xref: /netbsd-src/sys/kern/kern_sig.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: kern_sig.c,v 1.400 2021/10/27 04:45:42 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.400 2021/10/27 04:45:42 thorpej Exp $");
74 
75 #include "opt_execfmt.h"
76 #include "opt_ptrace.h"
77 #include "opt_dtrace.h"
78 #include "opt_compat_sunos.h"
79 #include "opt_compat_netbsd.h"
80 #include "opt_compat_netbsd32.h"
81 #include "opt_pax.h"
82 
83 #define	SIGPROP		/* include signal properties table */
84 #include <sys/param.h>
85 #include <sys/signalvar.h>
86 #include <sys/proc.h>
87 #include <sys/ptrace.h>
88 #include <sys/systm.h>
89 #include <sys/wait.h>
90 #include <sys/ktrace.h>
91 #include <sys/syslog.h>
92 #include <sys/filedesc.h>
93 #include <sys/file.h>
94 #include <sys/pool.h>
95 #include <sys/ucontext.h>
96 #include <sys/exec.h>
97 #include <sys/kauth.h>
98 #include <sys/acct.h>
99 #include <sys/callout.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/sdt.h>
104 #include <sys/exec_elf.h>
105 #include <sys/compat_stub.h>
106 
107 #ifdef PAX_SEGVGUARD
108 #include <sys/pax.h>
109 #endif /* PAX_SEGVGUARD */
110 
111 #include <uvm/uvm_extern.h>
112 
113 /* Many hard-coded assumptions that there are <= 4 x 32bit signal mask bits */
114 __CTASSERT(NSIG <= 128);
115 
116 #define	SIGQUEUE_MAX	32
117 static pool_cache_t	sigacts_cache	__read_mostly;
118 static pool_cache_t	ksiginfo_cache	__read_mostly;
119 static callout_t	proc_stop_ch	__cacheline_aligned;
120 
121 sigset_t		contsigmask	__cacheline_aligned;
122 sigset_t		stopsigmask	__cacheline_aligned;
123 static sigset_t		vforksigmask	__cacheline_aligned;
124 sigset_t		sigcantmask	__cacheline_aligned;
125 
126 static void	ksiginfo_exechook(struct proc *, void *);
127 static void	proc_stop(struct proc *, int);
128 static void	proc_stop_done(struct proc *, int);
129 static void	proc_stop_callout(void *);
130 static int	sigchecktrace(void);
131 static int	sigpost(struct lwp *, sig_t, int, int);
132 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
133 static int	sigunwait(struct proc *, const ksiginfo_t *);
134 static void	sigswitch(int, int, bool);
135 static void	sigswitch_unlock_and_switch_away(struct lwp *);
136 
137 static void	sigacts_poolpage_free(struct pool *, void *);
138 static void	*sigacts_poolpage_alloc(struct pool *, int);
139 
140 /*
141  * DTrace SDT provider definitions
142  */
143 SDT_PROVIDER_DECLARE(proc);
144 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
145     "struct lwp *", 	/* target thread */
146     "struct proc *", 	/* target process */
147     "int");		/* signal */
148 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
149     "struct lwp *",	/* target thread */
150     "struct proc *",	/* target process */
151     "int");  		/* signal */
152 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
153     "int", 		/* signal */
154     "ksiginfo_t *", 	/* signal info */
155     "void (*)(void)");	/* handler address */
156 
157 
158 static struct pool_allocator sigactspool_allocator = {
159 	.pa_alloc = sigacts_poolpage_alloc,
160 	.pa_free = sigacts_poolpage_free
161 };
162 
163 #ifdef DEBUG
164 int	kern_logsigexit = 1;
165 #else
166 int	kern_logsigexit = 0;
167 #endif
168 
169 static const char logcoredump[] =
170     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
171 static const char lognocoredump[] =
172     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
173 
174 static kauth_listener_t signal_listener;
175 
176 static int
177 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
178     void *arg0, void *arg1, void *arg2, void *arg3)
179 {
180 	struct proc *p;
181 	int result, signum;
182 
183 	result = KAUTH_RESULT_DEFER;
184 	p = arg0;
185 	signum = (int)(unsigned long)arg1;
186 
187 	if (action != KAUTH_PROCESS_SIGNAL)
188 		return result;
189 
190 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
191 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
192 		result = KAUTH_RESULT_ALLOW;
193 
194 	return result;
195 }
196 
197 static int
198 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
199 {
200 	memset(obj, 0, sizeof(struct sigacts));
201 	return 0;
202 }
203 
204 /*
205  * signal_init:
206  *
207  *	Initialize global signal-related data structures.
208  */
209 void
210 signal_init(void)
211 {
212 
213 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
214 
215 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
216 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
217 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
218 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
219 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
220 
221 	exechook_establish(ksiginfo_exechook, NULL);
222 
223 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
224 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
225 
226 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
227 	    signal_listener_cb, NULL);
228 }
229 
230 /*
231  * sigacts_poolpage_alloc:
232  *
233  *	Allocate a page for the sigacts memory pool.
234  */
235 static void *
236 sigacts_poolpage_alloc(struct pool *pp, int flags)
237 {
238 
239 	return (void *)uvm_km_alloc(kernel_map,
240 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
241 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
242 	    | UVM_KMF_WIRED);
243 }
244 
245 /*
246  * sigacts_poolpage_free:
247  *
248  *	Free a page on behalf of the sigacts memory pool.
249  */
250 static void
251 sigacts_poolpage_free(struct pool *pp, void *v)
252 {
253 
254 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
255 }
256 
257 /*
258  * sigactsinit:
259  *
260  *	Create an initial sigacts structure, using the same signal state
261  *	as of specified process.  If 'share' is set, share the sigacts by
262  *	holding a reference, otherwise just copy it from parent.
263  */
264 struct sigacts *
265 sigactsinit(struct proc *pp, int share)
266 {
267 	struct sigacts *ps = pp->p_sigacts, *ps2;
268 
269 	if (__predict_false(share)) {
270 		atomic_inc_uint(&ps->sa_refcnt);
271 		return ps;
272 	}
273 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
274 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
275 	ps2->sa_refcnt = 1;
276 
277 	mutex_enter(&ps->sa_mutex);
278 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
279 	mutex_exit(&ps->sa_mutex);
280 	return ps2;
281 }
282 
283 /*
284  * sigactsunshare:
285  *
286  *	Make this process not share its sigacts, maintaining all signal state.
287  */
288 void
289 sigactsunshare(struct proc *p)
290 {
291 	struct sigacts *ps, *oldps = p->p_sigacts;
292 
293 	if (__predict_true(oldps->sa_refcnt == 1))
294 		return;
295 
296 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
297 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
298 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
299 	ps->sa_refcnt = 1;
300 
301 	p->p_sigacts = ps;
302 	sigactsfree(oldps);
303 }
304 
305 /*
306  * sigactsfree;
307  *
308  *	Release a sigacts structure.
