1 /* $NetBSD: kern_sig.c,v 1.319 2013/11/22 21:04:11 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.319 2013/11/22 21:04:11 christos Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_compat_sunos.h" 77 #include "opt_compat_netbsd.h" 78 #include "opt_compat_netbsd32.h" 79 #include "opt_pax.h" 80 81 #define SIGPROP /* include signal properties table */ 82 #include <sys/param.h> 83 #include <sys/signalvar.h> 84 #include <sys/proc.h> 85 #include <sys/systm.h> 86 #include <sys/wait.h> 87 #include <sys/ktrace.h> 88 #include <sys/syslog.h> 89 #include <sys/filedesc.h> 90 #include <sys/file.h> 91 #include <sys/pool.h> 92 #include <sys/ucontext.h> 93 #include <sys/exec.h> 94 #include <sys/kauth.h> 95 #include <sys/acct.h> 96 #include <sys/callout.h> 97 #include <sys/atomic.h> 98 #include <sys/cpu.h> 99 #include <sys/module.h> 100 #include <sys/sdt.h> 101 102 #ifdef PAX_SEGVGUARD 103 #include <sys/pax.h> 104 #endif /* PAX_SEGVGUARD */ 105 106 #include <uvm/uvm_extern.h> 107 108 static pool_cache_t sigacts_cache __read_mostly; 109 static pool_cache_t ksiginfo_cache __read_mostly; 110 static callout_t proc_stop_ch __cacheline_aligned; 111 112 sigset_t contsigmask __cacheline_aligned; 113 static sigset_t stopsigmask __cacheline_aligned; 114 sigset_t sigcantmask __cacheline_aligned; 115 116 static void ksiginfo_exechook(struct proc *, void *); 117 static void proc_stop_callout(void *); 118 static int sigchecktrace(void); 119 static int sigpost(struct lwp *, sig_t, int, int); 120 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 121 static int sigunwait(struct proc *, const ksiginfo_t *); 122 static void sigswitch(bool, int, int); 123 124 static void sigacts_poolpage_free(struct pool *, void *); 125 static void *sigacts_poolpage_alloc(struct pool *, int); 126 127 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 128 int (*coredump_vec)(struct lwp *, const char *) = 129 (int (*)(struct lwp *, const char *))enosys; 130 131 /* 132 * DTrace SDT provider definitions 133 */ 134 SDT_PROBE_DEFINE(proc,,,signal_send,signal-send, 135 "struct lwp *", NULL, /* target thread */ 136 "struct proc *", NULL, /* target process */ 137 "int", NULL, /* signal */ 138 NULL, NULL, NULL, NULL); 139 SDT_PROBE_DEFINE(proc,,,signal_discard,signal-discard, 140 "struct lwp *", NULL, /* target thread */ 141 "struct proc *", NULL, /* target process */ 142 "int", NULL, /* signal */ 143 NULL, NULL, NULL, NULL); 144 SDT_PROBE_DEFINE(proc,,,signal_clear,signal-clear, 145 "int", NULL, /* signal */ 146 NULL, NULL, NULL, NULL, 147 NULL, NULL, NULL, NULL); 148 SDT_PROBE_DEFINE(proc,,,signal_handle,signal-handle, 149 "int", NULL, /* signal */ 150 "ksiginfo_t *", NULL, 151 "void (*)(void)", NULL, /* handler address */ 152 NULL, NULL, NULL, NULL); 153 154 155 static struct pool_allocator sigactspool_allocator = { 156 .pa_alloc = sigacts_poolpage_alloc, 157 .pa_free = sigacts_poolpage_free 158 }; 159 160 #ifdef DEBUG 161 int kern_logsigexit = 1; 162 #else 163 int kern_logsigexit = 0; 164 #endif 165 166 static const char logcoredump[] = 167 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 168 static const char lognocoredump[] = 169 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 170 171 static kauth_listener_t signal_listener; 172 173 static int 174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 175 void *arg0, void *arg1, void *arg2, void *arg3) 176 { 177 struct proc *p; 178 int result, signum; 179 180 result = KAUTH_RESULT_DEFER; 181 p = arg0; 182 signum = (int)(unsigned long)arg1; 183 184 if (action != KAUTH_PROCESS_SIGNAL) 185 return result; 186 187 if (kauth_cred_uidmatch(cred, p->p_cred) || 188 (signum == SIGCONT && (curproc->p_session == p->p_session))) 189 result = KAUTH_RESULT_ALLOW; 190 191 return result; 192 } 193 194 /* 195 * signal_init: 196 * 197 * Initialize global signal-related data structures. 198 */ 199 void 200 signal_init(void) 201 { 202 203 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 204 205 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 206 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 207 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 208 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 209 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 210 211 exechook_establish(ksiginfo_exechook, NULL); 212 213 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 214 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 215 216 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 217 signal_listener_cb, NULL); 218 } 219 220 /* 221 * sigacts_poolpage_alloc: 222 * 223 * Allocate a page for the sigacts memory pool. 224 */ 225 static void * 226 sigacts_poolpage_alloc(struct pool *pp, int flags) 227 { 228 229 return (void *)uvm_km_alloc(kernel_map, 230 PAGE_SIZE * 2, PAGE_SIZE * 2, 231 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 232 | UVM_KMF_WIRED); 233 } 234 235 /* 236 * sigacts_poolpage_free: 237 * 238 * Free a page on behalf of the sigacts memory pool. 239 */ 240 static void 241 sigacts_poolpage_free(struct pool *pp, void *v) 242 { 243 244 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 245 } 246 247 /* 248 * sigactsinit: 249 * 250 * Create an initial sigacts structure, using the same signal state 251 * as of specified process. If 'share' is set, share the sigacts by 252 * holding a reference, otherwise just copy it from parent. 253 */ 254 struct sigacts * 255 sigactsinit(struct proc *pp, int share) 256 { 257 struct sigacts *ps = pp->p_sigacts, *ps2; 258 259 if (__predict_false(share)) { 260 atomic_inc_uint(&ps->sa_refcnt); 261 return ps; 262 } 263 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 264 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 265 ps2->sa_refcnt = 1; 266 267 mutex_enter(&ps->sa_mutex); 268 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 269 mutex_exit(&ps->sa_mutex); 270 return ps2; 271 } 272 273 /* 274 * sigactsunshare: 275 * 276 * Make this process not share its sigacts, maintaining all signal state. 277 */ 278 void 279 sigactsunshare(struct proc *p) 280 { 281 struct sigacts *ps, *oldps = p->p_sigacts; 282 283 if (__predict_true(oldps->sa_refcnt == 1)) 284 return; 285 286 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 287 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 288 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 289 ps->sa_refcnt = 1; 290 291 p->p_sigacts = ps; 292 sigactsfree(oldps); 293 } 294 295 /* 296 * sigactsfree; 297 * 298 * Release a sigacts structure. 