1 /* $NetBSD: kern_sig.c,v 1.317 2012/02/19 21:06:53 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.317 2012/02/19 21:06:53 rmind Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_compat_sunos.h" 77 #include "opt_compat_netbsd.h" 78 #include "opt_compat_netbsd32.h" 79 #include "opt_pax.h" 80 81 #define SIGPROP /* include signal properties table */ 82 #include <sys/param.h> 83 #include <sys/signalvar.h> 84 #include <sys/proc.h> 85 #include <sys/systm.h> 86 #include <sys/wait.h> 87 #include <sys/ktrace.h> 88 #include <sys/syslog.h> 89 #include <sys/filedesc.h> 90 #include <sys/file.h> 91 #include <sys/pool.h> 92 #include <sys/ucontext.h> 93 #include <sys/exec.h> 94 #include <sys/kauth.h> 95 #include <sys/acct.h> 96 #include <sys/callout.h> 97 #include <sys/atomic.h> 98 #include <sys/cpu.h> 99 #include <sys/module.h> 100 #include <sys/sdt.h> 101 102 #ifdef PAX_SEGVGUARD 103 #include <sys/pax.h> 104 #endif /* PAX_SEGVGUARD */ 105 106 #include <uvm/uvm_extern.h> 107 108 static pool_cache_t sigacts_cache __read_mostly; 109 static pool_cache_t ksiginfo_cache __read_mostly; 110 static callout_t proc_stop_ch __cacheline_aligned; 111 112 sigset_t contsigmask __cacheline_aligned; 113 static sigset_t stopsigmask __cacheline_aligned; 114 sigset_t sigcantmask __cacheline_aligned; 115 116 static void ksiginfo_exechook(struct proc *, void *); 117 static void proc_stop_callout(void *); 118 static int sigchecktrace(void); 119 static int sigpost(struct lwp *, sig_t, int, int); 120 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 121 static int sigunwait(struct proc *, const ksiginfo_t *); 122 static void sigswitch(bool, int, int); 123 124 static void sigacts_poolpage_free(struct pool *, void *); 125 static void *sigacts_poolpage_alloc(struct pool *, int); 126 127 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 128 int (*coredump_vec)(struct lwp *, const char *) = 129 (int (*)(struct lwp *, const char *))enosys; 130 131 /* 132 * DTrace SDT provider definitions 133 */ 134 SDT_PROBE_DEFINE(proc,,,signal_send, 135 "struct lwp *", NULL, /* target thread */ 136 "struct proc *", NULL, /* target process */ 137 "int", NULL, /* signal */ 138 NULL, NULL, NULL, NULL); 139 SDT_PROBE_DEFINE(proc,,,signal_discard, 140 "struct lwp *", NULL, /* target thread */ 141 "struct proc *", NULL, /* target process */ 142 "int", NULL, /* signal */ 143 NULL, NULL, NULL, NULL); 144 SDT_PROBE_DEFINE(proc,,,signal_clear, 145 "int", NULL, /* signal */ 146 NULL, NULL, NULL, NULL, 147 NULL, NULL, NULL, NULL); 148 SDT_PROBE_DEFINE(proc,,,signal_handle, 149 "int", NULL, /* signal */ 150 "ksiginfo_t *", NULL, 151 "void (*)(void)", NULL, /* handler address */ 152 NULL, NULL, NULL, NULL); 153 154 155 static struct pool_allocator sigactspool_allocator = { 156 .pa_alloc = sigacts_poolpage_alloc, 157 .pa_free = sigacts_poolpage_free 158 }; 159 160 #ifdef DEBUG 161 int kern_logsigexit = 1; 162 #else 163 int kern_logsigexit = 0; 164 #endif 165 166 static const char logcoredump[] = 167 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 168 static const char lognocoredump[] = 169 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 170 171 static kauth_listener_t signal_listener; 172 173 static int 174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 175 void *arg0, void *arg1, void *arg2, void *arg3) 176 { 177 struct proc *p; 178 int result, signum; 179 180 result = KAUTH_RESULT_DEFER; 181 p = arg0; 182 signum = (int)(unsigned long)arg1; 183 184 if (action != KAUTH_PROCESS_SIGNAL) 185 return result; 186 187 if (kauth_cred_uidmatch(cred, p->p_cred) || 188 (signum == SIGCONT && (curproc->p_session == p->p_session))) 189 result = KAUTH_RESULT_ALLOW; 190 191 return result; 192 } 193 194 /* 195 * signal_init: 196 * 197 * Initialize global signal-related data structures. 198 */ 199 void 200 signal_init(void) 201 { 202 203 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 204 205 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 206 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 207 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 208 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 209 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 210 211 exechook_establish(ksiginfo_exechook, NULL); 212 213 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 214 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 215 216 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 217 signal_listener_cb, NULL); 218 } 219 220 /* 221 * sigacts_poolpage_alloc: 222 * 223 * Allocate a page for the sigacts memory pool. 224 */ 225 static void * 226 sigacts_poolpage_alloc(struct pool *pp, int flags) 227 { 228 229 return (void *)uvm_km_alloc(kernel_map, 230 PAGE_SIZE * 2, PAGE_SIZE * 2, 231 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 232 | UVM_KMF_WIRED); 233 } 234 235 /* 236 * sigacts_poolpage_free: 237 * 238 * Free a page on behalf of the sigacts memory pool. 239 */ 240 static void 241 sigacts_poolpage_free(struct pool *pp, void *v) 242 { 243 244 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 245 } 246 247 /* 248 * sigactsinit: 249 * 250 * Create an initial sigacts structure, using the same signal state 251 * as of specified process. If 'share' is set, share the sigacts by 252 * holding a reference, otherwise just copy it from parent. 253 */ 254 struct sigacts * 255 sigactsinit(struct proc *pp, int share) 256 { 257 struct sigacts *ps = pp->p_sigacts, *ps2; 258 259 if (__predict_false(share)) { 260 atomic_inc_uint(&ps->sa_refcnt); 261 return ps; 262 } 263 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 264 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 265 ps2->sa_refcnt = 1; 266 267 mutex_enter(&ps->sa_mutex); 268 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 269 mutex_exit(&ps->sa_mutex); 270 return ps2; 271 } 272 273 /* 274 * sigactsunshare: 275 * 276 * Make this process not share its sigacts, maintaining all signal state. 277 */ 278 void 279 sigactsunshare(struct proc *p) 280 { 281 struct sigacts *ps, *oldps = p->p_sigacts; 282 283 if (__predict_true(oldps->sa_refcnt == 1)) 284 return; 285 286 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 287 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 288 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 289 ps->sa_refcnt = 1; 290 291 p->p_sigacts = ps; 292 sigactsfree(oldps); 293 } 294 295 /* 296 * sigactsfree; 297 * 298 * Release a sigacts structure. 299 */ 300 void 301 sigactsfree(struct sigacts *ps) 302 { 303 304 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 305 mutex_destroy(&ps->sa_mutex); 306 pool_cache_put(sigacts_cache, ps); 307 } 308 } 309 310 /* 311 * siginit: 312 * 313 * Initialize signal state for process 0; set to ignore signals that 314 * are ignored by default and disable the signal stack. Locking not 315 * required as the system is still cold. 316 */ 317 void 318 siginit(struct proc *p) 319 { 320 struct lwp *l; 321 struct sigacts *ps; 322 int signo, prop; 323 324 ps = p->p_sigacts; 325 sigemptyset(&contsigmask); 326 sigemptyset(&stopsigmask); 327 sigemptyset(&sigcantmask); 328 for (signo = 1; signo < NSIG; signo++) { 329 prop = sigprop[signo]; 330 if (prop & SA_CONT) 331 sigaddset(&contsigmask, signo); 332 if (prop & SA_STOP) 333 sigaddset(&stopsigmask, signo); 334 if (prop & SA_CANTMASK) 335 sigaddset(&sigcantmask, signo); 336 if (prop & SA_IGNORE && signo != SIGCONT) 337 sigaddset(&p->p_sigctx.ps_sigignore, signo); 338 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 339 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 340 } 341 sigemptyset(&p->p_sigctx.ps_sigcatch); 342 p->p_sflag &= ~PS_NOCLDSTOP; 343 344 ksiginfo_queue_init(&p->p_sigpend.sp_info); 345 sigemptyset(&p->p_sigpend.sp_set); 346 347 /* 348 * Reset per LWP state. 