309  */
310 void
311 sigactsfree(struct sigacts *ps)
312 {
313 
314 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
315 		mutex_destroy(&ps->sa_mutex);
316 		pool_cache_put(sigacts_cache, ps);
317 	}
318 }
319 
320 /*
321  * siginit:
322  *
323  *	Initialize signal state for process 0; set to ignore signals that
324  *	are ignored by default and disable the signal stack.  Locking not
325  *	required as the system is still cold.
326  */
327 void
328 siginit(struct proc *p)
329 {
330 	struct lwp *l;
331 	struct sigacts *ps;
332 	int signo, prop;
333 
334 	ps = p->p_sigacts;
335 	sigemptyset(&contsigmask);
336 	sigemptyset(&stopsigmask);
337 	sigemptyset(&vforksigmask);
338 	sigemptyset(&sigcantmask);
339 	for (signo = 1; signo < NSIG; signo++) {
340 		prop = sigprop[signo];
341 		if (prop & SA_CONT)
342 			sigaddset(&contsigmask, signo);
343 		if (prop & SA_STOP)
344 			sigaddset(&stopsigmask, signo);
345 		if (prop & SA_STOP && signo != SIGSTOP)
346 			sigaddset(&vforksigmask, signo);
347 		if (prop & SA_CANTMASK)
348 			sigaddset(&sigcantmask, signo);
349 		if (prop & SA_IGNORE && signo != SIGCONT)
350 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
351 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
352 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
353 	}
354 	sigemptyset(&p->p_sigctx.ps_sigcatch);
355 	p->p_sflag &= ~PS_NOCLDSTOP;
356 
357 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
358 	sigemptyset(&p->p_sigpend.sp_set);
359 
360 	/*
361 	 * Reset per LWP state.
362 	 */
363 	l = LIST_FIRST(&p->p_lwps);
364 	l->l_sigwaited = NULL;
365 	l->l_sigstk = SS_INIT;
366 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
367 	sigemptyset(&l->l_sigpend.sp_set);
368 
369 	/* One reference. */
370 	ps->sa_refcnt = 1;
371 }
372 
373 /*
374  * execsigs:
375  *
376  *	Reset signals for an exec of the specified process.
377  */
378 void
379 execsigs(struct proc *p)
380 {
381 	struct sigacts *ps;
382 	struct lwp *l;
383 	int signo, prop;
384 	sigset_t tset;
385 	ksiginfoq_t kq;
386 
387 	KASSERT(p->p_nlwps == 1);
388 
389 	sigactsunshare(p);
390 	ps = p->p_sigacts;
391 
392 	/*
393 	 * Reset caught signals.  Held signals remain held through
394 	 * l->l_sigmask (unless they were caught, and are now ignored
395 	 * by default).
396 	 *
397 	 * No need to lock yet, the process has only one LWP and
398 	 * at this point the sigacts are private to the process.
399 	 */
400 	sigemptyset(&tset);
401 	for (signo = 1; signo < NSIG; signo++) {
402 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
403 			prop = sigprop[signo];
404 			if (prop & SA_IGNORE) {
405 				if ((prop & SA_CONT) == 0)
406 					sigaddset(&p->p_sigctx.ps_sigignore,
407 					    signo);
408 				sigaddset(&tset, signo);
409 			}
410 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
411 		}
412 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
413 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
414 	}
415 	ksiginfo_queue_init(&kq);
416 
417 	mutex_enter(p->p_lock);
418 	sigclearall(p, &tset, &kq);
419 	sigemptyset(&p->p_sigctx.ps_sigcatch);
420 
421 	/*
422 	 * Reset no zombies if child dies flag as Solaris does.
423 	 */
424 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
425 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
426 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
427 
428 	/*
429 	 * Reset per-LWP state.
430 	 */
431 	l = LIST_FIRST(&p->p_lwps);
432 	l->l_sigwaited = NULL;
433 	l->l_sigstk = SS_INIT;
434 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
435 	sigemptyset(&l->l_sigpend.sp_set);
436 	mutex_exit(p->p_lock);
437 
438 	ksiginfo_queue_drain(&kq);
439 }
440 
441 /*
442  * ksiginfo_exechook:
443  *
444  *	Free all pending ksiginfo entries from a process on exec.
445  *	Additionally, drain any unused ksiginfo structures in the
446  *	system back to the pool.
447  *
448  *	XXX This should not be a hook, every process has signals.
449  */
450 static void
451 ksiginfo_exechook(struct proc *p, void *v)
452 {
453 	ksiginfoq_t kq;
454 
455 	ksiginfo_queue_init(&kq);
456 
457 	mutex_enter(p->p_lock);
458 	sigclearall(p, NULL, &kq);
459 	mutex_exit(p->p_lock);
460 
461 	ksiginfo_queue_drain(&kq);
462 }
463 
464 /*
465  * ksiginfo_alloc:
466  *
467  *	Allocate a new ksiginfo structure from the pool, and optionally copy
468  *	an existing one.  If the existing ksiginfo_t is from the pool, and
469  *	has not been queued somewhere, then just return it.  Additionally,
470  *	if the existing ksiginfo_t does not contain any information beyond
471  *	the signal number, then just return it.
472  */
473 ksiginfo_t *
474 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
475 {
476 	ksiginfo_t *kp;
477 
478 	if (ok != NULL) {
479 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
480 		    KSI_FROMPOOL)
481 			return ok;
482 		if (KSI_EMPTY_P(ok))
483 			return ok;
484 	}
485 
486 	kp = pool_cache_get(ksiginfo_cache, flags);
487 	if (kp == NULL) {
488 #ifdef DIAGNOSTIC
489 		printf("Out of memory allocating ksiginfo for pid %d\n",
490 		    p->p_pid);
491 #endif
492 		return NULL;
493 	}
494 
495 	if (ok != NULL) {
496 		memcpy(kp, ok, sizeof(*kp));
497 		kp->ksi_flags &= ~KSI_QUEUED;
498 	} else
499 		KSI_INIT_EMPTY(kp);
500 
501 	kp->ksi_flags |= KSI_FROMPOOL;
502 
503 	return kp;
504 }
505 
506 /*
507  * ksiginfo_free:
508  *
509  *	If the given ksiginfo_t is from the pool and has not been queued,
510  *	then free it.
511  */
512 void
513 ksiginfo_free(ksiginfo_t *kp)
514 {
515 
516 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
517 		return;
518 	pool_cache_put(ksiginfo_cache, kp);
519 }
520 
521 /*
522  * ksiginfo_queue_drain:
523  *
524  *	Drain a non-empty ksiginfo_t queue.