299 */ 300 void 301 sigactsfree(struct sigacts *ps) 302 { 303 304 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 305 mutex_destroy(&ps->sa_mutex); 306 pool_cache_put(sigacts_cache, ps); 307 } 308 } 309 310 /* 311 * siginit: 312 * 313 * Initialize signal state for process 0; set to ignore signals that 314 * are ignored by default and disable the signal stack. Locking not 315 * required as the system is still cold. 316 */ 317 void 318 siginit(struct proc *p) 319 { 320 struct lwp *l; 321 struct sigacts *ps; 322 int signo, prop; 323 324 ps = p->p_sigacts; 325 sigemptyset(&contsigmask); 326 sigemptyset(&stopsigmask); 327 sigemptyset(&sigcantmask); 328 for (signo = 1; signo < NSIG; signo++) { 329 prop = sigprop[signo]; 330 if (prop & SA_CONT) 331 sigaddset(&contsigmask, signo); 332 if (prop & SA_STOP) 333 sigaddset(&stopsigmask, signo); 334 if (prop & SA_CANTMASK) 335 sigaddset(&sigcantmask, signo); 336 if (prop & SA_IGNORE && signo != SIGCONT) 337 sigaddset(&p->p_sigctx.ps_sigignore, signo); 338 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 339 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 340 } 341 sigemptyset(&p->p_sigctx.ps_sigcatch); 342 p->p_sflag &= ~PS_NOCLDSTOP; 343 344 ksiginfo_queue_init(&p->p_sigpend.sp_info); 345 sigemptyset(&p->p_sigpend.sp_set); 346 347 /* 348 * Reset per LWP state. 349 */ 350 l = LIST_FIRST(&p->p_lwps); 351 l->l_sigwaited = NULL; 352 l->l_sigstk.ss_flags = SS_DISABLE; 353 l->l_sigstk.ss_size = 0; 354 l->l_sigstk.ss_sp = 0; 355 ksiginfo_queue_init(&l->l_sigpend.sp_info); 356 sigemptyset(&l->l_sigpend.sp_set); 357 358 /* One reference. */ 359 ps->sa_refcnt = 1; 360 } 361 362 /* 363 * execsigs: 364 * 365 * Reset signals for an exec of the specified process. 366 */ 367 void 368 execsigs(struct proc *p) 369 { 370 struct sigacts *ps; 371 struct lwp *l; 372 int signo, prop; 373 sigset_t tset; 374 ksiginfoq_t kq; 375 376 KASSERT(p->p_nlwps == 1); 377 378 sigactsunshare(p); 379 ps = p->p_sigacts; 380 381 /* 382 * Reset caught signals. Held signals remain held through 383 * l->l_sigmask (unless they were caught, and are now ignored 384 * by default). 385 * 386 * No need to lock yet, the process has only one LWP and 387 * at this point the sigacts are private to the process. 388 */ 389 sigemptyset(&tset); 390 for (signo = 1; signo < NSIG; signo++) { 391 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 392 prop = sigprop[signo]; 393 if (prop & SA_IGNORE) { 394 if ((prop & SA_CONT) == 0) 395 sigaddset(&p->p_sigctx.ps_sigignore, 396 signo); 397 sigaddset(&tset, signo); 398 } 399 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 400 } 401 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 402 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 403 } 404 ksiginfo_queue_init(&kq); 405 406 mutex_enter(p->p_lock); 407 sigclearall(p, &tset, &kq); 408 sigemptyset(&p->p_sigctx.ps_sigcatch); 409 410 /* 411 * Reset no zombies if child dies flag as Solaris does. 412 */ 413 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 414 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 415 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 416 417 /* 418 * Reset per-LWP state. 419 */ 420 l = LIST_FIRST(&p->p_lwps); 421 l->l_sigwaited = NULL; 422 l->l_sigstk.ss_flags = SS_DISABLE; 423 l->l_sigstk.ss_size = 0; 424 l->l_sigstk.ss_sp = 0; 425 ksiginfo_queue_init(&l->l_sigpend.sp_info); 426 sigemptyset(&l->l_sigpend.sp_set); 427 mutex_exit(p->p_lock); 428 429 ksiginfo_queue_drain(&kq); 430 } 431 432 /* 433 * ksiginfo_exechook: 434 * 435 * Free all pending ksiginfo entries from a process on exec. 436 * Additionally, drain any unused ksiginfo structures in the 437 * system back to the pool. 438 * 439 * XXX This should not be a hook, every process has signals. 440 */ 441 static void 442 ksiginfo_exechook(struct proc *p, void *v) 443 { 444 ksiginfoq_t kq; 445 446 ksiginfo_queue_init(&kq); 447 448 mutex_enter(p->p_lock); 449 sigclearall(p, NULL, &kq); 450 mutex_exit(p->p_lock); 451 452 ksiginfo_queue_drain(&kq); 453 } 454 455 /* 456 * ksiginfo_alloc: 457 * 458 * Allocate a new ksiginfo structure from the pool, and optionally copy 459 * an existing one. If the existing ksiginfo_t is from the pool, and 460 * has not been queued somewhere, then just return it. Additionally, 461 * if the existing ksiginfo_t does not contain any information beyond 462 * the signal number, then just return it. 463 */ 464 ksiginfo_t * 465 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 466 { 467 ksiginfo_t *kp; 468 469 if (ok != NULL) { 470 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 471 KSI_FROMPOOL) 472 return ok; 473 if (KSI_EMPTY_P(ok)) 474 return ok; 475 } 476 477 kp = pool_cache_get(ksiginfo_cache, flags); 478 if (kp == NULL) { 479 #ifdef DIAGNOSTIC 480 printf("Out of memory allocating ksiginfo for pid %d\n", 481 p->p_pid); 482 #endif 483 return NULL; 484 } 485 486 if (ok != NULL) { 487 memcpy(kp, ok, sizeof(*kp)); 488 kp->ksi_flags &= ~KSI_QUEUED; 489 } else 490 KSI_INIT_EMPTY(kp); 491 492 kp->ksi_flags |= KSI_FROMPOOL; 493 494 return kp; 495 } 496 497 /* 498 * ksiginfo_free: 499 * 500 * If the given ksiginfo_t is from the pool and has not been queued, 501 * then free it. 502 */ 503 void 504 ksiginfo_free(ksiginfo_t *kp) 505 { 506 507 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 508 return; 509 pool_cache_put(ksiginfo_cache, kp); 510 } 511 512 /* 513 * ksiginfo_queue_drain: 514 * 515 * Drain a non-empty ksiginfo_t queue. 516 */ 517 void 518 ksiginfo_queue_drain0(ksiginfoq_t *kq) 519 { 520 ksiginfo_t *ksi; 521 522 KASSERT(!TAILQ_EMPTY(kq)); 523 524 while (!TAILQ_EMPTY(kq)) { 525 ksi = TAILQ_FIRST(kq); 526 TAILQ_REMOVE(kq, ksi, ksi_list); 527 pool_cache_put(ksiginfo_cache, ksi); 528 } 529 } 530 531 static bool 532 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 533 { 534 ksiginfo_t *ksi; 535 536 if (sp == NULL) 537 goto out; 538 539 /* Find siginfo and copy it out. */ 540 TAILQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 541 if (ksi->ksi_signo != signo) 542 continue; 543 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 544 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 545 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 546 ksi->ksi_flags &= ~KSI_QUEUED; 547 if (out != NULL) { 548 memcpy(out, ksi, sizeof(*out)); 549 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 550 } 551 ksiginfo_free(ksi); /* XXXSMP */ 552 return true; 553 } 554 555 out: 556 /* If there is no siginfo, then manufacture it. */ 557 if (out != NULL) { 558 KSI_INIT(out); 559 out->ksi_info._signo = signo; 560 out->ksi_info._code = SI_NOINFO; 561 } 562 return false; 563 } 564 565 /* 566 * sigget: 567 * 568 * Fetch the first pending signal from a set. Optionally, also fetch 569 * or manufacture a ksiginfo element. Returns the number of the first 570 * pending signal, or zero. 571 */ 572 int 573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 574 { 575 sigset_t tset; 576 577 /* If there's no pending set, the signal is from the debugger. */ 578 if (sp == NULL) 579 goto out; 580 581 /* Construct mask from signo, and 'mask'. */ 582 if (signo == 0) { 583 if (mask != NULL) { 584 tset = *mask; 585 __sigandset(&sp->sp_set, &tset); 586 } else 587 tset = sp->sp_set; 588 589 /* If there are no signals pending - return. */ 590 if ((signo = firstsig(&tset)) == 0) 591 goto out; 592 } else { 593 KASSERT(sigismember(&sp->sp_set, signo)); 594 } 595 596 sigdelset(&sp->sp_set, signo); 597 out: 598 (void)siggetinfo(sp, out, signo); 599 return signo; 600 } 601 602 /* 603 * sigput: 604 * 605 * Append a new ksiginfo element to the list of pending ksiginfo's. 606 */ 607 static void 608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 609 { 610 ksiginfo_t *kp; 611 612 KASSERT(mutex_owned(p->p_lock)); 