xref: /netbsd-src/sys/kern/kern_sig.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: kern_sig.c,v 1.338 2017/10/25 08:12:39 maya Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.338 2017/10/25 08:12:39 maya Exp $");
74 
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81 
82 #define	SIGPROP		/* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 
104 #ifdef PAX_SEGVGUARD
105 #include <sys/pax.h>
106 #endif /* PAX_SEGVGUARD */
107 
108 #include <uvm/uvm_extern.h>
109 
110 #define	SIGQUEUE_MAX	32
111 static pool_cache_t	sigacts_cache	__read_mostly;
112 static pool_cache_t	ksiginfo_cache	__read_mostly;
113 static callout_t	proc_stop_ch	__cacheline_aligned;
114 
115 sigset_t		contsigmask	__cacheline_aligned;
116 static sigset_t		stopsigmask	__cacheline_aligned;
117 sigset_t		sigcantmask	__cacheline_aligned;
118 
119 static void	ksiginfo_exechook(struct proc *, void *);
120 static void	proc_stop(struct proc *, int);
121 static void	proc_stop_callout(void *);
122 static int	sigchecktrace(void);
123 static int	sigpost(struct lwp *, sig_t, int, int);
124 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
125 static int	sigunwait(struct proc *, const ksiginfo_t *);
126 static void	sigswitch(bool, int, int);
127 
128 static void	sigacts_poolpage_free(struct pool *, void *);
129 static void	*sigacts_poolpage_alloc(struct pool *, int);
130 
131 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
132 int (*coredump_vec)(struct lwp *, const char *) =
133     (int (*)(struct lwp *, const char *))enosys;
134 
135 /*
136  * DTrace SDT provider definitions
137  */
138 SDT_PROVIDER_DECLARE(proc);
139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
140     "struct lwp *", 	/* target thread */
141     "struct proc *", 	/* target process */
142     "int");		/* signal */
143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
144     "struct lwp *",	/* target thread */
145     "struct proc *",	/* target process */
146     "int");  		/* signal */
147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
148     "int", 		/* signal */
149     "ksiginfo_t *", 	/* signal info */
150     "void (*)(void)");	/* handler address */
151 
152 
153 static struct pool_allocator sigactspool_allocator = {
154 	.pa_alloc = sigacts_poolpage_alloc,
155 	.pa_free = sigacts_poolpage_free
156 };
157 
158 #ifdef DEBUG
159 int	kern_logsigexit = 1;
160 #else
161 int	kern_logsigexit = 0;
162 #endif
163 
164 static const char logcoredump[] =
165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
166 static const char lognocoredump[] =
167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
168 
169 static kauth_listener_t signal_listener;
170 
171 static int
172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
173     void *arg0, void *arg1, void *arg2, void *arg3)
174 {
175 	struct proc *p;
176 	int result, signum;
177 
178 	result = KAUTH_RESULT_DEFER;
179 	p = arg0;
180 	signum = (int)(unsigned long)arg1;
181 
182 	if (action != KAUTH_PROCESS_SIGNAL)
183 		return result;
184 
185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
187 		result = KAUTH_RESULT_ALLOW;
188 
189 	return result;
190 }
191 
192 /*
193  * signal_init:
194  *
195  *	Initialize global signal-related data structures.
196  */
197 void
198 signal_init(void)
199 {
200 
201 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
202 
203 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
204 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
205 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
206 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
207 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
208 
209 	exechook_establish(ksiginfo_exechook, NULL);
210 
211 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
212 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
213 
214 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
215 	    signal_listener_cb, NULL);
216 }
217 
218 /*
219  * sigacts_poolpage_alloc:
220  *
221  *	Allocate a page for the sigacts memory pool.
222  */
223 static void *
224 sigacts_poolpage_alloc(struct pool *pp, int flags)
225 {
226 
227 	return (void *)uvm_km_alloc(kernel_map,
228 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
229 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
230 	    | UVM_KMF_WIRED);
231 }
232 
233 /*
234  * sigacts_poolpage_free:
235  *
236  *	Free a page on behalf of the sigacts memory pool.
237  */
238 static void
239 sigacts_poolpage_free(struct pool *pp, void *v)
240 {
241 
242 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
243 }
244 
245 /*
246  * sigactsinit:
247  *
248  *	Create an initial sigacts structure, using the same signal state
249  *	as of specified process.  If 'share' is set, share the sigacts by
250  *	holding a reference, otherwise just copy it from parent.
251  */
252 struct sigacts *
253 sigactsinit(struct proc *pp, int share)
254 {
255 	struct sigacts *ps = pp->p_sigacts, *ps2;
256 
257 	if (__predict_false(share)) {
258 		atomic_inc_uint(&ps->sa_refcnt);
259 		return ps;
260 	}
261 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
262 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
263 	ps2->sa_refcnt = 1;
264 
265 	mutex_enter(&ps->sa_mutex);
266 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
267 	mutex_exit(&ps->sa_mutex);
268 	return ps2;
269 }
270 
271 /*
272  * sigactsunshare:
273  *
274  *	Make this process not share its sigacts, maintaining all signal state.
275  */
276 void
277 sigactsunshare(struct proc *p)
278 {
279 	struct sigacts *ps, *oldps = p->p_sigacts;
280 
281 	if (__predict_true(oldps->sa_refcnt == 1))
282 		return;
283 
284 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
285 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
286 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
287 	ps->sa_refcnt = 1;
288 
289 	p->p_sigacts = ps;
290 	sigactsfree(oldps);
291 }
292 
293 /*
294  * sigactsfree;
295  *
296  *	Release a sigacts structure.
297  */
298 void
299 sigactsfree(struct sigacts *ps)
300 {
301 
302 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
303 		mutex_destroy(&ps->sa_mutex);
304 		pool_cache_put(sigacts_cache, ps);
305 	}
306 }
307 
308 /*
309  * siginit:
310  *
311  *	Initialize signal state for process 0; set to ignore signals that
312  *	are ignored by default and disable the signal stack.  Locking not
313  *	required as the system is still cold.
314  */
315 void
316 siginit(struct proc *p)
317 {
318 	struct lwp *l;
319 	struct sigacts *ps;
320 	int signo, prop;
321 
322 	ps = p->p_sigacts;
323 	sigemptyset(&contsigmask);
324 	sigemptyset(&stopsigmask);
325 	sigemptyset(&sigcantmask);
326 	for (signo = 1; signo < NSIG; signo++) {
327 		prop = sigprop[signo];
328 		if (prop & SA_CONT)
329 			sigaddset(&contsigmask, signo);
330 		if (prop & SA_STOP)
331 			sigaddset(&stopsigmask, signo);
332 		if (prop & SA_CANTMASK)
333 			sigaddset(&sigcantmask, signo);
334 		if (prop & SA_IGNORE && signo != SIGCONT)
335 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
336 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
337 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
338 	}
339 	sigemptyset(&p->p_sigctx.ps_sigcatch);
340 	p->p_sflag &= ~PS_NOCLDSTOP;
341 
342 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
343 	sigemptyset(&p->p_sigpend.sp_set);
344 
345 	/*
346 	 * Reset per LWP state.
347 	 */
348 	l = LIST_FIRST(&p->p_lwps);
349 	l->l_sigwaited = NULL;
350 	l->l_sigstk = SS_INIT;
351 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
352 	sigemptyset(&l->l_sigpend.sp_set);
353 
354 	/* One reference. */
355 	ps->sa_refcnt = 1;
356 }
357 
358 /*
359  * execsigs:
360  *
361  *	Reset signals for an exec of the specified process.
362  */
363 void
364 execsigs(struct proc *p)
365 {
366 	struct sigacts *ps;
367 	struct lwp *l;
368 	int signo, prop;
369 	sigset_t tset;
370 	ksiginfoq_t kq;
371 
372 	KASSERT(p->p_nlwps == 1);
373 
374 	sigactsunshare(p);
375 	ps = p->p_sigacts;
376 
377 	/*
378 	 * Reset caught signals.  Held signals remain held through
379 	 * l->l_sigmask (unless they were caught, and are now ignored
380 	 * by default).
381 	 *
382 	 * No need to lock yet, the process has only one LWP and
383 	 * at this point the sigacts are private to the process.
