1 /* $NetBSD: kern_sig.c,v 1.304 2010/03/03 00:47:31 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.304 2010/03/03 00:47:31 yamt Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_compat_sunos.h" 73 #include "opt_compat_netbsd.h" 74 #include "opt_compat_netbsd32.h" 75 #include "opt_pax.h" 76 #include "opt_sa.h" 77 78 #define SIGPROP /* include signal properties table */ 79 #include <sys/param.h> 80 #include <sys/signalvar.h> 81 #include <sys/proc.h> 82 #include <sys/systm.h> 83 #include <sys/wait.h> 84 #include <sys/ktrace.h> 85 #include <sys/syslog.h> 86 #include <sys/filedesc.h> 87 #include <sys/file.h> 88 #include <sys/pool.h> 89 #include <sys/ucontext.h> 90 #include <sys/sa.h> 91 #include <sys/savar.h> 92 #include <sys/exec.h> 93 #include <sys/kauth.h> 94 #include <sys/acct.h> 95 #include <sys/callout.h> 96 #include <sys/atomic.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/sdt.h> 100 101 #ifdef PAX_SEGVGUARD 102 #include <sys/pax.h> 103 #endif /* PAX_SEGVGUARD */ 104 105 #include <uvm/uvm.h> 106 #include <uvm/uvm_extern.h> 107 108 static void ksiginfo_exechook(struct proc *, void *); 109 static void proc_stop_callout(void *); 110 static int sigchecktrace(void); 111 static int sigpost(struct lwp *, sig_t, int, int, int); 112 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 113 static int sigunwait(struct proc *, const ksiginfo_t *); 114 static void sigswitch(bool, int, int); 115 116 sigset_t contsigmask, stopsigmask, sigcantmask; 117 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 118 static void sigacts_poolpage_free(struct pool *, void *); 119 static void *sigacts_poolpage_alloc(struct pool *, int); 120 static callout_t proc_stop_ch; 121 static pool_cache_t siginfo_cache; 122 static pool_cache_t ksiginfo_cache; 123 124 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 125 int (*coredump_vec)(struct lwp *, const char *) = 126 (int (*)(struct lwp *, const char *))enosys; 127 128 /* 129 * DTrace SDT provider definitions 130 */ 131 SDT_PROBE_DEFINE(proc,,,signal_send, 132 "struct lwp *", NULL, /* target thread */ 133 "struct proc *", NULL, /* target process */ 134 "int", NULL, /* signal */ 135 NULL, NULL, NULL, NULL); 136 SDT_PROBE_DEFINE(proc,,,signal_discard, 137 "struct lwp *", NULL, /* target thread */ 138 "struct proc *", NULL, /* target process */ 139 "int", NULL, /* signal */ 140 NULL, NULL, NULL, NULL); 141 SDT_PROBE_DEFINE(proc,,,signal_clear, 142 "int", NULL, /* signal */ 143 NULL, NULL, NULL, NULL, 144 NULL, NULL, NULL, NULL); 145 SDT_PROBE_DEFINE(proc,,,signal_handle, 146 "int", NULL, /* signal */ 147 "ksiginfo_t *", NULL, 148 "void (*)(void)", NULL, /* handler address */ 149 NULL, NULL, NULL, NULL); 150 151 152 static struct pool_allocator sigactspool_allocator = { 153 .pa_alloc = sigacts_poolpage_alloc, 154 .pa_free = sigacts_poolpage_free 155 }; 156 157 #ifdef DEBUG 158 int kern_logsigexit = 1; 159 #else 160 int kern_logsigexit = 0; 161 #endif 162 163 static const char logcoredump[] = 164 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 165 static const char lognocoredump[] = 166 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 167 168 static kauth_listener_t signal_listener; 169 170 static int 171 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 172 void *arg0, void *arg1, void *arg2, void *arg3) 173 { 174 struct proc *p; 175 int result, signum; 176 177 result = KAUTH_RESULT_DEFER; 178 p = arg0; 179 signum = (int)(unsigned long)arg1; 180 181 if (action != KAUTH_PROCESS_SIGNAL) 182 return result; 183 184 if (kauth_cred_uidmatch(cred, p->p_cred) || 185 (signum == SIGCONT && (curproc->p_session == p->p_session))) 186 result = KAUTH_RESULT_ALLOW; 187 188 return result; 189 } 190 191 /* 192 * signal_init: 193 * 194 * Initialize global signal-related data structures. 195 */ 196 void 197 signal_init(void) 198 { 199 200 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 201 202 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 203 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 204 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 205 206 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 207 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 208 209 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 210 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 211 212 exechook_establish(ksiginfo_exechook, NULL); 213 214 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 215 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 216 217 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 218 signal_listener_cb, NULL); 219 } 220 221 /* 222 * sigacts_poolpage_alloc: 223 * 224 * Allocate a page for the sigacts memory pool. 225 */ 226 static void * 227 sigacts_poolpage_alloc(struct pool *pp, int flags) 228 { 229 230 return (void *)uvm_km_alloc(kernel_map, 231 PAGE_SIZE * 2, PAGE_SIZE * 2, 232 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 233 | UVM_KMF_WIRED); 234 } 235 236 /* 237 * sigacts_poolpage_free: 238 * 239 * Free a page on behalf of the sigacts memory pool. 240 */ 241 static void 242 sigacts_poolpage_free(struct pool *pp, void *v) 243 { 244 245 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 246 } 247 248 /* 249 * sigactsinit: 250 * 251 * Create an initial sigacts structure, using the same signal state 252 * as of specified process. If 'share' is set, share the sigacts by 253 * holding a reference, otherwise just copy it from parent. 254 */ 255 struct sigacts * 256 sigactsinit(struct proc *pp, int share) 257 { 258 struct sigacts *ps = pp->p_sigacts, *ps2; 259 260 if (__predict_false(share)) { 261 atomic_inc_uint(&ps->sa_refcnt); 262 return ps; 263 } 264 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 265 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 266 ps2->sa_refcnt = 1; 267 268 mutex_enter(&ps->sa_mutex); 269 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 270 mutex_exit(&ps->sa_mutex); 271 return ps2; 272 } 273 274 /* 275 * sigactsunshare: 276 * 277 * Make this process not share its sigacts, maintaining all signal state. 278 */ 279 void 280 sigactsunshare(struct proc *p) 281 { 282 struct sigacts *ps, *oldps = p->p_sigacts; 283 284 if (__predict_true(oldps->sa_refcnt == 1)) 285 return; 286 287 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 288 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 289 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 290 ps->sa_refcnt = 1; 291 292 p->p_sigacts = ps; 293 sigactsfree(oldps); 294 } 295 296 /* 297 * sigactsfree; 298 * 299 * Release a sigacts structure. 300 */ 301 void 302 sigactsfree(struct sigacts *ps) 303 { 304 305 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 306 mutex_destroy(&ps->sa_mutex); 307 pool_cache_put(sigacts_cache, ps); 308 } 309 } 310 311 /* 312 * siginit: 313 * 314 * Initialize signal state for process 0; set to ignore signals that 315 * are ignored by default and disable the signal stack. Locking not 316 * required as the system is still cold. 317 */ 318 void 319 siginit(struct proc *p) 320 { 321 struct lwp *l; 322 struct sigacts *ps; 323 int signo, prop; 324 325 ps = p->p_sigacts; 326 sigemptyset(&contsigmask); 327 sigemptyset(&stopsigmask); 328 sigemptyset(&sigcantmask); 329 for (signo = 1; signo < NSIG; signo++) { 330 prop = sigprop[signo]; 331 if (prop & SA_CONT) 332 sigaddset(&contsigmask, signo); 333 if (prop & SA_STOP) 334 sigaddset(&stopsigmask, signo); 335 if (prop & SA_CANTMASK) 336 sigaddset(&sigcantmask, signo); 337 if (prop & SA_IGNORE && signo != SIGCONT) 338 sigaddset(&p->p_sigctx.ps_sigignore, signo); 339 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 340 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 341 } 342 sigemptyset(&p->p_sigctx.ps_sigcatch); 343 p->p_sflag &= ~PS_NOCLDSTOP; 344 345 ksiginfo_queue_init(&p->p_sigpend.sp_info); 346 sigemptyset(&p->p_sigpend.sp_set); 347 348 /* 349 * Reset per LWP state. 