xref: /netbsd-src/sys/kern/kern_sig.c (revision 5b239d0be1d6682ecf6030411841b40cc91e8b34)
1 /*	$NetBSD: kern_sig.c,v 1.239 2006/11/08 20:18:33 drochner Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.239 2006/11/08 20:18:33 drochner Exp $");
41 
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49 
50 #define	SIGPROP		/* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 
79 #include <sys/mount.h>
80 #include <sys/syscallargs.h>
81 
82 #include <machine/cpu.h>
83 
84 #include <sys/user.h>		/* for coredump */
85 
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_extern.h>
88 
89 #ifdef COREDUMP
90 static int	build_corename(struct proc *, char *, const char *, size_t);
91 #endif
92 static void	ksiginfo_exithook(struct proc *, void *);
93 static void	ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
94 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
95 static void	kpsignal2(struct proc *, const ksiginfo_t *);
96 
97 sigset_t	contsigmask, stopsigmask, sigcantmask;
98 
99 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
100 
101 /*
102  * struct sigacts memory pool allocator.
103  */
104 
105 static void *
106 sigacts_poolpage_alloc(struct pool *pp, int flags)
107 {
108 
109 	return (void *)uvm_km_alloc(kernel_map,
110 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
111 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
112 	    | UVM_KMF_WIRED);
113 }
114 
115 static void
116 sigacts_poolpage_free(struct pool *pp, void *v)
117 {
118         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
119 }
120 
121 static struct pool_allocator sigactspool_allocator = {
122         .pa_alloc = sigacts_poolpage_alloc,
123 	.pa_free = sigacts_poolpage_free,
124 };
125 
126 static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
127     &pool_allocator_nointr);
128 static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
129 
130 static ksiginfo_t *
131 ksiginfo_alloc(int prflags)
132 {
133 	int s;
134 	ksiginfo_t *ksi;
135 
136 	s = splsoftclock();
137 	ksi = pool_get(&ksiginfo_pool, prflags);
138 	splx(s);
139 	return ksi;
140 }
141 
142 static void
143 ksiginfo_free(ksiginfo_t *ksi)
144 {
145 	int s;
146 
147 	s = splsoftclock();
148 	pool_put(&ksiginfo_pool, ksi);
149 	splx(s);
150 }
151 
152 /*
153  * Remove and return the first ksiginfo element that matches our requested
154  * signal, or return NULL if one not found.
155  */
156 static ksiginfo_t *
157 ksiginfo_dequeue(struct proc *p, int signo)
158 {
159 	ksiginfo_t *ksi;
160 	int s;
161 
162 	s = splsoftclock();
163 	simple_lock(&p->p_sigctx.ps_silock);
164 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
165 		if (ksi->ksi_signo == signo) {
166 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
167 			goto out;
168 		}
169 	}
170 	ksi = NULL;
171 out:
172 	simple_unlock(&p->p_sigctx.ps_silock);
173 	splx(s);
174 	return ksi;
175 }
176 
177 /*
178  * Append a new ksiginfo element to the list of pending ksiginfo's, if
179  * we need to (SA_SIGINFO was requested). We replace non RT signals if
180  * they already existed in the queue and we add new entries for RT signals,
181  * or for non RT signals with non-existing entries.
182  */
183 static void
184 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
185 {
186 	ksiginfo_t *kp;
187 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
188 	int s;
189 
190 	if ((sa->sa_flags & SA_SIGINFO) == 0)
191 		return;
192 
193 	/*
194 	 * If there's no info, don't save it.
195 	 */
196 	if (KSI_EMPTY_P(ksi))
197 		return;
198 
199 	s = splsoftclock();
200 	simple_lock(&p->p_sigctx.ps_silock);
201 #ifdef notyet	/* XXX: QUEUING */
202 	if (ksi->ksi_signo < SIGRTMIN)
203 #endif
204 	{
205 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
206 			if (kp->ksi_signo == ksi->ksi_signo) {
207 				KSI_COPY(ksi, kp);
208 				goto out;
209 			}
210 		}
211 	}
212 	if (newkp && *newkp) {
213 		kp = *newkp;
214 		*newkp = NULL;
215 	} else {
216 		SCHED_ASSERT_UNLOCKED();
217 		kp = ksiginfo_alloc(PR_NOWAIT);
218 		if (kp == NULL) {
219 #ifdef DIAGNOSTIC
220 			printf("Out of memory allocating siginfo for pid %d\n",
221 			    p->p_pid);
222 #endif
223 			goto out;
224 		}
225 	}
226 	*kp = *ksi;
227 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
228 out:
229 	simple_unlock(&p->p_sigctx.ps_silock);
230 	splx(s);
231 }
232 
233 /*
234  * free all pending ksiginfo on exit
235  */
236 static void
237 ksiginfo_exithook(struct proc *p, void *v)
238 {
239 	int s;
240 
241 	s = splsoftclock();
242 	simple_lock(&p->p_sigctx.ps_silock);
243 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
244 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
245 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
246 		ksiginfo_free(ksi);
247 	}
248 	simple_unlock(&p->p_sigctx.ps_silock);
249 	splx(s);
250 }
251 
252 /*
253  * Initialize signal-related data structures.
254  */
255 void
256 signal_init(void)
257 {
258 
259 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
260 
261 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
262 	    sizeof(struct sigacts) > PAGE_SIZE ?
263 	    &sigactspool_allocator : &pool_allocator_nointr);
264 
265 	exithook_establish(ksiginfo_exithook, NULL);
266 	exechook_establish(ksiginfo_exithook, NULL);
267 }
268 
269 /*
270  * Create an initial sigctx structure, using the same signal state
271  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
272  * copy it from parent.
273  */
274 void
275 sigactsinit(struct proc *np, struct proc *pp, int share)
276 {
277 	struct sigacts *ps;
278 
279 	if (share) {
280 		np->p_sigacts = pp->p_sigacts;
281 		pp->p_sigacts->sa_refcnt++;
282 	} else {
283 		ps = pool_get(&sigacts_pool, PR_WAITOK);
284 		if (pp)
285 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
286 		else
287 			memset(ps, '\0', sizeof(struct sigacts));
288 		ps->sa_refcnt = 1;
289 		np->p_sigacts = ps;
290 	}
291 }
292 
293 /*
294  * Make this process not share its sigctx, maintaining all
295  * signal state.
296  */
297 void
298 sigactsunshare(struct proc *p)
299 {
300 	struct sigacts *oldps;
301 
302 	if (p->p_sigacts->sa_refcnt == 1)
303 		return;
304 
305 	oldps = p->p_sigacts;
306 	sigactsinit(p, NULL, 0);
307 
308 	if (--oldps->sa_refcnt == 0)
309 		pool_put(&sigacts_pool, oldps);
310 }
311 
312 /*
313  * Release a sigctx structure.
314  */
315 void
316 sigactsfree(struct sigacts *ps)
317 {
318 
319 	if (--ps->sa_refcnt > 0)
320 		return;
321 
322 	pool_put(&sigacts_pool, ps);
323 }
324 
325 int
326 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
327 	struct sigaction *osa, const void *tramp, int vers)
328 {
329 	struct sigacts	*ps;
330 	int		prop;
331 
332 	ps = p->p_sigacts;
333 	if (signum <= 0 || signum >= NSIG)
334 		return (EINVAL);
335 
336 	/*
337 	 * Trampoline ABI version 0 is reserved for the legacy
338 	 * kernel-provided on-stack trampoline.  Conversely, if we are
339 	 * using a non-0 ABI version, we must have a trampoline.  Only
340 	 * validate the vers if a new sigaction was supplied. Emulations
341 	 * use legacy kernel trampolines with version 0, alternatively
342 	 * check for that too.
343 	 */
344 	if ((vers != 0 && tramp == NULL) ||
345 #ifdef SIGTRAMP_VALID
346 	    (nsa != NULL &&
347 	    ((vers == 0) ?
348 		(p->p_emul->e_sigcode == NULL) :
349 		!SIGTRAMP_VALID(vers))) ||
350 #endif
351 	    (vers == 0 && tramp != NULL))
352 		return (EINVAL);
353 
354 	if (osa)
355 		*osa = SIGACTION_PS(ps, signum);
356 
357 	if (nsa) {
358 		if (nsa->sa_flags & ~SA_ALLBITS)
359 			return (EINVAL);
360 
361 		prop = sigprop[signum];
362 		if (prop & SA_CANTMASK)
363 			return (EINVAL);
364 
365 		(void) splsched();	/* XXXSMP */
366 		SIGACTION_PS(ps, signum) = *nsa;
367 		ps->sa_sigdesc[signum].sd_tramp = tramp;
368 		ps->sa_sigdesc[signum].sd_vers = vers;
369 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
370 		if ((prop & SA_NORESET) != 0)
371 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
372 		if (signum == SIGCHLD) {
373 			if (nsa->sa_flags & SA_NOCLDSTOP)
374 				p->p_flag |= P_NOCLDSTOP;
375 			else
376 				p->p_flag &= ~P_NOCLDSTOP;
377 			if (nsa->sa_flags & SA_NOCLDWAIT) {
378 				/*
379 				 * Paranoia: since SA_NOCLDWAIT is implemented
380 				 * by reparenting the dying child to PID 1 (and
381 				 * trust it to reap the zombie), PID 1 itself
382 				 * is forbidden to set SA_NOCLDWAIT.
383 				 */
384 				if (p->p_pid == 1)
385 					p->p_flag &= ~P_NOCLDWAIT;
386 				else
387 					p->p_flag |= P_NOCLDWAIT;
388 			} else
389 				p->p_flag &= ~P_NOCLDWAIT;
390 
391 			if (nsa->sa_handler == SIG_IGN) {
392 				/*
393 				 * Paranoia: same as above.