349 */ 350 l = LIST_FIRST(&p->p_lwps); 351 l->l_sigwaited = NULL; 352 l->l_sigstk.ss_flags = SS_DISABLE; 353 l->l_sigstk.ss_size = 0; 354 l->l_sigstk.ss_sp = 0; 355 ksiginfo_queue_init(&l->l_sigpend.sp_info); 356 sigemptyset(&l->l_sigpend.sp_set); 357 358 /* One reference. */ 359 ps->sa_refcnt = 1; 360 } 361 362 /* 363 * execsigs: 364 * 365 * Reset signals for an exec of the specified process. 366 */ 367 void 368 execsigs(struct proc *p) 369 { 370 struct sigacts *ps; 371 struct lwp *l; 372 int signo, prop; 373 sigset_t tset; 374 ksiginfoq_t kq; 375 376 KASSERT(p->p_nlwps == 1); 377 378 sigactsunshare(p); 379 ps = p->p_sigacts; 380 381 /* 382 * Reset caught signals. Held signals remain held through 383 * l->l_sigmask (unless they were caught, and are now ignored 384 * by default). 385 * 386 * No need to lock yet, the process has only one LWP and 387 * at this point the sigacts are private to the process. 388 */ 389 sigemptyset(&tset); 390 for (signo = 1; signo < NSIG; signo++) { 391 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 392 prop = sigprop[signo]; 393 if (prop & SA_IGNORE) { 394 if ((prop & SA_CONT) == 0) 395 sigaddset(&p->p_sigctx.ps_sigignore, 396 signo); 397 sigaddset(&tset, signo); 398 } 399 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 400 } 401 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 402 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 403 } 404 ksiginfo_queue_init(&kq); 405 406 mutex_enter(p->p_lock); 407 sigclearall(p, &tset, &kq); 408 sigemptyset(&p->p_sigctx.ps_sigcatch); 409 410 /* 411 * Reset no zombies if child dies flag as Solaris does. 412 */ 413 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 414 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 415 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 416 417 /* 418 * Reset per-LWP state. 419 */ 420 l = LIST_FIRST(&p->p_lwps); 421 l->l_sigwaited = NULL; 422 l->l_sigstk.ss_flags = SS_DISABLE; 423 l->l_sigstk.ss_size = 0; 424 l->l_sigstk.ss_sp = 0; 425 ksiginfo_queue_init(&l->l_sigpend.sp_info); 426 sigemptyset(&l->l_sigpend.sp_set); 427 mutex_exit(p->p_lock); 428 429 ksiginfo_queue_drain(&kq); 430 } 431 432 /* 433 * ksiginfo_exechook: 434 * 435 * Free all pending ksiginfo entries from a process on exec. 436 * Additionally, drain any unused ksiginfo structures in the 437 * system back to the pool. 438 * 439 * XXX This should not be a hook, every process has signals. 440 */ 441 static void 442 ksiginfo_exechook(struct proc *p, void *v) 443 { 444 ksiginfoq_t kq; 445 446 ksiginfo_queue_init(&kq); 447 448 mutex_enter(p->p_lock); 449 sigclearall(p, NULL, &kq); 450 mutex_exit(p->p_lock); 451 452 ksiginfo_queue_drain(&kq); 453 } 454 455 /* 456 * ksiginfo_alloc: 457 * 458 * Allocate a new ksiginfo structure from the pool, and optionally copy 459 * an existing one. If the existing ksiginfo_t is from the pool, and 460 * has not been queued somewhere, then just return it. Additionally, 461 * if the existing ksiginfo_t does not contain any information beyond 462 * the signal number, then just return it. 463 */ 464 ksiginfo_t * 465 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 466 { 467 ksiginfo_t *kp; 468 469 if (ok != NULL) { 470 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 471 KSI_FROMPOOL) 472 return ok; 473 if (KSI_EMPTY_P(ok)) 474 return ok; 475 } 476 477 kp = pool_cache_get(ksiginfo_cache, flags); 478 if (kp == NULL) { 479 #ifdef DIAGNOSTIC 480 printf("Out of memory allocating ksiginfo for pid %d\n", 481 p->p_pid); 482 #endif 483 return NULL; 484 } 485 486 if (ok != NULL) { 487 memcpy(kp, ok, sizeof(*kp)); 488 kp->ksi_flags &= ~KSI_QUEUED; 489 } else 490 KSI_INIT_EMPTY(kp); 491 492 kp->ksi_flags |= KSI_FROMPOOL; 493 494 return kp; 495 } 496 497 /* 498 * ksiginfo_free: 499 * 500 * If the given ksiginfo_t is from the pool and has not been queued, 501 * then free it. 502 */ 503 void 504 ksiginfo_free(ksiginfo_t *kp) 505 { 506 507 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 508 return; 509 pool_cache_put(ksiginfo_cache, kp); 510 } 511 512 /* 513 * ksiginfo_queue_drain: 514 * 515 * Drain a non-empty ksiginfo_t queue. 516 */ 517 void 518 ksiginfo_queue_drain0(ksiginfoq_t *kq) 519 { 520 ksiginfo_t *ksi; 521 522 KASSERT(!CIRCLEQ_EMPTY(kq)); 523 524 while (!CIRCLEQ_EMPTY(kq)) { 525 ksi = CIRCLEQ_FIRST(kq); 526 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 527 pool_cache_put(ksiginfo_cache, ksi); 528 } 529 } 530 531 static bool 532 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 533 { 534 ksiginfo_t *ksi; 535 536 if (sp == NULL) 537 goto out; 538 539 /* Find siginfo and copy it out. */ 540 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 541 if (ksi->ksi_signo != signo) 542 continue; 543 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 544 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 545 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 546 ksi->ksi_flags &= ~KSI_QUEUED; 547 if (out != NULL) { 548 memcpy(out, ksi, sizeof(*out)); 549 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 550 } 551 ksiginfo_free(ksi); /* XXXSMP */ 552 return true; 553 } 554 555 out: 556 /* If there is no siginfo, then manufacture it. */ 557 if (out != NULL) { 558 KSI_INIT(out); 559 out->ksi_info._signo = signo; 560 out->ksi_info._code = SI_NOINFO; 561 } 562 return false; 563 } 564 565 /* 566 * sigget: 567 * 568 * Fetch the first pending signal from a set. Optionally, also fetch 569 * or manufacture a ksiginfo element. Returns the number of the first 570 * pending signal, or zero. 571 */ 572 int 573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 574 { 575 sigset_t tset; 576 577 /* If there's no pending set, the signal is from the debugger. */ 578 if (sp == NULL) 579 goto out; 580 581 /* Construct mask from signo, and 'mask'. */ 582 if (signo == 0) { 583 if (mask != NULL) { 584 tset = *mask; 585 __sigandset(&sp->sp_set, &tset); 586 } else 587 tset = sp->sp_set; 588 589 /* If there are no signals pending - return. */ 590 if ((signo = firstsig(&tset)) == 0) 591 goto out; 592 } else { 593 KASSERT(sigismember(&sp->sp_set, signo)); 594 } 595 596 sigdelset(&sp->sp_set, signo); 597 out: 598 (void)siggetinfo(sp, out, signo); 599 return signo; 600 } 601 602 /* 603 * sigput: 604 * 605 * Append a new ksiginfo element to the list of pending ksiginfo's. 606 */ 607 static void 608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 609 { 610 ksiginfo_t *kp; 611 612 KASSERT(mutex_owned(p->p_lock)); 613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 614 615 