384 	 */
385 	sigemptyset(&tset);
386 	for (signo = 1; signo < NSIG; signo++) {
387 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
388 			prop = sigprop[signo];
389 			if (prop & SA_IGNORE) {
390 				if ((prop & SA_CONT) == 0)
391 					sigaddset(&p->p_sigctx.ps_sigignore,
392 					    signo);
393 				sigaddset(&tset, signo);
394 			}
395 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
396 		}
397 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
398 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
399 	}
400 	ksiginfo_queue_init(&kq);
401 
402 	mutex_enter(p->p_lock);
403 	sigclearall(p, &tset, &kq);
404 	sigemptyset(&p->p_sigctx.ps_sigcatch);
405 
406 	/*
407 	 * Reset no zombies if child dies flag as Solaris does.
408 	 */
409 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
410 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
411 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
412 
413 	/*
414 	 * Reset per-LWP state.
415 	 */
416 	l = LIST_FIRST(&p->p_lwps);
417 	l->l_sigwaited = NULL;
418 	l->l_sigstk = SS_INIT;
419 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
420 	sigemptyset(&l->l_sigpend.sp_set);
421 	mutex_exit(p->p_lock);
422 
423 	ksiginfo_queue_drain(&kq);
424 }
425 
426 /*
427  * ksiginfo_exechook:
428  *
429  *	Free all pending ksiginfo entries from a process on exec.
430  *	Additionally, drain any unused ksiginfo structures in the
431  *	system back to the pool.
432  *
433  *	XXX This should not be a hook, every process has signals.
434  */
435 static void
436 ksiginfo_exechook(struct proc *p, void *v)
437 {
438 	ksiginfoq_t kq;
439 
440 	ksiginfo_queue_init(&kq);
441 
442 	mutex_enter(p->p_lock);
443 	sigclearall(p, NULL, &kq);
444 	mutex_exit(p->p_lock);
445 
446 	ksiginfo_queue_drain(&kq);
447 }
448 
449 /*
450  * ksiginfo_alloc:
451  *
452  *	Allocate a new ksiginfo structure from the pool, and optionally copy
453  *	an existing one.  If the existing ksiginfo_t is from the pool, and
454  *	has not been queued somewhere, then just return it.  Additionally,
455  *	if the existing ksiginfo_t does not contain any information beyond
456  *	the signal number, then just return it.
457  */
458 ksiginfo_t *
459 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
460 {
461 	ksiginfo_t *kp;
462 
463 	if (ok != NULL) {
464 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
465 		    KSI_FROMPOOL)
466 			return ok;
467 		if (KSI_EMPTY_P(ok))
468 			return ok;
469 	}
470 
471 	kp = pool_cache_get(ksiginfo_cache, flags);
472 	if (kp == NULL) {
473 #ifdef DIAGNOSTIC
474 		printf("Out of memory allocating ksiginfo for pid %d\n",
475 		    p->p_pid);
476 #endif
477 		return NULL;
478 	}
479 
480 	if (ok != NULL) {
481 		memcpy(kp, ok, sizeof(*kp));
482 		kp->ksi_flags &= ~KSI_QUEUED;
483 	} else
484 		KSI_INIT_EMPTY(kp);
485 
486 	kp->ksi_flags |= KSI_FROMPOOL;
487 
488 	return kp;
489 }
490 
491 /*
492  * ksiginfo_free:
493  *
494  *	If the given ksiginfo_t is from the pool and has not been queued,
495  *	then free it.
496  */
497 void
498 ksiginfo_free(ksiginfo_t *kp)
499 {
500 
501 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
502 		return;
503 	pool_cache_put(ksiginfo_cache, kp);
504 }
505 
506 /*
507  * ksiginfo_queue_drain:
508  *
509  *	Drain a non-empty ksiginfo_t queue.
510  */
511 void
512 ksiginfo_queue_drain0(ksiginfoq_t *kq)
513 {
514 	ksiginfo_t *ksi;
515 
516 	KASSERT(!TAILQ_EMPTY(kq));
517 
518 	while (!TAILQ_EMPTY(kq)) {
519 		ksi = TAILQ_FIRST(kq);
520 		TAILQ_REMOVE(kq, ksi, ksi_list);
521 		pool_cache_put(ksiginfo_cache, ksi);
522 	}
523 }
524 
525 static int
526 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
527 {
528 	ksiginfo_t *ksi, *nksi;
529 
530 	if (sp == NULL)
531 		goto out;
532 
533 	/* Find siginfo and copy it out. */
534 	int count = 0;
535 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
536 		if (ksi->ksi_signo != signo)
537 			continue;
538 		if (count++ > 0) /* Only remove the first, count all of them */
539 			continue;
540 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
541 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
542 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
543 		ksi->ksi_flags &= ~KSI_QUEUED;
544 		if (out != NULL) {
545 			memcpy(out, ksi, sizeof(*out));
546 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
547 		}
548 		ksiginfo_free(ksi);
549 	}
550 	if (count)
551 		return count;
552 
553 out:
554 	/* If there is no siginfo, then manufacture it. */
555 	if (out != NULL) {
556 		KSI_INIT(out);
557 		out->ksi_info._signo = signo;
558 		out->ksi_info._code = SI_NOINFO;
559 	}
560 	return 0;
561 }
562 
563 /*
564  * sigget:
565  *
566  *	Fetch the first pending signal from a set.  Optionally, also fetch
567  *	or manufacture a ksiginfo element.  Returns the number of the first
568  *	pending signal, or zero.
569  */
570 int
571 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
572 {
573 	sigset_t tset;
574 	int count;
575 
576 	/* If there's no pending set, the signal is from the debugger. */
577 	if (sp == NULL)
578 		goto out;
579 
580 	/* Construct mask from signo, and 'mask'. */
581 	if (signo == 0) {
582 		if (mask != NULL) {
583 			tset = *mask;
584 			__sigandset(&sp->sp_set, &tset);
585 		} else
586 			tset = sp->sp_set;
587 
588 		/* If there are no signals pending - return. */
589 		if ((signo = firstsig(&tset)) == 0)
590 			goto out;
591 	} else {
592 		KASSERT(sigismember(&sp->sp_set, signo));
593 	}
594 
595 	sigdelset(&sp->sp_set, signo);
596 out:
597 	count = siggetinfo(sp, out, signo);
598 	if (count > 1)
599 		sigaddset(&sp->sp_set, signo);
600 	return signo;
601 }
602 
603 /*
604  * sigput:
605  *
606  *	Append a new ksiginfo element to the list of pending ksiginfo's.
607  */
608 static int
609 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
610 {
611 	ksiginfo_t *kp;
612 
613 	KASSERT(mutex_owned(p->p_lock));
614 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
615 
616 	sigaddset(&sp->sp_set, ksi->ksi_signo);
617 
618 	/*
619 	 * If there is no siginfo, we are done.
620 	 */
621 	if (KSI_EMPTY_P(ksi))
622 		return 0;
623 
624 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
625 
626 	size_t count = 0;
627 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
628 		count++;
629 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
630 			continue;
631 		if (kp->ksi_signo == ksi->ksi_signo) {
632 			KSI_COPY(ksi, kp);
633 			kp->ksi_flags |= KSI_QUEUED;
634 			return 0;
635 		}
636 	}
637 
638 	if (count >= SIGQUEUE_MAX) {
639 #ifdef DIAGNOSTIC
640 		printf("%s(%d): Signal queue is full signal=%d\n",
641 		    p->p_comm, p->p_pid, ksi->ksi_signo);
642 #endif
643 		return EAGAIN;
644 	}
645 	ksi->ksi_flags |= KSI_QUEUED;
646 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
647 
648 	return 0;
649 }
650 
651 /*
652  * sigclear:
653  *
654  *	Clear all pending signals in the specified set.
655  */
656 void
657 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
658 {
659 	ksiginfo_t *ksi, *next;
660 
661 	if (mask == NULL)
662 		sigemptyset(&sp->sp_set);
663 	else
664 		sigminusset(mask, &sp->sp_set);
665 
666 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
667 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
668 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
669 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
670 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
671 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
672 		}
673 	}
674 }
675 
676 /*
677  * sigclearall:
678  *
679  *	Clear all pending signals in the specified set from a process and
680  *	its LWPs.
681  */
682 void
683 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
684 {
685 	struct lwp *l;
686 
687 	KASSERT(mutex_owned(p->p_lock));
688 
689 	sigclear(&p->p_sigpend, mask, kq);
690 
691 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
692 		sigclear(&l->l_sigpend, mask, kq);
693 	}
694 }
695 
696 /*
697  * sigispending:
698  *
699  *	Return the first signal number if there are pending signals for the
700  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
701  *	and that the signal has been posted to the appopriate queue before
702  *	LW_PENDSIG is set.