394 				 */
395 				if (p->p_pid == 1)
396 					p->p_flag &= ~P_CLDSIGIGN;
397 				else
398 					p->p_flag |= P_CLDSIGIGN;
399 			} else
400 				p->p_flag &= ~P_CLDSIGIGN;
401 
402 		}
403 		if ((nsa->sa_flags & SA_NODEFER) == 0)
404 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
405 		else
406 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
407 		/*
408 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
409 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
410 		 * to ignore. However, don't put SIGCONT in
411 		 * p_sigctx.ps_sigignore, as we have to restart the process.
412 	 	 */
413 		if (nsa->sa_handler == SIG_IGN ||
414 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
415 						/* never to be seen again */
416 			sigdelset(&p->p_sigctx.ps_siglist, signum);
417 			if (signum != SIGCONT) {
418 						/* easier in psignal */
419 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
420 			}
421 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
422 		} else {
423 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
424 			if (nsa->sa_handler == SIG_DFL)
425 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
426 			else
427 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
428 		}
429 		(void) spl0();
430 	}
431 
432 	return (0);
433 }
434 
435 #ifdef COMPAT_16
436 /* ARGSUSED */
437 int
438 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
439 {
440 	struct compat_16_sys___sigaction14_args /* {
441 		syscallarg(int)				signum;
442 		syscallarg(const struct sigaction *)	nsa;
443 		syscallarg(struct sigaction *)		osa;
444 	} */ *uap = v;
445 	struct proc		*p;
446 	struct sigaction	nsa, osa;
447 	int			error;
448 
449 	if (SCARG(uap, nsa)) {
450 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
451 		if (error)
452 			return (error);
453 	}
454 	p = l->l_proc;
455 	error = sigaction1(p, SCARG(uap, signum),
456 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
457 	    NULL, 0);
458 	if (error)
459 		return (error);
460 	if (SCARG(uap, osa)) {
461 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
462 		if (error)
463 			return (error);
464 	}
465 	return (0);
466 }
467 #endif
468 
469 /* ARGSUSED */
470 int
471 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
472 {
473 	struct sys___sigaction_sigtramp_args /* {
474 		syscallarg(int)				signum;
475 		syscallarg(const struct sigaction *)	nsa;
476 		syscallarg(struct sigaction *)		osa;
477 		syscallarg(void *)			tramp;
478 		syscallarg(int)				vers;
479 	} */ *uap = v;
480 	struct proc *p = l->l_proc;
481 	struct sigaction nsa, osa;
482 	int error;
483 
484 	if (SCARG(uap, nsa)) {
485 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
486 		if (error)
487 			return (error);
488 	}
489 	error = sigaction1(p, SCARG(uap, signum),
490 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
491 	    SCARG(uap, tramp), SCARG(uap, vers));
492 	if (error)
493 		return (error);
494 	if (SCARG(uap, osa)) {
495 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
496 		if (error)
497 			return (error);
498 	}
499 	return (0);
500 }
501 
502 /*
503  * Initialize signal state for process 0;
504  * set to ignore signals that are ignored by default and disable the signal
505  * stack.
506  */
507 void
508 siginit(struct proc *p)
509 {
510 	struct sigacts	*ps;
511 	int		signum, prop;
512 
513 	ps = p->p_sigacts;
514 	sigemptyset(&contsigmask);
515 	sigemptyset(&stopsigmask);
516 	sigemptyset(&sigcantmask);
517 	for (signum = 1; signum < NSIG; signum++) {
518 		prop = sigprop[signum];
519 		if (prop & SA_CONT)
520 			sigaddset(&contsigmask, signum);
521 		if (prop & SA_STOP)
522 			sigaddset(&stopsigmask, signum);
523 		if (prop & SA_CANTMASK)
524 			sigaddset(&sigcantmask, signum);
525 		if (prop & SA_IGNORE && signum != SIGCONT)
526 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
527 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
528 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
529 	}
530 	sigemptyset(&p->p_sigctx.ps_sigcatch);
531 	p->p_sigctx.ps_sigwaited = NULL;
532 	p->p_flag &= ~P_NOCLDSTOP;
533 
534 	/*
535 	 * Reset stack state to the user stack.
536 	 */
537 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
538 	p->p_sigctx.ps_sigstk.ss_size = 0;
539 	p->p_sigctx.ps_sigstk.ss_sp = 0;
540 
541 	/* One reference. */
542 	ps->sa_refcnt = 1;
543 }
544 
545 /*
546  * Reset signals for an exec of the specified process.
547  */
548 void
549 execsigs(struct proc *p)
550 {
551 	struct sigacts	*ps;
552 	int		signum, prop;
553 
554 	sigactsunshare(p);
555 
556 	ps = p->p_sigacts;
557 
558 	/*
559 	 * Reset caught signals.  Held signals remain held
560 	 * through p_sigctx.ps_sigmask (unless they were caught,
561 	 * and are now ignored by default).
562 	 */
563 	for (signum = 1; signum < NSIG; signum++) {
564 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
565 			prop = sigprop[signum];
566 			if (prop & SA_IGNORE) {
567 				if ((prop & SA_CONT) == 0)
568 					sigaddset(&p->p_sigctx.ps_sigignore,
569 					    signum);
570 				sigdelset(&p->p_sigctx.ps_siglist, signum);
571 			}
572 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
573 		}
574 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
575 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
576 	}
577 	sigemptyset(&p->p_sigctx.ps_sigcatch);
578 	p->p_sigctx.ps_sigwaited = NULL;
579 
580 	/*
581 	 * Reset no zombies if child dies flag as Solaris does.
582 	 */
583 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
584 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
585 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
586 
587 	/*
588 	 * Reset stack state to the user stack.
589 	 */
590 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
591 	p->p_sigctx.ps_sigstk.ss_size = 0;
592 	p->p_sigctx.ps_sigstk.ss_sp = 0;
593 }
594 
595 int
596 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
597 {
598 
599 	if (oss)
600 		*oss = p->p_sigctx.ps_sigmask;
601 
602 	if (nss) {
603 		(void)splsched();	/* XXXSMP */
604 		switch (how) {
605 		case SIG_BLOCK:
606 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
607 			break;
608 		case SIG_UNBLOCK:
609 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
610 			CHECKSIGS(p);
611 			break;
612 		case SIG_SETMASK:
613 			p->p_sigctx.ps_sigmask = *nss;
614 			CHECKSIGS(p);
615 			break;
616 		default:
617 			(void)spl0();	/* XXXSMP */
618 			return (EINVAL);
619 		}
620 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
621 		(void)spl0();		/* XXXSMP */
622 	}
623 
624 	return (0);
625 }
626 
627 /*
628  * Manipulate signal mask.
629  * Note that we receive new mask, not pointer,
630  * and return old mask as return value;
631  * the library stub does the rest.
632  */
633 int
634 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
635 {
636 	struct sys___sigprocmask14_args /* {
637 		syscallarg(int)			how;
638 		syscallarg(const sigset_t *)	set;
639 		syscallarg(sigset_t *)		oset;
640 	} */ *uap = v;
641 	struct proc	*p;
642 	sigset_t	nss, oss;
643 	int		error;
644 
645 	if (SCARG(uap, set)) {
646 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
647 		if (error)
648 			return (error);
649 	}
650 	p = l->l_proc;
651 	error = sigprocmask1(p, SCARG(uap, how),
652 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
653 	if (error)
654 		return (error);
655 	if (SCARG(uap, oset)) {
656 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
657 		if (error)
658 			return (error);
659 	}
660 	return (0);
661 }
662 
663 void
664 sigpending1(struct proc *p, sigset_t *ss)
665 {
666 
667 	*ss = p->p_sigctx.ps_siglist;
668 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
669 }
670 
671 /* ARGSUSED */
672 int
673 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
674 {
675 	struct sys___sigpending14_args /* {
676 		syscallarg(sigset_t *)	set;
677 	} */ *uap = v;
678 	struct proc	*p;
679 	sigset_t	ss;
680 
681 	p = l->l_proc;
682 	sigpending1(p, &ss);
683 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
684 }
685 
686 int
687 sigsuspend1(struct proc *p, const sigset_t *ss)
688 {
689 	struct sigacts *ps;
690 
691 	ps = p->p_sigacts;
692 	if (ss) {
693 		/*
694 		 * When returning from sigpause, we want
695 		 * the old mask to be restored after the
696 		 * signal handler has finished.  Thus, we
697 		 * save it here and mark the sigctx structure
698 		 * to indicate this.
699 		 */
700 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
701 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
702 		(void) splsched();	/* XXXSMP */
703 		p->p_sigctx.ps_sigmask = *ss;
704 		CHECKSIGS(p);
705 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
706 		(void) spl0();		/* XXXSMP */
707 	}
708 
709 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
710 		/* void */;
711 
712 	/* always return EINTR rather than ERESTART... */
713 	return (EINTR);
714 }
715 
716 /*
717  * Suspend process until signal, providing mask to be set
718  * in the meantime.  Note nonstandard calling convention:
719  * libc stub passes mask, not pointer, to save a copyin.