sigaddset(&sp->sp_set, ksi->ksi_signo); 616 617 /* 618 * If there is no siginfo, we are done. 619 */ 620 if (KSI_EMPTY_P(ksi)) 621 return; 622 623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 624 625 #ifdef notyet /* XXX: QUEUING */ 626 if (ksi->ksi_signo < SIGRTMIN) 627 #endif 628 { 629 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 630 if (kp->ksi_signo == ksi->ksi_signo) { 631 KSI_COPY(ksi, kp); 632 kp->ksi_flags |= KSI_QUEUED; 633 return; 634 } 635 } 636 } 637 638 ksi->ksi_flags |= KSI_QUEUED; 639 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 640 } 641 642 /* 643 * sigclear: 644 * 645 * Clear all pending signals in the specified set. 646 */ 647 void 648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 649 { 650 ksiginfo_t *ksi, *next; 651 652 if (mask == NULL) 653 sigemptyset(&sp->sp_set); 654 else 655 sigminusset(mask, &sp->sp_set); 656 657 ksi = CIRCLEQ_FIRST(&sp->sp_info); 658 for (; ksi != (void *)&sp->sp_info; ksi = next) { 659 next = CIRCLEQ_NEXT(ksi, ksi_list); 660 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 661 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 662 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 663 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 664 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 665 } 666 } 667 } 668 669 /* 670 * sigclearall: 671 * 672 * Clear all pending signals in the specified set from a process and 673 * its LWPs. 674 */ 675 void 676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 677 { 678 struct lwp *l; 679 680 KASSERT(mutex_owned(p->p_lock)); 681 682 sigclear(&p->p_sigpend, mask, kq); 683 684 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 685 sigclear(&l->l_sigpend, mask, kq); 686 } 687 } 688 689 /* 690 * sigispending: 691 * 692 * Return the first signal number if there are pending signals for the 693 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 694 * and that the signal has been posted to the appopriate queue before 695 * LW_PENDSIG is set. 696 */ 697 int 698 sigispending(struct lwp *l, int signo) 699 { 700 struct proc *p = l->l_proc; 701 sigset_t tset; 702 703 membar_consumer(); 704 705 tset = l->l_sigpend.sp_set; 706 sigplusset(&p->p_sigpend.sp_set, &tset); 707 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 708 sigminusset(&l->l_sigmask, &tset); 709 710 if (signo == 0) { 711 return firstsig(&tset); 712 } 713 return sigismember(&tset, signo) ? signo : 0; 714 } 715 716 void 717 getucontext(struct lwp *l, ucontext_t *ucp) 718 { 719 struct proc *p = l->l_proc; 720 721 KASSERT(mutex_owned(p->p_lock)); 722 723 ucp->uc_flags = 0; 724 ucp->uc_link = l->l_ctxlink; 725 ucp->uc_sigmask = l->l_sigmask; 726 ucp->uc_flags |= _UC_SIGMASK; 727 728 /* 729 * The (unsupplied) definition of the `current execution stack' 730 * in the System V Interface Definition appears to allow returning 731 * the main context stack. 732 */ 733 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 734 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 735 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 736 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 737 } else { 738 /* Simply copy alternate signal execution stack. */ 739 ucp->uc_stack = l->l_sigstk; 740 } 741 ucp->uc_flags |= _UC_STACK; 742 mutex_exit(p->p_lock); 743 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 744 mutex_enter(p->p_lock); 745 } 746 747 int 748 setucontext(struct lwp *l, const ucontext_t *ucp) 749 { 750 struct proc *p = l->l_proc; 751 int error; 752 753 KASSERT(mutex_owned(p->p_lock)); 754 755 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 756 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 757 if (error != 0) 758 return error; 759 } 760 761 mutex_exit(p->p_lock); 762 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 763 mutex_enter(p->p_lock); 764 if (error != 0) 765 return (error); 766 767 l->l_ctxlink = ucp->uc_link; 768 769 /* 770 * If there was stack information, update whether or not we are 771 * still running on an alternate signal stack. 772 */ 773 if ((ucp->uc_flags & _UC_STACK) != 0) { 774 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 775 l->l_sigstk.ss_flags |= SS_ONSTACK; 776 else 777 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 778 } 779 780 return 0; 781 } 782 783 /* 784 * killpg1: common code for kill process group/broadcast kill. 785 */ 786 int 787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 788 { 789 struct proc *p, *cp; 790 kauth_cred_t pc; 791 struct pgrp *pgrp; 792 int nfound; 793 int signo = ksi->ksi_signo; 794 795 cp = l->l_proc; 796 pc = l->l_cred; 797 nfound = 0; 798 799 mutex_enter(proc_lock); 800 if (all) { 801 /* 802 * Broadcast. 803 */ 804 PROCLIST_FOREACH(p, &allproc) { 805 if (p->p_pid <= 1 || p == cp || 806 (p->p_flag & PK_SYSTEM) != 0) 807 continue; 808 mutex_enter(p->p_lock); 809 if (kauth_authorize_process(pc, 810 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 811 NULL) == 0) { 812 nfound++; 813 if (signo) 814 kpsignal2(p, ksi); 815 } 816 mutex_exit(p->p_lock); 817 } 818 } else { 819 if (pgid == 0) 820 /* Zero pgid means send to my process group. */ 821 pgrp = cp->p_pgrp; 822 else { 823 pgrp = pgrp_find(pgid); 824 if (pgrp == NULL) 825 goto out; 826 } 827 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 828 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 829 continue; 830 mutex_enter(p->p_lock); 831 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 832 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 833 nfound++; 834 if (signo && P_ZOMBIE(p) == 0) 835 kpsignal2(p, ksi); 836 } 837 mutex_exit(p->p_lock); 838 } 839 } 840 out: 841 mutex_exit(proc_lock); 842 return nfound ? 0 : ESRCH; 843 } 844 845 /* 846 * Send a signal to a process group. If checktty is set, limit to members 847 * which have a controlling terminal. 848 */ 849 void 850 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 851 { 852 ksiginfo_t ksi; 853 854 KASSERT(!cpu_intr_p()); 855 KASSERT(mutex_owned(proc_lock)); 856 857 KSI_INIT_EMPTY(&ksi); 858 ksi.ksi_signo = sig; 859 kpgsignal(pgrp, &ksi, NULL, checkctty); 860 } 861 862 void 863 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 864 { 865 struct proc *p; 866 867 KASSERT(!cpu_intr_p()); 868 KASSERT(mutex_owned(proc_lock)); 869 KASSERT(pgrp != NULL); 870 871 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 872 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 873 kpsignal(p, ksi, data); 874 } 875 876 /* 877 * Send a signal caused by a trap to the current LWP. If it will be caught 878 * immediately, deliver it with correct code. Otherwise, post it normally. 879 */ 880 void 881 trapsignal(struct lwp *l, ksiginfo_t *ksi) 882 { 883 struct proc *p; 884 struct sigacts *ps; 885 int signo = ksi->ksi_signo; 886 sigset_t *mask; 887 888 KASSERT(KSI_TRAP_P(ksi)); 889 890 ksi->ksi_lid = l->l_lid; 891 p = l->l_proc; 892 893 KASSERT(!cpu_intr_p()); 894 mutex_enter(proc_lock); 895 mutex_enter(p->p_lock); 896 mask = &l->l_sigmask; 897 ps = p->p_sigacts; 898 899 if ((p->p_slflag & PSL_TRACED) == 0 && 900 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 901 !sigismember(mask, signo)) { 902 mutex_exit(proc_lock); 903 l->l_ru.ru_nsignals++; 904 kpsendsig(l, ksi, mask); 905 mutex_exit(p->p_lock); 906 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 907 } else { 908 /* XXX for core dump/debugger */ 909 p->p_sigctx.ps_lwp = l->l_lid; 910 p->p_sigctx.ps_signo = ksi->ksi_signo; 911 p->p_sigctx.ps_code = ksi->ksi_trap; 912 kpsignal2(p, ksi); 913 mutex_exit(p->p_lock); 914 mutex_exit(proc_lock); 915 } 916 } 917 918 /* 919 * Fill in signal information and signal the parent for a child status change. 