703  */
704 int
705 sigispending(struct lwp *l, int signo)
706 {
707 	struct proc *p = l->l_proc;
708 	sigset_t tset;
709 
710 	membar_consumer();
711 
712 	tset = l->l_sigpend.sp_set;
713 	sigplusset(&p->p_sigpend.sp_set, &tset);
714 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
715 	sigminusset(&l->l_sigmask, &tset);
716 
717 	if (signo == 0) {
718 		return firstsig(&tset);
719 	}
720 	return sigismember(&tset, signo) ? signo : 0;
721 }
722 
723 void
724 getucontext(struct lwp *l, ucontext_t *ucp)
725 {
726 	struct proc *p = l->l_proc;
727 
728 	KASSERT(mutex_owned(p->p_lock));
729 
730 	ucp->uc_flags = 0;
731 	ucp->uc_link = l->l_ctxlink;
732 	ucp->uc_sigmask = l->l_sigmask;
733 	ucp->uc_flags |= _UC_SIGMASK;
734 
735 	/*
736 	 * The (unsupplied) definition of the `current execution stack'
737 	 * in the System V Interface Definition appears to allow returning
738 	 * the main context stack.
739 	 */
740 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
741 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
742 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
743 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
744 	} else {
745 		/* Simply copy alternate signal execution stack. */
746 		ucp->uc_stack = l->l_sigstk;
747 	}
748 	ucp->uc_flags |= _UC_STACK;
749 	mutex_exit(p->p_lock);
750 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
751 	mutex_enter(p->p_lock);
752 }
753 
754 int
755 setucontext(struct lwp *l, const ucontext_t *ucp)
756 {
757 	struct proc *p = l->l_proc;
758 	int error;
759 
760 	KASSERT(mutex_owned(p->p_lock));
761 
762 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
763 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
764 		if (error != 0)
765 			return error;
766 	}
767 
768 	mutex_exit(p->p_lock);
769 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
770 	mutex_enter(p->p_lock);
771 	if (error != 0)
772 		return (error);
773 
774 	l->l_ctxlink = ucp->uc_link;
775 
776 	/*
777 	 * If there was stack information, update whether or not we are
778 	 * still running on an alternate signal stack.
779 	 */
780 	if ((ucp->uc_flags & _UC_STACK) != 0) {
781 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
782 			l->l_sigstk.ss_flags |= SS_ONSTACK;
783 		else
784 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
785 	}
786 
787 	return 0;
788 }
789 
790 /*
791  * killpg1: common code for kill process group/broadcast kill.
792  */
793 int
794 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
795 {
796 	struct proc	*p, *cp;
797 	kauth_cred_t	pc;
798 	struct pgrp	*pgrp;
799 	int		nfound;
800 	int		signo = ksi->ksi_signo;
801 
802 	cp = l->l_proc;
803 	pc = l->l_cred;
804 	nfound = 0;
805 
806 	mutex_enter(proc_lock);
807 	if (all) {
808 		/*
809 		 * Broadcast.
810 		 */
811 		PROCLIST_FOREACH(p, &allproc) {
812 			if (p->p_pid <= 1 || p == cp ||
813 			    (p->p_flag & PK_SYSTEM) != 0)
814 				continue;
815 			mutex_enter(p->p_lock);
816 			if (kauth_authorize_process(pc,
817 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
818 			    NULL) == 0) {
819 				nfound++;
820 				if (signo)
821 					kpsignal2(p, ksi);
822 			}
823 			mutex_exit(p->p_lock);
824 		}
825 	} else {
826 		if (pgid == 0)
827 			/* Zero pgid means send to my process group. */
828 			pgrp = cp->p_pgrp;
829 		else {
830 			pgrp = pgrp_find(pgid);
831 			if (pgrp == NULL)
832 				goto out;
833 		}
834 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
835 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
836 				continue;
837 			mutex_enter(p->p_lock);
838 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
839 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
840 				nfound++;
841 				if (signo && P_ZOMBIE(p) == 0)
842 					kpsignal2(p, ksi);
843 			}
844 			mutex_exit(p->p_lock);
845 		}
846 	}
847 out:
848 	mutex_exit(proc_lock);
849 	return nfound ? 0 : ESRCH;
850 }
851 
852 /*
853  * Send a signal to a process group.  If checktty is set, limit to members
854  * which have a controlling terminal.
855  */
856 void
857 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
858 {
859 	ksiginfo_t ksi;
860 
861 	KASSERT(!cpu_intr_p());
862 	KASSERT(mutex_owned(proc_lock));
863 
864 	KSI_INIT_EMPTY(&ksi);
865 	ksi.ksi_signo = sig;
866 	kpgsignal(pgrp, &ksi, NULL, checkctty);
867 }
868 
869 void
870 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
871 {
872 	struct proc *p;
873 
874 	KASSERT(!cpu_intr_p());
875 	KASSERT(mutex_owned(proc_lock));
876 	KASSERT(pgrp != NULL);
877 
878 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
879 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
880 			kpsignal(p, ksi, data);
881 }
882 
883 /*
884  * Send a signal caused by a trap to the current LWP.  If it will be caught
885  * immediately, deliver it with correct code.  Otherwise, post it normally.
886  */
887 void
888 trapsignal(struct lwp *l, ksiginfo_t *ksi)
889 {
890 	struct proc	*p;
891 	struct sigacts	*ps;
892 	int signo = ksi->ksi_signo;
893 	sigset_t *mask;
894 
895 	KASSERT(KSI_TRAP_P(ksi));
896 
897 	ksi->ksi_lid = l->l_lid;
898 	p = l->l_proc;
899 
900 	KASSERT(!cpu_intr_p());
901 	mutex_enter(proc_lock);
902 	mutex_enter(p->p_lock);
903 	mask = &l->l_sigmask;
904 	ps = p->p_sigacts;
905 
906 	if ((p->p_slflag & PSL_TRACED) == 0 &&
907 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
908 	    !sigismember(mask, signo)) {
909 		mutex_exit(proc_lock);
910 		l->l_ru.ru_nsignals++;
911 		kpsendsig(l, ksi, mask);
912 		mutex_exit(p->p_lock);
913 		if (ktrpoint(KTR_PSIG)) {
914 			if (p->p_emul->e_ktrpsig)
915 				p->p_emul->e_ktrpsig(signo,
916 				    SIGACTION_PS(ps, signo).sa_handler,
917 				    mask, ksi);
918 			else
919 				ktrpsig(signo,
920 				    SIGACTION_PS(ps, signo).sa_handler,
921 				    mask, ksi);
922 		}
923 	} else {
924 		kpsignal2(p, ksi);
925 		mutex_exit(p->p_lock);
926 		mutex_exit(proc_lock);
927 	}
928 }
929 
930 /*
931  * Fill in signal information and signal the parent for a child status change.
932  */
933 void
934 child_psignal(struct proc *p, int mask)
935 {
936 	ksiginfo_t ksi;
937 	struct proc *q;
938 	int xsig;
939 
940 	KASSERT(mutex_owned(proc_lock));
941 	KASSERT(mutex_owned(p->p_lock));
942 
943 	xsig = p->p_xsig;
944 
945 	KSI_INIT(&ksi);
946 	ksi.ksi_signo = SIGCHLD;
947 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
948 	ksi.ksi_pid = p->p_pid;
949 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
950 	ksi.ksi_status = xsig;
951 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
952 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
953 
954 	q = p->p_pptr;
955 
956 	mutex_exit(p->p_lock);
957 	mutex_enter(q->p_lock);
958 
959 	if ((q->p_sflag & mask) == 0)
960 		kpsignal2(q, &ksi);
961 
962 	mutex_exit(q->p_lock);
963 	mutex_enter(p->p_lock);
964 }
965 
966 void
967 psignal(struct proc *p, int signo)
968 {
969 	ksiginfo_t ksi;
970 
971 	KASSERT(!cpu_intr_p());
972 	KASSERT(mutex_owned(proc_lock));
973 
974 	KSI_INIT_EMPTY(&ksi);
975 	ksi.ksi_signo = signo;
976 	mutex_enter(p->p_lock);
977 	kpsignal2(p, &ksi);
978 	mutex_exit(p->p_lock);
979 }
980 
981 void
982 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
983 {
984 	fdfile_t *ff;
985 	file_t *fp;
986 	fdtab_t *dt;
987 
988 	KASSERT(!cpu_intr_p());
989 	KASSERT(mutex_owned(proc_lock));
990 
991 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
992 		size_t fd;
993 		filedesc_t *fdp = p->p_fd;
994 
995 		/* XXXSMP locking */
996 		ksi->ksi_fd = -1;
997 		dt = fdp->fd_dt;
998 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
999 			if ((ff = dt->dt_ff[fd]) == NULL)
1000 				continue;
1001 			if ((fp = ff->ff_file) == NULL)
1002 				continue;
1003 			if (fp->f_data == data) {
1004 				ksi->ksi_fd = fd;
1005 				break;
1006 			}
1007 		}
1008 	}
1009 	mutex_enter(p->p_lock);
1010 	kpsignal2(p, ksi);
1011 	mutex_exit(p->p_lock);
1012 }
1013 
1014 /*
1015  * sigismasked:
1016  *
1017  *	Returns true if signal is ignored or masked for the specified LWP.