613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 614 615 sigaddset(&sp->sp_set, ksi->ksi_signo); 616 617 /* 618 * If there is no siginfo, we are done. 619 */ 620 if (KSI_EMPTY_P(ksi)) 621 return; 622 623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 624 625 #ifdef notyet /* XXX: QUEUING */ 626 if (ksi->ksi_signo < SIGRTMIN) 627 #endif 628 { 629 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 630 if (kp->ksi_signo == ksi->ksi_signo) { 631 KSI_COPY(ksi, kp); 632 kp->ksi_flags |= KSI_QUEUED; 633 return; 634 } 635 } 636 } 637 638 ksi->ksi_flags |= KSI_QUEUED; 639 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 640 } 641 642 /* 643 * sigclear: 644 * 645 * Clear all pending signals in the specified set. 646 */ 647 void 648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 649 { 650 ksiginfo_t *ksi, *next; 651 652 if (mask == NULL) 653 sigemptyset(&sp->sp_set); 654 else 655 sigminusset(mask, &sp->sp_set); 656 657 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 658 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 659 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 660 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 661 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 662 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 663 } 664 } 665 } 666 667 /* 668 * sigclearall: 669 * 670 * Clear all pending signals in the specified set from a process and 671 * its LWPs. 672 */ 673 void 674 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 675 { 676 struct lwp *l; 677 678 KASSERT(mutex_owned(p->p_lock)); 679 680 sigclear(&p->p_sigpend, mask, kq); 681 682 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 683 sigclear(&l->l_sigpend, mask, kq); 684 } 685 } 686 687 /* 688 * sigispending: 689 * 690 * Return the first signal number if there are pending signals for the 691 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 692 * and that the signal has been posted to the appopriate queue before 693 * LW_PENDSIG is set. 694 */ 695 int 696 sigispending(struct lwp *l, int signo) 697 { 698 struct proc *p = l->l_proc; 699 sigset_t tset; 700 701 membar_consumer(); 702 703 tset = l->l_sigpend.sp_set; 704 sigplusset(&p->p_sigpend.sp_set, &tset); 705 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 706 sigminusset(&l->l_sigmask, &tset); 707 708 if (signo == 0) { 709 return firstsig(&tset); 710 } 711 return sigismember(&tset, signo) ? signo : 0; 712 } 713 714 void 715 getucontext(struct lwp *l, ucontext_t *ucp) 716 { 717 struct proc *p = l->l_proc; 718 719 KASSERT(mutex_owned(p->p_lock)); 720 721 ucp->uc_flags = 0; 722 ucp->uc_link = l->l_ctxlink; 723 ucp->uc_sigmask = l->l_sigmask; 724 ucp->uc_flags |= _UC_SIGMASK; 725 726 /* 727 * The (unsupplied) definition of the `current execution stack' 728 * in the System V Interface Definition appears to allow returning 729 * the main context stack. 730 */ 731 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 732 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 733 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 734 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 735 } else { 736 /* Simply copy alternate signal execution stack. */ 737 ucp->uc_stack = l->l_sigstk; 738 } 739 ucp->uc_flags |= _UC_STACK; 740 mutex_exit(p->p_lock); 741 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 742 mutex_enter(p->p_lock); 743 } 744 745 int 746 setucontext(struct lwp *l, const ucontext_t *ucp) 747 { 748 struct proc *p = l->l_proc; 749 int error; 750 751 KASSERT(mutex_owned(p->p_lock)); 752 753 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 754 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 755 if (error != 0) 756 return error; 757 } 758 759 mutex_exit(p->p_lock); 760 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 761 mutex_enter(p->p_lock); 762 if (error != 0) 763 return (error); 764 765 l->l_ctxlink = ucp->uc_link; 766 767 /* 768 * If there was stack information, update whether or not we are 769 * still running on an alternate signal stack. 770 */ 771 if ((ucp->uc_flags & _UC_STACK) != 0) { 772 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 773 l->l_sigstk.ss_flags |= SS_ONSTACK; 774 else 775 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 776 } 777 778 return 0; 779 } 780 781 /* 782 * killpg1: common code for kill process group/broadcast kill. 783 */ 784 int 785 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 786 { 787 struct proc *p, *cp; 788 kauth_cred_t pc; 789 struct pgrp *pgrp; 790 int nfound; 791 int signo = ksi->ksi_signo; 792 793 cp = l->l_proc; 794 pc = l->l_cred; 795 nfound = 0; 796 797 mutex_enter(proc_lock); 798 if (all) { 799 /* 800 * Broadcast. 801 */ 802 PROCLIST_FOREACH(p, &allproc) { 803 if (p->p_pid <= 1 || p == cp || 804 (p->p_flag & PK_SYSTEM) != 0) 805 continue; 806 mutex_enter(p->p_lock); 807 if (kauth_authorize_process(pc, 808 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 809 NULL) == 0) { 810 nfound++; 811 if (signo) 812 kpsignal2(p, ksi); 813 } 814 mutex_exit(p->p_lock); 815 } 816 } else { 817 if (pgid == 0) 818 /* Zero pgid means send to my process group. */ 819 pgrp = cp->p_pgrp; 820 else { 821 pgrp = pgrp_find(pgid); 822 if (pgrp == NULL) 823 goto out; 824 } 825 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 826 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 827 continue; 828 mutex_enter(p->p_lock); 829 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 830 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 831 nfound++; 832 if (signo && P_ZOMBIE(p) == 0) 833 kpsignal2(p, ksi); 834 } 835 mutex_exit(p->p_lock); 836 } 837 } 838 out: 839 mutex_exit(proc_lock); 840 return nfound ? 0 : ESRCH; 841 } 842 843 /* 844 * Send a signal to a process group. If checktty is set, limit to members 845 * which have a controlling terminal. 846 */ 847 void 848 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 849 { 850 ksiginfo_t ksi; 851 852 KASSERT(!cpu_intr_p()); 853 KASSERT(mutex_owned(proc_lock)); 854 855 KSI_INIT_EMPTY(&ksi); 856 ksi.ksi_signo = sig; 857 kpgsignal(pgrp, &ksi, NULL, checkctty); 858 } 859 860 void 861 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 862 { 863 struct proc *p; 864 865 KASSERT(!cpu_intr_p()); 866 KASSERT(mutex_owned(proc_lock)); 867 KASSERT(pgrp != NULL); 868 869 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 870 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 871 kpsignal(p, ksi, data); 872 } 873 874 /* 875 * Send a signal caused by a trap to the current LWP. If it will be caught 876 * immediately, deliver it with correct code. Otherwise, post it normally. 877 */ 878 void 879 trapsignal(struct lwp *l, ksiginfo_t *ksi) 880 { 881 struct proc *p; 882 struct sigacts *ps; 883 int signo = ksi->ksi_signo; 884 sigset_t *mask; 885 886 KASSERT(KSI_TRAP_P(ksi)); 887 888 ksi->ksi_lid = l->l_lid; 889 p = l->l_proc; 890 891 KASSERT(!cpu_intr_p()); 892 mutex_enter(proc_lock); 893 mutex_enter(p->p_lock); 894 mask = &l->l_sigmask; 895 ps = p->p_sigacts; 896 897 if ((p->p_slflag & PSL_TRACED) == 0 && 898 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 899 !sigismember(mask, signo)) { 900 mutex_exit(proc_lock); 901 l->l_ru.ru_nsignals++; 902 kpsendsig(l, ksi, mask); 903 mutex_exit(p->p_lock); 904 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 905 } else { 906 /* XXX for core dump/debugger */ 907 p->p_sigctx.ps_lwp = l->l_lid; 908 p->p_sigctx.ps_signo = ksi->ksi_signo; 909 p->p_sigctx.ps_code = ksi->ksi_trap; 910 kpsignal2(p, ksi); 911 mutex_exit(p->p_lock); 912 mutex_exit(proc_lock); 913 } 914 } 915 916 /* 917 * Fill in signal information and signal the parent for a child status change. 