920 */ 921 void 922 child_psignal(struct proc *p, int mask) 923 { 924 ksiginfo_t ksi; 925 struct proc *q; 926 int xstat; 927 928 KASSERT(mutex_owned(proc_lock)); 929 KASSERT(mutex_owned(p->p_lock)); 930 931 xstat = p->p_xstat; 932 933 KSI_INIT(&ksi); 934 ksi.ksi_signo = SIGCHLD; 935 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 936 ksi.ksi_pid = p->p_pid; 937 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 938 ksi.ksi_status = xstat; 939 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 940 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 941 942 q = p->p_pptr; 943 944 mutex_exit(p->p_lock); 945 mutex_enter(q->p_lock); 946 947 if ((q->p_sflag & mask) == 0) 948 kpsignal2(q, &ksi); 949 950 mutex_exit(q->p_lock); 951 mutex_enter(p->p_lock); 952 } 953 954 void 955 psignal(struct proc *p, int signo) 956 { 957 ksiginfo_t ksi; 958 959 KASSERT(!cpu_intr_p()); 960 KASSERT(mutex_owned(proc_lock)); 961 962 KSI_INIT_EMPTY(&ksi); 963 ksi.ksi_signo = signo; 964 mutex_enter(p->p_lock); 965 kpsignal2(p, &ksi); 966 mutex_exit(p->p_lock); 967 } 968 969 void 970 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 971 { 972 fdfile_t *ff; 973 file_t *fp; 974 fdtab_t *dt; 975 976 KASSERT(!cpu_intr_p()); 977 KASSERT(mutex_owned(proc_lock)); 978 979 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 980 size_t fd; 981 filedesc_t *fdp = p->p_fd; 982 983 /* XXXSMP locking */ 984 ksi->ksi_fd = -1; 985 dt = fdp->fd_dt; 986 for (fd = 0; fd < dt->dt_nfiles; fd++) { 987 if ((ff = dt->dt_ff[fd]) == NULL) 988 continue; 989 if ((fp = ff->ff_file) == NULL) 990 continue; 991 if (fp->f_data == data) { 992 ksi->ksi_fd = fd; 993 break; 994 } 995 } 996 } 997 mutex_enter(p->p_lock); 998 kpsignal2(p, ksi); 999 mutex_exit(p->p_lock); 1000 } 1001 1002 /* 1003 * sigismasked: 1004 * 1005 * Returns true if signal is ignored or masked for the specified LWP. 1006 */ 1007 int 1008 sigismasked(struct lwp *l, int sig) 1009 { 1010 struct proc *p = l->l_proc; 1011 1012 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1013 sigismember(&l->l_sigmask, sig); 1014 } 1015 1016 /* 1017 * sigpost: 1018 * 1019 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1020 * be able to take the signal. 1021 */ 1022 static int 1023 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1024 { 1025 int rv, masked; 1026 struct proc *p = l->l_proc; 1027 1028 KASSERT(mutex_owned(p->p_lock)); 1029 1030 /* 1031 * If the LWP is on the way out, sigclear() will be busy draining all 1032 * pending signals. Don't give it more. 1033 */ 1034 if (l->l_refcnt == 0) 1035 return 0; 1036 1037 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0); 1038 1039 /* 1040 * Have the LWP check for signals. This ensures that even if no LWP 1041 * is found to take the signal immediately, it should be taken soon. 1042 */ 1043 lwp_lock(l); 1044 l->l_flag |= LW_PENDSIG; 1045 1046 /* 1047 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1048 * Note: SIGKILL and SIGSTOP cannot be masked. 1049 */ 1050 masked = sigismember(&l->l_sigmask, sig); 1051 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1052 lwp_unlock(l); 1053 return 0; 1054 } 1055 1056 /* 1057 * If killing the process, make it run fast. 1058 */ 1059 if (__predict_false((prop & SA_KILL) != 0) && 1060 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1061 KASSERT(l->l_class == SCHED_OTHER); 1062 lwp_changepri(l, MAXPRI_USER); 1063 } 1064 1065 /* 1066 * If the LWP is running or on a run queue, then we win. If it's 1067 * sleeping interruptably, wake it and make it take the signal. If 1068 * the sleep isn't interruptable, then the chances are it will get 1069 * to see the signal soon anyhow. If suspended, it can't take the 1070 * signal right now. If it's LWP private or for all LWPs, save it 1071 * for later; otherwise punt. 1072 */ 1073 rv = 0; 1074 1075 switch (l->l_stat) { 1076 case LSRUN: 1077 case LSONPROC: 1078 lwp_need_userret(l); 1079 rv = 1; 1080 break; 1081 1082 case LSSLEEP: 1083 if ((l->l_flag & LW_SINTR) != 0) { 1084 /* setrunnable() will release the lock. */ 1085 setrunnable(l); 1086 return 1; 1087 } 1088 break; 1089 1090 case LSSUSPENDED: 1091 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1092 /* lwp_continue() will release the lock. */ 1093 lwp_continue(l); 1094 return 1; 1095 } 1096 break; 1097 1098 case LSSTOP: 1099 if ((prop & SA_STOP) != 0) 1100 break; 1101 1102 /* 1103 * If the LWP is stopped and we are sending a continue 1104 * signal, then start it again. 1105 */ 1106 if ((prop & SA_CONT) != 0) { 1107 if (l->l_wchan != NULL) { 1108 l->l_stat = LSSLEEP; 1109 p->p_nrlwps++; 1110 rv = 1; 1111 break; 1112 } 1113 /* setrunnable() will release the lock. */ 1114 setrunnable(l); 1115 return 1; 1116 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1117 /* setrunnable() will release the lock. */ 1118 setrunnable(l); 1119 return 1; 1120 } 1121 break; 1122 1123 default: 1124 break; 1125 } 1126 1127 lwp_unlock(l); 1128 return rv; 1129 } 1130 1131 /* 1132 * Notify an LWP that it has a pending signal. 1133 */ 1134 void 1135 signotify(struct lwp *l) 1136 { 1137 KASSERT(lwp_locked(l, NULL)); 1138 1139 l->l_flag |= LW_PENDSIG; 1140 lwp_need_userret(l); 1141 } 1142 1143 /* 1144 * Find an LWP within process p that is waiting on signal ksi, and hand 1145 * it on. 1146 */ 1147 static int 1148 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1149 { 1150 struct lwp *l; 1151 int signo; 1152 1153 KASSERT(mutex_owned(p->p_lock)); 1154 1155 signo = ksi->ksi_signo; 1156 1157 if (ksi->ksi_lid != 0) { 1158 /* 1159 * Signal came via _lwp_kill(). Find the LWP and see if 1160 * it's interested. 1161 */ 1162 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1163 return 0; 1164 if (l->l_sigwaited == NULL || 1165 !sigismember(&l->l_sigwaitset, signo)) 1166 return 0; 1167 } else { 1168 /* 1169 * Look for any LWP that may be interested. 1170 */ 1171 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1172 KASSERT(l->l_sigwaited != NULL); 1173 if (sigismember(&l->l_sigwaitset, signo)) 1174 break; 1175 } 1176 } 1177 1178 if (l != NULL) { 1179 l->l_sigwaited->ksi_info = ksi->ksi_info; 1180 l->l_sigwaited = NULL; 1181 LIST_REMOVE(l, l_sigwaiter); 1182 cv_signal(&l->l_sigcv); 1183 return 1; 1184 } 1185 1186 return 0; 1187 } 1188 1189 /* 1190 * Send the signal to the process. If the signal has an action, the action 1191 * is usually performed by the target process rather than the caller; we add 1192 * the signal to the set of pending signals for the process. 1193 * 1194 * Exceptions: 1195 * o When a stop signal is sent to a sleeping process that takes the 1196 * default action, the process is stopped without awakening it. 1197 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1198 * regardless of the signal action (eg, blocked or ignored). 