1018  */
1019 int
1020 sigismasked(struct lwp *l, int sig)
1021 {
1022 	struct proc *p = l->l_proc;
1023 
1024 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1025 	    sigismember(&l->l_sigmask, sig);
1026 }
1027 
1028 /*
1029  * sigpost:
1030  *
1031  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1032  *	be able to take the signal.
1033  */
1034 static int
1035 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1036 {
1037 	int rv, masked;
1038 	struct proc *p = l->l_proc;
1039 
1040 	KASSERT(mutex_owned(p->p_lock));
1041 
1042 	/*
1043 	 * If the LWP is on the way out, sigclear() will be busy draining all
1044 	 * pending signals.  Don't give it more.
1045 	 */
1046 	if (l->l_refcnt == 0)
1047 		return 0;
1048 
1049 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1050 
1051 	/*
1052 	 * Have the LWP check for signals.  This ensures that even if no LWP
1053 	 * is found to take the signal immediately, it should be taken soon.
1054 	 */
1055 	lwp_lock(l);
1056 	l->l_flag |= LW_PENDSIG;
1057 
1058 	/*
1059 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1060 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1061 	 */
1062 	masked = sigismember(&l->l_sigmask, sig);
1063 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1064 		lwp_unlock(l);
1065 		return 0;
1066 	}
1067 
1068 	/*
1069 	 * If killing the process, make it run fast.
1070 	 */
1071 	if (__predict_false((prop & SA_KILL) != 0) &&
1072 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1073 		KASSERT(l->l_class == SCHED_OTHER);
1074 		lwp_changepri(l, MAXPRI_USER);
1075 	}
1076 
1077 	/*
1078 	 * If the LWP is running or on a run queue, then we win.  If it's
1079 	 * sleeping interruptably, wake it and make it take the signal.  If
1080 	 * the sleep isn't interruptable, then the chances are it will get
1081 	 * to see the signal soon anyhow.  If suspended, it can't take the
1082 	 * signal right now.  If it's LWP private or for all LWPs, save it
1083 	 * for later; otherwise punt.
1084 	 */
1085 	rv = 0;
1086 
1087 	switch (l->l_stat) {
1088 	case LSRUN:
1089 	case LSONPROC:
1090 		lwp_need_userret(l);
1091 		rv = 1;
1092 		break;
1093 
1094 	case LSSLEEP:
1095 		if ((l->l_flag & LW_SINTR) != 0) {
1096 			/* setrunnable() will release the lock. */
1097 			setrunnable(l);
1098 			return 1;
1099 		}
1100 		break;
1101 
1102 	case LSSUSPENDED:
1103 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1104 			/* lwp_continue() will release the lock. */
1105 			lwp_continue(l);
1106 			return 1;
1107 		}
1108 		break;
1109 
1110 	case LSSTOP:
1111 		if ((prop & SA_STOP) != 0)
1112 			break;
1113 
1114 		/*
1115 		 * If the LWP is stopped and we are sending a continue
1116 		 * signal, then start it again.
1117 		 */
1118 		if ((prop & SA_CONT) != 0) {
1119 			if (l->l_wchan != NULL) {
1120 				l->l_stat = LSSLEEP;
1121 				p->p_nrlwps++;
1122 				rv = 1;
1123 				break;
1124 			}
1125 			/* setrunnable() will release the lock. */
1126 			setrunnable(l);
1127 			return 1;
1128 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1129 			/* setrunnable() will release the lock. */
1130 			setrunnable(l);
1131 			return 1;
1132 		}
1133 		break;
1134 
1135 	default:
1136 		break;
1137 	}
1138 
1139 	lwp_unlock(l);
1140 	return rv;
1141 }
1142 
1143 /*
1144  * Notify an LWP that it has a pending signal.
1145  */
1146 void
1147 signotify(struct lwp *l)
1148 {
1149 	KASSERT(lwp_locked(l, NULL));
1150 
1151 	l->l_flag |= LW_PENDSIG;
1152 	lwp_need_userret(l);
1153 }
1154 
1155 /*
1156  * Find an LWP within process p that is waiting on signal ksi, and hand
1157  * it on.
1158  */
1159 static int
1160 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1161 {
1162 	struct lwp *l;
1163 	int signo;
1164 
1165 	KASSERT(mutex_owned(p->p_lock));
1166 
1167 	signo = ksi->ksi_signo;
1168 
1169 	if (ksi->ksi_lid != 0) {
1170 		/*
1171 		 * Signal came via _lwp_kill().  Find the LWP and see if
1172 		 * it's interested.
1173 		 */
1174 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1175 			return 0;
1176 		if (l->l_sigwaited == NULL ||
1177 		    !sigismember(&l->l_sigwaitset, signo))
1178 			return 0;
1179 	} else {
1180 		/*
1181 		 * Look for any LWP that may be interested.
1182 		 */
1183 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1184 			KASSERT(l->l_sigwaited != NULL);
1185 			if (sigismember(&l->l_sigwaitset, signo))
1186 				break;
1187 		}
1188 	}
1189 
1190 	if (l != NULL) {
1191 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1192 		l->l_sigwaited = NULL;
1193 		LIST_REMOVE(l, l_sigwaiter);
1194 		cv_signal(&l->l_sigcv);
1195 		return 1;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 /*
1202  * Send the signal to the process.  If the signal has an action, the action
1203  * is usually performed by the target process rather than the caller; we add
1204  * the signal to the set of pending signals for the process.
1205  *
1206  * Exceptions:
1207  *   o When a stop signal is sent to a sleeping process that takes the
1208  *     default action, the process is stopped without awakening it.
1209  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1210  *     regardless of the signal action (eg, blocked or ignored).
1211  *
1212  * Other ignored signals are discarded immediately.
1213  */
1214 int
1215 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1216 {
1217 	int prop, signo = ksi->ksi_signo;
1218 	struct sigacts *sa;
1219 	struct lwp *l = NULL;
1220 	ksiginfo_t *kp;
1221 	lwpid_t lid;
1222 	sig_t action;
1223 	bool toall, debtrap = false;
1224 	int error = 0;
1225 
1226 	KASSERT(!cpu_intr_p());
1227 	KASSERT(mutex_owned(proc_lock));
1228 	KASSERT(mutex_owned(p->p_lock));
1229 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1230 	KASSERT(signo > 0 && signo < NSIG);
1231 
1232 	/*
1233 	 * If the process is being created by fork, is a zombie or is
1234 	 * exiting, then just drop the signal here and bail out.
1235 	 */
1236 	if (p->p_stat == SIDL && signo == SIGTRAP
1237 	    && (p->p_slflag & PSL_TRACED)) {
1238 		/* allow an initial SIGTRAP for traced processes */
1239 		debtrap = true;
1240 	} else if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1241 		return 0;
1242 	}
1243 
1244 	/* XXX for core dump/debugger */
1245 	p->p_sigctx.ps_lwp = ksi->ksi_lid;
1246 	p->p_sigctx.ps_info = ksi->ksi_info;
1247 
1248 	/*
1249 	 * Notify any interested parties of the signal.
1250 	 */
1251 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1252 
1253 	/*
1254 	 * Some signals including SIGKILL must act on the entire process.
1255 	 */
1256 	kp = NULL;
1257 	prop = sigprop[signo];
1258 	toall = ((prop & SA_TOALL) != 0);
1259 	lid = toall ? 0 : ksi->ksi_lid;
1260 
1261 	/*
1262 	 * If proc is traced, always give parent a chance.
