERT(mutex_owned(&p->p_smutex)); 652 653 sigclear(&p->p_sigpend, mask, kq); 654 655 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 656 sigclear(&l->l_sigpend, mask, kq); 657 } 658 } 659 660 /* 661 * sigispending: 662 * 663 * Return true if there are pending signals for the current LWP. May 664 * be called unlocked provided that LW_PENDSIG is set, and that the 665 * signal has been posted to the appopriate queue before LW_PENDSIG is 666 * set. 667 */ 668 int 669 sigispending(struct lwp *l, int signo) 670 { 671 struct proc *p = l->l_proc; 672 sigset_t tset; 673 674 membar_consumer(); 675 676 tset = l->l_sigpend.sp_set; 677 sigplusset(&p->p_sigpend.sp_set, &tset); 678 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 679 sigminusset(&l->l_sigmask, &tset); 680 681 if (signo == 0) { 682 if (firstsig(&tset) != 0) 683 return EINTR; 684 } else if (sigismember(&tset, signo)) 685 return EINTR; 686 687 return 0; 688 } 689 690 /* 691 * siginfo_alloc: 692 * 693 * Allocate a new siginfo_t structure from the pool. 694 */ 695 siginfo_t * 696 siginfo_alloc(int flags) 697 { 698 699 return pool_get(&siginfo_pool, flags); 700 } 701 702 /* 703 * siginfo_free: 704 * 705 * Return a siginfo_t structure to the pool. 706 */ 707 void 708 siginfo_free(void *arg) 709 { 710 711 pool_put(&siginfo_pool, arg); 712 } 713 714 void 715 getucontext(struct lwp *l, ucontext_t *ucp) 716 { 717 struct proc *p = l->l_proc; 718 719 KASSERT(mutex_owned(&p->p_smutex)); 720 721 ucp->uc_flags = 0; 722 ucp->uc_link = l->l_ctxlink; 723 724 ucp->uc_sigmask = l->l_sigmask; 725 ucp->uc_flags |= _UC_SIGMASK; 726 727 /* 728 * The (unsupplied) definition of the `current execution stack' 729 * in the System V Interface Definition appears to allow returning 730 * the main context stack. 731 */ 732 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 733 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 734 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 735 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 736 } else { 737 /* Simply copy alternate signal execution stack. */ 738 ucp->uc_stack = l->l_sigstk; 739 } 740 ucp->uc_flags |= _UC_STACK; 741 mutex_exit(&p->p_smutex); 742 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 743 mutex_enter(&p->p_smutex); 744 } 745 746 int 747 setucontext(struct lwp *l, const ucontext_t *ucp) 748 { 749 struct proc *p = l->l_proc; 750 int error; 751 752 KASSERT(mutex_owned(&p->p_smutex)); 753 754 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 755 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 756 if (error != 0) 757 return error; 758 } 759 760 mutex_exit(&p->p_smutex); 761 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 762 mutex_enter(&p->p_smutex); 763 if (error != 0) 764 return (error); 765 766 l->l_ctxlink = ucp->uc_link; 767 768 /* 769 * If there was stack information, update whether or not we are 770 * still running on an alternate signal stack. 771 */ 772 if ((ucp->uc_flags & _UC_STACK) != 0) { 773 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 774 l->l_sigstk.ss_flags |= SS_ONSTACK; 775 else 776 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 777 } 778 779 return 0; 780 } 781 782 /* 783 * Common code for kill process group/broadcast kill. cp is calling 784 * process. 785 */ 786 int 787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 788 { 789 struct proc *p, *cp; 790 kauth_cred_t pc; 791 struct pgrp *pgrp; 792 int nfound; 793 int signo = ksi->ksi_signo; 794 795 cp = l->l_proc; 796 pc = l->l_cred; 797 nfound = 0; 798 799 mutex_enter(&proclist_lock); 800 if (all) { 801 /* 802 * broadcast 803 */ 804 PROCLIST_FOREACH(p, &allproc) { 805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp) 806 continue; 807 mutex_enter(&p->p_mutex); 808 if (kauth_authorize_process(pc, 809 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 810 NULL) == 0) { 811 nfound++; 812 if (signo) { 813 mutex_enter(&proclist_mutex); 814 mutex_enter(&p->p_smutex); 815 kpsignal2(p, ksi); 816 mutex_exit(&p->p_smutex); 817 mutex_exit(&proclist_mutex); 818 } 819 } 820 mutex_exit(&p->p_mutex); 821 } 822 } else { 823 if (pgid == 0) 824 /* 825 * zero pgid means send to my process group. 826 */ 827 pgrp = cp->p_pgrp; 828 else { 829 pgrp = pg_find(pgid, PFIND_LOCKED); 830 if (pgrp == NULL) 831 goto out; 832 } 833 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 834 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 835 continue; 836 mutex_enter(&p->p_mutex); 837 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 838 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 839 nfound++; 840 if (signo) { 841 mutex_enter(&proclist_mutex); 842 mutex_enter(&p->p_smutex); 843 if (P_ZOMBIE(p) == 0) 844 kpsignal2(p, ksi); 845 mutex_exit(&p->p_smutex); 846 mutex_exit(&proclist_mutex); 847 } 848 } 849 mutex_exit(&p->p_mutex); 850 } 851 } 852 out: 853 mutex_exit(&proclist_lock); 854 return (nfound ? 0 : ESRCH); 855 } 856 857 /* 858 * Send a signal to a process group. If checktty is 1, limit to members 859 * which have a controlling terminal. 