1199 * 1200 * Other ignored signals are discarded immediately. 1201 */ 1202 void 1203 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1204 { 1205 int prop, signo = ksi->ksi_signo; 1206 struct sigacts *sa; 1207 struct lwp *l; 1208 ksiginfo_t *kp; 1209 lwpid_t lid; 1210 sig_t action; 1211 bool toall; 1212 1213 KASSERT(!cpu_intr_p()); 1214 KASSERT(mutex_owned(proc_lock)); 1215 KASSERT(mutex_owned(p->p_lock)); 1216 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1217 KASSERT(signo > 0 && signo < NSIG); 1218 1219 /* 1220 * If the process is being created by fork, is a zombie or is 1221 * exiting, then just drop the signal here and bail out. 1222 */ 1223 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1224 return; 1225 1226 /* 1227 * Notify any interested parties of the signal. 1228 */ 1229 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1230 1231 /* 1232 * Some signals including SIGKILL must act on the entire process. 1233 */ 1234 kp = NULL; 1235 prop = sigprop[signo]; 1236 toall = ((prop & SA_TOALL) != 0); 1237 lid = toall ? 0 : ksi->ksi_lid; 1238 1239 /* 1240 * If proc is traced, always give parent a chance. 1241 */ 1242 if (p->p_slflag & PSL_TRACED) { 1243 action = SIG_DFL; 1244 1245 if (lid == 0) { 1246 /* 1247 * If the process is being traced and the signal 1248 * is being caught, make sure to save any ksiginfo. 1249 */ 1250 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1251 return; 1252 sigput(&p->p_sigpend, p, kp); 1253 } 1254 } else { 1255 /* 1256 * If the signal was the result of a trap and is not being 1257 * caught, then reset it to default action so that the 1258 * process dumps core immediately. 1259 */ 1260 if (KSI_TRAP_P(ksi)) { 1261 sa = p->p_sigacts; 1262 mutex_enter(&sa->sa_mutex); 1263 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1264 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1265 SIGACTION(p, signo).sa_handler = SIG_DFL; 1266 } 1267 mutex_exit(&sa->sa_mutex); 1268 } 1269 1270 /* 1271 * If the signal is being ignored, then drop it. Note: we 1272 * don't set SIGCONT in ps_sigignore, and if it is set to 1273 * SIG_IGN, action will be SIG_DFL here. 1274 */ 1275 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1276 return; 1277 1278 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1279 action = SIG_CATCH; 1280 else { 1281 action = SIG_DFL; 1282 1283 /* 1284 * If sending a tty stop signal to a member of an 1285 * orphaned process group, discard the signal here if 1286 * the action is default; don't stop the process below 1287 * if sleeping, and don't clear any pending SIGCONT. 1288 */ 1289 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1290 return; 1291 1292 if (prop & SA_KILL && p->p_nice > NZERO) 1293 p->p_nice = NZERO; 1294 } 1295 } 1296 1297 /* 1298 * If stopping or continuing a process, discard any pending 1299 * signals that would do the inverse. 1300 */ 1301 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1302 ksiginfoq_t kq; 1303 1304 ksiginfo_queue_init(&kq); 1305 if ((prop & SA_CONT) != 0) 1306 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1307 if ((prop & SA_STOP) != 0) 1308 sigclear(&p->p_sigpend, &contsigmask, &kq); 1309 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1310 } 1311 1312 /* 1313 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1314 * please!), check if any LWPs are waiting on it. If yes, pass on 1315 * the signal info. The signal won't be processed further here. 1316 */ 1317 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1318 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1319 sigunwait(p, ksi)) 1320 return; 1321 1322 /* 1323 * XXXSMP Should be allocated by the caller, we're holding locks 1324 * here. 1325 */ 1326 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1327 return; 1328 1329 /* 1330 * LWP private signals are easy - just find the LWP and post 1331 * the signal to it. 1332 */ 1333 if (lid != 0) { 1334 l = lwp_find(p, lid); 1335 if (l != NULL) { 1336 sigput(&l->l_sigpend, p, kp); 1337 membar_producer(); 1338 (void)sigpost(l, action, prop, kp->ksi_signo); 1339 } 1340 goto out; 1341 } 1342 1343 /* 1344 * Some signals go to all LWPs, even if posted with _lwp_kill() 1345 * or for an SA process. 1346 */ 1347 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1348 if ((p->p_slflag & PSL_TRACED) != 0) 1349 goto deliver; 1350 1351 /* 1352 * If SIGCONT is default (or ignored) and process is 1353 * asleep, we are finished; the process should not 1354 * be awakened. 1355 */ 1356 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1357 goto out; 1358 } else { 1359 /* 1360 * Process is stopped or stopping. 1361 * - If traced, then no action is needed, unless killing. 1362 * - Run the process only if sending SIGCONT or SIGKILL. 1363 */ 1364 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1365 goto out; 1366 } 1367 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1368 /* 1369 * Re-adjust p_nstopchild if the process wasn't 1370 * collected by its parent. 1371 */ 1372 p->p_stat = SACTIVE; 1373 p->p_sflag &= ~PS_STOPPING; 1374 if (!p->p_waited) { 1375 p->p_pptr->p_nstopchild--; 1376 } 1377 if (p->p_slflag & PSL_TRACED) { 1378 KASSERT(signo == SIGKILL); 1379 goto deliver; 1380 } 1381 /* 1382 * Do not make signal pending if SIGCONT is default. 1383 * 1384 * If the process catches SIGCONT, let it handle the 1385 * signal itself (if waiting on event - process runs, 1386 * otherwise continues sleeping). 1387 */ 1388 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1389 KASSERT(signo != SIGKILL); 1390 goto deliver; 1391 } 1392 } else if ((prop & SA_STOP) != 0) { 1393 /* 1394 * Already stopped, don't need to stop again. 1395 * (If we did the shell could get confused.) 1396 */ 1397 goto out; 1398 } 1399 } 1400 /* 1401 * Make signal pending. 1402 */ 1403 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1404 sigput(&p->p_sigpend, p, kp); 1405 1406 deliver: 1407 /* 1408 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1409 * visible on the per process list (for sigispending()). This 1410 * is unlikely to be needed in practice, but... 1411 */ 1412 membar_producer(); 1413 1414 /* 1415 * Try to find an LWP that can take the signal. 1416 */ 1417 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1418 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1419 break; 1420 } 1421 out: 1422 /* 1423 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1424 * with locks held. The caller should take care of this. 1425 */ 1426 ksiginfo_free(kp); 1427 } 1428 1429 void 1430 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1431 { 1432 struct proc *p = l->l_proc; 1433 1434 KASSERT(mutex_owned(p->p_lock)); 1435 (*p->p_emul->e_sendsig)(ksi, mask); 1436 } 1437 1438 /* 1439 * Stop any LWPs sleeping interruptably. 