350 */ 351 l = LIST_FIRST(&p->p_lwps); 352 l->l_sigwaited = NULL; 353 l->l_sigstk.ss_flags = SS_DISABLE; 354 l->l_sigstk.ss_size = 0; 355 l->l_sigstk.ss_sp = 0; 356 ksiginfo_queue_init(&l->l_sigpend.sp_info); 357 sigemptyset(&l->l_sigpend.sp_set); 358 359 /* One reference. */ 360 ps->sa_refcnt = 1; 361 } 362 363 /* 364 * execsigs: 365 * 366 * Reset signals for an exec of the specified process. 367 */ 368 void 369 execsigs(struct proc *p) 370 { 371 struct sigacts *ps; 372 struct lwp *l; 373 int signo, prop; 374 sigset_t tset; 375 ksiginfoq_t kq; 376 377 KASSERT(p->p_nlwps == 1); 378 379 sigactsunshare(p); 380 ps = p->p_sigacts; 381 382 /* 383 * Reset caught signals. Held signals remain held through 384 * l->l_sigmask (unless they were caught, and are now ignored 385 * by default). 386 * 387 * No need to lock yet, the process has only one LWP and 388 * at this point the sigacts are private to the process. 389 */ 390 sigemptyset(&tset); 391 for (signo = 1; signo < NSIG; signo++) { 392 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 393 prop = sigprop[signo]; 394 if (prop & SA_IGNORE) { 395 if ((prop & SA_CONT) == 0) 396 sigaddset(&p->p_sigctx.ps_sigignore, 397 signo); 398 sigaddset(&tset, signo); 399 } 400 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 401 } 402 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 403 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 404 } 405 ksiginfo_queue_init(&kq); 406 407 mutex_enter(p->p_lock); 408 sigclearall(p, &tset, &kq); 409 sigemptyset(&p->p_sigctx.ps_sigcatch); 410 411 /* 412 * Reset no zombies if child dies flag as Solaris does. 413 */ 414 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 415 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 416 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 417 418 /* 419 * Reset per-LWP state. 420 */ 421 l = LIST_FIRST(&p->p_lwps); 422 l->l_sigwaited = NULL; 423 l->l_sigstk.ss_flags = SS_DISABLE; 424 l->l_sigstk.ss_size = 0; 425 l->l_sigstk.ss_sp = 0; 426 ksiginfo_queue_init(&l->l_sigpend.sp_info); 427 sigemptyset(&l->l_sigpend.sp_set); 428 mutex_exit(p->p_lock); 429 430 ksiginfo_queue_drain(&kq); 431 } 432 433 /* 434 * ksiginfo_exechook: 435 * 436 * Free all pending ksiginfo entries from a process on exec. 437 * Additionally, drain any unused ksiginfo structures in the 438 * system back to the pool. 439 * 440 * XXX This should not be a hook, every process has signals. 441 */ 442 static void 443 ksiginfo_exechook(struct proc *p, void *v) 444 { 445 ksiginfoq_t kq; 446 447 ksiginfo_queue_init(&kq); 448 449 mutex_enter(p->p_lock); 450 sigclearall(p, NULL, &kq); 451 mutex_exit(p->p_lock); 452 453 ksiginfo_queue_drain(&kq); 454 } 455 456 /* 457 * ksiginfo_alloc: 458 * 459 * Allocate a new ksiginfo structure from the pool, and optionally copy 460 * an existing one. If the existing ksiginfo_t is from the pool, and 461 * has not been queued somewhere, then just return it. Additionally, 462 * if the existing ksiginfo_t does not contain any information beyond 463 * the signal number, then just return it. 464 */ 465 ksiginfo_t * 466 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 467 { 468 ksiginfo_t *kp; 469 470 if (ok != NULL) { 471 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 472 KSI_FROMPOOL) 473 return ok; 474 if (KSI_EMPTY_P(ok)) 475 return ok; 476 } 477 478 kp = pool_cache_get(ksiginfo_cache, flags); 479 if (kp == NULL) { 480 #ifdef DIAGNOSTIC 481 printf("Out of memory allocating ksiginfo for pid %d\n", 482 p->p_pid); 483 #endif 484 return NULL; 485 } 486 487 if (ok != NULL) { 488 memcpy(kp, ok, sizeof(*kp)); 489 kp->ksi_flags &= ~KSI_QUEUED; 490 } else 491 KSI_INIT_EMPTY(kp); 492 493 kp->ksi_flags |= KSI_FROMPOOL; 494 495 return kp; 496 } 497 498 /* 499 * ksiginfo_free: 500 * 501 * If the given ksiginfo_t is from the pool and has not been queued, 502 * then free it. 503 */ 504 void 505 ksiginfo_free(ksiginfo_t *kp) 506 { 507 508 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 509 return; 510 pool_cache_put(ksiginfo_cache, kp); 511 } 512 513 /* 514 * ksiginfo_queue_drain: 515 * 516 * Drain a non-empty ksiginfo_t queue. 517 */ 518 void 519 ksiginfo_queue_drain0(ksiginfoq_t *kq) 520 { 521 ksiginfo_t *ksi; 522 523 KASSERT(!CIRCLEQ_EMPTY(kq)); 524 525 while (!CIRCLEQ_EMPTY(kq)) { 526 ksi = CIRCLEQ_FIRST(kq); 527 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 528 pool_cache_put(ksiginfo_cache, ksi); 529 } 530 } 531 532 /* 533 * sigget: 534 * 535 * Fetch the first pending signal from a set. Optionally, also fetch 536 * or manufacture a ksiginfo element. Returns the number of the first 537 * pending signal, or zero. 538 */ 539 int 540 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 541 { 542 ksiginfo_t *ksi; 543 sigset_t tset; 544 545 /* If there's no pending set, the signal is from the debugger. */ 546 if (sp == NULL) 547 goto out; 548 549 /* Construct mask from signo, and 'mask'. */ 550 if (signo == 0) { 551 if (mask != NULL) { 552 tset = *mask; 553 __sigandset(&sp->sp_set, &tset); 554 } else 555 tset = sp->sp_set; 556 557 /* If there are no signals pending - return. */ 558 if ((signo = firstsig(&tset)) == 0) 559 goto out; 560 } else { 561 KASSERT(sigismember(&sp->sp_set, signo)); 562 } 563 564 sigdelset(&sp->sp_set, signo); 565 566 /* Find siginfo and copy it out. */ 567 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 568 if (ksi->ksi_signo != signo) 569 continue; 570 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 571 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 572 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 573 ksi->ksi_flags &= ~KSI_QUEUED; 574 if (out != NULL) { 575 memcpy(out, ksi, sizeof(*out)); 576 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 577 } 578 ksiginfo_free(ksi); /* XXXSMP */ 579 return signo; 580 } 581 out: 582 /* If there is no siginfo, then manufacture it. */ 583 if (out != NULL) { 584 KSI_INIT(out); 585 out->ksi_info._signo = signo; 586 out->ksi_info._code = SI_NOINFO; 587 } 588 return signo; 589 } 590 591 /* 592 * sigput: 593 * 594 * Append a new ksiginfo element to the list of pending ksiginfo's. 595 */ 596 static void 597 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 598 { 599 ksiginfo_t *kp; 600 601 KASSERT(mutex_owned(p->p_lock)); 602 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 603 604 sigaddset(&sp->sp_set, ksi->ksi_signo); 605 606 /* 607 * If there is no siginfo, we are done. 608 */ 609 if (KSI_EMPTY_P(ksi)) 610 return; 611 612 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 613 614 #ifdef notyet /* XXX: QUEUING */ 615 if (ksi->ksi_signo < SIGRTMIN) 616 #endif 617 { 618 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 619 if (kp->ksi_signo == ksi->ksi_signo) { 620 KSI_COPY(ksi, kp); 621 kp->ksi_flags |= KSI_QUEUED; 622 return; 623 } 624 } 625 } 626 627 ksi->ksi_flags |= KSI_QUEUED; 628 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 629 } 630 631 /* 632 * sigclear: 633 * 634 * Clear all pending signals in the specified set. 635 */ 636 void 637 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 638 { 639 ksiginfo_t *ksi, *next; 640 641 if (mask == NULL) 642 sigemptyset(&sp->sp_set); 643 else 644 sigminusset(mask, &sp->sp_set); 645 646 ksi = CIRCLEQ_FIRST(&sp->sp_info); 647 for (; ksi != (void *)&sp->sp_info; ksi = next) { 648 next = CIRCLEQ_NEXT(ksi, ksi_list); 649 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 650 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 651 