860 */ 861 void 862 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 863 { 864 ksiginfo_t ksi; 865 866 KASSERT(mutex_owned(&proclist_mutex)); 867 868 KSI_INIT_EMPTY(&ksi); 869 ksi.ksi_signo = sig; 870 kpgsignal(pgrp, &ksi, NULL, checkctty); 871 } 872 873 void 874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 875 { 876 struct proc *p; 877 878 KASSERT(mutex_owned(&proclist_mutex)); 879 880 if (pgrp) 881 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 882 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 883 kpsignal(p, ksi, data); 884 } 885 886 /* 887 * Send a signal caused by a trap to the current LWP. If it will be caught 888 * immediately, deliver it with correct code. Otherwise, post it normally. 889 */ 890 void 891 trapsignal(struct lwp *l, ksiginfo_t *ksi) 892 { 893 struct proc *p; 894 struct sigacts *ps; 895 int signo = ksi->ksi_signo; 896 897 KASSERT(KSI_TRAP_P(ksi)); 898 899 ksi->ksi_lid = l->l_lid; 900 p = l->l_proc; 901 902 mutex_enter(&proclist_mutex); 903 mutex_enter(&p->p_smutex); 904 ps = p->p_sigacts; 905 if ((p->p_slflag & PSL_TRACED) == 0 && 906 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 907 !sigismember(&l->l_sigmask, signo)) { 908 mutex_exit(&proclist_mutex); 909 l->l_ru.ru_nsignals++; 910 kpsendsig(l, ksi, &l->l_sigmask); 911 mutex_exit(&p->p_smutex); 912 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 913 &l->l_sigmask, ksi); 914 } else { 915 /* XXX for core dump/debugger */ 916 p->p_sigctx.ps_lwp = l->l_lid; 917 p->p_sigctx.ps_signo = ksi->ksi_signo; 918 p->p_sigctx.ps_code = ksi->ksi_trap; 919 kpsignal2(p, ksi); 920 mutex_exit(&proclist_mutex); 921 mutex_exit(&p->p_smutex); 922 } 923 } 924 925 /* 926 * Fill in signal information and signal the parent for a child status change. 927 */ 928 void 929 child_psignal(struct proc *p, int mask) 930 { 931 ksiginfo_t ksi; 932 struct proc *q; 933 int xstat; 934 935 KASSERT(mutex_owned(&proclist_mutex)); 936 KASSERT(mutex_owned(&p->p_smutex)); 937 938 xstat = p->p_xstat; 939 940 KSI_INIT(&ksi); 941 ksi.ksi_signo = SIGCHLD; 942 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 943 ksi.ksi_pid = p->p_pid; 944 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 945 ksi.ksi_status = xstat; 946 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 947 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 948 949 q = p->p_pptr; 950 951 mutex_exit(&p->p_smutex); 952 mutex_enter(&q->p_smutex); 953 954 if ((q->p_sflag & mask) == 0) 955 kpsignal2(q, &ksi); 956 957 mutex_exit(&q->p_smutex); 958 mutex_enter(&p->p_smutex); 959 } 960 961 void 962 psignal(struct proc *p, int signo) 963 { 964 ksiginfo_t ksi; 965 966 KASSERT(mutex_owned(&proclist_mutex)); 967 968 KSI_INIT_EMPTY(&ksi); 969 ksi.ksi_signo = signo; 970 mutex_enter(&p->p_smutex); 971 kpsignal2(p, &ksi); 972 mutex_exit(&p->p_smutex); 973 } 974 975 void 976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 977 { 978 fdfile_t *ff; 979 file_t *fp; 980 981 KASSERT(mutex_owned(&proclist_mutex)); 982 983 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 984 size_t fd; 985 filedesc_t *fdp = p->p_fd; 986 987 /* XXXSMP locking */ 988 ksi->ksi_fd = -1; 989 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 990 if ((ff = fdp->fd_ofiles[fd]) == NULL) 991 continue; 992 if ((fp = ff->ff_file) == NULL) 993 continue; 994 if (fp->f_data == data) { 995 ksi->ksi_fd = fd; 996 break; 997 } 998 } 999 } 1000 mutex_enter(&p->p_smutex); 1001 kpsignal2(p, ksi); 1002 mutex_exit(&p->p_smutex); 1003 } 1004 1005 /* 1006 * sigismasked: 1007 * 1008 * Returns true if signal is ignored or masked for the specified LWP. 1009 */ 1010 int 1011 sigismasked(struct lwp *l, int sig) 1012 { 1013 struct proc *p = l->l_proc; 1014 1015 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1016 sigismember(&l->l_sigmask, sig)); 1017 } 1018 1019 /* 1020 * sigpost: 1021 * 1022 * Post a pending signal to an LWP. Returns non-zero if the LWP was 1023 * able to take the signal. 1024 */ 1025 int 1026 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1027 { 1028 int rv, masked; 1029 1030 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 1031 1032 /* 1033 * If the LWP is on the way out, sigclear() will be busy draining all 1034 * pending signals. Don't give it more. 1035 */ 1036 if (l->l_refcnt == 0) 1037 return 0; 1038 1039 lwp_lock(l); 1040 1041 /* 1042 * Have the LWP check for signals. This ensures that even if no LWP 1043 * is found to take the signal immediately, it should be taken soon. 1044 */ 1045 l->l_flag |= LW_PENDSIG; 1046 1047 /* 1048 * SIGCONT can be masked, but must always restart stopped LWPs. 1049 */ 1050 masked = sigismember(&l->l_sigmask, sig); 1051 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1052 lwp_unlock(l); 1053 return 0; 1054 } 1055 1056 /* 1057 * If killing the process, make it run fast. 1058 */ 1059 if (__predict_false((prop & SA_KILL) != 0) && 1060 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1061 KASSERT(l->l_class == SCHED_OTHER); 1062 lwp_changepri(l, MAXPRI_USER); 1063 } 1064 1065 /* 1066 * If the LWP is running or on a run queue, then we win. If it's 1067 * sleeping