720  */
721 /* ARGSUSED */
722 int
723 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
724 {
725 	struct sys___sigsuspend14_args /* {
726 		syscallarg(const sigset_t *)	set;
727 	} */ *uap = v;
728 	struct proc	*p;
729 	sigset_t	ss;
730 	int		error;
731 
732 	if (SCARG(uap, set)) {
733 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
734 		if (error)
735 			return (error);
736 	}
737 
738 	p = l->l_proc;
739 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
740 }
741 
742 int
743 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
744 	struct sigaltstack *oss)
745 {
746 
747 	if (oss)
748 		*oss = p->p_sigctx.ps_sigstk;
749 
750 	if (nss) {
751 		if (nss->ss_flags & ~SS_ALLBITS)
752 			return (EINVAL);
753 
754 		if (nss->ss_flags & SS_DISABLE) {
755 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
756 				return (EINVAL);
757 		} else {
758 			if (nss->ss_size < MINSIGSTKSZ)
759 				return (ENOMEM);
760 		}
761 		p->p_sigctx.ps_sigstk = *nss;
762 	}
763 
764 	return (0);
765 }
766 
767 /* ARGSUSED */
768 int
769 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
770 {
771 	struct sys___sigaltstack14_args /* {
772 		syscallarg(const struct sigaltstack *)	nss;
773 		syscallarg(struct sigaltstack *)	oss;
774 	} */ *uap = v;
775 	struct proc		*p;
776 	struct sigaltstack	nss, oss;
777 	int			error;
778 
779 	if (SCARG(uap, nss)) {
780 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
781 		if (error)
782 			return (error);
783 	}
784 	p = l->l_proc;
785 	error = sigaltstack1(p,
786 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
787 	if (error)
788 		return (error);
789 	if (SCARG(uap, oss)) {
790 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
791 		if (error)
792 			return (error);
793 	}
794 	return (0);
795 }
796 
797 /* ARGSUSED */
798 int
799 sys_kill(struct lwp *l, void *v, register_t *retval)
800 {
801 	struct sys_kill_args /* {
802 		syscallarg(int)	pid;
803 		syscallarg(int)	signum;
804 	} */ *uap = v;
805 	struct proc	*p;
806 	ksiginfo_t	ksi;
807 	int signum = SCARG(uap, signum);
808 	int error;
809 
810 	if ((u_int)signum >= NSIG)
811 		return (EINVAL);
812 	KSI_INIT(&ksi);
813 	ksi.ksi_signo = signum;
814 	ksi.ksi_code = SI_USER;
815 	ksi.ksi_pid = l->l_proc->p_pid;
816 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
817 	if (SCARG(uap, pid) > 0) {
818 		/* kill single process */
819 		if ((p = pfind(SCARG(uap, pid))) == NULL)
820 			return (ESRCH);
821 		error = kauth_authorize_process(l->l_cred,
822 		    KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
823 		    NULL, NULL);
824 		if (error)
825 			return error;
826 		if (signum)
827 			kpsignal2(p, &ksi);
828 		return (0);
829 	}
830 	switch (SCARG(uap, pid)) {
831 	case -1:		/* broadcast signal */
832 		return (killpg1(l, &ksi, 0, 1));
833 	case 0:			/* signal own process group */
834 		return (killpg1(l, &ksi, 0, 0));
835 	default:		/* negative explicit process group */
836 		return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
837 	}
838 	/* NOTREACHED */
839 }
840 
841 /*
842  * Common code for kill process group/broadcast kill.
843  * cp is calling process.
844  */
845 int
846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
847 {
848 	struct proc	*p, *cp;
849 	kauth_cred_t	pc;
850 	struct pgrp	*pgrp;
851 	int		nfound;
852 	int		signum = ksi->ksi_signo;
853 
854 	cp = l->l_proc;
855 	pc = l->l_cred;
856 	nfound = 0;
857 	if (all) {
858 		/*
859 		 * broadcast
860 		 */
861 		proclist_lock_read();
862 		PROCLIST_FOREACH(p, &allproc) {
863 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
864 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
865 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
866 				continue;
867 			nfound++;
868 			if (signum)
869 				kpsignal2(p, ksi);
870 		}
871 		proclist_unlock_read();
872 	} else {
873 		if (pgid == 0)
874 			/*
875 			 * zero pgid means send to my process group.
876 			 */
877 			pgrp = cp->p_pgrp;
878 		else {
879 			pgrp = pgfind(pgid);
880 			if (pgrp == NULL)
881 				return (ESRCH);
882 		}
883 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
884 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
885 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
886 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
887 				continue;
888 			nfound++;
889 			if (signum && P_ZOMBIE(p) == 0)
890 				kpsignal2(p, ksi);
891 		}
892 	}
893 	return (nfound ? 0 : ESRCH);
894 }
895 
896 /*
897  * Send a signal to a process group.
898  */
899 void
900 gsignal(int pgid, int signum)
901 {
902 	ksiginfo_t ksi;
903 	KSI_INIT_EMPTY(&ksi);
904 	ksi.ksi_signo = signum;
905 	kgsignal(pgid, &ksi, NULL);
906 }
907 
908 void
909 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
910 {
911 	struct pgrp *pgrp;
912 
913 	if (pgid && (pgrp = pgfind(pgid)))
914 		kpgsignal(pgrp, ksi, data, 0);
915 }
916 
917 /*
918  * Send a signal to a process group. If checktty is 1,
919  * limit to members which have a controlling terminal.
920  */
921 void
922 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
923 {
924 	ksiginfo_t ksi;
925 	KSI_INIT_EMPTY(&ksi);
926 	ksi.ksi_signo = sig;
927 	kpgsignal(pgrp, &ksi, NULL, checkctty);
928 }
929 
930 void
931 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
932 {
933 	struct proc *p;
934 
935 	if (pgrp)
936 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
937 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
938 				kpsignal(p, ksi, data);
939 }
940 
941 /*
942  * Send a signal caused by a trap to the current process.
943  * If it will be caught immediately, deliver it with correct code.
944  * Otherwise, post it normally.
945  */
946 void
947 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
948 {
949 	struct proc	*p;
950 	struct sigacts	*ps;
951 	int signum = ksi->ksi_signo;
952 
953 	KASSERT(KSI_TRAP_P(ksi));
954 
955 	p = l->l_proc;
956 	ps = p->p_sigacts;
957 	if ((p->p_flag & P_TRACED) == 0 &&
958 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
959 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
960 		p->p_stats->p_ru.ru_nsignals++;
961 #ifdef KTRACE
962 		if (KTRPOINT(p, KTR_PSIG))
963 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
964 			    &p->p_sigctx.ps_sigmask, ksi);
965 #endif
966 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
967 		(void) splsched();	/* XXXSMP */
968 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
969 		    &p->p_sigctx.ps_sigmask);
970 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
971 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
972 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
973 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
974 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
975 		}
976 		(void) spl0();		/* XXXSMP */
977 	} else {
978 		p->p_sigctx.ps_lwp = l->l_lid;
979 		/* XXX for core dump/debugger */
980 		p->p_sigctx.ps_signo = ksi->ksi_signo;
981 		p->p_sigctx.ps_code = ksi->ksi_trap;
982 		kpsignal2(p, ksi);
983 	}
984 }
985 
986 /*
987  * Fill in signal information and signal the parent for a child status change.
988  */
989 void
990 child_psignal(struct proc *p)
991 {
992 	ksiginfo_t ksi;
993 
994 	KSI_INIT(&ksi);
995 	ksi.ksi_signo = SIGCHLD;
996 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
997 	ksi.ksi_pid = p->p_pid;
998 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
999 	ksi.ksi_status = p->p_xstat;
1000 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1001 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1002 	kpsignal2(p->p_pptr, &ksi);
1003 }
1004 
1005 /*
1006  * Send the signal to the process.  If the signal has an action, the action
1007  * is usually performed by the target process rather than the caller; we add
1008  * the signal to the set of pending signals for the process.
1009  *
1010  * Exceptions:
1011  *   o When a stop signal is sent to a sleeping process that takes the
1012  *     default action, the process is stopped without awakening it.
1013  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1014  *     regardless of the signal action (eg, blocked or ignored).
1015  *
1016  * Other ignored signals are discarded immediately.
1017  */
1018 void
1019 psignal(struct proc *p, int signum)
1020 {
1021 	ksiginfo_t ksi;
1022 
1023 	KSI_INIT_EMPTY(&ksi);
1024 	ksi.ksi_signo = signum;
1025 	kpsignal2(p, &ksi);
1026 }
1027 
1028 void
1029 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1030 {
1031 
1032 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1033 		size_t fd;
1034 		struct filedesc *fdp = p->p_fd;
1035 
1036 		ksi->ksi_fd = -1;
1037 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1038 			struct file *fp = fdp->fd_ofiles[fd];
1039 			/* XXX: lock? */
1040 			if (fp && fp->f_data == data) {
1041 				ksi->ksi_fd = fd;
1042 				break;
1043 			}
1044 		}
1045 	}
1046 	kpsignal2(p, ksi);
1047 }
1048 
1049 static void
1050 kpsignal2(struct proc *p, const ksiginfo_t *ksi)
1051 {
1052 	struct lwp *l, *suspended = NULL;
1053 	struct sadata_vp *vp;
1054 	ksiginfo_t *newkp;
1055 	int	s = 0, prop, allsusp;
1056 	sig_t	action;
1057 	int	signum = ksi->ksi_signo;
1058 
1059 #ifdef DIAGNOSTIC
1060 	if (signum <= 0 || signum >= NSIG)
1061 		panic("psignal signal number %d", signum);
1062 
1063 	SCHED_ASSERT_UNLOCKED();
1064 #endif
1065 
1066 	/*
1067 	 * Notify any interested parties in the signal.
1068 	 */
1069 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1070 
1071 	prop = sigprop[signum];
1072 
1073 	/*
1074 	 * If proc is traced, always give parent a chance.
1075 	 */
1076 	if (p->p_flag & P_TRACED) {
1077 		action = SIG_DFL;
1078 
1079 		/*
1080 		 * If the process is being traced and the signal is being
1081 		 * caught, make sure to save any ksiginfo.