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 652 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 653 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 654 } 655 } 656 } 657 658 /* 659 * sigclearall: 660 * 661 * Clear all pending signals in the specified set from a process and 662 * its LWPs. 663 */ 664 void 665 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 666 { 667 struct lwp *l; 668 669 KASSERT(mutex_owned(p->p_lock)); 670 671 sigclear(&p->p_sigpend, mask, kq); 672 673 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 674 sigclear(&l->l_sigpend, mask, kq); 675 } 676 } 677 678 /* 679 * sigispending: 680 * 681 * Return true if there are pending signals for the current LWP. May 682 * be called unlocked provided that LW_PENDSIG is set, and that the 683 * signal has been posted to the appopriate queue before LW_PENDSIG is 684 * set. 685 */ 686 int 687 sigispending(struct lwp *l, int signo) 688 { 689 struct proc *p = l->l_proc; 690 sigset_t tset; 691 692 membar_consumer(); 693 694 tset = l->l_sigpend.sp_set; 695 sigplusset(&p->p_sigpend.sp_set, &tset); 696 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 697 sigminusset(&l->l_sigmask, &tset); 698 699 if (signo == 0) { 700 if (firstsig(&tset) != 0) 701 return EINTR; 702 } else if (sigismember(&tset, signo)) 703 return EINTR; 704 705 return 0; 706 } 707 708 #ifdef KERN_SA 709 710 /* 711 * siginfo_alloc: 712 * 713 * Allocate a new siginfo_t structure from the pool. 714 */ 715 siginfo_t * 716 siginfo_alloc(int flags) 717 { 718 719 return pool_cache_get(siginfo_cache, flags); 720 } 721 722 /* 723 * siginfo_free: 724 * 725 * Return a siginfo_t structure to the pool. 726 */ 727 void 728 siginfo_free(void *arg) 729 { 730 731 pool_cache_put(siginfo_cache, arg); 732 } 733 734 #endif 735 736 void 737 getucontext(struct lwp *l, ucontext_t *ucp) 738 { 739 struct proc *p = l->l_proc; 740 741 KASSERT(mutex_owned(p->p_lock)); 742 743 ucp->uc_flags = 0; 744 ucp->uc_link = l->l_ctxlink; 745 746 #if KERN_SA 747 if (p->p_sa != NULL) 748 ucp->uc_sigmask = p->p_sa->sa_sigmask; 749 else 750 #endif /* KERN_SA */ 751 ucp->uc_sigmask = l->l_sigmask; 752 ucp->uc_flags |= _UC_SIGMASK; 753 754 /* 755 * The (unsupplied) definition of the `current execution stack' 756 * in the System V Interface Definition appears to allow returning 757 * the main context stack. 758 */ 759 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 760 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 761 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 762 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 763 } else { 764 /* Simply copy alternate signal execution stack. */ 765 ucp->uc_stack = l->l_sigstk; 766 } 767 ucp->uc_flags |= _UC_STACK; 768 mutex_exit(p->p_lock); 769 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 770 mutex_enter(p->p_lock); 771 } 772 773 /* 774 * getucontext_sa: 775 * Get a ucontext_t for use in SA upcall generation. 776 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 777 * fudge things with uc_link (which is usually NULL for libpthread 778 * code), and 3) we report an empty signal mask. 779 */ 780 void 781 getucontext_sa(struct lwp *l, ucontext_t *ucp) 782 { 783 ucp->uc_flags = 0; 784 ucp->uc_link = l->l_ctxlink; 785 786 sigemptyset(&ucp->uc_sigmask); 787 ucp->uc_flags |= _UC_SIGMASK; 788 789 /* 790 * The (unsupplied) definition of the `current execution stack' 791 * in the System V Interface Definition appears to allow returning 792 * the main context stack. 793 */ 794 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 795 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 796 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 797 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 798 } else { 799 /* Simply copy alternate signal execution stack. */ 800 ucp->uc_stack = l->l_sigstk; 801 } 802 ucp->uc_flags |= _UC_STACK; 803 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 804 } 805 806 int 807 setucontext(struct lwp *l, const ucontext_t *ucp) 808 { 809 struct proc *p = l->l_proc; 810 int error; 811 812 KASSERT(mutex_owned(p->p_lock)); 813 814 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 815 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 816 if (error != 0) 817 return error; 818 } 819 820 mutex_exit(p->p_lock); 821 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 822 mutex_enter(p->p_lock); 823 if (error != 0) 824 return (error); 825 826 l->l_ctxlink = ucp->uc_link; 827 828 /* 829 * If there was stack information, update whether or not we are 830 * still running on an alternate signal stack. 831 */ 832 if ((ucp->uc_flags & _UC_STACK) != 0) { 833 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 834 l->l_sigstk.ss_flags |= SS_ONSTACK; 835 else 836 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 837 } 838 839 return 0; 840 } 841 842 /* 843 * killpg1: common code for kill process group/broadcast kill. 844 */ 845 int 846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 847 { 848 struct proc *p, *cp; 849 kauth_cred_t pc; 850 struct pgrp *pgrp; 851 int nfound; 852 int signo = ksi->ksi_signo; 853 854 cp = l->l_proc; 855 pc = l->l_cred; 856 nfound = 0; 857 858 mutex_enter(proc_lock); 859 if (all) { 860 /* 861 * Broadcast. 862 */ 863 PROCLIST_FOREACH(p, &allproc) { 864 if (p->p_pid <= 1 || p == cp || 865 (p->p_flag & PK_SYSTEM) != 0) 866 continue; 867 mutex_enter(p->p_lock); 868 if (kauth_authorize_process(pc, 869 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 870 NULL) == 0) { 871 nfound++; 872 if (signo) 873 kpsignal2(p, ksi); 874 } 875 mutex_exit(p->p_lock); 876 } 877 } else { 878 if (pgid == 0) 879 /* Zero pgid means send to my process group. */ 880 pgrp = cp->p_pgrp; 881 else { 882 pgrp = pg_find(pgid, PFIND_LOCKED); 883 if (pgrp == NULL) 884 goto out; 885 } 886 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 887 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 888 continue; 889 mutex_enter(p->p_lock); 890 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 891 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 892 nfound++; 893 if (signo && P_ZOMBIE(p) == 0) 894 kpsignal2(p, ksi); 895 } 896 mutex_exit(p->p_lock); 897 } 898 } 899 out: 900 mutex_exit(proc_lock); 901 return nfound ? 0 : ESRCH; 902 } 903 904 /* 905 * Send a signal to a process group. If checktty is set, limit to members 906 * which have a controlling terminal. 907 */ 908 void 909 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 910 { 911 ksiginfo_t ksi; 912 913 KASSERT(!cpu_intr_p()); 914 KASSERT(mutex_owned(proc_lock)); 915 916 KSI_INIT_EMPTY(&ksi); 917 ksi.ksi_signo = sig; 918 kpgsignal(pgrp, &ksi, NULL, checkctty); 919 } 920 921 void 922 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 923 { 924 struct proc *p; 925 926 KASSERT(!cpu_intr_p()); 927 KASSERT(mutex_owned(proc_lock)); 928 KASSERT(pgrp != NULL); 929 930 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 931 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 932 kpsignal(p, ksi, data); 933 } 934 935 /* 936 * Send a signal caused by a trap to the current LWP. If it will be caught 937 * immediately, deliver it with correct code. Otherwise, post it normally. 