918 */ 919 void 920 child_psignal(struct proc *p, int mask) 921 { 922 ksiginfo_t ksi; 923 struct proc *q; 924 int xstat; 925 926 KASSERT(mutex_owned(proc_lock)); 927 KASSERT(mutex_owned(p->p_lock)); 928 929 xstat = p->p_xstat; 930 931 KSI_INIT(&ksi); 932 ksi.ksi_signo = SIGCHLD; 933 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 934 ksi.ksi_pid = p->p_pid; 935 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 936 ksi.ksi_status = xstat; 937 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 938 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 939 940 q = p->p_pptr; 941 942 mutex_exit(p->p_lock); 943 mutex_enter(q->p_lock); 944 945 if ((q->p_sflag & mask) == 0) 946 kpsignal2(q, &ksi); 947 948 mutex_exit(q->p_lock); 949 mutex_enter(p->p_lock); 950 } 951 952 void 953 psignal(struct proc *p, int signo) 954 { 955 ksiginfo_t ksi; 956 957 KASSERT(!cpu_intr_p()); 958 KASSERT(mutex_owned(proc_lock)); 959 960 KSI_INIT_EMPTY(&ksi); 961 ksi.ksi_signo = signo; 962 mutex_enter(p->p_lock); 963 kpsignal2(p, &ksi); 964 mutex_exit(p->p_lock); 965 } 966 967 void 968 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 969 { 970 fdfile_t *ff; 971 file_t *fp; 972 fdtab_t *dt; 973 974 KASSERT(!cpu_intr_p()); 975 KASSERT(mutex_owned(proc_lock)); 976 977 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 978 size_t fd; 979 filedesc_t *fdp = p->p_fd; 980 981 /* XXXSMP locking */ 982 ksi->ksi_fd = -1; 983 dt = fdp->fd_dt; 984 for (fd = 0; fd < dt->dt_nfiles; fd++) { 985 if ((ff = dt->dt_ff[fd]) == NULL) 986 continue; 987 if ((fp = ff->ff_file) == NULL) 988 continue; 989 if (fp->f_data == data) { 990 ksi->ksi_fd = fd; 991 break; 992 } 993 } 994 } 995 mutex_enter(p->p_lock); 996 kpsignal2(p, ksi); 997 mutex_exit(p->p_lock); 998 } 999 1000 /* 1001 * sigismasked: 1002 * 1003 * Returns true if signal is ignored or masked for the specified LWP. 1004 */ 1005 int 1006 sigismasked(struct lwp *l, int sig) 1007 { 1008 struct proc *p = l->l_proc; 1009 1010 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1011 sigismember(&l->l_sigmask, sig); 1012 } 1013 1014 /* 1015 * sigpost: 1016 * 1017 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1018 * be able to take the signal. 1019 */ 1020 static int 1021 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1022 { 1023 int rv, masked; 1024 struct proc *p = l->l_proc; 1025 1026 KASSERT(mutex_owned(p->p_lock)); 1027 1028 /* 1029 * If the LWP is on the way out, sigclear() will be busy draining all 1030 * pending signals. Don't give it more. 1031 */ 1032 if (l->l_refcnt == 0) 1033 return 0; 1034 1035 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1036 1037 /* 1038 * Have the LWP check for signals. This ensures that even if no LWP 1039 * is found to take the signal immediately, it should be taken soon. 1040 */ 1041 lwp_lock(l); 1042 l->l_flag |= LW_PENDSIG; 1043 1044 /* 1045 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1046 * Note: SIGKILL and SIGSTOP cannot be masked. 1047 */ 1048 masked = sigismember(&l->l_sigmask, sig); 1049 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1050 lwp_unlock(l); 1051 return 0; 1052 } 1053 1054 /* 1055 * If killing the process, make it run fast. 1056 */ 1057 if (__predict_false((prop & SA_KILL) != 0) && 1058 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1059 KASSERT(l->l_class == SCHED_OTHER); 1060 lwp_changepri(l, MAXPRI_USER); 1061 } 1062 1063 /* 1064 * If the LWP is running or on a run queue, then we win. If it's 1065 * sleeping interruptably, wake it and make it take the signal. If 1066 * the sleep isn't interruptable, then the chances are it will get 1067 * to see the signal soon anyhow. If suspended, it can't take the 1068 * signal right now. If it's LWP private or for all LWPs, save it 1069 * for later; otherwise punt. 1070 */ 1071 rv = 0; 1072 1073 switch (l->l_stat) { 1074 case LSRUN: 1075 case LSONPROC: 1076 lwp_need_userret(l); 1077 rv = 1; 1078 break; 1079 1080 case LSSLEEP: 1081 if ((l->l_flag & LW_SINTR) != 0) { 1082 /* setrunnable() will release the lock. */ 1083 setrunnable(l); 1084 return 1; 1085 } 1086 break; 1087 1088 case LSSUSPENDED: 1089 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1090 /* lwp_continue() will release the lock. */ 1091 lwp_continue(l); 1092 return 1; 1093 } 1094 break; 1095 1096 case LSSTOP: 1097 if ((prop & SA_STOP) != 0) 1098 break; 1099 1100 /* 1101 * If the LWP is stopped and we are sending a continue 1102 * signal, then start it again. 1103 */ 1104 if ((prop & SA_CONT) != 0) { 1105 if (l->l_wchan != NULL) { 1106 l->l_stat = LSSLEEP; 1107 p->p_nrlwps++; 1108 rv = 1; 1109 break; 1110 } 1111 /* setrunnable() will release the lock. */ 1112 setrunnable(l); 1113 return 1; 1114 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1115 /* setrunnable() will release the lock. */ 1116 setrunnable(l); 1117 return 1; 1118 } 1119 break; 1120 1121 default: 1122 break; 1123 } 1124 1125 lwp_unlock(l); 1126 return rv; 1127 } 1128 1129 /* 1130 * Notify an LWP that it has a pending signal. 1131 */ 1132 void 1133 signotify(struct lwp *l) 1134 { 1135 KASSERT(lwp_locked(l, NULL)); 1136 1137 l->l_flag |= LW_PENDSIG; 1138 lwp_need_userret(l); 1139 } 1140 1141 /* 1142 * Find an LWP within process p that is waiting on signal ksi, and hand 1143 * it on. 1144 */ 1145 static int 1146 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1147 { 1148 struct lwp *l; 1149 int signo; 1150 1151 KASSERT(mutex_owned(p->p_lock)); 1152 1153 signo = ksi->ksi_signo; 1154 1155 if (ksi->ksi_lid != 0) { 1156 /* 1157 * Signal came via _lwp_kill(). Find the LWP and see if 1158 * it's interested. 1159 */ 1160 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1161 return 0; 1162 if (l->l_sigwaited == NULL || 1163 !sigismember(&l->l_sigwaitset, signo)) 1164 return 0; 1165 } else { 1166 /* 1167 * Look for any LWP that may be interested. 1168 */ 1169 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1170 KASSERT(l->l_sigwaited != NULL); 1171 if (sigismember(&l->l_sigwaitset, signo)) 1172 break; 1173 } 1174 } 1175 1176 if (l != NULL) { 1177 l->l_sigwaited->ksi_info = ksi->ksi_info; 1178 l->l_sigwaited = NULL; 1179 LIST_REMOVE(l, l_sigwaiter); 1180 cv_signal(&l->l_sigcv); 1181 return 1; 1182 } 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * Send the signal to the process. If the signal has an action, the action 1189 * is usually performed by the target process rather than the caller; we add 1190 * the signal to the set of pending signals for the process. 1191 * 1192 * Exceptions: 1193 * o When a stop signal is sent to a sleeping process that takes the 1194 * default action, the process is stopped without awakening it. 1195 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1196 * regardless of the signal action (eg, blocked or ignored). 