interruptably, wake it and make it take the signal. If 1068 * the sleep isn't interruptable, then the chances are it will get 1069 * to see the signal soon anyhow. If suspended, it can't take the 1070 * signal right now. If it's LWP private or for all LWPs, save it 1071 * for later; otherwise punt. 1072 */ 1073 rv = 0; 1074 1075 switch (l->l_stat) { 1076 case LSRUN: 1077 case LSONPROC: 1078 lwp_need_userret(l); 1079 rv = 1; 1080 break; 1081 1082 case LSSLEEP: 1083 if ((l->l_flag & LW_SINTR) != 0) { 1084 /* setrunnable() will release the lock. */ 1085 setrunnable(l); 1086 return 1; 1087 } 1088 break; 1089 1090 case LSSUSPENDED: 1091 if ((prop & SA_KILL) != 0) { 1092 /* lwp_continue() will release the lock. */ 1093 lwp_continue(l); 1094 return 1; 1095 } 1096 break; 1097 1098 case LSSTOP: 1099 if ((prop & SA_STOP) != 0) 1100 break; 1101 1102 /* 1103 * If the LWP is stopped and we are sending a continue 1104 * signal, then start it again. 1105 */ 1106 if ((prop & SA_CONT) != 0) { 1107 if (l->l_wchan != NULL) { 1108 l->l_stat = LSSLEEP; 1109 l->l_proc->p_nrlwps++; 1110 rv = 1; 1111 break; 1112 } 1113 /* setrunnable() will release the lock. */ 1114 setrunnable(l); 1115 return 1; 1116 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1117 /* setrunnable() will release the lock. */ 1118 setrunnable(l); 1119 return 1; 1120 } 1121 break; 1122 1123 default: 1124 break; 1125 } 1126 1127 lwp_unlock(l); 1128 return rv; 1129 } 1130 1131 /* 1132 * Notify an LWP that it has a pending signal. 1133 */ 1134 void 1135 signotify(struct lwp *l) 1136 { 1137 KASSERT(lwp_locked(l, NULL)); 1138 1139 l->l_flag |= LW_PENDSIG; 1140 lwp_need_userret(l); 1141 } 1142 1143 /* 1144 * Find an LWP within process p that is waiting on signal ksi, and hand 1145 * it on. 1146 */ 1147 int 1148 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1149 { 1150 struct lwp *l; 1151 int signo; 1152 1153 KASSERT(mutex_owned(&p->p_smutex)); 1154 1155 signo = ksi->ksi_signo; 1156 1157 if (ksi->ksi_lid != 0) { 1158 /* 1159 * Signal came via _lwp_kill(). Find the LWP and see if 1160 * it's interested. 1161 */ 1162 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1163 return 0; 1164 if (l->l_sigwaited == NULL || 1165 !sigismember(&l->l_sigwaitset, signo)) 1166 return 0; 1167 } else { 1168 /* 1169 * Look for any LWP that may be interested. 1170 */ 1171 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1172 KASSERT(l->l_sigwaited != NULL); 1173 if (sigismember(&l->l_sigwaitset, signo)) 1174 break; 1175 } 1176 } 1177 1178 if (l != NULL) { 1179 l->l_sigwaited->ksi_info = ksi->ksi_info; 1180 l->l_sigwaited = NULL; 1181 LIST_REMOVE(l, l_sigwaiter); 1182 cv_signal(&l->l_sigcv); 1183 return 1; 1184 } 1185 1186 return 0; 1187 } 1188 1189 /* 1190 * Send the signal to the process. If the signal has an action, the action 1191 * is usually performed by the target process rather than the caller; we add 1192 * the signal to the set of pending signals for the process. 1193 * 1194 * Exceptions: 1195 * o When a stop signal is sent to a sleeping process that takes the 1196 * default action, the process is stopped without awakening it. 1197 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1198 * regardless of the signal action (eg, blocked or ignored). 1199 * 1200 * Other ignored signals are discarded immediately. 1201 */ 1202 void 1203 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1204 { 1205 int prop, lid, toall, signo = ksi->ksi_signo; 1206 struct sigacts *sa; 1207 struct lwp *l; 1208 ksiginfo_t *kp; 1209 ksiginfoq_t kq; 1210 sig_t action; 1211 1212 KASSERT(mutex_owned(&proclist_mutex)); 1213 KASSERT(mutex_owned(&p->p_smutex)); 1214 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1215 KASSERT(signo > 0 && signo < NSIG); 1216 1217 /* 1218 * If the process is being created by fork, is a zombie or is 1219 * exiting, then just drop the signal here and bail out. 1220 */ 1221 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1222 return; 1223 1224 /* 1225 * Notify any interested parties of the signal. 1226 */ 1227 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1228 1229 /* 1230 * Some signals including SIGKILL must act on the entire process. 1231 */ 1232 kp = NULL; 1233 prop = sigprop[signo]; 1234 toall = ((prop & SA_TOALL) != 0); 1235 1236 if (toall) 1237 lid = 0; 1238 else 1239 lid = ksi->ksi_lid; 1240 1241 /* 1242 * If proc is traced, always give parent a chance. 1243 */ 1244 if (p->p_slflag & PSL_TRACED) { 1245 action = SIG_DFL; 1246 1247 if (lid == 0) { 1248 /* 1249 * If the process is being traced and the signal 1250 * is being caught, make sure to save any ksiginfo. 1251 */ 1252 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1253 return; 1254 sigput(&p->p_sigpend, p, kp); 1255 } 1256 } else { 1257 /* 1258 * If the signal was the result of a trap and is not being 1259 * caught, then reset it to default action so that the 1260 * process dumps core immediately. 