938 */ 939 void 940 trapsignal(struct lwp *l, ksiginfo_t *ksi) 941 { 942 struct proc *p; 943 struct sigacts *ps; 944 int signo = ksi->ksi_signo; 945 sigset_t *mask; 946 947 KASSERT(KSI_TRAP_P(ksi)); 948 949 ksi->ksi_lid = l->l_lid; 950 p = l->l_proc; 951 952 KASSERT(!cpu_intr_p()); 953 mutex_enter(proc_lock); 954 mutex_enter(p->p_lock); 955 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 956 ps = p->p_sigacts; 957 if ((p->p_slflag & PSL_TRACED) == 0 && 958 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 959 !sigismember(mask, signo)) { 960 mutex_exit(proc_lock); 961 l->l_ru.ru_nsignals++; 962 kpsendsig(l, ksi, mask); 963 mutex_exit(p->p_lock); 964 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 965 } else { 966 /* XXX for core dump/debugger */ 967 p->p_sigctx.ps_lwp = l->l_lid; 968 p->p_sigctx.ps_signo = ksi->ksi_signo; 969 p->p_sigctx.ps_code = ksi->ksi_trap; 970 kpsignal2(p, ksi); 971 mutex_exit(p->p_lock); 972 mutex_exit(proc_lock); 973 } 974 } 975 976 /* 977 * Fill in signal information and signal the parent for a child status change. 978 */ 979 void 980 child_psignal(struct proc *p, int mask) 981 { 982 ksiginfo_t ksi; 983 struct proc *q; 984 int xstat; 985 986 KASSERT(mutex_owned(proc_lock)); 987 KASSERT(mutex_owned(p->p_lock)); 988 989 xstat = p->p_xstat; 990 991 KSI_INIT(&ksi); 992 ksi.ksi_signo = SIGCHLD; 993 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 994 ksi.ksi_pid = p->p_pid; 995 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 996 ksi.ksi_status = xstat; 997 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 998 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 999 1000 q = p->p_pptr; 1001 1002 mutex_exit(p->p_lock); 1003 mutex_enter(q->p_lock); 1004 1005 if ((q->p_sflag & mask) == 0) 1006 kpsignal2(q, &ksi); 1007 1008 mutex_exit(q->p_lock); 1009 mutex_enter(p->p_lock); 1010 } 1011 1012 void 1013 psignal(struct proc *p, int signo) 1014 { 1015 ksiginfo_t ksi; 1016 1017 KASSERT(!cpu_intr_p()); 1018 KASSERT(mutex_owned(proc_lock)); 1019 1020 KSI_INIT_EMPTY(&ksi); 1021 ksi.ksi_signo = signo; 1022 mutex_enter(p->p_lock); 1023 kpsignal2(p, &ksi); 1024 mutex_exit(p->p_lock); 1025 } 1026 1027 void 1028 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1029 { 1030 fdfile_t *ff; 1031 file_t *fp; 1032 fdtab_t *dt; 1033 1034 KASSERT(!cpu_intr_p()); 1035 KASSERT(mutex_owned(proc_lock)); 1036 1037 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1038 size_t fd; 1039 filedesc_t *fdp = p->p_fd; 1040 1041 /* XXXSMP locking */ 1042 ksi->ksi_fd = -1; 1043 dt = fdp->fd_dt; 1044 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1045 if ((ff = dt->dt_ff[fd]) == NULL) 1046 continue; 1047 if ((fp = ff->ff_file) == NULL) 1048 continue; 1049 if (fp->f_data == data) { 1050 ksi->ksi_fd = fd; 1051 break; 1052 } 1053 } 1054 } 1055 mutex_enter(p->p_lock); 1056 kpsignal2(p, ksi); 1057 mutex_exit(p->p_lock); 1058 } 1059 1060 /* 1061 * sigismasked: 1062 * 1063 * Returns true if signal is ignored or masked for the specified LWP. 1064 */ 1065 int 1066 sigismasked(struct lwp *l, int sig) 1067 { 1068 struct proc *p = l->l_proc; 1069 1070 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1071 sigismember(&l->l_sigmask, sig) 1072 #if KERN_SA 1073 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1074 #endif /* KERN_SA */ 1075 ); 1076 } 1077 1078 /* 1079 * sigpost: 1080 * 1081 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1082 * be able to take the signal. 1083 */ 1084 static int 1085 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1086 { 1087 int rv, masked; 1088 struct proc *p = l->l_proc; 1089 1090 KASSERT(mutex_owned(p->p_lock)); 1091 1092 /* 1093 * If the LWP is on the way out, sigclear() will be busy draining all 1094 * pending signals. Don't give it more. 1095 */ 1096 if (l->l_refcnt == 0) 1097 return 0; 1098 1099 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1100 1101 /* 1102 * Have the LWP check for signals. This ensures that even if no LWP 1103 * is found to take the signal immediately, it should be taken soon. 1104 */ 1105 lwp_lock(l); 1106 l->l_flag |= LW_PENDSIG; 1107 1108 /* 1109 * When sending signals to SA processes, we first try to find an 1110 * idle VP to take it. 1111 */ 1112 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1113 lwp_unlock(l); 1114 return 0; 1115 } 1116 1117 /* 1118 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1119 * Note: SIGKILL and SIGSTOP cannot be masked. 1120 */ 1121 #if KERN_SA 1122 if (p->p_sa != NULL) 1123 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1124 else 1125 #endif 1126 masked = sigismember(&l->l_sigmask, sig); 1127 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1128 lwp_unlock(l); 1129 return 0; 1130 } 1131 1132 /* 1133 * If killing the process, make it run fast. 1134 */ 1135 if (__predict_false((prop & SA_KILL) != 0) && 1136 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1137 KASSERT(l->l_class == SCHED_OTHER); 1138 lwp_changepri(l, MAXPRI_USER); 1139 } 1140 1141 /* 1142 * If the LWP is running or on a run queue, then we win. If it's 1143 * sleeping interruptably, wake it and make it take the signal. If 1144 * the sleep isn't interruptable, then the chances are it will get 1145 * to see the signal soon anyhow. If suspended, it can't take the 1146 * signal right now. If it's LWP private or for all LWPs, save it 1147 * for later; otherwise punt. 1148 */ 1149 rv = 0; 1150 1151 switch (l->l_stat) { 1152 case LSRUN: 1153 case LSONPROC: 1154 lwp_need_userret(l); 1155 rv = 1; 1156 break; 1157 1158 case LSSLEEP: 1159 if ((l->l_flag & LW_SINTR) != 0) { 1160 /* setrunnable() will release the lock. */ 1161 setrunnable(l); 1162 return 1; 1163 } 1164 break; 1165 1166 case LSSUSPENDED: 1167 if ((prop & SA_KILL) != 0) { 1168 /* lwp_continue() will release the lock. */ 1169 lwp_continue(l); 1170 return 1; 1171 } 1172 break; 1173 1174 case LSSTOP: 1175 if ((prop & SA_STOP) != 0) 1176 break; 1177 1178 /* 1179 * If the LWP is stopped and we are sending a continue 1180 * signal, then start it again. 1181 */ 1182 if ((prop & SA_CONT) != 0) { 1183 if (l->l_wchan != NULL) { 1184 l->l_stat = LSSLEEP; 1185 p->p_nrlwps++; 1186 rv = 1; 1187 break; 1188 } 1189 /* setrunnable() will release the lock. */ 1190 setrunnable(l); 1191 return 1; 1192 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1193 /* setrunnable() will release the lock. */ 1194 setrunnable(l); 1195 return 1; 1196 } 1197 break; 1198 1199 default: 1200 break; 1201 } 1202 1203 lwp_unlock(l); 1204 return rv; 1205 } 1206 1207 /* 1208 * Notify an LWP that it has a pending signal. 1209 */ 1210 void 1211 signotify(struct lwp *l) 1212 { 1213 KASSERT(lwp_locked(l, NULL)); 1214 1215 l->l_flag |= LW_PENDSIG; 1216 lwp_need_userret(l); 1217 } 1218 1219 /* 1220 * Find an LWP within process p that is waiting on signal ksi, and hand 1221 * it on. 1222 */ 1223 static int 1224 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1225 { 1226 struct lwp *l; 1227 int signo; 1228 1229 KASSERT(mutex_owned(p->p_lock)); 1230 1231 signo = ksi->ksi_signo; 1232 1233 if (ksi->ksi_lid != 0) { 1234 /* 1235 * Signal came via _lwp_kill(). Find the LWP and see if 1236 * it's interested. 1237 */ 1238 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1239 return 0; 1240 if (l->l_sigwaited == NULL || 1241 !sigismember(&l->l_sigwaitset, signo)) 1242 return 0; 1243 } else { 1244 /* 1245 * Look for any LWP that may be interested. 1246 */ 1247 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1248 KASSERT(l->l_sigwaited != NULL); 1249 if (sigismember(&l->l_sigwaitset, signo)) 1250 break; 1251 } 1252 } 1253 1254 if (l != NULL) { 1255 l->l_sigwaited->ksi_info = ksi->ksi_info; 1256 l->l_sigwaited = NULL; 1257 LIST_REMOVE(l, l_sigwaiter); 1258 cv_signal(&l->l_sigcv); 1259 return 1; 1260 } 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * Send the signal to the process. If the signal has an action, the action 1267 * is usually performed by the target process rather than the caller; we add 1268 * the signal to the set of pending signals for the process. 