1263 	 */
1264 	if (p->p_slflag & PSL_TRACED) {
1265 		action = SIG_DFL;
1266 
1267 		if (lid == 0) {
1268 			/*
1269 			 * If the process is being traced and the signal
1270 			 * is being caught, make sure to save any ksiginfo.
1271 			 */
1272 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1273 				goto discard;
1274 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1275 				goto out;
1276 		}
1277 	} else {
1278 		/*
1279 		 * If the signal was the result of a trap and is not being
1280 		 * caught, then reset it to default action so that the
1281 		 * process dumps core immediately.
1282 		 */
1283 		if (KSI_TRAP_P(ksi)) {
1284 			sa = p->p_sigacts;
1285 			mutex_enter(&sa->sa_mutex);
1286 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1287 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1288 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1289 			}
1290 			mutex_exit(&sa->sa_mutex);
1291 		}
1292 
1293 		/*
1294 		 * If the signal is being ignored, then drop it.  Note: we
1295 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1296 		 * SIG_IGN, action will be SIG_DFL here.
1297 		 */
1298 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1299 			goto discard;
1300 
1301 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1302 			action = SIG_CATCH;
1303 		else {
1304 			action = SIG_DFL;
1305 
1306 			/*
1307 			 * If sending a tty stop signal to a member of an
1308 			 * orphaned process group, discard the signal here if
1309 			 * the action is default; don't stop the process below
1310 			 * if sleeping, and don't clear any pending SIGCONT.
1311 			 */
1312 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1313 				goto discard;
1314 
1315 			if (prop & SA_KILL && p->p_nice > NZERO)
1316 				p->p_nice = NZERO;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * If stopping or continuing a process, discard any pending
1322 	 * signals that would do the inverse.
1323 	 */
1324 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1325 		ksiginfoq_t kq;
1326 
1327 		ksiginfo_queue_init(&kq);
1328 		if ((prop & SA_CONT) != 0)
1329 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1330 		if ((prop & SA_STOP) != 0)
1331 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1332 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1333 	}
1334 
1335 	/*
1336 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1337 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1338 	 * the signal info.  The signal won't be processed further here.
1339 	 */
1340 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1341 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1342 	    sigunwait(p, ksi))
1343 		goto discard;
1344 
1345 	/*
1346 	 * XXXSMP Should be allocated by the caller, we're holding locks
1347 	 * here.
1348 	 */
1349 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1350 		goto discard;
1351 
1352 	/*
1353 	 * LWP private signals are easy - just find the LWP and post
1354 	 * the signal to it.
1355 	 */
1356 	if (lid != 0) {
1357 		if (__predict_false(debtrap)) {
1358 			l = LIST_FIRST(&p->p_lwps);
1359 			if (l->l_lid != lid)
1360 				l = NULL;
1361 		} else {
1362 			l = lwp_find(p, lid);
1363 		}
1364 		if (l != NULL) {
1365 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1366 				goto out;
1367 			membar_producer();
1368 			(void)sigpost(l, action, prop, kp->ksi_signo);
1369 		}
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1375 	 * or for an SA process.
1376 	 */
1377 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1378 		if ((p->p_slflag & PSL_TRACED) != 0)
1379 			goto deliver;
1380 
1381 		/*
1382 		 * If SIGCONT is default (or ignored) and process is
1383 		 * asleep, we are finished; the process should not
1384 		 * be awakened.
1385 		 */
1386 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1387 			goto out;
1388 	} else {
1389 		/*
1390 		 * Process is stopped or stopping.
1391 		 * - If traced, then no action is needed, unless killing.
1392 		 * - Run the process only if sending SIGCONT or SIGKILL.
1393 		 */
1394 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1395 			goto out;
1396 		}
1397 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1398 			/*
1399 			 * Re-adjust p_nstopchild if the process was
1400 			 * stopped but not yet collected by its parent.
1401 			 */
1402 			if (p->p_stat == SSTOP && !p->p_waited)
1403 				p->p_pptr->p_nstopchild--;
1404 			p->p_stat = SACTIVE;
1405 			p->p_sflag &= ~PS_STOPPING;
1406 			if (p->p_slflag & PSL_TRACED) {
1407 				KASSERT(signo == SIGKILL);
1408 				goto deliver;
1409 			}
1410 			/*
1411 			 * Do not make signal pending if SIGCONT is default.
1412 			 *
1413 			 * If the process catches SIGCONT, let it handle the
1414 			 * signal itself (if waiting on event - process runs,
1415 			 * otherwise continues sleeping).
1416 			 */
1417 			if ((prop & SA_CONT) != 0) {
1418 				p->p_xsig = SIGCONT;
1419 				p->p_sflag |= PS_CONTINUED;
1420 				child_psignal(p, 0);
1421 				if (action == SIG_DFL) {
1422 					KASSERT(signo != SIGKILL);
1423 					goto deliver;
1424 				}
1425 			}
1426 		} else if ((prop & SA_STOP) != 0) {
1427 			/*
1428 			 * Already stopped, don't need to stop again.
1429 			 * (If we did the shell could get confused.)
1430 			 */
1431 			goto out;
1432 		}
1433 	}
1434 	/*
1435 	 * Make signal pending.
1436 	 */
1437 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1438 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1439 		goto out;
1440 deliver:
1441 	/*
1442 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1443 	 * visible on the per process list (for sigispending()).  This
1444 	 * is unlikely to be needed in practice, but...
1445 	 */
1446 	membar_producer();
1447 
1448 	/*
1449 	 * Try to find an LWP that can take the signal.
1450 	 */
1451 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1452 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1453 			break;
1454 	}
1455 	signo = -1;
1456 out:
1457 	/*
1458 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1459 	 * with locks held.  The caller should take care of this.
1460 	 */
1461 	ksiginfo_free(kp);
1462 	if (signo == -1)
1463 		return error;
1464 discard:
1465 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1466 	return error;
1467 }
1468 
1469 void
1470 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1471 {
1472 	struct proc *p = l->l_proc;
1473 
1474 	KASSERT(mutex_owned(p->p_lock));
1475 	(*p->p_emul->e_sendsig)(ksi, mask);
1476 }
1477 
1478 /*
1479  * Stop any LWPs sleeping interruptably.
1480  */
1481 static void
1482 proc_stop_lwps(struct proc *p)
1483 {
1484 	struct lwp *l;
1485 
1486 	KASSERT(mutex_owned(p->p_lock));
1487 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1488 
1489 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1490 		lwp_lock(l);
1491 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1492 			l->l_stat = LSSTOP;
1493 			p->p_nrlwps--;
1494 		}
1495 		lwp_unlock(l);
1496 	}
1497 }
1498 
1499 /*
1500  * Finish stopping of a process.  Mark it stopped and notify the parent.
1501  *
1502  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1503  */
1504 static void
1505 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1506 {
1507 
1508 	KASSERT(mutex_owned(proc_lock));
1509 	KASSERT(mutex_owned(p->p_lock));
1510 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1511 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1512 
1513 	p->p_sflag &= ~PS_STOPPING;
1514 	p->p_stat = SSTOP;
1515 	p->p_waited = 0;
1516 	p->p_pptr->p_nstopchild++;
1517 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1518 		if (ppsig) {
1519 			/* child_psignal drops p_lock briefly. */
1520 			child_psignal(p, ppmask);
1521 		}
1522 		cv_broadcast(&p->p_pptr->p_waitcv);
1523 	}
1524 }
1525 
1526 /*
1527  * Stop the current process and switch away when being stopped or traced.
1528  */
1529 static void
1530 sigswitch(bool ppsig, int ppmask, int signo)
1531 {
1532 	struct lwp *l = curlwp;
1533 	struct proc *p = l->l_proc;
1534 	int biglocks;
1535 
1536 	KASSERT(mutex_owned(p->p_lock));
1537 	KASSERT(l->l_stat == LSONPROC);
1538 	KASSERT(p->p_nrlwps > 0);
1539 
1540 	/*
1541 	 * On entry we know that the process needs to stop.  If it's
1542 	 * the result of a 'sideways' stop signal that has been sourced
1543 	 * through issignal(), then stop other LWPs in the process too.
1544 	 */
1545 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1546 		KASSERT(signo != 0);
1547 		proc_stop(p, signo);
1548 		KASSERT(p->p_nrlwps > 0);
1549 	}
1550 
1551 	/*
1552 	 * If we are the last live LWP, and the stop was a result of
1553 	 * a new signal, then signal the parent.