1261 */ 1262 if (KSI_TRAP_P(ksi)) { 1263 sa = p->p_sigacts; 1264 mutex_enter(&sa->sa_mutex); 1265 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1266 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1267 SIGACTION(p, signo).sa_handler = SIG_DFL; 1268 } 1269 mutex_exit(&sa->sa_mutex); 1270 } 1271 1272 /* 1273 * If the signal is being ignored, then drop it. Note: we 1274 * don't set SIGCONT in ps_sigignore, and if it is set to 1275 * SIG_IGN, action will be SIG_DFL here. 1276 */ 1277 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1278 return; 1279 1280 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1281 action = SIG_CATCH; 1282 else { 1283 action = SIG_DFL; 1284 1285 /* 1286 * If sending a tty stop signal to a member of an 1287 * orphaned process group, discard the signal here if 1288 * the action is default; don't stop the process below 1289 * if sleeping, and don't clear any pending SIGCONT. 1290 */ 1291 if (prop & SA_TTYSTOP && 1292 (p->p_sflag & PS_ORPHANPG) != 0) 1293 return; 1294 1295 if (prop & SA_KILL && p->p_nice > NZERO) 1296 p->p_nice = NZERO; 1297 } 1298 } 1299 1300 /* 1301 * If stopping or continuing a process, discard any pending 1302 * signals that would do the inverse. 1303 */ 1304 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1305 ksiginfo_queue_init(&kq); 1306 if ((prop & SA_CONT) != 0) 1307 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1308 if ((prop & SA_STOP) != 0) 1309 sigclear(&p->p_sigpend, &contsigmask, &kq); 1310 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1311 } 1312 1313 /* 1314 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1315 * please!), check if any LWPs are waiting on it. If yes, pass on 1316 * the signal info. The signal won't be processed further here. 1317 */ 1318 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1319 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1320 sigunwait(p, ksi)) 1321 return; 1322 1323 /* 1324 * XXXSMP Should be allocated by the caller, we're holding locks 1325 * here. 1326 */ 1327 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1328 return; 1329 1330 /* 1331 * LWP private signals are easy - just find the LWP and post 1332 * the signal to it. 1333 */ 1334 if (lid != 0) { 1335 l = lwp_find(p, lid); 1336 if (l != NULL) { 1337 sigput(&l->l_sigpend, p, kp); 1338 membar_producer(); 1339 (void)sigpost(l, action, prop, kp->ksi_signo); 1340 } 1341 goto out; 1342 } 1343 1344 /* 1345 * Some signals go to all LWPs, even if posted with _lwp_kill(). 1346 */ 1347 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1348 if ((p->p_slflag & PSL_TRACED) != 0) 1349 goto deliver; 1350 1351 /* 1352 * If SIGCONT is default (or ignored) and process is 1353 * asleep, we are finished; the process should not 1354 * be awakened. 1355 */ 1356 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1357 goto out; 1358 1359 sigput(&p->p_sigpend, p, kp); 1360 } else { 1361 /* 1362 * Process is stopped or stopping. If traced, then no 1363 * further action is necessary. 1364 */ 1365 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1366 goto out; 1367 1368 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1369 /* 1370 * Re-adjust p_nstopchild if the process wasn't 1371 * collected by its parent. 1372 */ 1373 p->p_stat = SACTIVE; 1374 p->p_sflag &= ~PS_STOPPING; 1375 if (!p->p_waited) 1376 p->p_pptr->p_nstopchild--; 1377 1378 /* 1379 * If SIGCONT is default (or ignored), we continue 1380 * the process but don't leave the signal in 1381 * ps_siglist, as it has no further action. If 1382 * SIGCONT is held, we continue the process and 1383 * leave the signal in ps_siglist. If the process 1384 * catches SIGCONT, let it handle the signal itself. 1385 * If it isn't waiting on an event, then it goes 1386 * back to run state. Otherwise, process goes back 1387 * to sleep state. 1388 */ 1389 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1390 sigput(&p->p_sigpend, p, kp); 1391 } else if ((prop & SA_STOP) != 0) { 1392 /* 1393 * Already stopped, don't need to stop again. 1394 * (If we did the shell could get confused.) 1395 */ 1396 goto out; 1397 } else 1398 sigput(&p->p_sigpend, p, kp); 1399 } 1400 1401 deliver: 1402 /* 1403 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1404 * visible on the per process list (for sigispending()). This 1405 * is unlikely to be needed in practice, but... 1406 */ 1407 membar_producer(); 1408 1409 /* 1410 * Try to find an LWP that can take the signal. 1411 */ 1412 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1413 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1414 break; 1415 1416 out: 1417 /* 1418 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1419 * with locks held. The caller should take care of this. 1420 */ 1421 ksiginfo_free(kp); 1422 } 1423 1424 void 1425 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1426 { 1427 struct proc *p = l->l_proc; 1428 1429 KASSERT(mutex_owned(&p->p_smutex)); 1430 1431 (*p->p_emul->e_sendsig)(ksi, mask); 1432 } 1433 1434 /* 1435 * Stop any LWPs sleeping interruptably. 