1269 * 1270 * Exceptions: 1271 * o When a stop signal is sent to a sleeping process that takes the 1272 * default action, the process is stopped without awakening it. 1273 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1274 * regardless of the signal action (eg, blocked or ignored). 1275 * 1276 * Other ignored signals are discarded immediately. 1277 */ 1278 void 1279 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1280 { 1281 int prop, signo = ksi->ksi_signo; 1282 struct sigacts *sa; 1283 struct lwp *l; 1284 ksiginfo_t *kp; 1285 lwpid_t lid; 1286 sig_t action; 1287 bool toall; 1288 1289 KASSERT(!cpu_intr_p()); 1290 KASSERT(mutex_owned(proc_lock)); 1291 KASSERT(mutex_owned(p->p_lock)); 1292 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1293 KASSERT(signo > 0 && signo < NSIG); 1294 1295 /* 1296 * If the process is being created by fork, is a zombie or is 1297 * exiting, then just drop the signal here and bail out. 1298 */ 1299 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1300 return; 1301 1302 /* 1303 * Notify any interested parties of the signal. 1304 */ 1305 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1306 1307 /* 1308 * Some signals including SIGKILL must act on the entire process. 1309 */ 1310 kp = NULL; 1311 prop = sigprop[signo]; 1312 toall = ((prop & SA_TOALL) != 0); 1313 lid = toall ? 0 : ksi->ksi_lid; 1314 1315 /* 1316 * If proc is traced, always give parent a chance. 1317 */ 1318 if (p->p_slflag & PSL_TRACED) { 1319 action = SIG_DFL; 1320 1321 if (lid == 0) { 1322 /* 1323 * If the process is being traced and the signal 1324 * is being caught, make sure to save any ksiginfo. 1325 */ 1326 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1327 return; 1328 sigput(&p->p_sigpend, p, kp); 1329 } 1330 } else { 1331 /* 1332 * If the signal was the result of a trap and is not being 1333 * caught, then reset it to default action so that the 1334 * process dumps core immediately. 1335 */ 1336 if (KSI_TRAP_P(ksi)) { 1337 sa = p->p_sigacts; 1338 mutex_enter(&sa->sa_mutex); 1339 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1340 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1341 SIGACTION(p, signo).sa_handler = SIG_DFL; 1342 } 1343 mutex_exit(&sa->sa_mutex); 1344 } 1345 1346 /* 1347 * If the signal is being ignored, then drop it. Note: we 1348 * don't set SIGCONT in ps_sigignore, and if it is set to 1349 * SIG_IGN, action will be SIG_DFL here. 1350 */ 1351 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1352 return; 1353 1354 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1355 action = SIG_CATCH; 1356 else { 1357 action = SIG_DFL; 1358 1359 /* 1360 * If sending a tty stop signal to a member of an 1361 * orphaned process group, discard the signal here if 1362 * the action is default; don't stop the process below 1363 * if sleeping, and don't clear any pending SIGCONT. 1364 */ 1365 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1366 return; 1367 1368 if (prop & SA_KILL && p->p_nice > NZERO) 1369 p->p_nice = NZERO; 1370 } 1371 } 1372 1373 /* 1374 * If stopping or continuing a process, discard any pending 1375 * signals that would do the inverse. 1376 */ 1377 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1378 ksiginfoq_t kq; 1379 1380 ksiginfo_queue_init(&kq); 1381 if ((prop & SA_CONT) != 0) 1382 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1383 if ((prop & SA_STOP) != 0) 1384 sigclear(&p->p_sigpend, &contsigmask, &kq); 1385 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1386 } 1387 1388 /* 1389 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1390 * please!), check if any LWPs are waiting on it. If yes, pass on 1391 * the signal info. The signal won't be processed further here. 1392 */ 1393 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1394 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1395 sigunwait(p, ksi)) 1396 return; 1397 1398 /* 1399 * XXXSMP Should be allocated by the caller, we're holding locks 1400 * here. 1401 */ 1402 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1403 return; 1404 1405 /* 1406 * LWP private signals are easy - just find the LWP and post 1407 * the signal to it. 1408 */ 1409 if (lid != 0) { 1410 l = lwp_find(p, lid); 1411 if (l != NULL) { 1412 sigput(&l->l_sigpend, p, kp); 1413 membar_producer(); 1414 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1415 } 1416 goto out; 1417 } 1418 1419 /* 1420 * Some signals go to all LWPs, even if posted with _lwp_kill() 1421 * or for an SA process. 1422 */ 1423 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1424 if ((p->p_slflag & PSL_TRACED) != 0) 1425 goto deliver; 1426 1427 /* 1428 * If SIGCONT is default (or ignored) and process is 1429 * asleep, we are finished; the process should not 1430 * be awakened. 1431 */ 1432 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1433 goto out; 1434 } else { 1435 /* 1436 * Process is stopped or stopping. 1437 * - If traced, then no action is needed, unless killing. 1438 * - Run the process only if sending SIGCONT or SIGKILL. 1439 */ 1440 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1441 goto out; 1442 } 1443 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1444 /* 1445 * Re-adjust p_nstopchild if the process wasn't 1446 * collected by its parent. 1447 */ 1448 p->p_stat = SACTIVE; 1449 p->p_sflag &= ~PS_STOPPING; 1450 if (!p->p_waited) { 1451 p->p_pptr->p_nstopchild--; 1452 } 1453 if (p->p_slflag & PSL_TRACED) { 1454 KASSERT(signo == SIGKILL); 1455 goto deliver; 1456 } 1457 /* 1458 * Do not make signal pending if SIGCONT is default. 1459 * 1460 * If the process catches SIGCONT, let it handle the 1461 * signal itself (if waiting on event - process runs, 1462 * otherwise continues sleeping). 1463 */ 1464 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1465 KASSERT(signo != SIGKILL); 1466 goto deliver; 1467 } 1468 } else if ((prop & SA_STOP) != 0) { 1469 /* 1470 * Already stopped, don't need to stop again. 1471 * (If we did the shell could get confused.) 1472 */ 1473 goto out; 1474 } 1475 } 1476 /* 1477 * Make signal pending. 1478 */ 1479 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1480 sigput(&p->p_sigpend, p, kp); 1481 1482 deliver: 1483 /* 1484 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1485 * visible on the per process list (for sigispending()). This 1486 * is unlikely to be needed in practice, but... 1487 */ 1488 membar_producer(); 1489 1490 /* 1491 * Try to find an LWP that can take the signal. 1492 */ 1493 #if KERN_SA 1494 if ((p->p_sa != NULL) && !toall) { 1495 struct sadata_vp *vp; 1496 /* 1497 * If we're in this delivery path, we are delivering a 1498 * signal that needs to go to one thread in the process. 1499 * 1500 * In the SA case, we try to find an idle LWP that can take 1501 * the signal. If that fails, only then do we consider 1502 * interrupting active LWPs. Since the signal's going to 1503 * just one thread, we need only look at "blessed" lwps, 1504 * so scan the vps for them. 1505 */ 1506 l = NULL; 1507 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1508 l = vp->savp_lwp; 1509 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1510 break; 1511 } 1512 1513 if (l == NULL) { 1514 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1515 l = vp->savp_lwp; 1516 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1517 break; 1518 } 1519 } 1520 /* Delivered, skip next. */ 1521 goto out; 1522 } 1523 #endif 1524 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1525 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1526 break; 1527 } 1528 out: 1529 /* 1530 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1531 * with locks held. The caller should take care of this. 1532 */ 1533 ksiginfo_free(kp); 1534 } 1535 1536 void 1537 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1538 { 1539 struct proc *p = l->l_proc; 1540 #ifdef KERN_SA 1541 struct lwp *le, *li; 1542 siginfo_t *si; 1543 int f; 1544 #endif /* KERN_SA */ 1545 1546 KASSERT(mutex_owned(p->p_lock)); 1547 1548 #ifdef KERN_SA 1549 if (p->p_sflag & PS_SA) { 1550 /* f indicates if we should clear LP_SA_NOBLOCK */ 1551 f = ~l->l_pflag & LP_SA_NOBLOCK; 1552 l->l_pflag |= LP_SA_NOBLOCK; 1553 1554 mutex_exit(p->p_lock); 1555 /* XXXUPSXXX What if not on sa_vp? */ 1556 /* 1557 * WRS: I think it won't matter, beyond the 1558 * question of what exactly we do with a signal 1559 * to a blocked user thread. Also, we try hard to always 1560 * send signals to blessed lwps, so we would only send 1561 * to a non-blessed lwp under special circumstances. 