525  */
526 void
527 ksiginfo_queue_drain0(ksiginfoq_t *kq)
528 {
529 	ksiginfo_t *ksi;
530 
531 	KASSERT(!TAILQ_EMPTY(kq));
532 
533 	while (!TAILQ_EMPTY(kq)) {
534 		ksi = TAILQ_FIRST(kq);
535 		TAILQ_REMOVE(kq, ksi, ksi_list);
536 		pool_cache_put(ksiginfo_cache, ksi);
537 	}
538 }
539 
540 static int
541 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
542 {
543 	ksiginfo_t *ksi, *nksi;
544 
545 	if (sp == NULL)
546 		goto out;
547 
548 	/* Find siginfo and copy it out. */
549 	int count = 0;
550 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
551 		if (ksi->ksi_signo != signo)
552 			continue;
553 		if (count++ > 0) /* Only remove the first, count all of them */
554 			continue;
555 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
556 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
557 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
558 		ksi->ksi_flags &= ~KSI_QUEUED;
559 		if (out != NULL) {
560 			memcpy(out, ksi, sizeof(*out));
561 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
562 		}
563 		ksiginfo_free(ksi);
564 	}
565 	if (count)
566 		return count;
567 
568 out:
569 	/* If there is no siginfo, then manufacture it. */
570 	if (out != NULL) {
571 		KSI_INIT(out);
572 		out->ksi_info._signo = signo;
573 		out->ksi_info._code = SI_NOINFO;
574 	}
575 	return 0;
576 }
577 
578 /*
579  * sigget:
580  *
581  *	Fetch the first pending signal from a set.  Optionally, also fetch
582  *	or manufacture a ksiginfo element.  Returns the number of the first
583  *	pending signal, or zero.
584  */
585 int
586 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
587 {
588 	sigset_t tset;
589 	int count;
590 
591 	/* If there's no pending set, the signal is from the debugger. */
592 	if (sp == NULL)
593 		goto out;
594 
595 	/* Construct mask from signo, and 'mask'. */
596 	if (signo == 0) {
597 		if (mask != NULL) {
598 			tset = *mask;
599 			__sigandset(&sp->sp_set, &tset);
600 		} else
601 			tset = sp->sp_set;
602 
603 		/* If there are no signals pending - return. */
604 		if ((signo = firstsig(&tset)) == 0)
605 			goto out;
606 	} else {
607 		KASSERT(sigismember(&sp->sp_set, signo));
608 	}
609 
610 	sigdelset(&sp->sp_set, signo);
611 out:
612 	count = siggetinfo(sp, out, signo);
613 	if (count > 1)
614 		sigaddset(&sp->sp_set, signo);
615 	return signo;
616 }
617 
618 /*
619  * sigput:
620  *
621  *	Append a new ksiginfo element to the list of pending ksiginfo's.
622  */
623 static int
624 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
625 {
626 	ksiginfo_t *kp;
627 
628 	KASSERT(mutex_owned(p->p_lock));
629 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
630 
631 	sigaddset(&sp->sp_set, ksi->ksi_signo);
632 
633 	/*
634 	 * If there is no siginfo, we are done.
635 	 */
636 	if (KSI_EMPTY_P(ksi))
637 		return 0;
638 
639 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
640 
641 	size_t count = 0;
642 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
643 		count++;
644 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
645 			continue;
646 		if (kp->ksi_signo == ksi->ksi_signo) {
647 			KSI_COPY(ksi, kp);
648 			kp->ksi_flags |= KSI_QUEUED;
649 			return 0;
650 		}
651 	}
652 
653 	if (count >= SIGQUEUE_MAX) {
654 #ifdef DIAGNOSTIC
655 		printf("%s(%d): Signal queue is full signal=%d\n",
656 		    p->p_comm, p->p_pid, ksi->ksi_signo);
657 #endif
658 		return EAGAIN;
659 	}
660 	ksi->ksi_flags |= KSI_QUEUED;
661 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
662 
663 	return 0;
664 }
665 
666 /*
667  * sigclear:
668  *
669  *	Clear all pending signals in the specified set.
670  */
671 void
672 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
673 {
674 	ksiginfo_t *ksi, *next;
675 
676 	if (mask == NULL)
677 		sigemptyset(&sp->sp_set);
678 	else
679 		sigminusset(mask, &sp->sp_set);
680 
681 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
682 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
683 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
684 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
685 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
686 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
687 		}
688 	}
689 }
690 
691 /*
692  * sigclearall:
693  *
694  *	Clear all pending signals in the specified set from a process and
695  *	its LWPs.
696  */
697 void
698 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
699 {
700 	struct lwp *l;
701 
702 	KASSERT(mutex_owned(p->p_lock));
703 
704 	sigclear(&p->p_sigpend, mask, kq);
705 
706 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
707 		sigclear(&l->l_sigpend, mask, kq);
708 	}
709 }
710 
711 /*
712  * sigispending:
713  *
714  *	Return the first signal number if there are pending signals for the
715  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
716  *	and that the signal has been posted to the appopriate queue before
717  *	LW_PENDSIG is set.
718  *
719  *	This should only ever be called with (l == curlwp), unless the
720  *	result does not matter (procfs, sysctl).
721  */
722 int
723 sigispending(struct lwp *l, int signo)
724 {
725 	struct proc *p = l->l_proc;
726 	sigset_t tset;
727 
728 	membar_consumer();
729 
730 	tset = l->l_sigpend.sp_set;
731 	sigplusset(&p->p_sigpend.sp_set, &tset);
732 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
733 	sigminusset(&l->l_sigmask, &tset);
734 
735 	if (signo == 0) {
736 		return firstsig(&tset);
737 	}
738 	return sigismember(&tset, signo) ? signo : 0;
739 }
740 
741 void
742 getucontext(struct lwp *l, ucontext_t *ucp)
743 {
744 	struct proc *p = l->l_proc;
745 
746 	KASSERT(mutex_owned(p->p_lock));
747 
748 	ucp->uc_flags = 0;
749 	ucp->uc_link = l->l_ctxlink;
750 	ucp->uc_sigmask = l->l_sigmask;
751 	ucp->uc_flags |= _UC_SIGMASK;
752 
753 	/*
754 	 * The (unsupplied) definition of the `current execution stack'
755 	 * in the System V Interface Definition appears to allow returning
756 	 * the main context stack.
757 	 */
758 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
759 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
760 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
761 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
762 	} else {
763 		/* Simply copy alternate signal execution stack. */
764 		ucp->uc_stack = l->l_sigstk;
765 	}
766 	ucp->uc_flags |= _UC_STACK;
767 	mutex_exit(p->p_lock);
768 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
769 	mutex_enter(p->p_lock);
770 }
771 
772 int
773 setucontext(struct lwp *l, const ucontext_t *ucp)
774 {
775 	struct proc *p = l->l_proc;
776 	int error;
777 
778 	KASSERT(mutex_owned(p->p_lock));
779 
780 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
781 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
782 		if (error != 0)
783 			return error;
784 	}
785 
786 	mutex_exit(p->p_lock);
787 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
788 	mutex_enter(p->p_lock);
789 	if (error != 0)
790 		return (error);
791 
792 	l->l_ctxlink = ucp->uc_link;
793 
794 	/*
795 	 * If there was stack information, update whether or not we are
796 	 * still running on an alternate signal stack.