1197 * 1198 * Other ignored signals are discarded immediately. 1199 */ 1200 void 1201 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1202 { 1203 int prop, signo = ksi->ksi_signo; 1204 struct sigacts *sa; 1205 struct lwp *l; 1206 ksiginfo_t *kp; 1207 lwpid_t lid; 1208 sig_t action; 1209 bool toall; 1210 1211 KASSERT(!cpu_intr_p()); 1212 KASSERT(mutex_owned(proc_lock)); 1213 KASSERT(mutex_owned(p->p_lock)); 1214 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1215 KASSERT(signo > 0 && signo < NSIG); 1216 1217 /* 1218 * If the process is being created by fork, is a zombie or is 1219 * exiting, then just drop the signal here and bail out. 1220 */ 1221 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1222 return; 1223 1224 /* 1225 * Notify any interested parties of the signal. 1226 */ 1227 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1228 1229 /* 1230 * Some signals including SIGKILL must act on the entire process. 1231 */ 1232 kp = NULL; 1233 prop = sigprop[signo]; 1234 toall = ((prop & SA_TOALL) != 0); 1235 lid = toall ? 0 : ksi->ksi_lid; 1236 1237 /* 1238 * If proc is traced, always give parent a chance. 1239 */ 1240 if (p->p_slflag & PSL_TRACED) { 1241 action = SIG_DFL; 1242 1243 if (lid == 0) { 1244 /* 1245 * If the process is being traced and the signal 1246 * is being caught, make sure to save any ksiginfo. 1247 */ 1248 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1249 return; 1250 sigput(&p->p_sigpend, p, kp); 1251 } 1252 } else { 1253 /* 1254 * If the signal was the result of a trap and is not being 1255 * caught, then reset it to default action so that the 1256 * process dumps core immediately. 1257 */ 1258 if (KSI_TRAP_P(ksi)) { 1259 sa = p->p_sigacts; 1260 mutex_enter(&sa->sa_mutex); 1261 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1262 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1263 SIGACTION(p, signo).sa_handler = SIG_DFL; 1264 } 1265 mutex_exit(&sa->sa_mutex); 1266 } 1267 1268 /* 1269 * If the signal is being ignored, then drop it. Note: we 1270 * don't set SIGCONT in ps_sigignore, and if it is set to 1271 * SIG_IGN, action will be SIG_DFL here. 1272 */ 1273 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1274 return; 1275 1276 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1277 action = SIG_CATCH; 1278 else { 1279 action = SIG_DFL; 1280 1281 /* 1282 * If sending a tty stop signal to a member of an 1283 * orphaned process group, discard the signal here if 1284 * the action is default; don't stop the process below 1285 * if sleeping, and don't clear any pending SIGCONT. 1286 */ 1287 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1288 return; 1289 1290 if (prop & SA_KILL && p->p_nice > NZERO) 1291 p->p_nice = NZERO; 1292 } 1293 } 1294 1295 /* 1296 * If stopping or continuing a process, discard any pending 1297 * signals that would do the inverse. 1298 */ 1299 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1300 ksiginfoq_t kq; 1301 1302 ksiginfo_queue_init(&kq); 1303 if ((prop & SA_CONT) != 0) 1304 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1305 if ((prop & SA_STOP) != 0) 1306 sigclear(&p->p_sigpend, &contsigmask, &kq); 1307 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1308 } 1309 1310 /* 1311 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1312 * please!), check if any LWPs are waiting on it. If yes, pass on 1313 * the signal info. The signal won't be processed further here. 1314 */ 1315 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1316 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1317 sigunwait(p, ksi)) 1318 return; 1319 1320 /* 1321 * XXXSMP Should be allocated by the caller, we're holding locks 1322 * here. 1323 */ 1324 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1325 return; 1326 1327 /* 1328 * LWP private signals are easy - just find the LWP and post 1329 * the signal to it. 1330 */ 1331 if (lid != 0) { 1332 l = lwp_find(p, lid); 1333 if (l != NULL) { 1334 sigput(&l->l_sigpend, p, kp); 1335 membar_producer(); 1336 (void)sigpost(l, action, prop, kp->ksi_signo); 1337 } 1338 goto out; 1339 } 1340 1341 /* 1342 * Some signals go to all LWPs, even if posted with _lwp_kill() 1343 * or for an SA process. 1344 */ 1345 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1346 if ((p->p_slflag & PSL_TRACED) != 0) 1347 goto deliver; 1348 1349 /* 1350 * If SIGCONT is default (or ignored) and process is 1351 * asleep, we are finished; the process should not 1352 * be awakened. 1353 */ 1354 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1355 goto out; 1356 } else { 1357 /* 1358 * Process is stopped or stopping. 1359 * - If traced, then no action is needed, unless killing. 1360 * - Run the process only if sending SIGCONT or SIGKILL. 1361 */ 1362 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1363 goto out; 1364 } 1365 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1366 /* 1367 * Re-adjust p_nstopchild if the process wasn't 1368 * collected by its parent. 1369 */ 1370 p->p_stat = SACTIVE; 1371 p->p_sflag &= ~PS_STOPPING; 1372 if (!p->p_waited) { 1373 p->p_pptr->p_nstopchild--; 1374 } 1375 if (p->p_slflag & PSL_TRACED) { 1376 KASSERT(signo == SIGKILL); 1377 goto deliver; 1378 } 1379 /* 1380 * Do not make signal pending if SIGCONT is default. 1381 * 1382 * If the process catches SIGCONT, let it handle the 1383 * signal itself (if waiting on event - process runs, 1384 * otherwise continues sleeping). 1385 */ 1386 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1387 KASSERT(signo != SIGKILL); 1388 goto deliver; 1389 } 1390 } else if ((prop & SA_STOP) != 0) { 1391 /* 1392 * Already stopped, don't need to stop again. 1393 * (If we did the shell could get confused.) 1394 */ 1395 goto out; 1396 } 1397 } 1398 /* 1399 * Make signal pending. 1400 */ 1401 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1402 sigput(&p->p_sigpend, p, kp); 1403 1404 deliver: 1405 /* 1406 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1407 * visible on the per process list (for sigispending()). This 1408 * is unlikely to be needed in practice, but... 1409 */ 1410 membar_producer(); 1411 1412 /* 1413 * Try to find an LWP that can take the signal. 1414 */ 1415 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1416 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1417 break; 1418 } 1419 out: 1420 /* 1421 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1422 * with locks held. The caller should take care of this. 1423 */ 1424 ksiginfo_free(kp); 1425 } 1426 1427 void 1428 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1429 { 1430 struct proc *p = l->l_proc; 1431 1432 KASSERT(mutex_owned(p->p_lock)); 1433 (*p->p_emul->e_sendsig)(ksi, mask); 1434 } 1435 1436 /* 1437 * Stop any LWPs sleeping interruptably. 1438 */ 1439 static void 1440 proc_stop_lwps(struct proc *p) 1441 { 1442 struct lwp *l; 1443 1444 KASSERT(mutex_owned(p->p_lock)); 1445 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1446 1447 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1448 lwp_lock(l); 1449 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1450 l->l_stat = LSSTOP; 1451 p->p_nrlwps--; 1452 } 1453 lwp_unlock(l); 1454 } 1455 } 1456 1457 /* 1458 * Finish stopping of a process. Mark it stopped and notify the parent. 