1562 */ 1563 si = siginfo_alloc(PR_WAITOK); 1564 1565 si->_info = ksi->ksi_info; 1566 1567 /* 1568 * Figure out if we're the innocent victim or the main 1569 * perpitrator. 1570 */ 1571 le = li = NULL; 1572 if (KSI_TRAP_P(ksi)) 1573 le = l; 1574 else 1575 li = l; 1576 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1577 sizeof(*si), si, siginfo_free) != 0) { 1578 siginfo_free(si); 1579 #if 0 1580 if (KSI_TRAP_P(ksi)) 1581 /* XXX What dowe do here? The signal 1582 * didn't make it 1583 */; 1584 #endif 1585 } 1586 l->l_pflag ^= f; 1587 mutex_enter(p->p_lock); 1588 return; 1589 } 1590 #endif /* KERN_SA */ 1591 1592 (*p->p_emul->e_sendsig)(ksi, mask); 1593 } 1594 1595 /* 1596 * Stop any LWPs sleeping interruptably. 1597 */ 1598 static void 1599 proc_stop_lwps(struct proc *p) 1600 { 1601 struct lwp *l; 1602 1603 KASSERT(mutex_owned(p->p_lock)); 1604 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1605 1606 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1607 lwp_lock(l); 1608 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1609 l->l_stat = LSSTOP; 1610 p->p_nrlwps--; 1611 } 1612 lwp_unlock(l); 1613 } 1614 } 1615 1616 /* 1617 * Finish stopping of a process. Mark it stopped and notify the parent. 1618 * 1619 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1620 */ 1621 static void 1622 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1623 { 1624 1625 KASSERT(mutex_owned(proc_lock)); 1626 KASSERT(mutex_owned(p->p_lock)); 1627 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1628 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1629 1630 p->p_sflag &= ~PS_STOPPING; 1631 p->p_stat = SSTOP; 1632 p->p_waited = 0; 1633 p->p_pptr->p_nstopchild++; 1634 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1635 if (ppsig) { 1636 /* child_psignal drops p_lock briefly. */ 1637 child_psignal(p, ppmask); 1638 } 1639 cv_broadcast(&p->p_pptr->p_waitcv); 1640 } 1641 } 1642 1643 /* 1644 * Stop the current process and switch away when being stopped or traced. 1645 */ 1646 static void 1647 sigswitch(bool ppsig, int ppmask, int signo) 1648 { 1649 struct lwp *l = curlwp; 1650 struct proc *p = l->l_proc; 1651 int biglocks; 1652 1653 KASSERT(mutex_owned(p->p_lock)); 1654 KASSERT(l->l_stat == LSONPROC); 1655 KASSERT(p->p_nrlwps > 0); 1656 1657 /* 1658 * On entry we know that the process needs to stop. If it's 1659 * the result of a 'sideways' stop signal that has been sourced 1660 * through issignal(), then stop other LWPs in the process too. 1661 */ 1662 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1663 KASSERT(signo != 0); 1664 proc_stop(p, 1, signo); 1665 KASSERT(p->p_nrlwps > 0); 1666 } 1667 1668 /* 1669 * If we are the last live LWP, and the stop was a result of 1670 * a new signal, then signal the parent. 1671 */ 1672 if ((p->p_sflag & PS_STOPPING) != 0) { 1673 if (!mutex_tryenter(proc_lock)) { 1674 mutex_exit(p->p_lock); 1675 mutex_enter(proc_lock); 1676 mutex_enter(p->p_lock); 1677 } 1678 1679 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1680 /* 1681 * Note that proc_stop_done() can drop 1682 * p->p_lock briefly. 1683 */ 1684 proc_stop_done(p, ppsig, ppmask); 1685 } 1686 1687 mutex_exit(proc_lock); 1688 } 1689 1690 /* 1691 * Unlock and switch away. 1692 */ 1693 KERNEL_UNLOCK_ALL(l, &biglocks); 1694 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1695 p->p_nrlwps--; 1696 lwp_lock(l); 1697 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1698 l->l_stat = LSSTOP; 1699 lwp_unlock(l); 1700 } 1701 1702 mutex_exit(p->p_lock); 1703 lwp_lock(l); 1704 mi_switch(l); 1705 KERNEL_LOCK(biglocks, l); 1706 mutex_enter(p->p_lock); 1707 } 1708 1709 /* 1710 * Check for a signal from the debugger. 1711 */ 1712 static int 1713 sigchecktrace(void) 1714 { 1715 struct lwp *l = curlwp; 1716 struct proc *p = l->l_proc; 1717 sigset_t *mask; 1718 int signo; 1719 1720 KASSERT(mutex_owned(p->p_lock)); 1721 1722 /* If there's a pending SIGKILL, process it immediately. */ 1723 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1724 return 0; 1725 1726 /* 1727 * If we are no longer being traced, or the parent didn't 1728 * give us a signal, look for more signals. 1729 */ 1730 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1731 return 0; 1732 1733 /* 1734 * If the new signal is being masked, look for other signals. 1735 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1736 */ 1737 signo = p->p_xstat; 1738 p->p_xstat = 0; 1739 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1740 if (sigismember(mask, signo)) 1741 signo = 0; 1742 1743 return signo; 1744 } 1745 1746 /* 1747 * If the current process has received a signal (should be caught or cause 1748 * termination, should interrupt current syscall), return the signal number. 1749 * 1750 * Stop signals with default action are processed immediately, then cleared; 1751 * they aren't returned. This is checked after each entry to the system for 1752 * a syscall or trap. 1753 * 1754 * We will also return -1 if the process is exiting and the current LWP must 1755 * follow suit. 1756 */ 1757 int 1758 issignal(struct lwp *l) 1759 { 1760 struct proc *p; 1761 int signo, prop; 1762 sigpend_t *sp; 1763 sigset_t ss; 1764 1765 p = l->l_proc; 1766 sp = NULL; 1767 signo = 0; 1768 1769 KASSERT(p == curproc); 1770 KASSERT(mutex_owned(p->p_lock)); 1771 1772 for (;;) { 1773 /* Discard any signals that we have decided not to take. */ 1774 if (signo != 0) 1775 (void)sigget(sp, NULL, signo, NULL); 1776 1777 /* Bail out if we do not own the virtual processor */ 1778 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1779 break; 1780 1781 /* 1782 * If the process is stopped/stopping, then stop ourselves 1783 * now that we're on the kernel/userspace boundary. When 1784 * we awaken, check for a signal from the debugger. 1785 */ 1786 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1787 sigswitch(true, PS_NOCLDSTOP, 0); 1788 signo = sigchecktrace(); 1789 } else 1790 signo = 0; 1791 1792 /* Signals from the debugger are "out of band". */ 1793 sp = NULL; 1794 1795 /* 1796 * If the debugger didn't provide a signal, find a pending 1797 * signal from our set. Check per-LWP signals first, and 1798 * then per-process. 1799 */ 1800 if (signo == 0) { 1801 sp = &l->l_sigpend; 1802 ss = sp->sp_set; 1803 if ((p->p_lflag & PL_PPWAIT) != 0) 1804 sigminusset(&stopsigmask, &ss); 1805 sigminusset(&l->l_sigmask, &ss); 1806 1807 if ((signo = firstsig(&ss)) == 0) { 1808 sp = &p->p_sigpend; 1809 ss = sp->sp_set; 1810 if ((p->p_lflag & PL_PPWAIT) != 0) 1811 sigminusset(&stopsigmask, &ss); 1812 sigminusset(&l->l_sigmask, &ss); 1813 1814 if ((signo = firstsig(&ss)) == 0) { 1815 /* 1816 * No signal pending - clear the 1817 * indicator and bail out. 1818 */ 1819 lwp_lock(l); 1820 l->l_flag &= ~LW_PENDSIG; 1821 lwp_unlock(l); 1822 sp = NULL; 1823 break; 1824 } 1825 } 1826 } 1827 1828 /* 1829 * We should see pending but ignored signals only if 1830 * we are being traced. 