797 	 */
798 	if ((ucp->uc_flags & _UC_STACK) != 0) {
799 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
800 			l->l_sigstk.ss_flags |= SS_ONSTACK;
801 		else
802 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
803 	}
804 
805 	return 0;
806 }
807 
808 /*
809  * killpg1: common code for kill process group/broadcast kill.
810  */
811 int
812 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
813 {
814 	struct proc	*p, *cp;
815 	kauth_cred_t	pc;
816 	struct pgrp	*pgrp;
817 	int		nfound;
818 	int		signo = ksi->ksi_signo;
819 
820 	cp = l->l_proc;
821 	pc = l->l_cred;
822 	nfound = 0;
823 
824 	mutex_enter(&proc_lock);
825 	if (all) {
826 		/*
827 		 * Broadcast.
828 		 */
829 		PROCLIST_FOREACH(p, &allproc) {
830 			if (p->p_pid <= 1 || p == cp ||
831 			    (p->p_flag & PK_SYSTEM) != 0)
832 				continue;
833 			mutex_enter(p->p_lock);
834 			if (kauth_authorize_process(pc,
835 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
836 			    NULL) == 0) {
837 				nfound++;
838 				if (signo)
839 					kpsignal2(p, ksi);
840 			}
841 			mutex_exit(p->p_lock);
842 		}
843 	} else {
844 		if (pgid == 0)
845 			/* Zero pgid means send to my process group. */
846 			pgrp = cp->p_pgrp;
847 		else {
848 			pgrp = pgrp_find(pgid);
849 			if (pgrp == NULL)
850 				goto out;
851 		}
852 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
853 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
854 				continue;
855 			mutex_enter(p->p_lock);
856 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
857 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
858 				nfound++;
859 				if (signo && P_ZOMBIE(p) == 0)
860 					kpsignal2(p, ksi);
861 			}
862 			mutex_exit(p->p_lock);
863 		}
864 	}
865 out:
866 	mutex_exit(&proc_lock);
867 	return nfound ? 0 : ESRCH;
868 }
869 
870 /*
871  * Send a signal to a process group.  If checktty is set, limit to members
872  * which have a controlling terminal.
873  */
874 void
875 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
876 {
877 	ksiginfo_t ksi;
878 
879 	KASSERT(!cpu_intr_p());
880 	KASSERT(mutex_owned(&proc_lock));
881 
882 	KSI_INIT_EMPTY(&ksi);
883 	ksi.ksi_signo = sig;
884 	kpgsignal(pgrp, &ksi, NULL, checkctty);
885 }
886 
887 void
888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
889 {
890 	struct proc *p;
891 
892 	KASSERT(!cpu_intr_p());
893 	KASSERT(mutex_owned(&proc_lock));
894 	KASSERT(pgrp != NULL);
895 
896 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
897 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
898 			kpsignal(p, ksi, data);
899 }
900 
901 /*
902  * Send a signal caused by a trap to the current LWP.  If it will be caught
903  * immediately, deliver it with correct code.  Otherwise, post it normally.
904  */
905 void
906 trapsignal(struct lwp *l, ksiginfo_t *ksi)
907 {
908 	struct proc	*p;
909 	struct sigacts	*ps;
910 	int signo = ksi->ksi_signo;
911 	sigset_t *mask;
912 	sig_t action;
913 
914 	KASSERT(KSI_TRAP_P(ksi));
915 
916 	ksi->ksi_lid = l->l_lid;
917 	p = l->l_proc;
918 
919 	KASSERT(!cpu_intr_p());
920 	mutex_enter(&proc_lock);
921 	mutex_enter(p->p_lock);
922 
923 repeat:
924 	/*
925 	 * If we are exiting, demise now.
926 	 *
927 	 * This avoids notifying tracer and deadlocking.
928 	 */
929 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
930 		mutex_exit(p->p_lock);
931 		mutex_exit(&proc_lock);
932 		lwp_exit(l);
933 		panic("trapsignal");
934 		/* NOTREACHED */
935 	}
936 
937 	/*
938 	 * The process is already stopping.
939 	 */
940 	if ((p->p_sflag & PS_STOPPING) != 0) {
941 		mutex_exit(&proc_lock);
942 		sigswitch_unlock_and_switch_away(l);
943 		mutex_enter(&proc_lock);
944 		mutex_enter(p->p_lock);
945 		goto repeat;
946 	}
947 
948 	mask = &l->l_sigmask;
949 	ps = p->p_sigacts;
950 	action = SIGACTION_PS(ps, signo).sa_handler;
951 
952 	if (ISSET(p->p_slflag, PSL_TRACED) &&
953 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
954 	    p->p_xsig != SIGKILL &&
955 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
956 		p->p_xsig = signo;
957 		p->p_sigctx.ps_faked = true;
958 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
959 		p->p_sigctx.ps_info = ksi->ksi_info;
960 		sigswitch(0, signo, true);
961 
962 		if (ktrpoint(KTR_PSIG)) {
963 			if (p->p_emul->e_ktrpsig)
964 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
965 			else
966 				ktrpsig(signo, action, mask, ksi);
967 		}
968 		return;
969 	}
970 
971 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
972 	const bool masked = sigismember(mask, signo);
973 	if (caught && !masked) {
974 		mutex_exit(&proc_lock);
975 		l->l_ru.ru_nsignals++;
976 		kpsendsig(l, ksi, mask);
977 		mutex_exit(p->p_lock);
978 
979 		if (ktrpoint(KTR_PSIG)) {
980 			if (p->p_emul->e_ktrpsig)
981 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
982 			else
983 				ktrpsig(signo, action, mask, ksi);
984 		}
985 		return;
986 	}
987 
988 	/*
989 	 * If the signal is masked or ignored, then unmask it and
990 	 * reset it to the default action so that the process or
991 	 * its tracer will be notified.
992 	 */
993 	const bool ignored = action == SIG_IGN;
994 	if (masked || ignored) {
995 		mutex_enter(&ps->sa_mutex);
996 		sigdelset(mask, signo);
997 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
998 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
999 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
1000 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1001 		mutex_exit(&ps->sa_mutex);
1002 	}
1003 
1004 	kpsignal2(p, ksi);
1005 	mutex_exit(p->p_lock);
1006 	mutex_exit(&proc_lock);
1007 }
1008 
1009 /*
1010  * Fill in signal information and signal the parent for a child status change.