1554 	 */
1555 	if ((p->p_sflag & PS_STOPPING) != 0) {
1556 		if (!mutex_tryenter(proc_lock)) {
1557 			mutex_exit(p->p_lock);
1558 			mutex_enter(proc_lock);
1559 			mutex_enter(p->p_lock);
1560 		}
1561 
1562 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1563 			/*
1564 			 * Note that proc_stop_done() can drop
1565 			 * p->p_lock briefly.
1566 			 */
1567 			proc_stop_done(p, ppsig, ppmask);
1568 		}
1569 
1570 		mutex_exit(proc_lock);
1571 	}
1572 
1573 	/*
1574 	 * Unlock and switch away.
1575 	 */
1576 	KERNEL_UNLOCK_ALL(l, &biglocks);
1577 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1578 		p->p_nrlwps--;
1579 		lwp_lock(l);
1580 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1581 		l->l_stat = LSSTOP;
1582 		lwp_unlock(l);
1583 	}
1584 
1585 	mutex_exit(p->p_lock);
1586 	lwp_lock(l);
1587 	mi_switch(l);
1588 	KERNEL_LOCK(biglocks, l);
1589 	mutex_enter(p->p_lock);
1590 }
1591 
1592 /*
1593  * Check for a signal from the debugger.
1594  */
1595 static int
1596 sigchecktrace(void)
1597 {
1598 	struct lwp *l = curlwp;
1599 	struct proc *p = l->l_proc;
1600 	int signo;
1601 
1602 	KASSERT(mutex_owned(p->p_lock));
1603 
1604 	/* If there's a pending SIGKILL, process it immediately. */
1605 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1606 		return 0;
1607 
1608 	/*
1609 	 * If we are no longer being traced, or the parent didn't
1610 	 * give us a signal, or we're stopping, look for more signals.
1611 	 */
1612 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1613 	    (p->p_sflag & PS_STOPPING) != 0)
1614 		return 0;
1615 
1616 	/*
1617 	 * If the new signal is being masked, look for other signals.
1618 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1619 	 */
1620 	signo = p->p_xsig;
1621 	p->p_xsig = 0;
1622 	if (sigismember(&l->l_sigmask, signo)) {
1623 		signo = 0;
1624 	}
1625 	return signo;
1626 }
1627 
1628 /*
1629  * If the current process has received a signal (should be caught or cause
1630  * termination, should interrupt current syscall), return the signal number.
1631  *
1632  * Stop signals with default action are processed immediately, then cleared;
1633  * they aren't returned.  This is checked after each entry to the system for
1634  * a syscall or trap.
1635  *
1636  * We will also return -1 if the process is exiting and the current LWP must
1637  * follow suit.
1638  */
1639 int
1640 issignal(struct lwp *l)
1641 {
1642 	struct proc *p;
1643 	int signo, prop;
1644 	sigpend_t *sp;
1645 	sigset_t ss;
1646 
1647 	p = l->l_proc;
1648 	sp = NULL;
1649 	signo = 0;
1650 
1651 	KASSERT(p == curproc);
1652 	KASSERT(mutex_owned(p->p_lock));
1653 
1654 	for (;;) {
1655 		/* Discard any signals that we have decided not to take. */
1656 		if (signo != 0) {
1657 			(void)sigget(sp, NULL, signo, NULL);
1658 		}
1659 
1660 		/*
1661 		 * If the process is stopped/stopping, then stop ourselves
1662 		 * now that we're on the kernel/userspace boundary.  When
1663 		 * we awaken, check for a signal from the debugger.
1664 		 */
1665 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1666 			sigswitch(true, PS_NOCLDSTOP, 0);
1667 			signo = sigchecktrace();
1668 		} else
1669 			signo = 0;
1670 
1671 		/* Signals from the debugger are "out of band". */
1672 		sp = NULL;
1673 
1674 		/*
1675 		 * If the debugger didn't provide a signal, find a pending
1676 		 * signal from our set.  Check per-LWP signals first, and
1677 		 * then per-process.
1678 		 */
1679 		if (signo == 0) {
1680 			sp = &l->l_sigpend;
1681 			ss = sp->sp_set;
1682 			if ((p->p_lflag & PL_PPWAIT) != 0)
1683 				sigminusset(&stopsigmask, &ss);
1684 			sigminusset(&l->l_sigmask, &ss);
1685 
1686 			if ((signo = firstsig(&ss)) == 0) {
1687 				sp = &p->p_sigpend;
1688 				ss = sp->sp_set;
1689 				if ((p->p_lflag & PL_PPWAIT) != 0)
1690 					sigminusset(&stopsigmask, &ss);
1691 				sigminusset(&l->l_sigmask, &ss);
1692 
1693 				if ((signo = firstsig(&ss)) == 0) {
1694 					/*
1695 					 * No signal pending - clear the
1696 					 * indicator and bail out.
1697 					 */
1698 					lwp_lock(l);
1699 					l->l_flag &= ~LW_PENDSIG;
1700 					lwp_unlock(l);
1701 					sp = NULL;
1702 					break;
1703 				}
1704 			}
1705 		}
1706 
1707 		/*
1708 		 * We should see pending but ignored signals only if
1709 		 * we are being traced.
1710 		 */
1711 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1712 		    (p->p_slflag & PSL_TRACED) == 0) {
1713 			/* Discard the signal. */
1714 			continue;
1715 		}
1716 
1717 		/*
1718 		 * If traced, always stop, and stay stopped until released
1719 		 * by the debugger.  If the our parent process is waiting
1720 		 * for us, don't hang as we could deadlock.
1721 		 */
1722 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1723 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1724 			/*
1725 			 * Take the signal, but don't remove it from the
1726 			 * siginfo queue, because the debugger can send
1727 			 * it later.
1728 			 */
1729 			if (sp)
1730 				sigdelset(&sp->sp_set, signo);
1731 			p->p_xsig = signo;
1732 
1733 			/* Emulation-specific handling of signal trace */
1734 			if (p->p_emul->e_tracesig == NULL ||
1735 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1736 				sigswitch(1, 0, signo);
1737 
1738 			/* Check for a signal from the debugger. */
1739 			if ((signo = sigchecktrace()) == 0)
1740 				continue;
1741 
1742 			/* Signals from the debugger are "out of band". */
1743 			sp = NULL;
1744 		}
1745 
1746 		prop = sigprop[signo];
1747 
1748 		/*
1749 		 * Decide whether the signal should be returned.
1750 		 */
1751 		switch ((long)SIGACTION(p, signo).sa_handler) {
1752 		case (long)SIG_DFL:
1753 			/*
1754 			 * Don't take default actions on system processes.
1755 			 */
1756 			if (p->p_pid <= 1) {
1757 #ifdef DIAGNOSTIC
1758 				/*
1759 				 * Are you sure you want to ignore SIGSEGV
1760 				 * in init? XXX
1761 				 */
1762 				printf_nolog("Process (pid %d) got sig %d\n",
1763 				    p->p_pid, signo);
1764 #endif
1765 				continue;
1766 			}
1767 
1768 			/*
1769 			 * If there is a pending stop signal to process with
1770 			 * default action, stop here, then clear the signal.
1771 			 * However, if process is member of an orphaned
1772 			 * process group, ignore tty stop signals.
1773 			 */
1774 			if (prop & SA_STOP) {
1775 				/*
1776 				 * XXX Don't hold proc_lock for p_lflag,
1777 				 * but it's not a big deal.
1778 				 */
1779 				if (p->p_slflag & PSL_TRACED ||
1780 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1781 				    prop & SA_TTYSTOP)) {
1782 					/* Ignore the signal. */
1783 					continue;
1784 				}
1785 				/* Take the signal. */
1786 				(void)sigget(sp, NULL, signo, NULL);
1787 				p->p_xsig = signo;
1788 				p->p_sflag &= ~PS_CONTINUED;
1789 				signo = 0;
1790 				sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
1791 			} else if (prop & SA_IGNORE) {
1792 				/*
1793 				 * Except for SIGCONT, shouldn't get here.
1794 				 * Default action is to ignore; drop it.
1795 				 */
1796 				continue;
1797 			}
1798 			break;
1799 
1800 		case (long)SIG_IGN:
1801 #ifdef DEBUG_ISSIGNAL
1802 			/*
1803 			 * Masking above should prevent us ever trying
1804 			 * to take action on an ignored signal other
1805 			 * than SIGCONT, unless process is traced.