1440 */ 1441 static void 1442 proc_stop_lwps(struct proc *p) 1443 { 1444 struct lwp *l; 1445 1446 KASSERT(mutex_owned(p->p_lock)); 1447 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1448 1449 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1450 lwp_lock(l); 1451 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1452 l->l_stat = LSSTOP; 1453 p->p_nrlwps--; 1454 } 1455 lwp_unlock(l); 1456 } 1457 } 1458 1459 /* 1460 * Finish stopping of a process. Mark it stopped and notify the parent. 1461 * 1462 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1463 */ 1464 static void 1465 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1466 { 1467 1468 KASSERT(mutex_owned(proc_lock)); 1469 KASSERT(mutex_owned(p->p_lock)); 1470 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1471 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1472 1473 p->p_sflag &= ~PS_STOPPING; 1474 p->p_stat = SSTOP; 1475 p->p_waited = 0; 1476 p->p_pptr->p_nstopchild++; 1477 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1478 if (ppsig) { 1479 /* child_psignal drops p_lock briefly. */ 1480 child_psignal(p, ppmask); 1481 } 1482 cv_broadcast(&p->p_pptr->p_waitcv); 1483 } 1484 } 1485 1486 /* 1487 * Stop the current process and switch away when being stopped or traced. 1488 */ 1489 static void 1490 sigswitch(bool ppsig, int ppmask, int signo) 1491 { 1492 struct lwp *l = curlwp; 1493 struct proc *p = l->l_proc; 1494 int biglocks; 1495 1496 KASSERT(mutex_owned(p->p_lock)); 1497 KASSERT(l->l_stat == LSONPROC); 1498 KASSERT(p->p_nrlwps > 0); 1499 1500 /* 1501 * On entry we know that the process needs to stop. If it's 1502 * the result of a 'sideways' stop signal that has been sourced 1503 * through issignal(), then stop other LWPs in the process too. 1504 */ 1505 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1506 KASSERT(signo != 0); 1507 proc_stop(p, 1, signo); 1508 KASSERT(p->p_nrlwps > 0); 1509 } 1510 1511 /* 1512 * If we are the last live LWP, and the stop was a result of 1513 * a new signal, then signal the parent. 1514 */ 1515 if ((p->p_sflag & PS_STOPPING) != 0) { 1516 if (!mutex_tryenter(proc_lock)) { 1517 mutex_exit(p->p_lock); 1518 mutex_enter(proc_lock); 1519 mutex_enter(p->p_lock); 1520 } 1521 1522 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1523 /* 1524 * Note that proc_stop_done() can drop 1525 * p->p_lock briefly. 1526 */ 1527 proc_stop_done(p, ppsig, ppmask); 1528 } 1529 1530 mutex_exit(proc_lock); 1531 } 1532 1533 /* 1534 * Unlock and switch away. 1535 */ 1536 KERNEL_UNLOCK_ALL(l, &biglocks); 1537 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1538 p->p_nrlwps--; 1539 lwp_lock(l); 1540 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1541 l->l_stat = LSSTOP; 1542 lwp_unlock(l); 1543 } 1544 1545 mutex_exit(p->p_lock); 1546 lwp_lock(l); 1547 mi_switch(l); 1548 KERNEL_LOCK(biglocks, l); 1549 mutex_enter(p->p_lock); 1550 } 1551 1552 /* 1553 * Check for a signal from the debugger. 1554 */ 1555 static int 1556 sigchecktrace(void) 1557 { 1558 struct lwp *l = curlwp; 1559 struct proc *p = l->l_proc; 1560 int signo; 1561 1562 KASSERT(mutex_owned(p->p_lock)); 1563 1564 /* If there's a pending SIGKILL, process it immediately. */ 1565 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1566 return 0; 1567 1568 /* 1569 * If we are no longer being traced, or the parent didn't 1570 * give us a signal, or we're stopping, look for more signals. 1571 */ 1572 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 || 1573 (p->p_sflag & PS_STOPPING) != 0) 1574 return 0; 1575 1576 /* 1577 * If the new signal is being masked, look for other signals. 1578 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1579 */ 1580 signo = p->p_xstat; 1581 p->p_xstat = 0; 1582 if (sigismember(&l->l_sigmask, signo)) { 1583 signo = 0; 1584 } 1585 return signo; 1586 } 1587 1588 /* 1589 * If the current process has received a signal (should be caught or cause 1590 * termination, should interrupt current syscall), return the signal number. 1591 * 1592 * Stop signals with default action are processed immediately, then cleared; 1593 * they aren't returned. This is checked after each entry to the system for 1594 * a syscall or trap. 1595 * 1596 * We will also return -1 if the process is exiting and the current LWP must 1597 * follow suit. 1598 */ 1599 int 1600 issignal(struct lwp *l) 1601 { 1602 struct proc *p; 1603 int signo, prop; 1604 sigpend_t *sp; 1605 sigset_t ss; 1606 1607 p = l->l_proc; 1608 sp = NULL; 1609 signo = 0; 1610 1611 KASSERT(p == curproc); 1612 KASSERT(mutex_owned(p->p_lock)); 1613 1614 for (;;) { 1615 /* Discard any signals that we have decided not to take. */ 1616 if (signo != 0) { 1617 (void)sigget(sp, NULL, signo, NULL); 1618 } 1619 1620 /* 1621 * If the process is stopped/stopping, then stop ourselves 1622 * now that we're on the kernel/userspace boundary. When 1623 * we awaken, check for a signal from the debugger. 1624 */ 1625 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1626 sigswitch(true, PS_NOCLDSTOP, 0); 1627 signo = sigchecktrace(); 1628 } else 1629 signo = 0; 1630 1631 /* Signals from the debugger are "out of band". */ 1632 sp = NULL; 1633 1634 /* 1635 * If the debugger didn't provide a signal, find a pending 1636 * signal from our set. Check per-LWP signals first, and 1637 * then per-process. 1638 */ 1639 if (signo == 0) { 1640 sp = &l->l_sigpend; 1641 ss = sp->sp_set; 1642 if ((p->p_lflag & PL_PPWAIT) != 0) 1643 sigminusset(&stopsigmask, &ss); 1644 sigminusset(&l->l_sigmask, &ss); 1645 1646 if ((signo = firstsig(&ss)) == 0) { 1647 sp = &p->p_sigpend; 1648 ss = sp->sp_set; 1649 if ((p->p_lflag & PL_PPWAIT) != 0) 1650 sigminusset(&stopsigmask, &ss); 1651 sigminusset(&l->l_sigmask, &ss); 1652 1653 if ((signo = firstsig(&ss)) == 0) { 1654 /* 1655 * No signal pending - clear the 1656 * indicator and bail out. 1657 */ 1658 lwp_lock(l); 1659 l->l_flag &= ~LW_PENDSIG; 1660 lwp_unlock(l); 1661 sp = NULL; 1662 break; 1663 } 1664 } 1665 } 1666 1667 /* 1668 * We should see pending but ignored signals only if 1669 * we are being traced. 1670 */ 1671 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1672 (p->p_slflag & PSL_TRACED) == 0) { 1673 /* Discard the signal. */ 1674 continue; 1675 } 1676 1677 /* 1678 * If traced, always stop, and stay stopped until released 1679 * by the debugger. If the our parent process is waiting 1680 * for us, don't hang as we could deadlock. 1681 */ 1682 if ((p->p_slflag & PSL_TRACED) != 0 && 1683 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1684 /* 1685 * Take the signal, but don't remove it from the 1686 * siginfo queue, because the debugger can send 1687 * it later. 1688 */ 1689 if (sp) 1690 sigdelset(&sp->sp_set, signo); 1691 p->p_xstat = signo; 1692 1693 /* Emulation-specific handling of signal trace */ 1694 if (p->p_emul->e_tracesig == NULL || 1695 (*p->p_emul->e_tracesig)(p, signo) == 0) 1696 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1697 signo); 1698 1699 /* Check for a signal from the debugger. */ 1700 if ((signo = sigchecktrace()) == 0) 1701 continue; 1702 1703 /* Signals from the debugger are "out of band". */ 1704 sp = NULL; 1705 } 1706 1707 prop = sigprop[signo]; 1708 1709 /* XXX no siginfo? */ 1710 SDT_PROBE(proc,,,signal_handle, signo, 0, 1711 SIGACTION(p, signo).sa_handler, 0, 0); 1712 1713 /* 1714 * Decide whether the signal should be returned. 