1011  */
1012 void
1013 child_psignal(struct proc *p, int mask)
1014 {
1015 	ksiginfo_t ksi;
1016 	struct proc *q;
1017 	int xsig;
1018 
1019 	KASSERT(mutex_owned(&proc_lock));
1020 	KASSERT(mutex_owned(p->p_lock));
1021 
1022 	xsig = p->p_xsig;
1023 
1024 	KSI_INIT(&ksi);
1025 	ksi.ksi_signo = SIGCHLD;
1026 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1027 	ksi.ksi_pid = p->p_pid;
1028 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1029 	ksi.ksi_status = xsig;
1030 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1031 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1032 
1033 	q = p->p_pptr;
1034 
1035 	mutex_exit(p->p_lock);
1036 	mutex_enter(q->p_lock);
1037 
1038 	if ((q->p_sflag & mask) == 0)
1039 		kpsignal2(q, &ksi);
1040 
1041 	mutex_exit(q->p_lock);
1042 	mutex_enter(p->p_lock);
1043 }
1044 
1045 void
1046 psignal(struct proc *p, int signo)
1047 {
1048 	ksiginfo_t ksi;
1049 
1050 	KASSERT(!cpu_intr_p());
1051 	KASSERT(mutex_owned(&proc_lock));
1052 
1053 	KSI_INIT_EMPTY(&ksi);
1054 	ksi.ksi_signo = signo;
1055 	mutex_enter(p->p_lock);
1056 	kpsignal2(p, &ksi);
1057 	mutex_exit(p->p_lock);
1058 }
1059 
1060 void
1061 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1062 {
1063 	fdfile_t *ff;
1064 	file_t *fp;
1065 	fdtab_t *dt;
1066 
1067 	KASSERT(!cpu_intr_p());
1068 	KASSERT(mutex_owned(&proc_lock));
1069 
1070 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1071 		size_t fd;
1072 		filedesc_t *fdp = p->p_fd;
1073 
1074 		/* XXXSMP locking */
1075 		ksi->ksi_fd = -1;
1076 		dt = atomic_load_consume(&fdp->fd_dt);
1077 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1078 			if ((ff = dt->dt_ff[fd]) == NULL)
1079 				continue;
1080 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
1081 				continue;
1082 			if (fp->f_data == data) {
1083 				ksi->ksi_fd = fd;
1084 				break;
1085 			}
1086 		}
1087 	}
1088 	mutex_enter(p->p_lock);
1089 	kpsignal2(p, ksi);
1090 	mutex_exit(p->p_lock);
1091 }
1092 
1093 /*
1094  * sigismasked:
1095  *
1096  *	Returns true if signal is ignored or masked for the specified LWP.
1097  */
1098 int
1099 sigismasked(struct lwp *l, int sig)
1100 {
1101 	struct proc *p = l->l_proc;
1102 
1103 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1104 	    sigismember(&l->l_sigmask, sig);
1105 }
1106 
1107 /*
1108  * sigpost:
1109  *
1110  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1111  *	be able to take the signal.
1112  */
1113 static int
1114 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1115 {
1116 	int rv, masked;
1117 	struct proc *p = l->l_proc;
1118 
1119 	KASSERT(mutex_owned(p->p_lock));
1120 
1121 	/*
1122 	 * If the LWP is on the way out, sigclear() will be busy draining all
1123 	 * pending signals.  Don't give it more.
1124 	 */
1125 	if (l->l_stat == LSZOMB)
1126 		return 0;
1127 
1128 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1129 
1130 	lwp_lock(l);
1131 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1132 		if ((prop & SA_KILL) != 0)
1133 			l->l_flag &= ~LW_DBGSUSPEND;
1134 		else {
1135 			lwp_unlock(l);
1136 			return 0;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Have the LWP check for signals.  This ensures that even if no LWP
1142 	 * is found to take the signal immediately, it should be taken soon.
1143 	 */
1144 	signotify(l);
1145 
1146 	/*
1147 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1148 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1149 	 */
1150 	masked = sigismember(&l->l_sigmask, sig);
1151 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1152 		lwp_unlock(l);
1153 		return 0;
1154 	}
1155 
1156 	/*
1157 	 * If killing the process, make it run fast.
1158 	 */
1159 	if (__predict_false((prop & SA_KILL) != 0) &&
1160 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1161 		KASSERT(l->l_class == SCHED_OTHER);
1162 		lwp_changepri(l, MAXPRI_USER);
1163 	}
1164 
1165 	/*
1166 	 * If the LWP is running or on a run queue, then we win.  If it's
1167 	 * sleeping interruptably, wake it and make it take the signal.  If
1168 	 * the sleep isn't interruptable, then the chances are it will get
1169 	 * to see the signal soon anyhow.  If suspended, it can't take the
1170 	 * signal right now.  If it's LWP private or for all LWPs, save it
1171 	 * for later; otherwise punt.
1172 	 */
1173 	rv = 0;
1174 
1175 	switch (l->l_stat) {
1176 	case LSRUN:
1177 	case LSONPROC:
1178 		rv = 1;
1179 		break;
1180 
1181 	case LSSLEEP:
1182 		if ((l->l_flag & LW_SINTR) != 0) {
1183 			/* setrunnable() will release the lock. */
1184 			setrunnable(l);
1185 			return 1;
1186 		}
1187 		break;
1188 
1189 	case LSSUSPENDED:
1190 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1191 			/* lwp_continue() will release the lock. */
1192 			lwp_continue(l);
1193 			return 1;
1194 		}
1195 		break;
1196 
1197 	case LSSTOP:
1198 		if ((prop & SA_STOP) != 0)
1199 			break;
1200 
1201 		/*
1202 		 * If the LWP is stopped and we are sending a continue
1203 		 * signal, then start it again.
1204 		 */
1205 		if ((prop & SA_CONT) != 0) {
1206 			if (l->l_wchan != NULL) {
1207 				l->l_stat = LSSLEEP;
1208 				p->p_nrlwps++;
1209 				rv = 1;
1210 				break;
1211 			}
1212 			/* setrunnable() will release the lock. */
1213 			setrunnable(l);
1214 			return 1;
1215 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1216 			/* setrunnable() will release the lock. */
1217 			setrunnable(l);
1218 			return 1;
1219 		}
1220 		break;
1221 
1222 	default:
1223 		break;
1224 	}
1225 
1226 	lwp_unlock(l);
1227 	return rv;
1228 }
1229 
1230 /*
1231  * Notify an LWP that it has a pending signal.
1232  */
1233 void
1234 signotify(struct lwp *l)
1235 {
1236 	KASSERT(lwp_locked(l, NULL));
1237 
1238 	l->l_flag |= LW_PENDSIG;
1239 	lwp_need_userret(l);
1240 }
1241 
1242 /*
1243  * Find an LWP within process p that is waiting on signal ksi, and hand
1244  * it on.