1806 			 */
1807 			if ((prop & SA_CONT) == 0 &&
1808 			    (p->p_slflag & PSL_TRACED) == 0)
1809 				printf_nolog("issignal\n");
1810 #endif
1811 			continue;
1812 
1813 		default:
1814 			/*
1815 			 * This signal has an action, let postsig() process
1816 			 * it.
1817 			 */
1818 			break;
1819 		}
1820 
1821 		break;
1822 	}
1823 
1824 	l->l_sigpendset = sp;
1825 	return signo;
1826 }
1827 
1828 /*
1829  * Take the action for the specified signal
1830  * from the current set of pending signals.
1831  */
1832 void
1833 postsig(int signo)
1834 {
1835 	struct lwp	*l;
1836 	struct proc	*p;
1837 	struct sigacts	*ps;
1838 	sig_t		action;
1839 	sigset_t	*returnmask;
1840 	ksiginfo_t	ksi;
1841 
1842 	l = curlwp;
1843 	p = l->l_proc;
1844 	ps = p->p_sigacts;
1845 
1846 	KASSERT(mutex_owned(p->p_lock));
1847 	KASSERT(signo > 0);
1848 
1849 	/*
1850 	 * Set the new mask value and also defer further occurrences of this
1851 	 * signal.
1852 	 *
1853 	 * Special case: user has done a sigsuspend.  Here the current mask is
1854 	 * not of interest, but rather the mask from before the sigsuspend is
1855 	 * what we want restored after the signal processing is completed.
1856 	 */
1857 	if (l->l_sigrestore) {
1858 		returnmask = &l->l_sigoldmask;
1859 		l->l_sigrestore = 0;
1860 	} else
1861 		returnmask = &l->l_sigmask;
1862 
1863 	/*
1864 	 * Commit to taking the signal before releasing the mutex.
1865 	 */
1866 	action = SIGACTION_PS(ps, signo).sa_handler;
1867 	l->l_ru.ru_nsignals++;
1868 	if (l->l_sigpendset == NULL) {
1869 		/* From the debugger */
1870 		if (p->p_sigctx.ps_faked &&
1871 		    signo == p->p_sigctx.ps_info._signo) {
1872 			KSI_INIT(&ksi);
1873 			ksi.ksi_info = p->p_sigctx.ps_info;
1874 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
1875 			p->p_sigctx.ps_faked = false;
1876 		} else {
1877 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1878 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
1879 		}
1880 	} else
1881 		sigget(l->l_sigpendset, &ksi, signo, NULL);
1882 
1883 	if (ktrpoint(KTR_PSIG)) {
1884 		mutex_exit(p->p_lock);
1885 		if (p->p_emul->e_ktrpsig)
1886 			p->p_emul->e_ktrpsig(signo, action,
1887 			    returnmask, &ksi);
1888 		else
1889 			ktrpsig(signo, action, returnmask, &ksi);
1890 		mutex_enter(p->p_lock);
1891 	}
1892 
1893 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1894 
1895 	if (action == SIG_DFL) {
1896 		/*
1897 		 * Default action, where the default is to kill
1898 		 * the process.  (Other cases were ignored above.)
1899 		 */
1900 		sigexit(l, signo);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * If we get here, the signal must be caught.
1906 	 */
1907 #ifdef DIAGNOSTIC
1908 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1909 		panic("postsig action");
1910 #endif
1911 
1912 	kpsendsig(l, &ksi, returnmask);
1913 }
1914 
1915 /*
1916  * sendsig:
1917  *
1918  *	Default signal delivery method for NetBSD.
1919  */
1920 void
1921 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1922 {
1923 	struct sigacts *sa;
1924 	int sig;
1925 
1926 	sig = ksi->ksi_signo;
1927 	sa = curproc->p_sigacts;
1928 
1929 	switch (sa->sa_sigdesc[sig].sd_vers)  {
1930 	case 0:
1931 	case 1:
1932 		/* Compat for 1.6 and earlier. */
1933 		if (sendsig_sigcontext_vec == NULL) {
1934 			break;
1935 		}
1936 		(*sendsig_sigcontext_vec)(ksi, mask);
1937 		return;
1938 	case 2:
1939 	case 3:
1940 		sendsig_siginfo(ksi, mask);
1941 		return;
1942 	default:
1943 		break;
1944 	}
1945 
1946 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1947 	sigexit(curlwp, SIGILL);
1948 }
1949 
1950 /*
1951  * sendsig_reset:
1952  *
1953  *	Reset the signal action.  Called from emulation specific sendsig()
1954  *	before unlocking to deliver the signal.
1955  */
1956 void
1957 sendsig_reset(struct lwp *l, int signo)
1958 {
1959 	struct proc *p = l->l_proc;
1960 	struct sigacts *ps = p->p_sigacts;
1961 
1962 	KASSERT(mutex_owned(p->p_lock));
1963 
1964 	p->p_sigctx.ps_lwp = 0;
1965 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
1966 
1967 	mutex_enter(&ps->sa_mutex);
1968 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1969 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1970 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1971 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1972 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1973 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1974 	}
1975 	mutex_exit(&ps->sa_mutex);
1976 }
1977 
1978 /*
1979  * Kill the current process for stated reason.
1980  */
1981 void
1982 killproc(struct proc *p, const char *why)
1983 {
1984 
1985 	KASSERT(mutex_owned(proc_lock));
1986 
1987 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1988 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1989 	psignal(p, SIGKILL);
1990 }
1991 
1992 /*
1993  * Force the current process to exit with the specified signal, dumping core
1994  * if appropriate.  We bypass the normal tests for masked and caught
1995  * signals, allowing unrecoverable failures to terminate the process without
1996  * changing signal state.  Mark the accounting record with the signal
1997  * termination.  If dumping core, save the signal number for the debugger.
1998  * Calls exit and does not return.
1999  */
2000 void
2001 sigexit(struct lwp *l, int signo)
2002 {
2003 	int exitsig, error, docore;
2004 	struct proc *p;
2005 	struct lwp *t;
2006 
2007 	p = l->l_proc;
2008 
2009 	KASSERT(mutex_owned(p->p_lock));
2010 	KERNEL_UNLOCK_ALL(l, NULL);
2011 
2012 	/*
2013 	 * Don't permit coredump() multiple times in the same process.
2014 	 * Call back into sigexit, where we will be suspended until
2015 	 * the deed is done.  Note that this is a recursive call, but
2016 	 * LW_WCORE will prevent us from coming back this way.
2017 	 */
2018 	if ((p->p_sflag & PS_WCORE) != 0) {
2019 		lwp_lock(l);
2020 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2021 		lwp_unlock(l);
2022 		mutex_exit(p->p_lock);
2023 		lwp_userret(l);
2024 		panic("sigexit 1");
2025 		/* NOTREACHED */
2026 	}
2027 
2028 	/* If process is already on the way out, then bail now. */
2029 	if ((p->p_sflag & PS_WEXIT) != 0) {
2030 		mutex_exit(p->p_lock);
2031 		lwp_exit(l);
2032 		panic("sigexit 2");
2033 		/* NOTREACHED */
2034 	}
2035 
2036 	/*
2037 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2038 	 * so that their registers are available long enough to be dumped.
2039  	 */
2040 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2041 		p->p_sflag |= PS_WCORE;
2042 		for (;;) {
2043 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2044 				lwp_lock(t);
2045 				if (t == l) {
2046 					t->l_flag &= ~LW_WSUSPEND;
2047 					lwp_unlock(t);
2048 					continue;
2049 				}
2050 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2051 				lwp_suspend(l, t);
2052 			}
2053 
2054 			if (p->p_nrlwps == 1)
2055 				break;
2056 
2057 			/*
2058 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2059 			 * for everyone else to stop before proceeding.
2060 			 */
2061 			p->p_nlwpwait++;
2062 			cv_broadcast(&p->p_lwpcv);
2063 			cv_wait(&p->p_lwpcv, p->p_lock);
2064 			p->p_nlwpwait--;
2065 		}
2066 	}
2067 
2068 	exitsig = signo;
2069 	p->p_acflag |= AXSIG;
2070 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2071 	p->p_sigctx.ps_info._signo = signo;
2072 	p->p_sigctx.ps_info._code = SI_NOINFO;
2073 
2074 	if (docore) {
2075 		mutex_exit(p->p_lock);
2076 		error = (*coredump_vec)(l, NULL);
2077 
2078 		if (kern_logsigexit) {
2079 			int uid = l->l_cred ?