1082 		 */
1083 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1084 			SCHED_ASSERT_UNLOCKED();
1085 			ksiginfo_queue(p, ksi, NULL);
1086 		}
1087 	} else {
1088 		/*
1089 		 * If the signal was the result of a trap, reset it
1090 		 * to default action if it's currently masked, so that it would
1091 		 * coredump immediatelly instead of spinning repeatedly
1092 		 * taking the signal.
1093 		 */
1094 		if (KSI_TRAP_P(ksi)
1095 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1096 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1097 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1098 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1099 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1100 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1101 		}
1102 
1103 		/*
1104 		 * If the signal is being ignored,
1105 		 * then we forget about it immediately.
1106 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1107 		 * and if it is set to SIG_IGN,
1108 		 * action will be SIG_DFL here.)
1109 		 */
1110 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1111 			return;
1112 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1113 			action = SIG_HOLD;
1114 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1115 			action = SIG_CATCH;
1116 		else {
1117 			action = SIG_DFL;
1118 
1119 			if (prop & SA_KILL && p->p_nice > NZERO)
1120 				p->p_nice = NZERO;
1121 
1122 			/*
1123 			 * If sending a tty stop signal to a member of an
1124 			 * orphaned process group, discard the signal here if
1125 			 * the action is default; don't stop the process below
1126 			 * if sleeping, and don't clear any pending SIGCONT.
1127 			 */
1128 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1129 				return;
1130 		}
1131 	}
1132 
1133 	if (prop & SA_CONT)
1134 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1135 
1136 	if (prop & SA_STOP)
1137 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1138 
1139 	/*
1140 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1141 	 * please!), check if anything waits on it. If yes, save the
1142 	 * info into provided ps_sigwaited, and wake-up the waiter.
1143 	 * The signal won't be processed further here.
1144 	 */
1145 	if ((prop & SA_CANTMASK) == 0
1146 	    && p->p_sigctx.ps_sigwaited
1147 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1148 	    && p->p_stat != SSTOP) {
1149 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1150 		p->p_sigctx.ps_sigwaited = NULL;
1151 		wakeup_one(&p->p_sigctx.ps_sigwait);
1152 		return;
1153 	}
1154 
1155 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1156 
1157 	/* CHECKSIGS() is "inlined" here. */
1158 	p->p_sigctx.ps_sigcheck = 1;
1159 
1160 	/*
1161 	 * Defer further processing for signals which are held,
1162 	 * except that stopped processes must be continued by SIGCONT.
1163 	 */
1164 	if (action == SIG_HOLD &&
1165 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1166 		SCHED_ASSERT_UNLOCKED();
1167 		ksiginfo_queue(p, ksi, NULL);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * Allocate a ksiginfo_t incase we need to insert it with the
1173 	 * scheduler lock held, but only if this ksiginfo_t isn't empty.
1174 	 */
1175 	if (!KSI_EMPTY_P(ksi)) {
1176 		newkp = ksiginfo_alloc(PR_NOWAIT);
1177 		if (newkp == NULL) {
1178 #ifdef DIAGNOSTIC
1179 			printf("kpsignal2: couldn't allocated ksiginfo\n");
1180 #endif
1181 			return;
1182 		}
1183 	} else
1184 		newkp = NULL;
1185 
1186 	SCHED_LOCK(s);
1187 
1188 	if (p->p_flag & P_SA) {
1189 		allsusp = 0;
1190 		l = NULL;
1191 		if (p->p_stat == SACTIVE) {
1192 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1193 				l = vp->savp_lwp;
1194 				KDASSERT(l != NULL);
1195 				if (l->l_flag & L_SA_IDLE) {
1196 					/* wakeup idle LWP */
1197 					goto found;
1198 					/*NOTREACHED*/
1199 				} else if (l->l_flag & L_SA_YIELD) {
1200 					/* idle LWP is already waking up */
1201 					goto out;
1202 					/*NOTREACHED*/
1203 				}
1204 			}
1205 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1206 				l = vp->savp_lwp;
1207 				if (l->l_stat == LSRUN ||
1208 				    l->l_stat == LSONPROC) {
1209 					signotify(p);
1210 					goto out;
1211 					/*NOTREACHED*/
1212 				}
1213 				if (l->l_stat == LSSLEEP &&
1214 				    l->l_flag & L_SINTR) {
1215 					/* ok to signal vp lwp */
1216 					break;
1217 				} else
1218 					l = NULL;
1219 			}
1220 		} else if (p->p_stat == SSTOP) {
1221 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1222 				l = vp->savp_lwp;
1223 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1224 					break;
1225 				l = NULL;
1226 			}
1227 		}
1228 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1229 		/*
1230 		 * At least one LWP is running or on a run queue.
1231 		 * The signal will be noticed when one of them returns
1232 		 * to userspace.
1233 		 */
1234 		signotify(p);
1235 		/*
1236 		 * The signal will be noticed very soon.
1237 		 */
1238 		goto out;
1239 		/*NOTREACHED*/
1240 	} else {
1241 		/*
1242 		 * Find out if any of the sleeps are interruptable,
1243 		 * and if all the live LWPs remaining are suspended.
1244 		 */
1245 		allsusp = 1;
1246 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1247 			if (l->l_stat == LSSLEEP &&
1248 			    l->l_flag & L_SINTR)
1249 				break;
1250 			if (l->l_stat == LSSUSPENDED)
1251 				suspended = l;
1252 			else if ((l->l_stat != LSZOMB) &&
1253 			    (l->l_stat != LSDEAD))
1254 				allsusp = 0;
1255 		}
1256 	}
1257 
1258  found:
1259 	switch (p->p_stat) {
1260 	case SACTIVE:
1261 
1262 		if (l != NULL && (p->p_flag & P_TRACED))
1263 			goto run;
1264 
1265 		/*
1266 		 * If SIGCONT is default (or ignored) and process is
1267 		 * asleep, we are finished; the process should not
1268 		 * be awakened.
1269 		 */
1270 		if ((prop & SA_CONT) && action == SIG_DFL) {
1271 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1272 			goto done;
1273 		}
1274 
1275 		/*
1276 		 * When a sleeping process receives a stop
1277 		 * signal, process immediately if possible.
1278 		 */
1279 		if ((prop & SA_STOP) && action == SIG_DFL) {
1280 			/*
1281 			 * If a child holding parent blocked,
1282 			 * stopping could cause deadlock.
1283 			 */
1284 			if (p->p_flag & P_PPWAIT) {
1285 				goto out;
1286 			}
1287 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1288 			p->p_xstat = signum;
1289 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1290 			SCHED_UNLOCK(s);
1291 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1292 				child_psignal(p);
1293 			}
1294 			goto done_unlocked;
1295 		}
1296 
1297 		if (l == NULL) {
1298 			/*
1299 			 * Special case: SIGKILL of a process
1300 			 * which is entirely composed of
1301 			 * suspended LWPs should succeed. We
1302 			 * make this happen by unsuspending one of
1303 			 * them.
1304 			 */
1305 			if (allsusp && (signum == SIGKILL)) {
1306 				lwp_continue(suspended);
1307 			}
1308 			goto done;
1309 		}
1310 		/*
1311 		 * All other (caught or default) signals
1312 		 * cause the process to run.
1313 		 */
1314 		goto runfast;
1315 		/*NOTREACHED*/
1316 	case SSTOP:
1317 		/* Process is stopped */
1318 		/*
1319 		 * If traced process is already stopped,
1320 		 * then no further action is necessary.
1321 		 */
1322 		if (p->p_flag & P_TRACED)
1323 			goto done;
1324 
1325 		/*
1326 		 * Kill signal always sets processes running,
1327 		 * if possible.
1328 		 */
1329 		if (signum == SIGKILL) {
1330 			l = proc_unstop(p);
1331 			if (l)
1332 				goto runfast;
1333 			goto done;
1334 		}
1335 
1336 		if (prop & SA_CONT) {
1337 			/*
1338 			 * If SIGCONT is default (or ignored),
1339 			 * we continue the process but don't
1340 			 * leave the signal in ps_siglist, as
1341 			 * it has no further action.  If
1342 			 * SIGCONT is held, we continue the
1343 			 * process and leave the signal in
1344 			 * ps_siglist.  If the process catches
1345 			 * SIGCONT, let it handle the signal
1346 			 * itself.  If it isn't waiting on an
1347 			 * event, then it goes back to run
1348 			 * state.  Otherwise, process goes
1349 			 * back to sleep state.
1350 			 */
1351 			if (action == SIG_DFL)
1352 				sigdelset(&p->p_sigctx.ps_siglist,
1353 				    signum);
1354 			l = proc_unstop(p);
1355 			if (l && (action == SIG_CATCH))
1356 				goto runfast;
1357 			goto out;
1358 		}
1359 
1360 		if (prop & SA_STOP) {
1361 			/*
1362 			 * Already stopped, don't need to stop again.
1363 			 * (If we did the shell could get confused.)
1364 			 */
1365 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1366 			goto done;
1367 		}
1368 
1369 		/*
1370 		 * If a lwp is sleeping interruptibly, then
1371 		 * wake it up; it will run until the kernel
1372 		 * boundary, where it will stop in issignal(),
1373 		 * since p->p_stat is still SSTOP. When the
1374 		 * process is continued, it will be made
1375 		 * runnable and can look at the signal.
1376 		 */
1377 		if (l)
1378 			goto run;
1379 		goto out;
1380 	case SIDL:
1381 		/* Process is being created by fork */
1382 		/* XXX: We are not ready to receive signals yet */
1383 		goto done;
1384 	default:
1385 		/* Else what? */
1386 		panic("psignal: Invalid process state %d.", p->p_stat);
1387 	}
1388 	/*NOTREACHED*/
1389 
1390  runfast:
1391 	if (action == SIG_CATCH) {
1392 		ksiginfo_queue(p, ksi, &newkp);
1393 		action = SIG_HOLD;
1394 	}
1395 	/*
1396 	 * Raise priority to at least PUSER.