1831 */ 1832 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1833 (p->p_slflag & PSL_TRACED) == 0) { 1834 /* Discard the signal. */ 1835 continue; 1836 } 1837 1838 /* 1839 * If traced, always stop, and stay stopped until released 1840 * by the debugger. If the our parent process is waiting 1841 * for us, don't hang as we could deadlock. 1842 */ 1843 if ((p->p_slflag & PSL_TRACED) != 0 && 1844 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1845 /* Take the signal. */ 1846 (void)sigget(sp, NULL, signo, NULL); 1847 p->p_xstat = signo; 1848 1849 /* Emulation-specific handling of signal trace */ 1850 if (p->p_emul->e_tracesig == NULL || 1851 (*p->p_emul->e_tracesig)(p, signo) == 0) 1852 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1853 signo); 1854 1855 /* Check for a signal from the debugger. */ 1856 if ((signo = sigchecktrace()) == 0) 1857 continue; 1858 1859 /* Signals from the debugger are "out of band". */ 1860 sp = NULL; 1861 } 1862 1863 prop = sigprop[signo]; 1864 1865 /* XXX no siginfo? */ 1866 SDT_PROBE(proc,,,signal_handle, signo, 0, 1867 SIGACTION(p, signo).sa_handler, 0, 0); 1868 1869 /* 1870 * Decide whether the signal should be returned. 1871 */ 1872 switch ((long)SIGACTION(p, signo).sa_handler) { 1873 case (long)SIG_DFL: 1874 /* 1875 * Don't take default actions on system processes. 1876 */ 1877 if (p->p_pid <= 1) { 1878 #ifdef DIAGNOSTIC 1879 /* 1880 * Are you sure you want to ignore SIGSEGV 1881 * in init? XXX 1882 */ 1883 printf_nolog("Process (pid %d) got sig %d\n", 1884 p->p_pid, signo); 1885 #endif 1886 continue; 1887 } 1888 1889 /* 1890 * If there is a pending stop signal to process with 1891 * default action, stop here, then clear the signal. 1892 * However, if process is member of an orphaned 1893 * process group, ignore tty stop signals. 1894 */ 1895 if (prop & SA_STOP) { 1896 /* 1897 * XXX Don't hold proc_lock for p_lflag, 1898 * but it's not a big deal. 1899 */ 1900 if (p->p_slflag & PSL_TRACED || 1901 ((p->p_lflag & PL_ORPHANPG) != 0 && 1902 prop & SA_TTYSTOP)) { 1903 /* Ignore the signal. */ 1904 continue; 1905 } 1906 /* Take the signal. */ 1907 (void)sigget(sp, NULL, signo, NULL); 1908 p->p_xstat = signo; 1909 signo = 0; 1910 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1911 } else if (prop & SA_IGNORE) { 1912 /* 1913 * Except for SIGCONT, shouldn't get here. 1914 * Default action is to ignore; drop it. 1915 */ 1916 continue; 1917 } 1918 break; 1919 1920 case (long)SIG_IGN: 1921 #ifdef DEBUG_ISSIGNAL 1922 /* 1923 * Masking above should prevent us ever trying 1924 * to take action on an ignored signal other 1925 * than SIGCONT, unless process is traced. 1926 */ 1927 if ((prop & SA_CONT) == 0 && 1928 (p->p_slflag & PSL_TRACED) == 0) 1929 printf_nolog("issignal\n"); 1930 #endif 1931 continue; 1932 1933 default: 1934 /* 1935 * This signal has an action, let postsig() process 1936 * it. 1937 */ 1938 break; 1939 } 1940 1941 break; 1942 } 1943 1944 l->l_sigpendset = sp; 1945 return signo; 1946 } 1947 1948 /* 1949 * Take the action for the specified signal 1950 * from the current set of pending signals. 1951 */ 1952 void 1953 postsig(int signo) 1954 { 1955 struct lwp *l; 1956 struct proc *p; 1957 struct sigacts *ps; 1958 sig_t action; 1959 sigset_t *returnmask; 1960 ksiginfo_t ksi; 1961 1962 l = curlwp; 1963 p = l->l_proc; 1964 ps = p->p_sigacts; 1965 1966 KASSERT(mutex_owned(p->p_lock)); 1967 KASSERT(signo > 0); 1968 1969 /* 1970 * Set the new mask value and also defer further occurrences of this 1971 * signal. 1972 * 1973 * Special case: user has done a sigsuspend. Here the current mask is 1974 * not of interest, but rather the mask from before the sigsuspend is 1975 * what we want restored after the signal processing is completed. 1976 */ 1977 if (l->l_sigrestore) { 1978 returnmask = &l->l_sigoldmask; 1979 l->l_sigrestore = 0; 1980 } else 1981 returnmask = &l->l_sigmask; 1982 1983 /* 1984 * Commit to taking the signal before releasing the mutex. 1985 */ 1986 action = SIGACTION_PS(ps, signo).sa_handler; 1987 l->l_ru.ru_nsignals++; 1988 sigget(l->l_sigpendset, &ksi, signo, NULL); 1989 1990 if (ktrpoint(KTR_PSIG)) { 1991 mutex_exit(p->p_lock); 1992 ktrpsig(signo, action, returnmask, &ksi); 1993 mutex_enter(p->p_lock); 1994 } 1995 1996 if (action == SIG_DFL) { 1997 /* 1998 * Default action, where the default is to kill 1999 * the process. (Other cases were ignored above.) 2000 */ 2001 sigexit(l, signo); 2002 return; 2003 } 2004 2005 /* 2006 * If we get here, the signal must be caught. 2007 */ 2008 #ifdef DIAGNOSTIC 2009 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2010 panic("postsig action"); 2011 #endif 2012 2013 kpsendsig(l, &ksi, returnmask); 2014 } 2015 2016 /* 2017 * sendsig: 2018 * 2019 * Default signal delivery method for NetBSD. 2020 */ 2021 void 2022 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2023 { 2024 struct sigacts *sa; 2025 int sig; 2026 2027 sig = ksi->ksi_signo; 2028 sa = curproc->p_sigacts; 2029 2030 switch (sa->sa_sigdesc[sig].sd_vers) { 2031 case 0: 2032 case 1: 2033 /* Compat for 1.6 and earlier. */ 2034 if (sendsig_sigcontext_vec == NULL) { 2035 break; 2036 } 2037 (*sendsig_sigcontext_vec)(ksi, mask); 2038 return; 2039 case 2: 2040 case 3: 2041 sendsig_siginfo(ksi, mask); 2042 return; 2043 default: 2044 break; 2045 } 2046 2047 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2048 sigexit(curlwp, SIGILL); 2049 } 2050 2051 /* 2052 * sendsig_reset: 2053 * 2054 * Reset the signal action. Called from emulation specific sendsig() 2055 * before unlocking to deliver the signal. 2056 */ 2057 void 2058 sendsig_reset(struct lwp *l, int signo) 2059 { 2060 struct proc *p = l->l_proc; 2061 struct sigacts *ps = p->p_sigacts; 2062 sigset_t *mask; 2063 2064 KASSERT(mutex_owned(p->p_lock)); 2065 2066 p->p_sigctx.ps_lwp = 0; 2067 p->p_sigctx.ps_code = 0; 2068 p->p_sigctx.ps_signo = 0; 2069 2070 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2071 2072 mutex_enter(&ps->sa_mutex); 2073 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2074 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2075 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2076 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2077 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2078 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2079 } 2080 mutex_exit(&ps->sa_mutex); 2081 } 2082 2083 /* 2084 * Kill the current process for stated reason. 2085 */ 2086 void 2087 killproc(struct proc *p, const char *why) 2088 { 2089 2090 KASSERT(mutex_owned(proc_lock)); 2091 2092 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2093 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2094 psignal(p, SIGKILL); 2095 } 2096 2097 /* 2098 * Force the current process to exit with the specified signal, dumping core 2099 * if appropriate. We bypass the normal tests for masked and caught 2100 * signals, allowing unrecoverable failures to terminate the process without 2101 * changing signal state. Mark the accounting record with the signal 2102 * termination. If dumping core, save the signal number for the debugger. 2103 * Calls exit and does not return. 2104 */ 2105 void 2106 sigexit(struct lwp *l, int signo) 2107 { 2108 int exitsig, error, docore; 2109 struct proc *p; 2110 struct lwp *t; 2111 2112 p = l->l_proc; 2113 2114 KASSERT(mutex_owned(p->p_lock)); 2115 KERNEL_UNLOCK_ALL(l, NULL); 2116 2117 /* 2118 * Don't permit coredump() multiple times in the same process. 