1436 */ 1437 static void 1438 proc_stop_lwps(struct proc *p) 1439 { 1440 struct lwp *l; 1441 1442 KASSERT(mutex_owned(&p->p_smutex)); 1443 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1444 1445 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1446 lwp_lock(l); 1447 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1448 l->l_stat = LSSTOP; 1449 p->p_nrlwps--; 1450 } 1451 lwp_unlock(l); 1452 } 1453 } 1454 1455 /* 1456 * Finish stopping of a process. Mark it stopped and notify the parent. 1457 * 1458 * Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true. 1459 */ 1460 static void 1461 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1462 { 1463 1464 KASSERT(mutex_owned(&proclist_mutex)); 1465 KASSERT(mutex_owned(&p->p_smutex)); 1466 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1467 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1468 1469 p->p_sflag &= ~PS_STOPPING; 1470 p->p_stat = SSTOP; 1471 p->p_waited = 0; 1472 p->p_pptr->p_nstopchild++; 1473 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1474 if (ppsig) { 1475 /* child_psignal drops p_smutex briefly. */ 1476 child_psignal(p, ppmask); 1477 } 1478 cv_broadcast(&p->p_pptr->p_waitcv); 1479 } 1480 } 1481 1482 /* 1483 * Stop the current process and switch away when being stopped or traced. 1484 */ 1485 void 1486 sigswitch(bool ppsig, int ppmask, int signo) 1487 { 1488 struct lwp *l = curlwp; 1489 struct proc *p = l->l_proc; 1490 #ifdef MULTIPROCESSOR 1491 int biglocks; 1492 #endif 1493 1494 KASSERT(mutex_owned(&p->p_smutex)); 1495 KASSERT(l->l_stat == LSONPROC); 1496 KASSERT(p->p_nrlwps > 0); 1497 1498 /* 1499 * On entry we know that the process needs to stop. If it's 1500 * the result of a 'sideways' stop signal that has been sourced 1501 * through issignal(), then stop other LWPs in the process too. 1502 */ 1503 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1504 KASSERT(signo != 0); 1505 proc_stop(p, 1, signo); 1506 KASSERT(p->p_nrlwps > 0); 1507 } 1508 1509 /* 1510 * If we are the last live LWP, and the stop was a result of 1511 * a new signal, then signal the parent. 1512 */ 1513 if ((p->p_sflag & PS_STOPPING) != 0) { 1514 if (!mutex_tryenter(&proclist_mutex)) { 1515 mutex_exit(&p->p_smutex); 1516 mutex_enter(&proclist_mutex); 1517 mutex_enter(&p->p_smutex); 1518 } 1519 1520 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1521 /* 1522 * Note that proc_stop_done() can drop 1523 * p->p_smutex briefly. 1524 */ 1525 proc_stop_done(p, ppsig, ppmask); 1526 } 1527 1528 mutex_exit(&proclist_mutex); 1529 } 1530 1531 /* 1532 * Unlock and switch away. 1533 */ 1534 KERNEL_UNLOCK_ALL(l, &biglocks); 1535 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1536 p->p_nrlwps--; 1537 lwp_lock(l); 1538 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1539 l->l_stat = LSSTOP; 1540 lwp_unlock(l); 1541 } 1542 1543 mutex_exit(&p->p_smutex); 1544 lwp_lock(l); 1545 mi_switch(l); 1546 KERNEL_LOCK(biglocks, l); 1547 mutex_enter(&p->p_smutex); 1548 } 1549 1550 /* 1551 * Check for a signal from the debugger. 1552 */ 1553 int 1554 sigchecktrace(sigpend_t **spp) 1555 { 1556 struct lwp *l = curlwp; 1557 struct proc *p = l->l_proc; 1558 int signo; 1559 1560 KASSERT(mutex_owned(&p->p_smutex)); 1561 1562 /* 1563 * If we are no longer being traced, or the parent didn't 1564 * give us a signal, look for more signals. 1565 */ 1566 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1567 return 0; 1568 1569 /* If there's a pending SIGKILL, process it immediately. */ 1570 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1571 return 0; 1572 1573 /* 1574 * If the new signal is being masked, look for other signals. 1575 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1576 */ 1577 signo = p->p_xstat; 1578 p->p_xstat = 0; 1579 if ((sigprop[signo] & SA_TOLWP) != 0) 1580 *spp = &l->l_sigpend; 1581 else 1582 *spp = &p->p_sigpend; 1583 if (sigismember(&l->l_sigmask, signo)) 1584 signo = 0; 1585 1586 return signo; 1587 } 1588 1589 /* 1590 * If the current process has received a signal (should be caught or cause 1591 * termination, should interrupt current syscall), return the signal number. 1592 * 1593 * Stop signals with default action are processed immediately, then cleared; 1594 * they aren't returned. This is checked after each entry to the system for 1595 * a syscall or trap. 1596 * 1597 * We will also return -1 if the process is exiting and the current LWP must 1598 * follow suit. 1599 * 1600 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We 1601 * can switch away, though. 1602 */ 1603 int 1604 issignal(struct lwp *l) 1605 { 1606 struct proc *p = l->l_proc; 1607 int signo = 0, prop; 1608 sigpend_t *sp = NULL; 1609 sigset_t ss; 1610 1611 KASSERT(mutex_owned(&p->p_smutex)); 1612 1613 for (;;) { 1614 /* Discard any signals that we have decided not to take. */ 1615 if (signo != 0) 1616 (void)sigget(sp, NULL, signo, NULL); 1617 1618 /* 1619 * If the process is stopped/stopping, then stop ourselves 1620 * now that we're on the kernel/userspace boundary. When 1621 * we awaken, check for a signal from the debugger. 1622 */ 1623 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1624 sigswitch(true, PS_NOCLDSTOP, 0); 1625 signo = sigchecktrace(&sp); 1626 } else 1627 signo = 0; 1628 1629 /* 1630 * If the debugger didn't provide a signal, find a pending 1631 * signal from our set. Check per-LWP signals first, and 1632 * then per-process. 