1459 * 1460 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1461 */ 1462 static void 1463 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1464 { 1465 1466 KASSERT(mutex_owned(proc_lock)); 1467 KASSERT(mutex_owned(p->p_lock)); 1468 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1469 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1470 1471 p->p_sflag &= ~PS_STOPPING; 1472 p->p_stat = SSTOP; 1473 p->p_waited = 0; 1474 p->p_pptr->p_nstopchild++; 1475 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1476 if (ppsig) { 1477 /* child_psignal drops p_lock briefly. */ 1478 child_psignal(p, ppmask); 1479 } 1480 cv_broadcast(&p->p_pptr->p_waitcv); 1481 } 1482 } 1483 1484 /* 1485 * Stop the current process and switch away when being stopped or traced. 1486 */ 1487 static void 1488 sigswitch(bool ppsig, int ppmask, int signo) 1489 { 1490 struct lwp *l = curlwp; 1491 struct proc *p = l->l_proc; 1492 int biglocks; 1493 1494 KASSERT(mutex_owned(p->p_lock)); 1495 KASSERT(l->l_stat == LSONPROC); 1496 KASSERT(p->p_nrlwps > 0); 1497 1498 /* 1499 * On entry we know that the process needs to stop. If it's 1500 * the result of a 'sideways' stop signal that has been sourced 1501 * through issignal(), then stop other LWPs in the process too. 1502 */ 1503 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1504 KASSERT(signo != 0); 1505 proc_stop(p, 1, signo); 1506 KASSERT(p->p_nrlwps > 0); 1507 } 1508 1509 /* 1510 * If we are the last live LWP, and the stop was a result of 1511 * a new signal, then signal the parent. 1512 */ 1513 if ((p->p_sflag & PS_STOPPING) != 0) { 1514 if (!mutex_tryenter(proc_lock)) { 1515 mutex_exit(p->p_lock); 1516 mutex_enter(proc_lock); 1517 mutex_enter(p->p_lock); 1518 } 1519 1520 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1521 /* 1522 * Note that proc_stop_done() can drop 1523 * p->p_lock briefly. 1524 */ 1525 proc_stop_done(p, ppsig, ppmask); 1526 } 1527 1528 mutex_exit(proc_lock); 1529 } 1530 1531 /* 1532 * Unlock and switch away. 1533 */ 1534 KERNEL_UNLOCK_ALL(l, &biglocks); 1535 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1536 p->p_nrlwps--; 1537 lwp_lock(l); 1538 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1539 l->l_stat = LSSTOP; 1540 lwp_unlock(l); 1541 } 1542 1543 mutex_exit(p->p_lock); 1544 lwp_lock(l); 1545 mi_switch(l); 1546 KERNEL_LOCK(biglocks, l); 1547 mutex_enter(p->p_lock); 1548 } 1549 1550 /* 1551 * Check for a signal from the debugger. 1552 */ 1553 static int 1554 sigchecktrace(void) 1555 { 1556 struct lwp *l = curlwp; 1557 struct proc *p = l->l_proc; 1558 int signo; 1559 1560 KASSERT(mutex_owned(p->p_lock)); 1561 1562 /* If there's a pending SIGKILL, process it immediately. */ 1563 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1564 return 0; 1565 1566 /* 1567 * If we are no longer being traced, or the parent didn't 1568 * give us a signal, or we're stopping, look for more signals. 1569 */ 1570 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 || 1571 (p->p_sflag & PS_STOPPING) != 0) 1572 return 0; 1573 1574 /* 1575 * If the new signal is being masked, look for other signals. 1576 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1577 */ 1578 signo = p->p_xstat; 1579 p->p_xstat = 0; 1580 if (sigismember(&l->l_sigmask, signo)) { 1581 signo = 0; 1582 } 1583 return signo; 1584 } 1585 1586 /* 1587 * If the current process has received a signal (should be caught or cause 1588 * termination, should interrupt current syscall), return the signal number. 1589 * 1590 * Stop signals with default action are processed immediately, then cleared; 1591 * they aren't returned. This is checked after each entry to the system for 1592 * a syscall or trap. 1593 * 1594 * We will also return -1 if the process is exiting and the current LWP must 1595 * follow suit. 1596 */ 1597 int 1598 issignal(struct lwp *l) 1599 { 1600 struct proc *p; 1601 int signo, prop; 1602 sigpend_t *sp; 1603 sigset_t ss; 1604 1605 p = l->l_proc; 1606 sp = NULL; 1607 signo = 0; 1608 1609 KASSERT(p == curproc); 1610 KASSERT(mutex_owned(p->p_lock)); 1611 1612 for (;;) { 1613 /* Discard any signals that we have decided not to take. */ 1614 if (signo != 0) { 1615 (void)sigget(sp, NULL, signo, NULL); 1616 } 1617 1618 /* 1619 * If the process is stopped/stopping, then stop ourselves 1620 * now that we're on the kernel/userspace boundary. When 1621 * we awaken, check for a signal from the debugger. 1622 */ 1623 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1624 sigswitch(true, PS_NOCLDSTOP, 0); 1625 signo = sigchecktrace(); 1626 } else 1627 signo = 0; 1628 1629 /* Signals from the debugger are "out of band". */ 1630 sp = NULL; 1631 1632 /* 1633 * If the debugger didn't provide a signal, find a pending 1634 * signal from our set. Check per-LWP signals first, and 1635 * then per-process. 1636 */ 1637 if (signo == 0) { 1638 sp = &l->l_sigpend; 1639 ss = sp->sp_set; 1640 if ((p->p_lflag & PL_PPWAIT) != 0) 1641 sigminusset(&stopsigmask, &ss); 1642 sigminusset(&l->l_sigmask, &ss); 1643 1644 if ((signo = firstsig(&ss)) == 0) { 1645 sp = &p->p_sigpend; 1646 ss = sp->sp_set; 1647 if ((p->p_lflag & PL_PPWAIT) != 0) 1648 sigminusset(&stopsigmask, &ss); 1649 sigminusset(&l->l_sigmask, &ss); 1650 1651 if ((signo = firstsig(&ss)) == 0) { 1652 /* 1653 * No signal pending - clear the 1654 * indicator and bail out. 1655 */ 1656 lwp_lock(l); 1657 l->l_flag &= ~LW_PENDSIG; 1658 lwp_unlock(l); 1659 sp = NULL; 1660 break; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * We should see pending but ignored signals only if 1667 * we are being traced. 1668 */ 1669 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1670 (p->p_slflag & PSL_TRACED) == 0) { 1671 /* Discard the signal. */ 1672 continue; 1673 } 1674 1675 /* 1676 * If traced, always stop, and stay stopped until released 1677 * by the debugger. If the our parent process is waiting 1678 * for us, don't hang as we could deadlock. 1679 */ 1680 if ((p->p_slflag & PSL_TRACED) != 0 && 1681 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1682 /* 1683 * Take the signal, but don't remove it from the 1684 * siginfo queue, because the debugger can send 1685 * it later. 1686 */ 1687 if (sp) 1688 sigdelset(&sp->sp_set, signo); 1689 p->p_xstat = signo; 1690 1691 /* Emulation-specific handling of signal trace */ 1692 if (p->p_emul->e_tracesig == NULL || 1693 (*p->p_emul->e_tracesig)(p, signo) == 0) 1694 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1695 signo); 1696 1697 /* Check for a signal from the debugger. */ 1698 if ((signo = sigchecktrace()) == 0) 1699 continue; 1700 1701 /* Signals from the debugger are "out of band". */ 1702 sp = NULL; 1703 } 1704 1705 prop = sigprop[signo]; 1706 1707 /* XXX no siginfo? */ 1708 SDT_PROBE(proc,,,signal_handle, signo, 0, 1709 SIGACTION(p, signo).sa_handler, 0, 0); 1710 1711 /* 1712 * Decide whether the signal should be returned. 