1245  */
1246 static int
1247 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1248 {
1249 	struct lwp *l;
1250 	int signo;
1251 
1252 	KASSERT(mutex_owned(p->p_lock));
1253 
1254 	signo = ksi->ksi_signo;
1255 
1256 	if (ksi->ksi_lid != 0) {
1257 		/*
1258 		 * Signal came via _lwp_kill().  Find the LWP and see if
1259 		 * it's interested.
1260 		 */
1261 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1262 			return 0;
1263 		if (l->l_sigwaited == NULL ||
1264 		    !sigismember(&l->l_sigwaitset, signo))
1265 			return 0;
1266 	} else {
1267 		/*
1268 		 * Look for any LWP that may be interested.
1269 		 */
1270 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1271 			KASSERT(l->l_sigwaited != NULL);
1272 			if (sigismember(&l->l_sigwaitset, signo))
1273 				break;
1274 		}
1275 	}
1276 
1277 	if (l != NULL) {
1278 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1279 		l->l_sigwaited = NULL;
1280 		LIST_REMOVE(l, l_sigwaiter);
1281 		cv_signal(&l->l_sigcv);
1282 		return 1;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Send the signal to the process.  If the signal has an action, the action
1290  * is usually performed by the target process rather than the caller; we add
1291  * the signal to the set of pending signals for the process.
1292  *
1293  * Exceptions:
1294  *   o When a stop signal is sent to a sleeping process that takes the
1295  *     default action, the process is stopped without awakening it.
1296  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1297  *     regardless of the signal action (eg, blocked or ignored).
1298  *
1299  * Other ignored signals are discarded immediately.
1300  */
1301 int
1302 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1303 {
1304 	int prop, signo = ksi->ksi_signo;
1305 	struct lwp *l = NULL;
1306 	ksiginfo_t *kp;
1307 	lwpid_t lid;
1308 	sig_t action;
1309 	bool toall;
1310 	bool traced;
1311 	int error = 0;
1312 
1313 	KASSERT(!cpu_intr_p());
1314 	KASSERT(mutex_owned(&proc_lock));
1315 	KASSERT(mutex_owned(p->p_lock));
1316 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1317 	KASSERT(signo > 0 && signo < NSIG);
1318 
1319 	/*
1320 	 * If the process is being created by fork, is a zombie or is
1321 	 * exiting, then just drop the signal here and bail out.
1322 	 */
1323 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1324 		return 0;
1325 
1326 	/*
1327 	 * Notify any interested parties of the signal.
1328 	 */
1329 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1330 
1331 	/*
1332 	 * Some signals including SIGKILL must act on the entire process.
1333 	 */
1334 	kp = NULL;
1335 	prop = sigprop[signo];
1336 	toall = ((prop & SA_TOALL) != 0);
1337 	lid = toall ? 0 : ksi->ksi_lid;
1338 	traced = ISSET(p->p_slflag, PSL_TRACED) &&
1339 	    !sigismember(&p->p_sigctx.ps_sigpass, signo);
1340 
1341 	/*
1342 	 * If proc is traced, always give parent a chance.
1343 	 */
1344 	if (traced) {
1345 		action = SIG_DFL;
1346 
1347 		if (lid == 0) {
1348 			/*
1349 			 * If the process is being traced and the signal
1350 			 * is being caught, make sure to save any ksiginfo.
1351 			 */
1352 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1353 				goto discard;
1354 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1355 				goto out;
1356 		}
1357 	} else {
1358 
1359 		/*
1360 		 * If the signal is being ignored, then drop it.  Note: we
1361 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1362 		 * SIG_IGN, action will be SIG_DFL here.
1363 		 */
1364 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1365 			goto discard;
1366 
1367 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1368 			action = SIG_CATCH;
1369 		else {
1370 			action = SIG_DFL;
1371 
1372 			/*
1373 			 * If sending a tty stop signal to a member of an
1374 			 * orphaned process group, discard the signal here if
1375 			 * the action is default; don't stop the process below
1376 			 * if sleeping, and don't clear any pending SIGCONT.
1377 			 */
1378 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1379 				goto discard;
1380 
1381 			if (prop & SA_KILL && p->p_nice > NZERO)
1382 				p->p_nice = NZERO;
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * If stopping or continuing a process, discard any pending
1388 	 * signals that would do the inverse.
1389 	 */
1390 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1391 		ksiginfoq_t kq;
1392 
1393 		ksiginfo_queue_init(&kq);
1394 		if ((prop & SA_CONT) != 0)
1395 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1396 		if ((prop & SA_STOP) != 0)
1397 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1398 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1399 	}
1400 
1401 	/*
1402 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1403 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1404 	 * the signal info.  The signal won't be processed further here.
1405 	 */
1406 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1407 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1408 	    sigunwait(p, ksi))
1409 		goto discard;
1410 
1411 	/*
1412 	 * XXXSMP Should be allocated by the caller, we're holding locks
1413 	 * here.
1414 	 */
1415 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1416 		goto discard;
1417 
1418 	/*
1419 	 * LWP private signals are easy - just find the LWP and post
1420 	 * the signal to it.
1421 	 */
1422 	if (lid != 0) {
1423 		l = lwp_find(p, lid);
1424 		if (l != NULL) {
1425 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1426 				goto out;
1427 			membar_producer();
1428 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1429 				signo = -1;
1430 		}
1431 		goto out;
1432 	}
1433 
1434 	/*
1435 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1436 	 * or for an SA process.
1437 	 */
1438 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1439 		if (traced)
1440 			goto deliver;
1441 
1442 		/*
1443 		 * If SIGCONT is default (or ignored) and process is
1444 		 * asleep, we are finished; the process should not
1445 		 * be awakened.
1446 		 */
1447 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1448 			goto out;
1449 	} else {
1450 		/*
1451 		 * Process is stopped or stopping.
1452 		 * - If traced, then no action is needed, unless killing.
1453 		 * - Run the process only if sending SIGCONT or SIGKILL.
1454 		 */
1455 		if (traced && signo != SIGKILL) {
1456 			goto out;
1457 		}
1458 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1459 			/*
1460 			 * Re-adjust p_nstopchild if the process was
1461 			 * stopped but not yet collected by its parent.
1462 			 */
1463 			if (p->p_stat == SSTOP && !p->p_waited)
1464 				p->p_pptr->p_nstopchild--;
1465 			p->p_stat = SACTIVE;
1466 			p->p_sflag &= ~PS_STOPPING;
1467 			if (traced) {
1468 				KASSERT(signo == SIGKILL);
1469 				goto deliver;
1470 			}
1471 			/*
1472 			 * Do not make signal pending if SIGCONT is default.
1473 			 *
1474 			 * If the process catches SIGCONT, let it handle the
1475 			 * signal itself (if waiting on event - process runs,
1476 			 * otherwise continues sleeping).