1633 */ 1634 if (signo == 0) { 1635 sp = &l->l_sigpend; 1636 ss = sp->sp_set; 1637 if ((p->p_sflag & PS_PPWAIT) != 0) 1638 sigminusset(&stopsigmask, &ss); 1639 sigminusset(&l->l_sigmask, &ss); 1640 1641 if ((signo = firstsig(&ss)) == 0) { 1642 sp = &p->p_sigpend; 1643 ss = sp->sp_set; 1644 if ((p->p_sflag & PS_PPWAIT) != 0) 1645 sigminusset(&stopsigmask, &ss); 1646 sigminusset(&l->l_sigmask, &ss); 1647 1648 if ((signo = firstsig(&ss)) == 0) { 1649 /* 1650 * No signal pending - clear the 1651 * indicator and bail out. 1652 */ 1653 lwp_lock(l); 1654 l->l_flag &= ~LW_PENDSIG; 1655 lwp_unlock(l); 1656 sp = NULL; 1657 break; 1658 } 1659 } 1660 } 1661 1662 /* 1663 * We should see pending but ignored signals only if 1664 * we are being traced. 1665 */ 1666 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1667 (p->p_slflag & PSL_TRACED) == 0) { 1668 /* Discard the signal. */ 1669 continue; 1670 } 1671 1672 /* 1673 * If traced, always stop, and stay stopped until released 1674 * by the debugger. If the our parent process is waiting 1675 * for us, don't hang as we could deadlock. 1676 */ 1677 if ((p->p_slflag & PSL_TRACED) != 0 && 1678 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) { 1679 /* Take the signal. */ 1680 (void)sigget(sp, NULL, signo, NULL); 1681 p->p_xstat = signo; 1682 1683 /* Emulation-specific handling of signal trace */ 1684 if (p->p_emul->e_tracesig == NULL || 1685 (*p->p_emul->e_tracesig)(p, signo) == 0) 1686 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1687 signo); 1688 1689 /* Check for a signal from the debugger. */ 1690 if ((signo = sigchecktrace(&sp)) == 0) 1691 continue; 1692 } 1693 1694 prop = sigprop[signo]; 1695 1696 /* 1697 * Decide whether the signal should be returned. 1698 */ 1699 switch ((long)SIGACTION(p, signo).sa_handler) { 1700 case (long)SIG_DFL: 1701 /* 1702 * Don't take default actions on system processes. 1703 */ 1704 if (p->p_pid <= 1) { 1705 #ifdef DIAGNOSTIC 1706 /* 1707 * Are you sure you want to ignore SIGSEGV 1708 * in init? XXX 1709 */ 1710 printf_nolog("Process (pid %d) got sig %d\n", 1711 p->p_pid, signo); 1712 #endif 1713 continue; 1714 } 1715 1716 /* 1717 * If there is a pending stop signal to process with 1718 * default action, stop here, then clear the signal. 1719 * However, if process is member of an orphaned 1720 * process group, ignore tty stop signals. 1721 */ 1722 if (prop & SA_STOP) { 1723 if (p->p_slflag & PSL_TRACED || 1724 ((p->p_sflag & PS_ORPHANPG) != 0 && 1725 prop & SA_TTYSTOP)) { 1726 /* Ignore the signal. */ 1727 continue; 1728 } 1729 /* Take the signal. */ 1730 (void)sigget(sp, NULL, signo, NULL); 1731 p->p_xstat = signo; 1732 signo = 0; 1733 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1734 } else if (prop & SA_IGNORE) { 1735 /* 1736 * Except for SIGCONT, shouldn't get here. 1737 * Default action is to ignore; drop it. 1738 */ 1739 continue; 1740 } 1741 break; 1742 1743 case (long)SIG_IGN: 1744 #ifdef DEBUG_ISSIGNAL 1745 /* 1746 * Masking above should prevent us ever trying 1747 * to take action on an ignored signal other 1748 * than SIGCONT, unless process is traced. 1749 */ 1750 if ((prop & SA_CONT) == 0 && 1751 (p->p_slflag & PSL_TRACED) == 0) 1752 printf_nolog("issignal\n"); 1753 #endif 1754 continue; 1755 1756 default: 1757 /* 1758 * This signal has an action, let postsig() process 1759 * it. 1760 */ 1761 break; 1762 } 1763 1764 break; 1765 } 1766 1767 l->l_sigpendset = sp; 1768 return signo; 1769 } 1770 1771 /* 1772 * Take the action for the specified signal 1773 * from the current set of pending signals. 1774 */ 1775 void 1776 postsig(int signo) 1777 { 1778 struct lwp *l; 1779 struct proc *p; 1780 struct sigacts *ps; 1781 sig_t action; 1782 sigset_t *returnmask; 1783 ksiginfo_t ksi; 1784 1785 l = curlwp; 1786 p = l->l_proc; 1787 ps = p->p_sigacts; 1788 1789 KASSERT(mutex_owned(&p->p_smutex)); 1790 KASSERT(signo > 0); 1791 1792 /* 1793 * Set the new mask value and also defer further occurrences of this 1794 * signal. 1795 * 1796 * Special case: user has done a sigsuspend. Here the current mask is 1797 * not of interest, but rather the mask from before the sigsuspen is 1798 * what we want restored after the signal processing is completed. 1799 */ 1800 if (l->l_sigrestore) { 1801 returnmask = &l->l_sigoldmask; 1802 l->l_sigrestore = 0; 1803 } else 1804 returnmask = &l->l_sigmask; 1805 1806 /* 1807 * Commit to taking the signal before releasing the mutex. 1808 */ 1809 action = SIGACTION_PS(ps, signo).sa_handler; 1810 l->l_ru.ru_nsignals++; 1811 sigget(l->l_sigpendset, &ksi, signo, NULL); 1812 1813 if (ktrpoint(KTR_PSIG)) { 1814 mutex_exit(&p->p_smutex); 1815 ktrpsig(signo, action, returnmask, NULL); 1816 mutex_enter(&p->p_smutex); 1817 } 1818 1819 if (action == SIG_DFL) { 1820 /* 1821 * Default action, where the default is to kill 1822 * the process. (Other cases were ignored above.) 1823 */ 1824 sigexit(l, signo); 1825 return; 1826 } 1827 1828 /* 1829 * If we get here, the signal must be caught. 