1713 */ 1714 switch ((long)SIGACTION(p, signo).sa_handler) { 1715 case (long)SIG_DFL: 1716 /* 1717 * Don't take default actions on system processes. 1718 */ 1719 if (p->p_pid <= 1) { 1720 #ifdef DIAGNOSTIC 1721 /* 1722 * Are you sure you want to ignore SIGSEGV 1723 * in init? XXX 1724 */ 1725 printf_nolog("Process (pid %d) got sig %d\n", 1726 p->p_pid, signo); 1727 #endif 1728 continue; 1729 } 1730 1731 /* 1732 * If there is a pending stop signal to process with 1733 * default action, stop here, then clear the signal. 1734 * However, if process is member of an orphaned 1735 * process group, ignore tty stop signals. 1736 */ 1737 if (prop & SA_STOP) { 1738 /* 1739 * XXX Don't hold proc_lock for p_lflag, 1740 * but it's not a big deal. 1741 */ 1742 if (p->p_slflag & PSL_TRACED || 1743 ((p->p_lflag & PL_ORPHANPG) != 0 && 1744 prop & SA_TTYSTOP)) { 1745 /* Ignore the signal. */ 1746 continue; 1747 } 1748 /* Take the signal. */ 1749 (void)sigget(sp, NULL, signo, NULL); 1750 p->p_xstat = signo; 1751 signo = 0; 1752 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1753 } else if (prop & SA_IGNORE) { 1754 /* 1755 * Except for SIGCONT, shouldn't get here. 1756 * Default action is to ignore; drop it. 1757 */ 1758 continue; 1759 } 1760 break; 1761 1762 case (long)SIG_IGN: 1763 #ifdef DEBUG_ISSIGNAL 1764 /* 1765 * Masking above should prevent us ever trying 1766 * to take action on an ignored signal other 1767 * than SIGCONT, unless process is traced. 1768 */ 1769 if ((prop & SA_CONT) == 0 && 1770 (p->p_slflag & PSL_TRACED) == 0) 1771 printf_nolog("issignal\n"); 1772 #endif 1773 continue; 1774 1775 default: 1776 /* 1777 * This signal has an action, let postsig() process 1778 * it. 1779 */ 1780 break; 1781 } 1782 1783 break; 1784 } 1785 1786 l->l_sigpendset = sp; 1787 return signo; 1788 } 1789 1790 /* 1791 * Take the action for the specified signal 1792 * from the current set of pending signals. 1793 */ 1794 void 1795 postsig(int signo) 1796 { 1797 struct lwp *l; 1798 struct proc *p; 1799 struct sigacts *ps; 1800 sig_t action; 1801 sigset_t *returnmask; 1802 ksiginfo_t ksi; 1803 1804 l = curlwp; 1805 p = l->l_proc; 1806 ps = p->p_sigacts; 1807 1808 KASSERT(mutex_owned(p->p_lock)); 1809 KASSERT(signo > 0); 1810 1811 /* 1812 * Set the new mask value and also defer further occurrences of this 1813 * signal. 1814 * 1815 * Special case: user has done a sigsuspend. Here the current mask is 1816 * not of interest, but rather the mask from before the sigsuspend is 1817 * what we want restored after the signal processing is completed. 1818 */ 1819 if (l->l_sigrestore) { 1820 returnmask = &l->l_sigoldmask; 1821 l->l_sigrestore = 0; 1822 } else 1823 returnmask = &l->l_sigmask; 1824 1825 /* 1826 * Commit to taking the signal before releasing the mutex. 1827 */ 1828 action = SIGACTION_PS(ps, signo).sa_handler; 1829 l->l_ru.ru_nsignals++; 1830 if (l->l_sigpendset == NULL) { 1831 /* From the debugger */ 1832 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 1833 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 1834 } else 1835 sigget(l->l_sigpendset, &ksi, signo, NULL); 1836 1837 if (ktrpoint(KTR_PSIG)) { 1838 mutex_exit(p->p_lock); 1839 ktrpsig(signo, action, returnmask, &ksi); 1840 mutex_enter(p->p_lock); 1841 } 1842 1843 if (action == SIG_DFL) { 1844 /* 1845 * Default action, where the default is to kill 1846 * the process. (Other cases were ignored above.) 1847 */ 1848 sigexit(l, signo); 1849 return; 1850 } 1851 1852 /* 1853 * If we get here, the signal must be caught. 1854 */ 1855 #ifdef DIAGNOSTIC 1856 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1857 panic("postsig action"); 1858 #endif 1859 1860 kpsendsig(l, &ksi, returnmask); 1861 } 1862 1863 /* 1864 * sendsig: 1865 * 1866 * Default signal delivery method for NetBSD. 1867 */ 1868 void 1869 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1870 { 1871 struct sigacts *sa; 1872 int sig; 1873 1874 sig = ksi->ksi_signo; 1875 sa = curproc->p_sigacts; 1876 1877 switch (sa->sa_sigdesc[sig].sd_vers) { 1878 case 0: 1879 case 1: 1880 /* Compat for 1.6 and earlier. */ 1881 if (sendsig_sigcontext_vec == NULL) { 1882 break; 1883 } 1884 (*sendsig_sigcontext_vec)(ksi, mask); 1885 return; 1886 case 2: 1887 case 3: 1888 sendsig_siginfo(ksi, mask); 1889 return; 1890 default: 1891 break; 1892 } 1893 1894 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 1895 sigexit(curlwp, SIGILL); 1896 } 1897 1898 /* 1899 * sendsig_reset: 1900 * 1901 * Reset the signal action. Called from emulation specific sendsig() 1902 * before unlocking to deliver the signal. 1903 */ 1904 void 1905 sendsig_reset(struct lwp *l, int signo) 1906 { 1907 struct proc *p = l->l_proc; 1908 struct sigacts *ps = p->p_sigacts; 1909 1910 KASSERT(mutex_owned(p->p_lock)); 1911 1912 p->p_sigctx.ps_lwp = 0; 1913 p->p_sigctx.ps_code = 0; 1914 p->p_sigctx.ps_signo = 0; 1915 1916 mutex_enter(&ps->sa_mutex); 1917 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1918 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1919 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1920 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1921 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1922 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1923 } 1924 mutex_exit(&ps->sa_mutex); 1925 } 1926 1927 /* 1928 * Kill the current process for stated reason. 1929 */ 1930 void 1931 killproc(struct proc *p, const char *why) 1932 { 1933 1934 KASSERT(mutex_owned(proc_lock)); 1935 1936 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1937 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1938 psignal(p, SIGKILL); 1939 } 1940 1941 /* 1942 * Force the current process to exit with the specified signal, dumping core 1943 * if appropriate. We bypass the normal tests for masked and caught 1944 * signals, allowing unrecoverable failures to terminate the process without 1945 * changing signal state. Mark the accounting record with the signal 1946 * termination. If dumping core, save the signal number for the debugger. 1947 * Calls exit and does not return. 1948 */ 1949 void 1950 sigexit(struct lwp *l, int signo) 1951 { 1952 int exitsig, error, docore; 1953 struct proc *p; 1954 struct lwp *t; 1955 1956 p = l->l_proc; 1957 1958 KASSERT(mutex_owned(p->p_lock)); 1959 KERNEL_UNLOCK_ALL(l, NULL); 1960 1961 /* 1962 * Don't permit coredump() multiple times in the same process. 1963 * Call back into sigexit, where we will be suspended until 1964 * the deed is done. Note that this is a recursive call, but 1965 * LW_WCORE will prevent us from coming back this way. 1966 */ 1967 if ((p->p_sflag & PS_WCORE) != 0) { 1968 lwp_lock(l); 1969 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1970 lwp_unlock(l); 1971 mutex_exit(p->p_lock); 1972 lwp_userret(l); 1973 panic("sigexit 1"); 1974 /* NOTREACHED */ 1975 } 1976 1977 /* If process is already on the way out, then bail now. */ 1978 if ((p->p_sflag & PS_WEXIT) != 0) { 1979 mutex_exit(p->p_lock); 1980 lwp_exit(l); 1981 panic("sigexit 2"); 1982 /* NOTREACHED */ 1983 } 1984 1985 /* 1986 * Prepare all other LWPs for exit. If dumping core, suspend them 1987 * so that their registers are available long enough to be dumped. 