1477 			 */
1478 			if ((prop & SA_CONT) != 0) {
1479 				p->p_xsig = SIGCONT;
1480 				p->p_sflag |= PS_CONTINUED;
1481 				child_psignal(p, 0);
1482 				if (action == SIG_DFL) {
1483 					KASSERT(signo != SIGKILL);
1484 					goto deliver;
1485 				}
1486 			}
1487 		} else if ((prop & SA_STOP) != 0) {
1488 			/*
1489 			 * Already stopped, don't need to stop again.
1490 			 * (If we did the shell could get confused.)
1491 			 */
1492 			goto out;
1493 		}
1494 	}
1495 	/*
1496 	 * Make signal pending.
1497 	 */
1498 	KASSERT(!traced);
1499 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1500 		goto out;
1501 deliver:
1502 	/*
1503 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1504 	 * visible on the per process list (for sigispending()).  This
1505 	 * is unlikely to be needed in practice, but...
1506 	 */
1507 	membar_producer();
1508 
1509 	/*
1510 	 * Try to find an LWP that can take the signal.
1511 	 */
1512 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1513 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1514 			break;
1515 	}
1516 	signo = -1;
1517 out:
1518 	/*
1519 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1520 	 * with locks held.  The caller should take care of this.
1521 	 */
1522 	ksiginfo_free(kp);
1523 	if (signo == -1)
1524 		return error;
1525 discard:
1526 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1527 	return error;
1528 }
1529 
1530 void
1531 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1532 {
1533 	struct proc *p = l->l_proc;
1534 
1535 	KASSERT(mutex_owned(p->p_lock));
1536 	(*p->p_emul->e_sendsig)(ksi, mask);
1537 }
1538 
1539 /*
1540  * Stop any LWPs sleeping interruptably.
1541  */
1542 static void
1543 proc_stop_lwps(struct proc *p)
1544 {
1545 	struct lwp *l;
1546 
1547 	KASSERT(mutex_owned(p->p_lock));
1548 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1549 
1550 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1551 		lwp_lock(l);
1552 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1553 			l->l_stat = LSSTOP;
1554 			p->p_nrlwps--;
1555 		}
1556 		lwp_unlock(l);
1557 	}
1558 }
1559 
1560 /*
1561  * Finish stopping of a process.  Mark it stopped and notify the parent.
1562  *
1563  * Drop p_lock briefly if ppsig is true.
1564  */
1565 static void
1566 proc_stop_done(struct proc *p, int ppmask)
1567 {
1568 
1569 	KASSERT(mutex_owned(&proc_lock));
1570 	KASSERT(mutex_owned(p->p_lock));
1571 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1572 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1573 
1574 	p->p_sflag &= ~PS_STOPPING;
1575 	p->p_stat = SSTOP;
1576 	p->p_waited = 0;
1577 	p->p_pptr->p_nstopchild++;
1578 
1579 	/* child_psignal drops p_lock briefly. */
1580 	child_psignal(p, ppmask);
1581 	cv_broadcast(&p->p_pptr->p_waitcv);
1582 }
1583 
1584 /*
1585  * Stop the current process and switch away to the debugger notifying
1586  * an event specific to a traced process only.
1587  */
1588 void
1589 eventswitch(int code, int pe_report_event, int entity)
1590 {
1591 	struct lwp *l = curlwp;
1592 	struct proc *p = l->l_proc;
1593 	struct sigacts *ps;
1594 	sigset_t *mask;
1595 	sig_t action;
1596 	ksiginfo_t ksi;
1597 	const int signo = SIGTRAP;
1598 
1599 	KASSERT(mutex_owned(&proc_lock));
1600 	KASSERT(mutex_owned(p->p_lock));
1601 	KASSERT(p->p_pptr != initproc);
1602 	KASSERT(l->l_stat == LSONPROC);
1603 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1604 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1605 	KASSERT(p->p_nrlwps > 0);
1606 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1607 	        (code == TRAP_EXEC));
1608 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1609 	KASSERT((code != TRAP_LWP) || (entity > 0));
1610 
1611 repeat:
1612 	/*
1613 	 * If we are exiting, demise now.
1614 	 *
1615 	 * This avoids notifying tracer and deadlocking.
1616 	 */
1617 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1618 		mutex_exit(p->p_lock);
1619 		mutex_exit(&proc_lock);
1620 
1621 		if (pe_report_event == PTRACE_LWP_EXIT) {
1622 			/* Avoid double lwp_exit() and panic. */
1623 			return;
1624 		}
1625 
1626 		lwp_exit(l);
1627 		panic("eventswitch");
1628 		/* NOTREACHED */
1629 	}
1630 
1631 	/*
1632 	 * If we are no longer traced, abandon this event signal.
1633 	 *
1634 	 * This avoids killing a process after detaching the debugger.
1635 	 */
1636 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1637 		mutex_exit(p->p_lock);
1638 		mutex_exit(&proc_lock);
1639 		return;
1640 	}
1641 
1642 	/*
1643 	 * If there's a pending SIGKILL process it immediately.
1644 	 */
1645 	if (p->p_xsig == SIGKILL ||
1646 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1647 		mutex_exit(p->p_lock);
1648 		mutex_exit(&proc_lock);
1649 		return;
1650 	}
1651 
1652 	/*
1653 	 * The process is already stopping.
1654 	 */
1655 	if ((p->p_sflag & PS_STOPPING) != 0) {
1656 		mutex_exit(&proc_lock);
1657 		sigswitch_unlock_and_switch_away(l);
1658 		mutex_enter(&proc_lock);
1659 		mutex_enter(p->p_lock);
1660 		goto repeat;
1661 	}
1662 
1663 	KSI_INIT_TRAP(&ksi);
1664 	ksi.ksi_lid = l->l_lid;
1665 	ksi.ksi_signo = signo;
1666 	ksi.ksi_code = code;
1667 	ksi.ksi_pe_report_event = pe_report_event;
1668 
1669 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1670 	ksi.ksi_pe_other_pid = entity;
1671 
1672 	/* Needed for ktrace */
1673 	ps = p->p_sigacts;
1674 	action = SIGACTION_PS(ps, signo).sa_handler;
1675 	mask = &l->l_sigmask;
1676 
1677 	p->p_xsig = signo;
1678 	p->p_sigctx.ps_faked = true;
1679 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
1680 	p->p_sigctx.ps_info = ksi.ksi_info;
1681 
1682 	sigswitch(0, signo, true);
1683 
1684 	if (code == TRAP_CHLD) {
1685 		mutex_enter(&proc_lock);
1686 		while (l->l_vforkwaiting)
1687 			cv_wait(&l->l_waitcv, &proc_lock);
1688 		mutex_exit(&proc_lock);
1689 	}
1690 
1691 	if (ktrpoint(KTR_PSIG)) {
1692 		if (p->p_emul->e_ktrpsig)
1693 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1694 		else
1695 			ktrpsig(signo, action, mask, &ksi);
1696 	}
1697 }
1698 
1699 void
1700 eventswitchchild(struct proc *p, int code, int pe_report_event)
1701 {
1702 	mutex_enter(&proc_lock);
1703 	mutex_enter(p->p_lock);
1704 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) !=
1705 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
1706 		mutex_exit(p->p_lock);
1707 		mutex_exit(&proc_lock);
1708 		return;
1709 	}
1710 	eventswitch(code, pe_report_event, p->p_oppid);
1711 }
1712 
1713 /*
1714  * Stop the current process and switch away when being stopped or traced.