1397 	 */
1398 	if (l->l_priority > PUSER)
1399 		l->l_priority = PUSER;
1400  run:
1401 	if (action == SIG_CATCH) {
1402 		ksiginfo_queue(p, ksi, &newkp);
1403 		action = SIG_HOLD;
1404 	}
1405 
1406 	setrunnable(l);		/* XXXSMP: recurse? */
1407  out:
1408 	if (action == SIG_CATCH)
1409 		ksiginfo_queue(p, ksi, &newkp);
1410  done:
1411 	SCHED_UNLOCK(s);
1412 
1413  done_unlocked:
1414 	if (newkp)
1415 		ksiginfo_free(newkp);
1416 }
1417 
1418 siginfo_t *
1419 siginfo_alloc(int flags)
1420 {
1421 
1422 	return pool_get(&siginfo_pool, flags);
1423 }
1424 
1425 void
1426 siginfo_free(void *arg)
1427 {
1428 
1429 	pool_put(&siginfo_pool, arg);
1430 }
1431 
1432 void
1433 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1434 {
1435 	struct proc *p = l->l_proc;
1436 	struct lwp *le, *li;
1437 	siginfo_t *si;
1438 	int f;
1439 
1440 	if (p->p_flag & P_SA) {
1441 
1442 		/* XXXUPSXXX What if not on sa_vp ? */
1443 
1444 		f = l->l_flag & L_SA;
1445 		l->l_flag &= ~L_SA;
1446 		si = siginfo_alloc(PR_WAITOK);
1447 		si->_info = ksi->ksi_info;
1448 		le = li = NULL;
1449 		if (KSI_TRAP_P(ksi))
1450 			le = l;
1451 		else
1452 			li = l;
1453 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1454 		    sizeof(*si), si, siginfo_free) != 0) {
1455 			siginfo_free(si);
1456 #if 0
1457 			if (KSI_TRAP_P(ksi))
1458 				/* XXX What do we do here?? */;
1459 #endif
1460 		}
1461 		l->l_flag |= f;
1462 		return;
1463 	}
1464 
1465 	(*p->p_emul->e_sendsig)(ksi, mask);
1466 }
1467 
1468 static inline int firstsig(const sigset_t *);
1469 
1470 static inline int
1471 firstsig(const sigset_t *ss)
1472 {
1473 	int sig;
1474 
1475 	sig = ffs(ss->__bits[0]);
1476 	if (sig != 0)
1477 		return (sig);
1478 #if NSIG > 33
1479 	sig = ffs(ss->__bits[1]);
1480 	if (sig != 0)
1481 		return (sig + 32);
1482 #endif
1483 #if NSIG > 65
1484 	sig = ffs(ss->__bits[2]);
1485 	if (sig != 0)
1486 		return (sig + 64);
1487 #endif
1488 #if NSIG > 97
1489 	sig = ffs(ss->__bits[3]);
1490 	if (sig != 0)
1491 		return (sig + 96);
1492 #endif
1493 	return (0);
1494 }
1495 
1496 /*
1497  * If the current process has received a signal (should be caught or cause
1498  * termination, should interrupt current syscall), return the signal number.
1499  * Stop signals with default action are processed immediately, then cleared;
1500  * they aren't returned.  This is checked after each entry to the system for
1501  * a syscall or trap (though this can usually be done without calling issignal
1502  * by checking the pending signal masks in the CURSIG macro.) The normal call
1503  * sequence is
1504  *
1505  *	while (signum = CURSIG(curlwp))
1506  *		postsig(signum);
1507  */
1508 int
1509 issignal(struct lwp *l)
1510 {
1511 	struct proc	*p = l->l_proc;
1512 	int		s, signum, prop;
1513 	sigset_t	ss;
1514 
1515 	/* Bail out if we do not own the virtual processor */
1516 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1517 		return 0;
1518 
1519 	KERNEL_PROC_LOCK(l);
1520 
1521 	if (p->p_stat == SSTOP) {
1522 		/*
1523 		 * The process is stopped/stopping. Stop ourselves now that
1524 		 * we're on the kernel/userspace boundary.
1525 		 */
1526 		SCHED_LOCK(s);
1527 		l->l_stat = LSSTOP;
1528 		p->p_nrlwps--;
1529 		if (p->p_flag & P_TRACED)
1530 			goto sigtraceswitch;
1531 		else
1532 			goto sigswitch;
1533 	}
1534 	for (;;) {
1535 		sigpending1(p, &ss);
1536 		if (p->p_flag & P_PPWAIT)
1537 			sigminusset(&stopsigmask, &ss);
1538 		signum = firstsig(&ss);
1539 		if (signum == 0) {		 	/* no signal to send */
1540 			p->p_sigctx.ps_sigcheck = 0;
1541 			KERNEL_PROC_UNLOCK(l);
1542 			return (0);
1543 		}
1544 							/* take the signal! */
1545 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1546 
1547 		/*
1548 		 * We should see pending but ignored signals
1549 		 * only if P_TRACED was on when they were posted.
1550 		 */
1551 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1552 		    (p->p_flag & P_TRACED) == 0)
1553 			continue;
1554 
1555 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1556 			/*
1557 			 * If traced, always stop, and stay
1558 			 * stopped until released by the debugger.
1559 			 */
1560 			p->p_xstat = signum;
1561 
1562 			/* Emulation-specific handling of signal trace */
1563 			if ((p->p_emul->e_tracesig != NULL) &&
1564 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1565 				goto childresumed;
1566 
1567 			if ((p->p_flag & P_FSTRACE) == 0)
1568 				child_psignal(p);
1569 			SCHED_LOCK(s);
1570 			proc_stop(p, 1);
1571 		sigtraceswitch:
1572 			mi_switch(l, NULL);
1573 			SCHED_ASSERT_UNLOCKED();
1574 			splx(s);
1575 
1576 		childresumed:
1577 			/*
1578 			 * If we are no longer being traced, or the parent
1579 			 * didn't give us a signal, look for more signals.
1580 			 */
1581 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1582 				continue;
1583 
1584 			/*
1585 			 * If the new signal is being masked, look for other
1586 			 * signals.
1587 			 */
1588 			signum = p->p_xstat;
1589 			p->p_xstat = 0;
1590 			/*
1591 			 * `p->p_sigctx.ps_siglist |= mask' is done
1592 			 * in setrunnable().
1593 			 */
1594 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1595 				continue;
1596 							/* take the signal! */
1597 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1598 		}
1599 
1600 		prop = sigprop[signum];
1601 
1602 		/*
1603 		 * Decide whether the signal should be returned.
1604 		 * Return the signal's number, or fall through
1605 		 * to clear it from the pending mask.
1606 		 */
1607 		switch ((long)SIGACTION(p, signum).sa_handler) {
1608 
1609 		case (long)SIG_DFL:
1610 			/*
1611 			 * Don't take default actions on system processes.
1612 			 */
1613 			if (p->p_pid <= 1) {
1614 #ifdef DIAGNOSTIC
1615 				/*
1616 				 * Are you sure you want to ignore SIGSEGV
1617 				 * in init? XXX
1618 				 */
1619 				printf("Process (pid %d) got signal %d\n",
1620 				    p->p_pid, signum);
1621 #endif
1622 				break;		/* == ignore */
1623 			}
1624 			/*
1625 			 * If there is a pending stop signal to process
1626 			 * with default action, stop here,
1627 			 * then clear the signal.  However,
1628 			 * if process is member of an orphaned
1629 			 * process group, ignore tty stop signals.
1630 			 */
1631 			if (prop & SA_STOP) {
1632 				if (p->p_flag & P_TRACED ||
1633 		    		    (p->p_pgrp->pg_jobc == 0 &&
1634 				    prop & SA_TTYSTOP))
1635 					break;	/* == ignore */
1636 				p->p_xstat = signum;
1637 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1638 					child_psignal(p);
1639 				SCHED_LOCK(s);
1640 				proc_stop(p, 1);
1641 			sigswitch:
1642 				mi_switch(l, NULL);
1643 				SCHED_ASSERT_UNLOCKED();
1644 				splx(s);
1645 				break;
1646 			} else if (prop & SA_IGNORE) {
1647 				/*
1648 				 * Except for SIGCONT, shouldn't get here.
1649 				 * Default action is to ignore; drop it.
1650 				 */
1651 				break;		/* == ignore */
1652 			} else
1653 				goto keep;
1654 			/*NOTREACHED*/
1655 
1656 		case (long)SIG_IGN:
1657 			/*
1658 			 * Masking above should prevent us ever trying
1659 			 * to take action on an ignored signal other
1660 			 * than SIGCONT, unless process is traced.
1661 			 */
1662 #ifdef DEBUG_ISSIGNAL
1663 			if ((prop & SA_CONT) == 0 &&
1664 			    (p->p_flag & P_TRACED) == 0)
1665 				printf("issignal\n");
1666 #endif
1667 			break;		/* == ignore */
1668 
1669 		default:
1670 			/*
1671 			 * This signal has an action, let
1672 			 * postsig() process it.
1673 			 */
1674 			goto keep;
1675 		}
1676 	}
1677 	/* NOTREACHED */
1678 
1679  keep:
1680 						/* leave the signal for later */
1681 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1682 	CHECKSIGS(p);
1683 	KERNEL_PROC_UNLOCK(l);
1684 	return (signum);
1685 }
1686 
1687 /*
1688  * Put the argument process into the stopped state and notify the parent
1689  * via wakeup.  Signals are handled elsewhere.  The process must not be
1690  * on the run queue.