1988 */ 1989 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1990 p->p_sflag |= PS_WCORE; 1991 for (;;) { 1992 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1993 lwp_lock(t); 1994 if (t == l) { 1995 t->l_flag &= ~LW_WSUSPEND; 1996 lwp_unlock(t); 1997 continue; 1998 } 1999 t->l_flag |= (LW_WCORE | LW_WEXIT); 2000 lwp_suspend(l, t); 2001 } 2002 2003 if (p->p_nrlwps == 1) 2004 break; 2005 2006 /* 2007 * Kick any LWPs sitting in lwp_wait1(), and wait 2008 * for everyone else to stop before proceeding. 2009 */ 2010 p->p_nlwpwait++; 2011 cv_broadcast(&p->p_lwpcv); 2012 cv_wait(&p->p_lwpcv, p->p_lock); 2013 p->p_nlwpwait--; 2014 } 2015 } 2016 2017 exitsig = signo; 2018 p->p_acflag |= AXSIG; 2019 p->p_sigctx.ps_signo = signo; 2020 2021 if (docore) { 2022 mutex_exit(p->p_lock); 2023 if ((error = (*coredump_vec)(l, NULL)) == 0) 2024 exitsig |= WCOREFLAG; 2025 2026 if (kern_logsigexit) { 2027 int uid = l->l_cred ? 2028 (int)kauth_cred_geteuid(l->l_cred) : -1; 2029 2030 if (error) 2031 log(LOG_INFO, lognocoredump, p->p_pid, 2032 p->p_comm, uid, signo, error); 2033 else 2034 log(LOG_INFO, logcoredump, p->p_pid, 2035 p->p_comm, uid, signo); 2036 } 2037 2038 #ifdef PAX_SEGVGUARD 2039 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2040 #endif /* PAX_SEGVGUARD */ 2041 /* Acquire the sched state mutex. exit1() will release it. */ 2042 mutex_enter(p->p_lock); 2043 } 2044 2045 /* No longer dumping core. */ 2046 p->p_sflag &= ~PS_WCORE; 2047 2048 exit1(l, W_EXITCODE(0, exitsig)); 2049 /* NOTREACHED */ 2050 } 2051 2052 /* 2053 * Put process 'p' into the stopped state and optionally, notify the parent. 2054 */ 2055 void 2056 proc_stop(struct proc *p, int notify, int signo) 2057 { 2058 struct lwp *l; 2059 2060 KASSERT(mutex_owned(p->p_lock)); 2061 2062 /* 2063 * First off, set the stopping indicator and bring all sleeping 2064 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2065 * unlock between here and the p->p_nrlwps check below. 2066 */ 2067 p->p_sflag |= PS_STOPPING; 2068 if (notify) 2069 p->p_sflag |= PS_NOTIFYSTOP; 2070 else 2071 p->p_sflag &= ~PS_NOTIFYSTOP; 2072 membar_producer(); 2073 2074 proc_stop_lwps(p); 2075 2076 /* 2077 * If there are no LWPs available to take the signal, then we 2078 * signal the parent process immediately. Otherwise, the last 2079 * LWP to stop will take care of it. 2080 */ 2081 2082 if (p->p_nrlwps == 0) { 2083 proc_stop_done(p, true, PS_NOCLDSTOP); 2084 } else { 2085 /* 2086 * Have the remaining LWPs come to a halt, and trigger 2087 * proc_stop_callout() to ensure that they do. 2088 */ 2089 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2090 sigpost(l, SIG_DFL, SA_STOP, signo); 2091 } 2092 callout_schedule(&proc_stop_ch, 1); 2093 } 2094 } 2095 2096 /* 2097 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2098 * but wait for them to come to a halt at the kernel-user boundary. This is 2099 * to allow LWPs to release any locks that they may hold before stopping. 2100 * 2101 * Non-interruptable sleeps can be long, and there is the potential for an 2102 * LWP to begin sleeping interruptably soon after the process has been set 2103 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2104 * stopping, and so complete halt of the process and the return of status 2105 * information to the parent could be delayed indefinitely. 2106 * 2107 * To handle this race, proc_stop_callout() runs once per tick while there 2108 * are stopping processes in the system. It sets LWPs that are sleeping 2109 * interruptably into the LSSTOP state. 2110 * 2111 * Note that we are not concerned about keeping all LWPs stopped while the 2112 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2113 * What we do need to ensure is that all LWPs in a stopping process have 2114 * stopped at least once, so that notification can be sent to the parent 2115 * process. 2116 */ 2117 static void 2118 proc_stop_callout(void *cookie) 2119 { 2120 bool more, restart; 2121 struct proc *p; 2122 2123 (void)cookie; 2124 2125 do { 2126 restart = false; 2127 more = false; 2128 2129 mutex_enter(proc_lock); 2130 PROCLIST_FOREACH(p, &allproc) { 2131 mutex_enter(p->p_lock); 2132 2133 if ((p->p_sflag & PS_STOPPING) == 0) { 2134 mutex_exit(p->p_lock); 2135 continue; 2136 } 2137 2138 /* Stop any LWPs sleeping interruptably. */ 2139 proc_stop_lwps(p); 2140 if (p->p_nrlwps == 0) { 2141 /* 2142 * We brought the process to a halt. 2143 * Mark it as stopped and notify the 2144 * parent. 2145 */ 2146 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2147 /* 2148 * Note that proc_stop_done() will 2149 * drop p->p_lock briefly. 2150 * Arrange to restart and check 2151 * all processes again. 2152 */ 2153 restart = true; 2154 } 2155 proc_stop_done(p, true, PS_NOCLDSTOP); 2156 } else 2157 more = true; 2158 2159 mutex_exit(p->p_lock); 2160 if (restart) 2161 break; 2162 } 2163 mutex_exit(proc_lock); 2164 } while (restart); 2165 2166 /* 2167 * If we noted processes that are stopping but still have 2168 * running LWPs, then arrange to check again in 1 tick. 2169 */ 2170 if (more) 2171 callout_schedule(&proc_stop_ch, 1); 2172 } 2173 2174 /* 2175 * Given a process in state SSTOP, set the state back to SACTIVE and 2176 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2177 */ 2178 void 2179 proc_unstop(struct proc *p) 2180 { 2181 struct lwp *l; 2182 int sig; 2183 2184 KASSERT(mutex_owned(proc_lock)); 2185 KASSERT(mutex_owned(p->p_lock)); 2186 2187 p->p_stat = SACTIVE; 2188 p->p_sflag &= ~PS_STOPPING; 2189 sig = p->p_xstat; 2190 2191 if (!p->p_waited) 2192 p->p_pptr->p_nstopchild--; 2193 2194 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2195 lwp_lock(l); 2196 if (l->l_stat != LSSTOP) { 2197 lwp_unlock(l); 2198 continue; 2199 } 2200 if (l->l_wchan == NULL) { 2201 setrunnable(l); 2202 continue; 2203 } 2204 if (sig && (l->l_flag & LW_SINTR) != 0) { 2205 setrunnable(l); 2206 sig = 0; 2207 } else { 2208 l->l_stat = LSSLEEP; 2209 p->p_nrlwps++; 2210 lwp_unlock(l); 2211 } 2212 } 2213 } 2214 2215 static int 2216 filt_sigattach(struct knote *kn) 2217 { 2218 struct proc *p = curproc; 2219 2220 kn->kn_obj = p; 2221 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2222 2223 mutex_enter(p->p_lock); 2224 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2225 mutex_exit(p->p_lock); 2226 2227 return 0; 2228 } 2229 2230 static void 2231 filt_sigdetach(struct knote *kn) 2232 { 2233 struct proc *p = kn->kn_obj; 2234 2235 mutex_enter(p->p_lock); 2236 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2237 mutex_exit(p->p_lock); 2238 } 2239 2240 /* 2241 * Signal knotes are shared with proc knotes, so we apply a mask to 2242 * the hint in order to differentiate them from process hints. This 2243 * could be avoided by using a signal-specific knote list, but probably 2244 * isn't worth the trouble. 2245 */ 2246 static int 2247 filt_signal(struct knote *kn, long hint) 2248 { 2249 2250 if (hint & NOTE_SIGNAL) { 2251 hint &= ~NOTE_SIGNAL; 2252 2253 if (kn->kn_id == hint) 2254 kn->kn_data++; 2255 } 2256 return (kn->kn_data != 0); 2257 } 2258 2259 const struct filterops sig_filtops = { 2260 0, filt_sigattach, filt_sigdetach, filt_signal 2261 }; 2262