2080 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2081 
2082 			if (error)
2083 				log(LOG_INFO, lognocoredump, p->p_pid,
2084 				    p->p_comm, uid, signo, error);
2085 			else
2086 				log(LOG_INFO, logcoredump, p->p_pid,
2087 				    p->p_comm, uid, signo);
2088 		}
2089 
2090 #ifdef PAX_SEGVGUARD
2091 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2092 #endif /* PAX_SEGVGUARD */
2093 		/* Acquire the sched state mutex.  exit1() will release it. */
2094 		mutex_enter(p->p_lock);
2095 		if (error == 0)
2096 			p->p_sflag |= PS_COREDUMP;
2097 	}
2098 
2099 	/* No longer dumping core. */
2100 	p->p_sflag &= ~PS_WCORE;
2101 
2102 	exit1(l, 0, exitsig);
2103 	/* NOTREACHED */
2104 }
2105 
2106 /*
2107  * Put process 'p' into the stopped state and optionally, notify the parent.
2108  */
2109 void
2110 proc_stop(struct proc *p, int signo)
2111 {
2112 	struct lwp *l;
2113 
2114 	KASSERT(mutex_owned(p->p_lock));
2115 
2116 	/*
2117 	 * First off, set the stopping indicator and bring all sleeping
2118 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2119 	 * unlock between here and the p->p_nrlwps check below.
2120 	 */
2121 	p->p_sflag |= PS_STOPPING | PS_NOTIFYSTOP;
2122 	membar_producer();
2123 
2124 	proc_stop_lwps(p);
2125 
2126 	/*
2127 	 * If there are no LWPs available to take the signal, then we
2128 	 * signal the parent process immediately.  Otherwise, the last
2129 	 * LWP to stop will take care of it.
2130 	 */
2131 
2132 	if (p->p_nrlwps == 0) {
2133 		proc_stop_done(p, true, PS_NOCLDSTOP);
2134 	} else {
2135 		/*
2136 		 * Have the remaining LWPs come to a halt, and trigger
2137 		 * proc_stop_callout() to ensure that they do.
2138 		 */
2139 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2140 			sigpost(l, SIG_DFL, SA_STOP, signo);
2141 		}
2142 		callout_schedule(&proc_stop_ch, 1);
2143 	}
2144 }
2145 
2146 /*
2147  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2148  * but wait for them to come to a halt at the kernel-user boundary.  This is
2149  * to allow LWPs to release any locks that they may hold before stopping.
2150  *
2151  * Non-interruptable sleeps can be long, and there is the potential for an
2152  * LWP to begin sleeping interruptably soon after the process has been set
2153  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2154  * stopping, and so complete halt of the process and the return of status
2155  * information to the parent could be delayed indefinitely.
2156  *
2157  * To handle this race, proc_stop_callout() runs once per tick while there
2158  * are stopping processes in the system.  It sets LWPs that are sleeping
2159  * interruptably into the LSSTOP state.
2160  *
2161  * Note that we are not concerned about keeping all LWPs stopped while the
2162  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2163  * What we do need to ensure is that all LWPs in a stopping process have
2164  * stopped at least once, so that notification can be sent to the parent
2165  * process.
2166  */
2167 static void
2168 proc_stop_callout(void *cookie)
2169 {
2170 	bool more, restart;
2171 	struct proc *p;
2172 
2173 	(void)cookie;
2174 
2175 	do {
2176 		restart = false;
2177 		more = false;
2178 
2179 		mutex_enter(proc_lock);
2180 		PROCLIST_FOREACH(p, &allproc) {
2181 			mutex_enter(p->p_lock);
2182 
2183 			if ((p->p_sflag & PS_STOPPING) == 0) {
2184 				mutex_exit(p->p_lock);
2185 				continue;
2186 			}
2187 
2188 			/* Stop any LWPs sleeping interruptably. */
2189 			proc_stop_lwps(p);
2190 			if (p->p_nrlwps == 0) {
2191 				/*
2192 				 * We brought the process to a halt.
2193 				 * Mark it as stopped and notify the
2194 				 * parent.
2195 				 */
2196 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2197 					/*
2198 					 * Note that proc_stop_done() will
2199 					 * drop p->p_lock briefly.
2200 					 * Arrange to restart and check
2201 					 * all processes again.
2202 					 */
2203 					restart = true;
2204 				}
2205 				proc_stop_done(p, true, PS_NOCLDSTOP);
2206 			} else
2207 				more = true;
2208 
2209 			mutex_exit(p->p_lock);
2210 			if (restart)
2211 				break;
2212 		}
2213 		mutex_exit(proc_lock);
2214 	} while (restart);
2215 
2216 	/*
2217 	 * If we noted processes that are stopping but still have
2218 	 * running LWPs, then arrange to check again in 1 tick.
2219 	 */
2220 	if (more)
2221 		callout_schedule(&proc_stop_ch, 1);
2222 }
2223 
2224 /*
2225  * Given a process in state SSTOP, set the state back to SACTIVE and
2226  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2227  */
2228 void
2229 proc_unstop(struct proc *p)
2230 {
2231 	struct lwp *l;
2232 	int sig;
2233 
2234 	KASSERT(mutex_owned(proc_lock));
2235 	KASSERT(mutex_owned(p->p_lock));
2236 
2237 	p->p_stat = SACTIVE;
2238 	p->p_sflag &= ~PS_STOPPING;
2239 	sig = p->p_xsig;
2240 
2241 	if (!p->p_waited)
2242 		p->p_pptr->p_nstopchild--;
2243 
2244 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2245 		lwp_lock(l);
2246 		if (l->l_stat != LSSTOP) {
2247 			lwp_unlock(l);
2248 			continue;
2249 		}
2250 		if (l->l_wchan == NULL) {
2251 			setrunnable(l);
2252 			continue;
2253 		}
2254 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2255 			setrunnable(l);
2256 			sig = 0;
2257 		} else {
2258 			l->l_stat = LSSLEEP;
2259 			p->p_nrlwps++;
2260 			lwp_unlock(l);
2261 		}
2262 	}
2263 }
2264 
2265 void
2266 proc_stoptrace(int trapno)
2267 {
2268 	struct lwp *l = curlwp;
2269 	struct proc *p = l->l_proc, *pp;
2270 
2271 	mutex_enter(p->p_lock);
2272 	pp = p->p_pptr;
2273 	if (pp->p_pid == 1) {
2274 		CLR(p->p_slflag, PSL_SYSCALL);	/* XXXSMP */
2275 		mutex_exit(p->p_lock);
2276 		return;
2277 	}
2278 
2279 	p->p_xsig = SIGTRAP;
2280 	p->p_sigctx.ps_info._signo = p->p_xsig;
2281 	p->p_sigctx.ps_info._code = trapno;
2282 	sigswitch(true, 0, p->p_xsig);
2283 	mutex_exit(p->p_lock);
2284 }
2285 
2286 static int
2287 filt_sigattach(struct knote *kn)
2288 {
2289 	struct proc *p = curproc;
2290 
2291 	kn->kn_obj = p;
2292 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2293 
2294 	mutex_enter(p->p_lock);
2295 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2296 	mutex_exit(p->p_lock);
2297 
2298 	return 0;
2299 }
2300 
2301 static void
2302 filt_sigdetach(struct knote *kn)
2303 {
2304 	struct proc *p = kn->kn_obj;
2305 
2306 	mutex_enter(p->p_lock);
2307 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2308 	mutex_exit(p->p_lock);
2309 }
2310 
2311 /*
2312  * Signal knotes are shared with proc knotes, so we apply a mask to
2313  * the hint in order to differentiate them from process hints.  This
2314  * could be avoided by using a signal-specific knote list, but probably
2315  * isn't worth the trouble.
2316  */
2317 static int
2318 filt_signal(struct knote *kn, long hint)
2319 {
2320 
2321 	if (hint & NOTE_SIGNAL) {
2322 		hint &= ~NOTE_SIGNAL;
2323 
2324 		if (kn->kn_id == hint)
2325 			kn->kn_data++;
2326 	}
2327 	return (kn->kn_data != 0);
2328 }
2329 
2330 const struct filterops sig_filtops = {
2331 		.f_isfd = 0,
2332 		.f_attach = filt_sigattach,
2333 		.f_detach = filt_sigdetach,
2334 		.f_event = filt_signal,
2335 };
2336