1830 */ 1831 #ifdef DIAGNOSTIC 1832 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1833 panic("postsig action"); 1834 #endif 1835 1836 kpsendsig(l, &ksi, returnmask); 1837 } 1838 1839 /* 1840 * sendsig_reset: 1841 * 1842 * Reset the signal action. Called from emulation specific sendsig() 1843 * before unlocking to deliver the signal. 1844 */ 1845 void 1846 sendsig_reset(struct lwp *l, int signo) 1847 { 1848 struct proc *p = l->l_proc; 1849 struct sigacts *ps = p->p_sigacts; 1850 1851 KASSERT(mutex_owned(&p->p_smutex)); 1852 1853 p->p_sigctx.ps_lwp = 0; 1854 p->p_sigctx.ps_code = 0; 1855 p->p_sigctx.ps_signo = 0; 1856 1857 mutex_enter(&ps->sa_mutex); 1858 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1859 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1860 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1861 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1862 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1863 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1864 } 1865 mutex_exit(&ps->sa_mutex); 1866 } 1867 1868 /* 1869 * Kill the current process for stated reason. 1870 */ 1871 void 1872 killproc(struct proc *p, const char *why) 1873 { 1874 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1875 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1876 mutex_enter(&proclist_mutex); /* XXXSMP */ 1877 psignal(p, SIGKILL); 1878 mutex_exit(&proclist_mutex); /* XXXSMP */ 1879 } 1880 1881 /* 1882 * Force the current process to exit with the specified signal, dumping core 1883 * if appropriate. We bypass the normal tests for masked and caught 1884 * signals, allowing unrecoverable failures to terminate the process without 1885 * changing signal state. Mark the accounting record with the signal 1886 * termination. If dumping core, save the signal number for the debugger. 1887 * Calls exit and does not return. 1888 */ 1889 void 1890 sigexit(struct lwp *l, int signo) 1891 { 1892 int exitsig, error, docore; 1893 struct proc *p; 1894 struct lwp *t; 1895 1896 p = l->l_proc; 1897 1898 KASSERT(mutex_owned(&p->p_smutex)); 1899 KERNEL_UNLOCK_ALL(l, NULL); 1900 1901 /* 1902 * Don't permit coredump() multiple times in the same process. 1903 * Call back into sigexit, where we will be suspended until 1904 * the deed is done. Note that this is a recursive call, but 1905 * LW_WCORE will prevent us from coming back this way. 1906 */ 1907 if ((p->p_sflag & PS_WCORE) != 0) { 1908 lwp_lock(l); 1909 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1910 lwp_unlock(l); 1911 mutex_exit(&p->p_smutex); 1912 lwp_userret(l); 1913 #ifdef DIAGNOSTIC 1914 panic("sigexit"); 1915 #endif 1916 /* NOTREACHED */ 1917 } 1918 1919 /* 1920 * Prepare all other LWPs for exit. If dumping core, suspend them 1921 * so that their registers are available long enough to be dumped. 1922 */ 1923 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1924 p->p_sflag |= PS_WCORE; 1925 for (;;) { 1926 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1927 lwp_lock(t); 1928 if (t == l) { 1929 t->l_flag &= ~LW_WSUSPEND; 1930 lwp_unlock(t); 1931 continue; 1932 } 1933 t->l_flag |= (LW_WCORE | LW_WEXIT); 1934 lwp_suspend(l, t); 1935 } 1936 1937 if (p->p_nrlwps == 1) 1938 break; 1939 1940 /* 1941 * Kick any LWPs sitting in lwp_wait1(), and wait 1942 * for everyone else to stop before proceeding. 1943 */ 1944 p->p_nlwpwait++; 1945 cv_broadcast(&p->p_lwpcv); 1946 cv_wait(&p->p_lwpcv, &p->p_smutex); 1947 p->p_nlwpwait--; 1948 } 1949 } 1950 1951 exitsig = signo; 1952 p->p_acflag |= AXSIG; 1953 p->p_sigctx.ps_signo = signo; 1954 mutex_exit(&p->p_smutex); 1955 1956 KERNEL_LOCK(1, l); 1957 1958 if (docore) { 1959 if ((error = coredump(l, NULL)) == 0) 1960 exitsig |= WCOREFLAG; 1961 1962 if (kern_logsigexit) { 1963 int uid = l->l_cred ? 1964 (int)kauth_cred_geteuid(l->l_cred) : -1; 1965 1966 if (error) 1967 log(LOG_INFO, lognocoredump, p->p_pid, 1968 p->p_comm, uid, signo, error); 1969 else 1970 log(LOG_INFO, logcoredump, p->p_pid, 1971 p->p_comm, uid, signo); 1972 } 1973 1974 #ifdef PAX_SEGVGUARD 1975 pax_segvguard(l, p->p_textvp, p->p_comm, true); 1976 #endif /* PAX_SEGVGUARD */ 1977 } 1978 1979 /* Acquire the sched state mutex. exit1() will release it. */ 1980 mutex_enter(&p->p_smutex); 1981 1982 /* No longer dumping core. */ 1983 p->p_sflag &= ~PS_WCORE; 1984 1985 exit1(l, W_EXITCODE(0, exitsig)); 1986 /* NOTREACHED */ 1987 } 1988 1989 /* 1990 * Put process 'p' into the stopped state and optionally, notify the parent. 1991 */ 1992 void 1993 proc_stop(struct proc *p, int notify, int signo) 1994 { 1995 struct lwp *l; 1996 1997 KASSERT(mutex_owned(&p->p_smutex)); 1998 1999 /* 2000 * First off, set the stopping indicator and bring all sleeping 2001 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2002 * unlock between here and the p->p_nrlwps check below. 