1691  */
1692 void
1693 proc_stop(struct proc *p, int dowakeup)
1694 {
1695 	struct lwp *l;
1696 	struct proc *parent;
1697 	struct sadata_vp *vp;
1698 
1699 	SCHED_ASSERT_LOCKED();
1700 
1701 	/* XXX lock process LWP state */
1702 	p->p_flag &= ~P_WAITED;
1703 	p->p_stat = SSTOP;
1704 	parent = p->p_pptr;
1705 	parent->p_nstopchild++;
1706 
1707 	if (p->p_flag & P_SA) {
1708 		/*
1709 		 * Only (try to) put the LWP on the VP in stopped
1710 		 * state.
1711 		 * All other LWPs will suspend in sa_setwoken()
1712 		 * because the VP-LWP in stopped state cannot be
1713 		 * repossessed.
1714 		 */
1715 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1716 			l = vp->savp_lwp;
1717 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1718 				l->l_stat = LSSTOP;
1719 				p->p_nrlwps--;
1720 			} else if (l->l_stat == LSRUN) {
1721 				/* Remove LWP from the run queue */
1722 				remrunqueue(l);
1723 				l->l_stat = LSSTOP;
1724 				p->p_nrlwps--;
1725 			} else if (l->l_stat == LSSLEEP &&
1726 			    l->l_flag & L_SA_IDLE) {
1727 				l->l_flag &= ~L_SA_IDLE;
1728 				l->l_stat = LSSTOP;
1729 			}
1730 		}
1731 		goto out;
1732 	}
1733 
1734 	/*
1735 	 * Put as many LWP's as possible in stopped state.
1736 	 * Sleeping ones will notice the stopped state as they try to
1737 	 * return to userspace.
1738 	 */
1739 
1740 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1741 		if (l->l_stat == LSONPROC) {
1742 			/* XXX SMP this assumes that a LWP that is LSONPROC
1743 			 * is curlwp and hence is about to be mi_switched
1744 			 * away; the only callers of proc_stop() are:
1745 			 * - psignal
1746 			 * - issignal()
1747 			 * For the former, proc_stop() is only called when
1748 			 * no processes are running, so we don't worry.
1749 			 * For the latter, proc_stop() is called right
1750 			 * before mi_switch().
1751 			 */
1752 			l->l_stat = LSSTOP;
1753 			p->p_nrlwps--;
1754 		} else if (l->l_stat == LSRUN) {
1755 			/* Remove LWP from the run queue */
1756 			remrunqueue(l);
1757 			l->l_stat = LSSTOP;
1758 			p->p_nrlwps--;
1759 		} else if ((l->l_stat == LSSLEEP) ||
1760 		    (l->l_stat == LSSUSPENDED) ||
1761 		    (l->l_stat == LSZOMB) ||
1762 		    (l->l_stat == LSDEAD)) {
1763 			/*
1764 			 * Don't do anything; let sleeping LWPs
1765 			 * discover the stopped state of the process
1766 			 * on their way out of the kernel; otherwise,
1767 			 * things like NFS threads that sleep with
1768 			 * locks will block the rest of the system
1769 			 * from getting any work done.
1770 			 *
1771 			 * Suspended/dead/zombie LWPs aren't going
1772 			 * anywhere, so we don't need to touch them.
1773 			 */
1774 		}
1775 #ifdef DIAGNOSTIC
1776 		else {
1777 			panic("proc_stop: process %d lwp %d "
1778 			      "in unstoppable state %d.\n",
1779 			    p->p_pid, l->l_lid, l->l_stat);
1780 		}
1781 #endif
1782 	}
1783 
1784  out:
1785 	/* XXX unlock process LWP state */
1786 
1787 	if (dowakeup)
1788 		sched_wakeup((caddr_t)p->p_pptr);
1789 }
1790 
1791 /*
1792  * Given a process in state SSTOP, set the state back to SACTIVE and
1793  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1794  *
1795  * If no LWPs ended up runnable (and therefore able to take a signal),
1796  * return a LWP that is sleeping interruptably. The caller can wake
1797  * that LWP up to take a signal.
1798  */
1799 struct lwp *
1800 proc_unstop(struct proc *p)
1801 {
1802 	struct lwp *l, *lr = NULL;
1803 	struct sadata_vp *vp;
1804 	int cantake = 0;
1805 
1806 	SCHED_ASSERT_LOCKED();
1807 
1808 	/*
1809 	 * Our caller wants to be informed if there are only sleeping
1810 	 * and interruptable LWPs left after we have run so that it
1811 	 * can invoke setrunnable() if required - return one of the
1812 	 * interruptable LWPs if this is the case.
1813 	 */
1814 
1815 	if (!(p->p_flag & P_WAITED))
1816 		p->p_pptr->p_nstopchild--;
1817 	p->p_stat = SACTIVE;
1818 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1819 		if (l->l_stat == LSRUN) {
1820 			lr = NULL;
1821 			cantake = 1;
1822 		}
1823 		if (l->l_stat != LSSTOP)
1824 			continue;
1825 
1826 		if (l->l_wchan != NULL) {
1827 			l->l_stat = LSSLEEP;
1828 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1829 				lr = l;
1830 				cantake = 1;
1831 			}
1832 		} else {
1833 			setrunnable(l);
1834 			lr = NULL;
1835 			cantake = 1;
1836 		}
1837 	}
1838 	if (p->p_flag & P_SA) {
1839 		/* Only consider returning the LWP on the VP. */
1840 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1841 			lr = vp->savp_lwp;
1842 			if (lr->l_stat == LSSLEEP) {
1843 				if (lr->l_flag & L_SA_YIELD) {
1844 					setrunnable(lr);
1845 					break;
1846 				} else if (lr->l_flag & L_SINTR)
1847 					return lr;
1848 			}
1849 		}
1850 		return NULL;
1851 	}
1852 	return lr;
1853 }
1854 
1855 /*
1856  * Take the action for the specified signal
1857  * from the current set of pending signals.
1858  */
1859 void
1860 postsig(int signum)
1861 {
1862 	struct lwp *l;
1863 	struct proc	*p;
1864 	struct sigacts	*ps;
1865 	sig_t		action;
1866 	sigset_t	*returnmask;
1867 
1868 	l = curlwp;
1869 	p = l->l_proc;
1870 	ps = p->p_sigacts;
1871 #ifdef DIAGNOSTIC
1872 	if (signum == 0)
1873 		panic("postsig");
1874 #endif
1875 
1876 	KERNEL_PROC_LOCK(l);
1877 
1878 #ifdef MULTIPROCESSOR
1879 	/*
1880 	 * On MP, issignal() can return the same signal to multiple
1881 	 * LWPs.  The LWPs will block above waiting for the kernel
1882 	 * lock and the first LWP which gets through will then remove
1883 	 * the signal from ps_siglist.  All other LWPs exit here.
1884 	 */
1885 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1886 		KERNEL_PROC_UNLOCK(l);
1887 		return;
1888 	}
1889 #endif
1890 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1891 	action = SIGACTION_PS(ps, signum).sa_handler;
1892 	if (action == SIG_DFL) {
1893 #ifdef KTRACE
1894 		if (KTRPOINT(p, KTR_PSIG))
1895 			ktrpsig(l, signum, action,
1896 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1897 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1898 			    NULL);
1899 #endif
1900 		/*
1901 		 * Default action, where the default is to kill
1902 		 * the process.  (Other cases were ignored above.)
1903 		 */
1904 		sigexit(l, signum);
1905 		/* NOTREACHED */
1906 	} else {
1907 		ksiginfo_t *ksi;
1908 		/*
1909 		 * If we get here, the signal must be caught.
1910 		 */
1911 #ifdef DIAGNOSTIC
1912 		if (action == SIG_IGN ||
1913 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1914 			panic("postsig action");
1915 #endif
1916 		/*
1917 		 * Set the new mask value and also defer further
1918 		 * occurrences of this signal.
1919 		 *
1920 		 * Special case: user has done a sigpause.  Here the
1921 		 * current mask is not of interest, but rather the
1922 		 * mask from before the sigpause is what we want
1923 		 * restored after the signal processing is completed.
1924 		 */
1925 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1926 			returnmask = &p->p_sigctx.ps_oldmask;
1927 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1928 		} else
1929 			returnmask = &p->p_sigctx.ps_sigmask;
1930 		p->p_stats->p_ru.ru_nsignals++;
1931 		ksi = ksiginfo_dequeue(p, signum);
1932 #ifdef KTRACE
1933 		if (KTRPOINT(p, KTR_PSIG))
1934 			ktrpsig(l, signum, action,
1935 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1936 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1937 			    ksi);
1938 #endif
1939 		if (ksi == NULL) {
1940 			ksiginfo_t ksi1;
1941 			/*
1942 			 * we did not save any siginfo for this, either
1943 			 * because the signal was not caught, or because the
1944 			 * user did not request SA_SIGINFO
1945 			 */
1946 			KSI_INIT_EMPTY(&ksi1);
1947 			ksi1.ksi_signo = signum;
1948 			kpsendsig(l, &ksi1, returnmask);
1949 		} else {
1950 			kpsendsig(l, ksi, returnmask);
1951 			ksiginfo_free(ksi);
1952 		}
1953 		p->p_sigctx.ps_lwp = 0;
1954 		p->p_sigctx.ps_code = 0;
1955 		p->p_sigctx.ps_signo = 0;
1956 		(void) splsched();	/* XXXSMP */
1957 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1958 		    &p->p_sigctx.ps_sigmask);
1959 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1960 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1961 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1962 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1963 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1964 		}
1965 		(void) spl0();		/* XXXSMP */
1966 	}
1967 
1968 	KERNEL_PROC_UNLOCK(l);
1969 }
1970 
1971 /*
1972  * Kill the current process for stated reason.