1715 */ 1716 switch ((long)SIGACTION(p, signo).sa_handler) { 1717 case (long)SIG_DFL: 1718 /* 1719 * Don't take default actions on system processes. 1720 */ 1721 if (p->p_pid <= 1) { 1722 #ifdef DIAGNOSTIC 1723 /* 1724 * Are you sure you want to ignore SIGSEGV 1725 * in init? XXX 1726 */ 1727 printf_nolog("Process (pid %d) got sig %d\n", 1728 p->p_pid, signo); 1729 #endif 1730 continue; 1731 } 1732 1733 /* 1734 * If there is a pending stop signal to process with 1735 * default action, stop here, then clear the signal. 1736 * However, if process is member of an orphaned 1737 * process group, ignore tty stop signals. 1738 */ 1739 if (prop & SA_STOP) { 1740 /* 1741 * XXX Don't hold proc_lock for p_lflag, 1742 * but it's not a big deal. 1743 */ 1744 if (p->p_slflag & PSL_TRACED || 1745 ((p->p_lflag & PL_ORPHANPG) != 0 && 1746 prop & SA_TTYSTOP)) { 1747 /* Ignore the signal. */ 1748 continue; 1749 } 1750 /* Take the signal. */ 1751 (void)sigget(sp, NULL, signo, NULL); 1752 p->p_xstat = signo; 1753 signo = 0; 1754 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1755 } else if (prop & SA_IGNORE) { 1756 /* 1757 * Except for SIGCONT, shouldn't get here. 1758 * Default action is to ignore; drop it. 1759 */ 1760 continue; 1761 } 1762 break; 1763 1764 case (long)SIG_IGN: 1765 #ifdef DEBUG_ISSIGNAL 1766 /* 1767 * Masking above should prevent us ever trying 1768 * to take action on an ignored signal other 1769 * than SIGCONT, unless process is traced. 1770 */ 1771 if ((prop & SA_CONT) == 0 && 1772 (p->p_slflag & PSL_TRACED) == 0) 1773 printf_nolog("issignal\n"); 1774 #endif 1775 continue; 1776 1777 default: 1778 /* 1779 * This signal has an action, let postsig() process 1780 * it. 1781 */ 1782 break; 1783 } 1784 1785 break; 1786 } 1787 1788 l->l_sigpendset = sp; 1789 return signo; 1790 } 1791 1792 /* 1793 * Take the action for the specified signal 1794 * from the current set of pending signals. 1795 */ 1796 void 1797 postsig(int signo) 1798 { 1799 struct lwp *l; 1800 struct proc *p; 1801 struct sigacts *ps; 1802 sig_t action; 1803 sigset_t *returnmask; 1804 ksiginfo_t ksi; 1805 1806 l = curlwp; 1807 p = l->l_proc; 1808 ps = p->p_sigacts; 1809 1810 KASSERT(mutex_owned(p->p_lock)); 1811 KASSERT(signo > 0); 1812 1813 /* 1814 * Set the new mask value and also defer further occurrences of this 1815 * signal. 1816 * 1817 * Special case: user has done a sigsuspend. Here the current mask is 1818 * not of interest, but rather the mask from before the sigsuspend is 1819 * what we want restored after the signal processing is completed. 1820 */ 1821 if (l->l_sigrestore) { 1822 returnmask = &l->l_sigoldmask; 1823 l->l_sigrestore = 0; 1824 } else 1825 returnmask = &l->l_sigmask; 1826 1827 /* 1828 * Commit to taking the signal before releasing the mutex. 1829 */ 1830 action = SIGACTION_PS(ps, signo).sa_handler; 1831 l->l_ru.ru_nsignals++; 1832 if (l->l_sigpendset == NULL) { 1833 /* From the debugger */ 1834 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 1835 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 1836 } else 1837 sigget(l->l_sigpendset, &ksi, signo, NULL); 1838 1839 if (ktrpoint(KTR_PSIG)) { 1840 mutex_exit(p->p_lock); 1841 ktrpsig(signo, action, returnmask, &ksi); 1842 mutex_enter(p->p_lock); 1843 } 1844 1845 if (action == SIG_DFL) { 1846 /* 1847 * Default action, where the default is to kill 1848 * the process. (Other cases were ignored above.) 1849 */ 1850 sigexit(l, signo); 1851 return; 1852 } 1853 1854 /* 1855 * If we get here, the signal must be caught. 1856 */ 1857 #ifdef DIAGNOSTIC 1858 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1859 panic("postsig action"); 1860 #endif 1861 1862 kpsendsig(l, &ksi, returnmask); 1863 } 1864 1865 /* 1866 * sendsig: 1867 * 1868 * Default signal delivery method for NetBSD. 1869 */ 1870 void 1871 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1872 { 1873 struct sigacts *sa; 1874 int sig; 1875 1876 sig = ksi->ksi_signo; 1877 sa = curproc->p_sigacts; 1878 1879 switch (sa->sa_sigdesc[sig].sd_vers) { 1880 case 0: 1881 case 1: 1882 /* Compat for 1.6 and earlier. */ 1883 if (sendsig_sigcontext_vec == NULL) { 1884 break; 1885 } 1886 (*sendsig_sigcontext_vec)(ksi, mask); 1887 return; 1888 case 2: 1889 case 3: 1890 sendsig_siginfo(ksi, mask); 1891 return; 1892 default: 1893 break; 1894 } 1895 1896 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 1897 sigexit(curlwp, SIGILL); 1898 } 1899 1900 /* 1901 * sendsig_reset: 1902 * 1903 * Reset the signal action. Called from emulation specific sendsig() 1904 * before unlocking to deliver the signal. 1905 */ 1906 void 1907 sendsig_reset(struct lwp *l, int signo) 1908 { 1909 struct proc *p = l->l_proc; 1910 struct sigacts *ps = p->p_sigacts; 1911 1912 KASSERT(mutex_owned(p->p_lock)); 1913 1914 p->p_sigctx.ps_lwp = 0; 1915 p->p_sigctx.ps_code = 0; 1916 p->p_sigctx.ps_signo = 0; 1917 1918 mutex_enter(&ps->sa_mutex); 1919 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1920 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1921 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1922 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1923 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1924 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1925 } 1926 mutex_exit(&ps->sa_mutex); 1927 } 1928 1929 /* 1930 * Kill the current process for stated reason. 1931 */ 1932 void 1933 killproc(struct proc *p, const char *why) 1934 { 1935 1936 KASSERT(mutex_owned(proc_lock)); 1937 1938 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1939 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1940 psignal(p, SIGKILL); 1941 } 1942 1943 /* 1944 * Force the current process to exit with the specified signal, dumping core 1945 * if appropriate. We bypass the normal tests for masked and caught 1946 * signals, allowing unrecoverable failures to terminate the process without 1947 * changing signal state. Mark the accounting record with the signal 1948 * termination. If dumping core, save the signal number for the debugger. 1949 * Calls exit and does not return. 1950 */ 1951 void 1952 sigexit(struct lwp *l, int signo) 1953 { 1954 int exitsig, error, docore; 1955 struct proc *p; 1956 struct lwp *t; 1957 1958 p = l->l_proc; 1959 1960 KASSERT(mutex_owned(p->p_lock)); 1961 KERNEL_UNLOCK_ALL(l, NULL); 1962 1963 /* 1964 * Don't permit coredump() multiple times in the same process. 1965 * Call back into sigexit, where we will be suspended until 1966 * the deed is done. Note that this is a recursive call, but 1967 * LW_WCORE will prevent us from coming back this way. 1968 */ 1969 if ((p->p_sflag & PS_WCORE) != 0) { 1970 lwp_lock(l); 1971 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1972 lwp_unlock(l); 1973 mutex_exit(p->p_lock); 1974 lwp_userret(l); 1975 panic("sigexit 1"); 1976 /* NOTREACHED */ 1977 } 1978 1979 /* If process is already on the way out, then bail now. */ 1980 if ((p->p_sflag & PS_WEXIT) != 0) { 1981 mutex_exit(p->p_lock); 1982 lwp_exit(l); 1983 panic("sigexit 2"); 1984 /* NOTREACHED */ 1985 } 1986 1987 /* 1988 * Prepare all other LWPs for exit. If dumping core, suspend them 1989 * so that their registers are available long enough to be dumped. 