2003 */ 2004 p->p_sflag |= PS_STOPPING; 2005 if (notify) 2006 p->p_sflag |= PS_NOTIFYSTOP; 2007 else 2008 p->p_sflag &= ~PS_NOTIFYSTOP; 2009 membar_producer(); 2010 2011 proc_stop_lwps(p); 2012 2013 /* 2014 * If there are no LWPs available to take the signal, then we 2015 * signal the parent process immediately. Otherwise, the last 2016 * LWP to stop will take care of it. 2017 */ 2018 2019 if (p->p_nrlwps == 0) { 2020 proc_stop_done(p, true, PS_NOCLDSTOP); 2021 } else { 2022 /* 2023 * Have the remaining LWPs come to a halt, and trigger 2024 * proc_stop_callout() to ensure that they do. 2025 */ 2026 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2027 sigpost(l, SIG_DFL, SA_STOP, signo); 2028 callout_schedule(&proc_stop_ch, 1); 2029 } 2030 } 2031 2032 /* 2033 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2034 * but wait for them to come to a halt at the kernel-user boundary. This is 2035 * to allow LWPs to release any locks that they may hold before stopping. 2036 * 2037 * Non-interruptable sleeps can be long, and there is the potential for an 2038 * LWP to begin sleeping interruptably soon after the process has been set 2039 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2040 * stopping, and so complete halt of the process and the return of status 2041 * information to the parent could be delayed indefinitely. 2042 * 2043 * To handle this race, proc_stop_callout() runs once per tick while there 2044 * are stopping processes in the system. It sets LWPs that are sleeping 2045 * interruptably into the LSSTOP state. 2046 * 2047 * Note that we are not concerned about keeping all LWPs stopped while the 2048 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2049 * What we do need to ensure is that all LWPs in a stopping process have 2050 * stopped at least once, so that notification can be sent to the parent 2051 * process. 2052 */ 2053 static void 2054 proc_stop_callout(void *cookie) 2055 { 2056 bool more, restart; 2057 struct proc *p; 2058 2059 (void)cookie; 2060 2061 do { 2062 restart = false; 2063 more = false; 2064 2065 mutex_enter(&proclist_lock); 2066 mutex_enter(&proclist_mutex); 2067 PROCLIST_FOREACH(p, &allproc) { 2068 mutex_enter(&p->p_smutex); 2069 2070 if ((p->p_sflag & PS_STOPPING) == 0) { 2071 mutex_exit(&p->p_smutex); 2072 continue; 2073 } 2074 2075 /* Stop any LWPs sleeping interruptably. */ 2076 proc_stop_lwps(p); 2077 if (p->p_nrlwps == 0) { 2078 /* 2079 * We brought the process to a halt. 2080 * Mark it as stopped and notify the 2081 * parent. 2082 */ 2083 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2084 /* 2085 * Note that proc_stop_done() will 2086 * drop p->p_smutex briefly. 2087 * Arrange to restart and check 2088 * all processes again. 2089 */ 2090 restart = true; 2091 } 2092 proc_stop_done(p, true, PS_NOCLDSTOP); 2093 } else 2094 more = true; 2095 2096 mutex_exit(&p->p_smutex); 2097 if (restart) 2098 break; 2099 } 2100 mutex_exit(&proclist_mutex); 2101 mutex_exit(&proclist_lock); 2102 } while (restart); 2103 2104 /* 2105 * If we noted processes that are stopping but still have 2106 * running LWPs, then arrange to check again in 1 tick. 2107 */ 2108 if (more) 2109 callout_schedule(&proc_stop_ch, 1); 2110 } 2111 2112 /* 2113 * Given a process in state SSTOP, set the state back to SACTIVE and 2114 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2115 */ 2116 void 2117 proc_unstop(struct proc *p) 2118 { 2119 struct lwp *l; 2120 int sig; 2121 2122 KASSERT(mutex_owned(&proclist_mutex)); 2123 KASSERT(mutex_owned(&p->p_smutex)); 2124 2125 p->p_stat = SACTIVE; 2126 p->p_sflag &= ~PS_STOPPING; 2127 sig = p->p_xstat; 2128 2129 if (!p->p_waited) 2130 p->p_pptr->p_nstopchild--; 2131 2132 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2133 lwp_lock(l); 2134 if (l->l_stat != LSSTOP) { 2135 lwp_unlock(l); 2136 continue; 2137 } 2138 if (l->l_wchan == NULL) { 2139 setrunnable(l); 2140 continue; 2141 } 2142 if (sig && (l->l_flag & LW_SINTR) != 0) { 2143 setrunnable(l); 2144 sig = 0; 2145 } else { 2146 l->l_stat = LSSLEEP; 2147 p->p_nrlwps++; 2148 lwp_unlock(l); 2149 } 2150 } 2151 } 2152 2153 static int 2154 filt_sigattach(struct knote *kn) 2155 { 2156 struct proc *p = curproc; 2157 2158 kn->kn_obj = p; 2159 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2160 2161 mutex_enter(&p->p_smutex); 2162 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2163 mutex_exit(&p->p_smutex); 2164 2165 return (0); 2166 } 2167 2168 static void 2169 filt_sigdetach(struct knote *kn) 2170 { 2171 struct proc *p = kn->kn_obj; 2172 2173 mutex_enter(&p->p_smutex); 2174 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2175 mutex_exit(&p->p_smutex); 2176 } 2177 2178 /* 2179 * signal knotes are shared with proc knotes, so we apply a mask to 2180 * the hint in order to differentiate them from process hints. This 2181 * could be avoided by using a signal-specific knote list, but probably 2182 * isn't worth the trouble. 2183 */ 2184 static int 2185 filt_signal(struct knote *kn, long hint) 2186 { 2187 2188 if (hint & NOTE_SIGNAL) { 2189 hint &= ~NOTE_SIGNAL; 2190 2191 if (kn->kn_id == hint) 2192 kn->kn_data++; 2193 } 2194 return (kn->kn_data != 0); 2195 } 2196 2197 const struct filterops sig_filtops = { 2198 0, filt_sigattach, filt_sigdetach, filt_signal 2199 }; 2200