1973  */
1974 void
1975 killproc(struct proc *p, const char *why)
1976 {
1977 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1978 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1979 	psignal(p, SIGKILL);
1980 }
1981 
1982 /*
1983  * Force the current process to exit with the specified signal, dumping core
1984  * if appropriate.  We bypass the normal tests for masked and caught signals,
1985  * allowing unrecoverable failures to terminate the process without changing
1986  * signal state.  Mark the accounting record with the signal termination.
1987  * If dumping core, save the signal number for the debugger.  Calls exit and
1988  * does not return.
1989  */
1990 
1991 #if defined(DEBUG)
1992 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1993 #else
1994 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1995 #endif
1996 
1997 static	const char logcoredump[] =
1998 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1999 static	const char lognocoredump[] =
2000 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
2001 
2002 /* Wrapper function for use in p_userret */
2003 static void
2004 lwp_coredump_hook(struct lwp *l, void *arg)
2005 {
2006 	int s;
2007 
2008 	/*
2009 	 * Suspend ourselves, so that the kernel stack and therefore
2010 	 * the userland registers saved in the trapframe are around
2011 	 * for coredump() to write them out.
2012 	 */
2013 	KERNEL_PROC_LOCK(l);
2014 	l->l_flag &= ~L_DETACHED;
2015 	SCHED_LOCK(s);
2016 	l->l_stat = LSSUSPENDED;
2017 	l->l_proc->p_nrlwps--;
2018 	/* XXX NJWLWP check if this makes sense here: */
2019 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
2020 	mi_switch(l, NULL);
2021 	SCHED_ASSERT_UNLOCKED();
2022 	splx(s);
2023 
2024 	lwp_exit(l);
2025 }
2026 
2027 void
2028 sigexit(struct lwp *l, int signum)
2029 {
2030 	struct proc	*p;
2031 #if 0
2032 	struct lwp	*l2;
2033 #endif
2034 	int		exitsig;
2035 #ifdef COREDUMP
2036 	int		error;
2037 #endif
2038 
2039 	p = l->l_proc;
2040 
2041 	/*
2042 	 * Don't permit coredump() or exit1() multiple times
2043 	 * in the same process.
2044 	 */
2045 	if (p->p_flag & P_WEXIT) {
2046 		KERNEL_PROC_UNLOCK(l);
2047 		(*p->p_userret)(l, p->p_userret_arg);
2048 	}
2049 	p->p_flag |= P_WEXIT;
2050 	/* We don't want to switch away from exiting. */
2051 	/* XXX multiprocessor: stop LWPs on other processors. */
2052 #if 0
2053 	if (p->p_flag & P_SA) {
2054 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2055 		    l2->l_flag &= ~L_SA;
2056 		p->p_flag &= ~P_SA;
2057 	}
2058 #endif
2059 
2060 	/* Make other LWPs stick around long enough to be dumped */
2061 	p->p_userret = lwp_coredump_hook;
2062 	p->p_userret_arg = NULL;
2063 
2064 	exitsig = signum;
2065 	p->p_acflag |= AXSIG;
2066 	if (sigprop[signum] & SA_CORE) {
2067 		p->p_sigctx.ps_signo = signum;
2068 #ifdef COREDUMP
2069 		if ((error = coredump(l, NULL)) == 0)
2070 			exitsig |= WCOREFLAG;
2071 #endif
2072 
2073 		if (kern_logsigexit) {
2074 			/* XXX What if we ever have really large UIDs? */
2075 			int uid = l->l_cred ?
2076 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2077 
2078 #ifdef COREDUMP
2079 			if (error)
2080 				log(LOG_INFO, lognocoredump, p->p_pid,
2081 				    p->p_comm, uid, signum, error);
2082 			else
2083 #endif
2084 				log(LOG_INFO, logcoredump, p->p_pid,
2085 				    p->p_comm, uid, signum);
2086 		}
2087 
2088 	}
2089 
2090 	exit1(l, W_EXITCODE(0, exitsig));
2091 	/* NOTREACHED */
2092 }
2093 
2094 #ifdef COREDUMP
2095 struct coredump_iostate {
2096 	struct lwp *io_lwp;
2097 	struct vnode *io_vp;
2098 	kauth_cred_t io_cred;
2099 	off_t io_offset;
2100 };
2101 
2102 int
2103 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2104 {
2105 	struct coredump_iostate *io = cookie;
2106 	int error;
2107 
2108 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2109 	    io->io_offset, segflg,
2110 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2111 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2112 	if (error) {
2113 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2114 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2115 		    segflg == UIO_USERSPACE ? "user" : "system",
2116 		    len, data, (long long) io->io_offset, error);
2117 		return (error);
2118 	}
2119 
2120 	io->io_offset += len;
2121 	return (0);
2122 }
2123 
2124 /*
2125  * Dump core, into a file named "progname.core" or "core" (depending on the
2126  * value of shortcorename), unless the process was setuid/setgid.
2127  */
2128 int
2129 coredump(struct lwp *l, const char *pattern)
2130 {
2131 	struct vnode		*vp;
2132 	struct proc		*p;
2133 	struct vmspace		*vm;
2134 	kauth_cred_t		cred;
2135 	struct nameidata	nd;
2136 	struct vattr		vattr;
2137 	struct mount		*mp;
2138 	struct coredump_iostate	io;
2139 	int			error, error1;
2140 	char			*name = NULL;
2141 
2142 	p = l->l_proc;
2143 	vm = p->p_vmspace;
2144 	cred = l->l_cred;
2145 
2146 	/*
2147 	 * Make sure the process has not set-id, to prevent data leaks,
2148 	 * unless it was specifically requested to allow set-id coredumps.
2149 	 */
2150 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2151 		return EPERM;
2152 
2153 	/*
2154 	 * Refuse to core if the data + stack + user size is larger than
2155 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2156 	 * data.
2157 	 */
2158 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2159 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2160 		return EFBIG;		/* better error code? */
2161 
2162 restart:
2163 	/*
2164 	 * The core dump will go in the current working directory.  Make
2165 	 * sure that the directory is still there and that the mount flags
2166 	 * allow us to write core dumps there.
2167 	 */
2168 	vp = p->p_cwdi->cwdi_cdir;
2169 	if (vp->v_mount == NULL ||
2170 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2171 		error = EPERM;
2172 		goto done;
2173 	}
2174 
2175 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2176 		pattern = security_setidcore_path;
2177 
2178 	if (pattern == NULL)
2179 		pattern = p->p_limit->pl_corename;
2180 	if (name == NULL) {
2181 		name = PNBUF_GET();
2182 	}
2183 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2184 		goto done;
2185 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2186 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2187 	    S_IRUSR | S_IWUSR)) != 0)
2188 		goto done;
2189 	vp = nd.ni_vp;
2190 
2191 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2192 		VOP_UNLOCK(vp, 0);
2193 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2194 			goto done;
2195 		if ((error = vn_start_write(NULL, &mp,
2196 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2197 			goto done;
2198 		goto restart;
2199 	}
2200 
2201 	/* Don't dump to non-regular files or files with links. */
2202 	if (vp->v_type != VREG ||
2203 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2204 		error = EINVAL;
2205 		goto out;
2206 	}
2207 	VATTR_NULL(&vattr);
2208 	vattr.va_size = 0;
2209 
2210 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2211 		vattr.va_uid = security_setidcore_owner;
2212 		vattr.va_gid = security_setidcore_group;
2213 		vattr.va_mode = security_setidcore_mode;
2214 	}
2215 
2216 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
2217 	VOP_SETATTR(vp, &vattr, cred, l);
2218 	p->p_acflag |= ACORE;
2219 
2220 	io.io_lwp = l;
2221 	io.io_vp = vp;
2222 	io.io_cred = cred;
2223 	io.io_offset = 0;
2224 
2225 	/* Now dump the actual core file. */
2226 	error = (*p->p_execsw->es_coredump)(l, &io);
2227  out:
2228 	VOP_UNLOCK(vp, 0);
2229 	vn_finished_write(mp, 0);
2230 	error1 = vn_close(vp, FWRITE, cred, l);
2231 	if (error == 0)
2232 		error = error1;
2233 done:
2234 	if (name != NULL)
2235 		PNBUF_PUT(name);
2236 	return error;
2237 }
2238 #endif /* COREDUMP */
2239 
2240 /*
2241  * Nonexistent system call-- signal process (may want to handle it).
2242  * Flag error in case process won't see signal immediately (blocked or ignored).
2243  */
2244 #ifndef PTRACE
2245 __weak_alias(sys_ptrace, sys_nosys);
2246 #endif
2247 
2248 /* ARGSUSED */
2249 int
2250 sys_nosys(struct lwp *l, void *v, register_t *retval)
2251 {
2252 	struct proc 	*p;
2253 
2254 	p = l->l_proc;
2255 	psignal(p, SIGSYS);
2256 	return (ENOSYS);
2257 }
2258 
2259 #ifdef COREDUMP
2260 static int
2261 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2262 {
2263 	const char	*s;
2264 	char		*d, *end;
2265 	int		i;
2266 
2267 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2268 		if (*s == '%') {
2269 			switch (*(s + 1)) {
2270 			case 'n':
2271 				i = snprintf(d, end - d, "%s", p->p_comm);
2272 				break;
2273 			case 'p':
2274 				i = snprintf(d, end - d, "%d", p->p_pid);
2275 				break;
2276 			case 'u':
2277 				i = snprintf(d, end - d, "%.*s",
2278 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2279 				    p->p_pgrp->pg_session->s_login);
2280 				break;
2281 			case 't':
2282 				i = snprintf(d, end - d, "%ld",
2283 				    p->p_stats->p_start.tv_sec);
2284 				break;
2285 			default:
2286 				goto copy;
2287 			}
2288 			d += i;
2289 			s++;
2290 		} else {
2291  copy:			*d = *s;
2292 			d++;
2293 		}
2294 		if (d >= end)
2295 			return (ENAMETOOLONG);
2296 	}
2297 	*d = '\0';
2298 	return 0;
2299 }
2300 #endif /* COREDUMP */
2301 
2302 void
2303 getucontext(struct lwp *l, ucontext_t *ucp)
2304 {
2305 	struct proc	*p;
2306 
2307 	p = l->l_proc;
2308 
2309 	ucp->uc_flags = 0;
2310 	ucp->uc_link = l->l_ctxlink;
2311 
2312 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2313 	ucp->uc_flags |= _UC_SIGMASK;
2314 
2315 	/*
2316 	 * The (unsupplied) definition of the `current execution stack'
2317 	 * in the System V Interface Definition appears to allow returning
2318 	 * the main context stack.