1990 */ 1991 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1992 p->p_sflag |= PS_WCORE; 1993 for (;;) { 1994 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1995 lwp_lock(t); 1996 if (t == l) { 1997 t->l_flag &= ~LW_WSUSPEND; 1998 lwp_unlock(t); 1999 continue; 2000 } 2001 t->l_flag |= (LW_WCORE | LW_WEXIT); 2002 lwp_suspend(l, t); 2003 } 2004 2005 if (p->p_nrlwps == 1) 2006 break; 2007 2008 /* 2009 * Kick any LWPs sitting in lwp_wait1(), and wait 2010 * for everyone else to stop before proceeding. 2011 */ 2012 p->p_nlwpwait++; 2013 cv_broadcast(&p->p_lwpcv); 2014 cv_wait(&p->p_lwpcv, p->p_lock); 2015 p->p_nlwpwait--; 2016 } 2017 } 2018 2019 exitsig = signo; 2020 p->p_acflag |= AXSIG; 2021 p->p_sigctx.ps_signo = signo; 2022 2023 if (docore) { 2024 mutex_exit(p->p_lock); 2025 if ((error = (*coredump_vec)(l, NULL)) == 0) 2026 exitsig |= WCOREFLAG; 2027 2028 if (kern_logsigexit) { 2029 int uid = l->l_cred ? 2030 (int)kauth_cred_geteuid(l->l_cred) : -1; 2031 2032 if (error) 2033 log(LOG_INFO, lognocoredump, p->p_pid, 2034 p->p_comm, uid, signo, error); 2035 else 2036 log(LOG_INFO, logcoredump, p->p_pid, 2037 p->p_comm, uid, signo); 2038 } 2039 2040 #ifdef PAX_SEGVGUARD 2041 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2042 #endif /* PAX_SEGVGUARD */ 2043 /* Acquire the sched state mutex. exit1() will release it. */ 2044 mutex_enter(p->p_lock); 2045 } 2046 2047 /* No longer dumping core. */ 2048 p->p_sflag &= ~PS_WCORE; 2049 2050 exit1(l, W_EXITCODE(0, exitsig)); 2051 /* NOTREACHED */ 2052 } 2053 2054 /* 2055 * Put process 'p' into the stopped state and optionally, notify the parent. 2056 */ 2057 void 2058 proc_stop(struct proc *p, int notify, int signo) 2059 { 2060 struct lwp *l; 2061 2062 KASSERT(mutex_owned(p->p_lock)); 2063 2064 /* 2065 * First off, set the stopping indicator and bring all sleeping 2066 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2067 * unlock between here and the p->p_nrlwps check below. 2068 */ 2069 p->p_sflag |= PS_STOPPING; 2070 if (notify) 2071 p->p_sflag |= PS_NOTIFYSTOP; 2072 else 2073 p->p_sflag &= ~PS_NOTIFYSTOP; 2074 membar_producer(); 2075 2076 proc_stop_lwps(p); 2077 2078 /* 2079 * If there are no LWPs available to take the signal, then we 2080 * signal the parent process immediately. Otherwise, the last 2081 * LWP to stop will take care of it. 2082 */ 2083 2084 if (p->p_nrlwps == 0) { 2085 proc_stop_done(p, true, PS_NOCLDSTOP); 2086 } else { 2087 /* 2088 * Have the remaining LWPs come to a halt, and trigger 2089 * proc_stop_callout() to ensure that they do. 2090 */ 2091 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2092 sigpost(l, SIG_DFL, SA_STOP, signo); 2093 } 2094 callout_schedule(&proc_stop_ch, 1); 2095 } 2096 } 2097 2098 /* 2099 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2100 * but wait for them to come to a halt at the kernel-user boundary. This is 2101 * to allow LWPs to release any locks that they may hold before stopping. 2102 * 2103 * Non-interruptable sleeps can be long, and there is the potential for an 2104 * LWP to begin sleeping interruptably soon after the process has been set 2105 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2106 * stopping, and so complete halt of the process and the return of status 2107 * information to the parent could be delayed indefinitely. 2108 * 2109 * To handle this race, proc_stop_callout() runs once per tick while there 2110 * are stopping processes in the system. It sets LWPs that are sleeping 2111 * interruptably into the LSSTOP state. 2112 * 2113 * Note that we are not concerned about keeping all LWPs stopped while the 2114 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2115 * What we do need to ensure is that all LWPs in a stopping process have 2116 * stopped at least once, so that notification can be sent to the parent 2117 * process. 2118 */ 2119 static void 2120 proc_stop_callout(void *cookie) 2121 { 2122 bool more, restart; 2123 struct proc *p; 2124 2125 (void)cookie; 2126 2127 do { 2128 restart = false; 2129 more = false; 2130 2131 mutex_enter(proc_lock); 2132 PROCLIST_FOREACH(p, &allproc) { 2133 mutex_enter(p->p_lock); 2134 2135 if ((p->p_sflag & PS_STOPPING) == 0) { 2136 mutex_exit(p->p_lock); 2137 continue; 2138 } 2139 2140 /* Stop any LWPs sleeping interruptably. */ 2141 proc_stop_lwps(p); 2142 if (p->p_nrlwps == 0) { 2143 /* 2144 * We brought the process to a halt. 2145 * Mark it as stopped and notify the 2146 * parent. 2147 */ 2148 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2149 /* 2150 * Note that proc_stop_done() will 2151 * drop p->p_lock briefly. 2152 * Arrange to restart and check 2153 * all processes again. 2154 */ 2155 restart = true; 2156 } 2157 proc_stop_done(p, true, PS_NOCLDSTOP); 2158 } else 2159 more = true; 2160 2161 mutex_exit(p->p_lock); 2162 if (restart) 2163 break; 2164 } 2165 mutex_exit(proc_lock); 2166 } while (restart); 2167 2168 /* 2169 * If we noted processes that are stopping but still have 2170 * running LWPs, then arrange to check again in 1 tick. 2171 */ 2172 if (more) 2173 callout_schedule(&proc_stop_ch, 1); 2174 } 2175 2176 /* 2177 * Given a process in state SSTOP, set the state back to SACTIVE and 2178 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2179 */ 2180 void 2181 proc_unstop(struct proc *p) 2182 { 2183 struct lwp *l; 2184 int sig; 2185 2186 KASSERT(mutex_owned(proc_lock)); 2187 KASSERT(mutex_owned(p->p_lock)); 2188 2189 p->p_stat = SACTIVE; 2190 p->p_sflag &= ~PS_STOPPING; 2191 sig = p->p_xstat; 2192 2193 if (!p->p_waited) 2194 p->p_pptr->p_nstopchild--; 2195 2196 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2197 lwp_lock(l); 2198 if (l->l_stat != LSSTOP) { 2199 lwp_unlock(l); 2200 continue; 2201 } 2202 if (l->l_wchan == NULL) { 2203 setrunnable(l); 2204 continue; 2205 } 2206 if (sig && (l->l_flag & LW_SINTR) != 0) { 2207 setrunnable(l); 2208 sig = 0; 2209 } else { 2210 l->l_stat = LSSLEEP; 2211 p->p_nrlwps++; 2212 lwp_unlock(l); 2213 } 2214 } 2215 } 2216 2217 static int 2218 filt_sigattach(struct knote *kn) 2219 { 2220 struct proc *p = curproc; 2221 2222 kn->kn_obj = p; 2223 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2224 2225 mutex_enter(p->p_lock); 2226 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2227 mutex_exit(p->p_lock); 2228 2229 return 0; 2230 } 2231 2232 static void 2233 filt_sigdetach(struct knote *kn) 2234 { 2235 struct proc *p = kn->kn_obj; 2236 2237 mutex_enter(p->p_lock); 2238 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2239 mutex_exit(p->p_lock); 2240 } 2241 2242 /* 2243 * Signal knotes are shared with proc knotes, so we apply a mask to 2244 * the hint in order to differentiate them from process hints. This 2245 * could be avoided by using a signal-specific knote list, but probably 2246 * isn't worth the trouble. 2247 */ 2248 static int 2249 filt_signal(struct knote *kn, long hint) 2250 { 2251 2252 if (hint & NOTE_SIGNAL) { 2253 hint &= ~NOTE_SIGNAL; 2254 2255 if (kn->kn_id == hint) 2256 kn->kn_data++; 2257 } 2258 return (kn->kn_data != 0); 2259 } 2260 2261 const struct filterops sig_filtops = { 2262 0, filt_sigattach, filt_sigdetach, filt_signal 2263 }; 2264