2119 * Call back into sigexit, where we will be suspended until 2120 * the deed is done. Note that this is a recursive call, but 2121 * LW_WCORE will prevent us from coming back this way. 2122 */ 2123 if ((p->p_sflag & PS_WCORE) != 0) { 2124 lwp_lock(l); 2125 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2126 lwp_unlock(l); 2127 mutex_exit(p->p_lock); 2128 lwp_userret(l); 2129 panic("sigexit 1"); 2130 /* NOTREACHED */ 2131 } 2132 2133 /* If process is already on the way out, then bail now. */ 2134 if ((p->p_sflag & PS_WEXIT) != 0) { 2135 mutex_exit(p->p_lock); 2136 lwp_exit(l); 2137 panic("sigexit 2"); 2138 /* NOTREACHED */ 2139 } 2140 2141 /* 2142 * Prepare all other LWPs for exit. If dumping core, suspend them 2143 * so that their registers are available long enough to be dumped. 2144 */ 2145 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2146 p->p_sflag |= PS_WCORE; 2147 for (;;) { 2148 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2149 lwp_lock(t); 2150 if (t == l) { 2151 t->l_flag &= ~LW_WSUSPEND; 2152 lwp_unlock(t); 2153 continue; 2154 } 2155 t->l_flag |= (LW_WCORE | LW_WEXIT); 2156 lwp_suspend(l, t); 2157 } 2158 2159 if (p->p_nrlwps == 1) 2160 break; 2161 2162 /* 2163 * Kick any LWPs sitting in lwp_wait1(), and wait 2164 * for everyone else to stop before proceeding. 2165 */ 2166 p->p_nlwpwait++; 2167 cv_broadcast(&p->p_lwpcv); 2168 cv_wait(&p->p_lwpcv, p->p_lock); 2169 p->p_nlwpwait--; 2170 } 2171 } 2172 2173 exitsig = signo; 2174 p->p_acflag |= AXSIG; 2175 p->p_sigctx.ps_signo = signo; 2176 2177 if (docore) { 2178 mutex_exit(p->p_lock); 2179 if ((error = (*coredump_vec)(l, NULL)) == 0) 2180 exitsig |= WCOREFLAG; 2181 2182 if (kern_logsigexit) { 2183 int uid = l->l_cred ? 2184 (int)kauth_cred_geteuid(l->l_cred) : -1; 2185 2186 if (error) 2187 log(LOG_INFO, lognocoredump, p->p_pid, 2188 p->p_comm, uid, signo, error); 2189 else 2190 log(LOG_INFO, logcoredump, p->p_pid, 2191 p->p_comm, uid, signo); 2192 } 2193 2194 #ifdef PAX_SEGVGUARD 2195 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2196 #endif /* PAX_SEGVGUARD */ 2197 /* Acquire the sched state mutex. exit1() will release it. */ 2198 mutex_enter(p->p_lock); 2199 } 2200 2201 /* No longer dumping core. */ 2202 p->p_sflag &= ~PS_WCORE; 2203 2204 exit1(l, W_EXITCODE(0, exitsig)); 2205 /* NOTREACHED */ 2206 } 2207 2208 /* 2209 * Put process 'p' into the stopped state and optionally, notify the parent. 2210 */ 2211 void 2212 proc_stop(struct proc *p, int notify, int signo) 2213 { 2214 struct lwp *l; 2215 2216 KASSERT(mutex_owned(p->p_lock)); 2217 2218 /* 2219 * First off, set the stopping indicator and bring all sleeping 2220 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2221 * unlock between here and the p->p_nrlwps check below. 2222 */ 2223 p->p_sflag |= PS_STOPPING; 2224 if (notify) 2225 p->p_sflag |= PS_NOTIFYSTOP; 2226 else 2227 p->p_sflag &= ~PS_NOTIFYSTOP; 2228 membar_producer(); 2229 2230 proc_stop_lwps(p); 2231 2232 /* 2233 * If there are no LWPs available to take the signal, then we 2234 * signal the parent process immediately. Otherwise, the last 2235 * LWP to stop will take care of it. 2236 */ 2237 2238 if (p->p_nrlwps == 0) { 2239 proc_stop_done(p, true, PS_NOCLDSTOP); 2240 } else { 2241 /* 2242 * Have the remaining LWPs come to a halt, and trigger 2243 * proc_stop_callout() to ensure that they do. 2244 */ 2245 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2246 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2247 callout_schedule(&proc_stop_ch, 1); 2248 } 2249 } 2250 2251 /* 2252 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2253 * but wait for them to come to a halt at the kernel-user boundary. This is 2254 * to allow LWPs to release any locks that they may hold before stopping. 2255 * 2256 * Non-interruptable sleeps can be long, and there is the potential for an 2257 * LWP to begin sleeping interruptably soon after the process has been set 2258 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2259 * stopping, and so complete halt of the process and the return of status 2260 * information to the parent could be delayed indefinitely. 2261 * 2262 * To handle this race, proc_stop_callout() runs once per tick while there 2263 * are stopping processes in the system. It sets LWPs that are sleeping 2264 * interruptably into the LSSTOP state. 2265 * 2266 * Note that we are not concerned about keeping all LWPs stopped while the 2267 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2268 * What we do need to ensure is that all LWPs in a stopping process have 2269 * stopped at least once, so that notification can be sent to the parent 2270 * process. 2271 */ 2272 static void 2273 proc_stop_callout(void *cookie) 2274 { 2275 bool more, restart; 2276 struct proc *p; 2277 2278 (void)cookie; 2279 2280 do { 2281 restart = false; 2282 more = false; 2283 2284 mutex_enter(proc_lock); 2285 PROCLIST_FOREACH(p, &allproc) { 2286 mutex_enter(p->p_lock); 2287 2288 if ((p->p_sflag & PS_STOPPING) == 0) { 2289 mutex_exit(p->p_lock); 2290 continue; 2291 } 2292 2293 /* Stop any LWPs sleeping interruptably. */ 2294 proc_stop_lwps(p); 2295 if (p->p_nrlwps == 0) { 2296 /* 2297 * We brought the process to a halt. 2298 * Mark it as stopped and notify the 2299 * parent. 2300 */ 2301 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2302 /* 2303 * Note that proc_stop_done() will 2304 * drop p->p_lock briefly. 2305 * Arrange to restart and check 2306 * all processes again. 2307 */ 2308 restart = true; 2309 } 2310 proc_stop_done(p, true, PS_NOCLDSTOP); 2311 } else 2312 more = true; 2313 2314 mutex_exit(p->p_lock); 2315 if (restart) 2316 break; 2317 } 2318 mutex_exit(proc_lock); 2319 } while (restart); 2320 2321 /* 2322 * If we noted processes that are stopping but still have 2323 * running LWPs, then arrange to check again in 1 tick. 2324 */ 2325 if (more) 2326 callout_schedule(&proc_stop_ch, 1); 2327 } 2328 2329 /* 2330 * Given a process in state SSTOP, set the state back to SACTIVE and 2331 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2332 */ 2333 void 2334 proc_unstop(struct proc *p) 2335 { 2336 struct lwp *l; 2337 int sig; 2338 2339 KASSERT(mutex_owned(proc_lock)); 2340 KASSERT(mutex_owned(p->p_lock)); 2341 2342 p->p_stat = SACTIVE; 2343 p->p_sflag &= ~PS_STOPPING; 2344 sig = p->p_xstat; 2345 2346 if (!p->p_waited) 2347 p->p_pptr->p_nstopchild--; 2348 2349 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2350 lwp_lock(l); 2351 if (l->l_stat != LSSTOP) { 2352 lwp_unlock(l); 2353 continue; 2354 } 2355 if (l->l_wchan == NULL) { 2356 setrunnable(l); 2357 continue; 2358 } 2359 if (sig && (l->l_flag & LW_SINTR) != 0) { 2360 setrunnable(l); 2361 sig = 0; 2362 } else { 2363 l->l_stat = LSSLEEP; 2364 p->p_nrlwps++; 2365 lwp_unlock(l); 2366 } 2367 } 2368 } 2369 2370 static int 2371 filt_sigattach(struct knote *kn) 2372 { 2373 struct proc *p = curproc; 2374 2375 kn->kn_obj = p; 2376 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2377 2378 mutex_enter(p->p_lock); 2379 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2380 mutex_exit(p->p_lock); 2381 2382 return 0; 2383 } 2384 2385 static void 2386 filt_sigdetach(struct knote *kn) 2387 { 2388 struct proc *p = kn->kn_obj; 2389 2390 mutex_enter(p->p_lock); 2391 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2392 mutex_exit(p->p_lock); 2393 } 2394 2395 /* 2396 * Signal knotes are shared with proc knotes, so we apply a mask to 2397 * the hint in order to differentiate them from process hints. This 2398 * could be avoided by using a signal-specific knote list, but probably 2399 * isn't worth the trouble. 2400 */ 2401 static int 2402 filt_signal(struct knote *kn, long hint) 2403 { 2404 2405 if (hint & NOTE_SIGNAL) { 2406 hint &= ~NOTE_SIGNAL; 2407 2408 if (kn->kn_id == hint) 2409 kn->kn_data++; 2410 } 2411 return (kn->kn_data != 0); 2412 } 2413 2414 const struct filterops sig_filtops = { 2415 0, filt_sigattach, filt_sigdetach, filt_signal 2416 }; 2417