2319 	 */
2320 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2321 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2322 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2323 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2324 	} else {
2325 		/* Simply copy alternate signal execution stack. */
2326 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2327 	}
2328 	ucp->uc_flags |= _UC_STACK;
2329 
2330 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2331 }
2332 
2333 /* ARGSUSED */
2334 int
2335 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2336 {
2337 	struct sys_getcontext_args /* {
2338 		syscallarg(struct __ucontext *) ucp;
2339 	} */ *uap = v;
2340 	ucontext_t uc;
2341 
2342 	getucontext(l, &uc);
2343 
2344 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2345 }
2346 
2347 int
2348 setucontext(struct lwp *l, const ucontext_t *ucp)
2349 {
2350 	struct proc	*p;
2351 	int		error;
2352 
2353 	p = l->l_proc;
2354 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2355 		return (error);
2356 	l->l_ctxlink = ucp->uc_link;
2357 
2358 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2359 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2360 
2361 	/*
2362 	 * If there was stack information, update whether or not we are
2363 	 * still running on an alternate signal stack.
2364 	 */
2365 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2366 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2367 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2368 		else
2369 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 /* ARGSUSED */
2376 int
2377 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2378 {
2379 	struct sys_setcontext_args /* {
2380 		syscallarg(const ucontext_t *) ucp;
2381 	} */ *uap = v;
2382 	ucontext_t uc;
2383 	int error;
2384 
2385 	error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
2386 	if (error)
2387 		return (error);
2388 	if (!(uc.uc_flags & _UC_CPU))
2389 		return (EINVAL);
2390 	error = setucontext(l, &uc);
2391 	if (error)
2392 		return (error);
2393 
2394 	return (EJUSTRETURN);
2395 }
2396 
2397 /*
2398  * sigtimedwait(2) system call, used also for implementation
2399  * of sigwaitinfo() and sigwait().
2400  *
2401  * This only handles single LWP in signal wait. libpthread provides
2402  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2403  */
2404 int
2405 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2406 {
2407 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2408 }
2409 
2410 int
2411 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2412     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2413 {
2414 	struct sys___sigtimedwait_args /* {
2415 		syscallarg(const sigset_t *) set;
2416 		syscallarg(siginfo_t *) info;
2417 		syscallarg(struct timespec *) timeout;
2418 	} */ *uap = v;
2419 	sigset_t *waitset, twaitset;
2420 	struct proc *p = l->l_proc;
2421 	int error, signum;
2422 	int timo = 0;
2423 	struct timespec ts, tsstart;
2424 	ksiginfo_t *ksi;
2425 
2426 	memset(&tsstart, 0, sizeof tsstart);	 /* XXX gcc */
2427 
2428 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2429 
2430 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2431 		FREE(waitset, M_TEMP);
2432 		return (error);
2433 	}
2434 
2435 	/*
2436 	 * Silently ignore SA_CANTMASK signals. psignal() would
2437 	 * ignore SA_CANTMASK signals in waitset, we do this
2438 	 * only for the below siglist check.
2439 	 */
2440 	sigminusset(&sigcantmask, waitset);
2441 
2442 	/*
2443 	 * First scan siglist and check if there is signal from
2444 	 * our waitset already pending.
2445 	 */
2446 	twaitset = *waitset;
2447 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2448 	if ((signum = firstsig(&twaitset))) {
2449 		/* found pending signal */
2450 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2451 		ksi = ksiginfo_dequeue(p, signum);
2452 		if (!ksi) {
2453 			/* No queued siginfo, manufacture one */
2454 			ksi = ksiginfo_alloc(PR_WAITOK);
2455 			KSI_INIT(ksi);
2456 			ksi->ksi_info._signo = signum;
2457 			ksi->ksi_info._code = SI_USER;
2458 		}
2459 
2460 		goto sig;
2461 	}
2462 
2463 	/*
2464 	 * Calculate timeout, if it was specified.
2465 	 */
2466 	if (SCARG(uap, timeout)) {
2467 		uint64_t ms;
2468 
2469 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2470 			return (error);
2471 
2472 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2473 		timo = mstohz(ms);
2474 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2475 			timo = 1;
2476 		if (timo <= 0)
2477 			return (EAGAIN);
2478 
2479 		/*
2480 		 * Remember current uptime, it would be used in
2481 		 * ECANCELED/ERESTART case.
2482 		 */
2483 		getnanouptime(&tsstart);
2484 	}
2485 
2486 	/*
2487 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2488 	 * here; it's not possible to pass pointer to a structure
2489 	 * on current process's stack, the current process might
2490 	 * be swapped out at the time the signal would get delivered.
2491 	 */
2492 	ksi = ksiginfo_alloc(PR_WAITOK);
2493 	p->p_sigctx.ps_sigwaited = ksi;
2494 	p->p_sigctx.ps_sigwait = waitset;
2495 
2496 	/*
2497 	 * Wait for signal to arrive. We can either be woken up or
2498 	 * time out.
2499 	 */
2500 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2501 
2502 	/*
2503 	 * Need to find out if we woke as a result of lwp_wakeup()
2504 	 * or a signal outside our wait set.
2505 	 */
2506 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2507 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2508 		/* wakeup via _lwp_wakeup() */
2509 		error = ECANCELED;
2510 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2511 		/* spurious wakeup - arrange for syscall restart */
2512 		error = ERESTART;
2513 		goto fail;
2514 	}
2515 
2516 	/*
2517 	 * On error, clear sigwait indication. psignal() clears it
2518 	 * in !error case.
2519 	 */
2520 	if (error) {
2521 		p->p_sigctx.ps_sigwaited = NULL;
2522 
2523 		/*
2524 		 * If the sleep was interrupted (either by signal or wakeup),
2525 		 * update the timeout and copyout new value back.
2526 		 * It would be used when the syscall would be restarted
2527 		 * or called again.
2528 		 */
2529 		if (timo && (error == ERESTART || error == ECANCELED)) {
2530 			struct timespec tsnow;
2531 			int err;
2532 
2533 /* XXX double check the following change */
2534 			getnanouptime(&tsnow);
2535 
2536 			/* compute how much time has passed since start */
2537 			timespecsub(&tsnow, &tsstart, &tsnow);
2538 			/* substract passed time from timeout */
2539 			timespecsub(&ts, &tsnow, &ts);
2540 
2541 			if (ts.tv_sec < 0) {
2542 				error = EAGAIN;
2543 				goto fail;
2544 			}
2545 /* XXX double check the previous change */
2546 
2547 			/* copy updated timeout to userland */
2548 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2549 			    sizeof(ts)))) {
2550 				error = err;
2551 				goto fail;
2552 			}
2553 		}
2554 
2555 		goto fail;
2556 	}
2557 
2558 	/*
2559 	 * If a signal from the wait set arrived, copy it to userland.
2560 	 * Copy only the used part of siginfo, the padding part is
2561 	 * left unchanged (userland is not supposed to touch it anyway).
2562 	 */
2563  sig:
2564 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2565 
2566  fail:
2567 	FREE(waitset, M_TEMP);
2568 	ksiginfo_free(ksi);
2569 	p->p_sigctx.ps_sigwait = NULL;
2570 
2571 	return (error);
2572 }
2573 
2574 /*
2575  * Returns true if signal is ignored or masked for passed process.
2576  */
2577 int
2578 sigismasked(struct proc *p, int sig)
2579 {
2580 
2581 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2582 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2583 }
2584 
2585 static int
2586 filt_sigattach(struct knote *kn)
2587 {
2588 	struct proc *p = curproc;
2589 
2590 	kn->kn_ptr.p_proc = p;
2591 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2592 
2593 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2594 
2595 	return (0);
2596 }
2597 
2598 static void
2599 filt_sigdetach(struct knote *kn)
2600 {
2601 	struct proc *p = kn->kn_ptr.p_proc;
2602 
2603 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2604 }
2605 
2606 /*
2607  * signal knotes are shared with proc knotes, so we apply a mask to
2608  * the hint in order to differentiate them from process hints.  This
2609  * could be avoided by using a signal-specific knote list, but probably
2610  * isn't worth the trouble.
2611  */
2612 static int
2613 filt_signal(struct knote *kn, long hint)
2614 {
2615 
2616 	if (hint & NOTE_SIGNAL) {
2617 		hint &= ~NOTE_SIGNAL;
2618 
2619 		if (kn->kn_id == hint)
2620 			kn->kn_data++;
2621 	}
2622 	return (kn->kn_data != 0);
2623 }
2624 
2625 const struct filterops sig_filtops = {
2626 	0, filt_sigattach, filt_sigdetach, filt_signal
2627 };
2628