1715  */
1716 static void
1717 sigswitch(int ppmask, int signo, bool proc_lock_held)
1718 {
1719 	struct lwp *l = curlwp;
1720 	struct proc *p = l->l_proc;
1721 
1722 	KASSERT(mutex_owned(p->p_lock));
1723 	KASSERT(l->l_stat == LSONPROC);
1724 	KASSERT(p->p_nrlwps > 0);
1725 
1726 	if (proc_lock_held) {
1727 		KASSERT(mutex_owned(&proc_lock));
1728 	} else {
1729 		KASSERT(!mutex_owned(&proc_lock));
1730 	}
1731 
1732 	/*
1733 	 * On entry we know that the process needs to stop.  If it's
1734 	 * the result of a 'sideways' stop signal that has been sourced
1735 	 * through issignal(), then stop other LWPs in the process too.
1736 	 */
1737 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1738 		KASSERT(signo != 0);
1739 		proc_stop(p, signo);
1740 		KASSERT(p->p_nrlwps > 0);
1741 	}
1742 
1743 	/*
1744 	 * If we are the last live LWP, and the stop was a result of
1745 	 * a new signal, then signal the parent.
1746 	 */
1747 	if ((p->p_sflag & PS_STOPPING) != 0) {
1748 		if (!proc_lock_held && !mutex_tryenter(&proc_lock)) {
1749 			mutex_exit(p->p_lock);
1750 			mutex_enter(&proc_lock);
1751 			mutex_enter(p->p_lock);
1752 		}
1753 
1754 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1755 			/*
1756 			 * Note that proc_stop_done() can drop
1757 			 * p->p_lock briefly.
1758 			 */
1759 			proc_stop_done(p, ppmask);
1760 		}
1761 
1762 		mutex_exit(&proc_lock);
1763 	}
1764 
1765 	sigswitch_unlock_and_switch_away(l);
1766 }
1767 
1768 /*
1769  * Unlock and switch away.
1770  */
1771 static void
1772 sigswitch_unlock_and_switch_away(struct lwp *l)
1773 {
1774 	struct proc *p;
1775 	int biglocks;
1776 
1777 	p = l->l_proc;
1778 
1779 	KASSERT(mutex_owned(p->p_lock));
1780 	KASSERT(!mutex_owned(&proc_lock));
1781 
1782 	KASSERT(l->l_stat == LSONPROC);
1783 	KASSERT(p->p_nrlwps > 0);
1784 
1785 	KERNEL_UNLOCK_ALL(l, &biglocks);
1786 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1787 		p->p_nrlwps--;
1788 		lwp_lock(l);
1789 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1790 		l->l_stat = LSSTOP;
1791 		lwp_unlock(l);
1792 	}
1793 
1794 	mutex_exit(p->p_lock);
1795 	lwp_lock(l);
1796 	spc_lock(l->l_cpu);
1797 	mi_switch(l);
1798 	KERNEL_LOCK(biglocks, l);
1799 }
1800 
1801 /*
1802  * Check for a signal from the debugger.
1803  */
1804 static int
1805 sigchecktrace(void)
1806 {
1807 	struct lwp *l = curlwp;
1808 	struct proc *p = l->l_proc;
1809 	int signo;
1810 
1811 	KASSERT(mutex_owned(p->p_lock));
1812 
1813 	/* If there's a pending SIGKILL, process it immediately. */
1814 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1815 		return 0;
1816 
1817 	/*
1818 	 * If we are no longer being traced, or the parent didn't
1819 	 * give us a signal, or we're stopping, look for more signals.
1820 	 */
1821 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1822 	    (p->p_sflag & PS_STOPPING) != 0)
1823 		return 0;
1824 
1825 	/*
1826 	 * If the new signal is being masked, look for other signals.
1827 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1828 	 */
1829 	signo = p->p_xsig;
1830 	p->p_xsig = 0;
1831 	if (sigismember(&l->l_sigmask, signo)) {
1832 		signo = 0;
1833 	}
1834 	return signo;
1835 }
1836 
1837 /*
1838  * If the current process has received a signal (should be caught or cause
1839  * termination, should interrupt current syscall), return the signal number.
1840  *
1841  * Stop signals with default action are processed immediately, then cleared;
1842  * they aren't returned.  This is checked after each entry to the system for
1843  * a syscall or trap.
1844  *
1845  * We will also return -1 if the process is exiting and the current LWP must
1846  * follow suit.
1847  */
1848 int
1849 issignal(struct lwp *l)
1850 {
1851 	struct proc *p;
1852 	int siglwp, signo, prop;
1853 	sigpend_t *sp;
1854 	sigset_t ss;
1855 	bool traced;
1856 
1857 	p = l->l_proc;
1858 	sp = NULL;
1859 	signo = 0;
1860 
1861 	KASSERT(p == curproc);
1862 	KASSERT(mutex_owned(p->p_lock));
1863 
1864 	for (;;) {
1865 		/* Discard any signals that we have decided not to take. */
1866 		if (signo != 0) {
1867 			(void)sigget(sp, NULL, signo, NULL);
1868 		}
1869 
1870 		/*
1871 		 * If the process is stopped/stopping, then stop ourselves
1872 		 * now that we're on the kernel/userspace boundary.  When
1873 		 * we awaken, check for a signal from the debugger.
1874 		 */
1875 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1876 			sigswitch_unlock_and_switch_away(l);
1877 			mutex_enter(p->p_lock);
1878 			continue;
1879 		} else if (p->p_stat == SACTIVE)
1880 			signo = sigchecktrace();
1881 		else
1882 			signo = 0;
1883 
1884 		/* Signals from the debugger are "out of band". */
1885 		sp = NULL;
1886 
1887 		/*
1888 		 * If the debugger didn't provide a signal, find a pending
1889 		 * signal from our set.  Check per-LWP signals first, and
1890 		 * then per-process.
1891 		 */
1892 		if (signo == 0) {
1893 			sp = &l->l_sigpend;
1894 			ss = sp->sp_set;
1895 			siglwp = l->l_lid;
1896 			if ((p->p_lflag & PL_PPWAIT) != 0)
1897 				sigminusset(&vforksigmask, &ss);
1898 			sigminusset(&l->l_sigmask, &ss);
1899 
1900 			if ((signo = firstsig(&ss)) == 0) {
1901 				sp = &p->p_sigpend;
1902 				ss = sp->sp_set;
1903 				siglwp = 0;
1904 				if ((p->p_lflag & PL_PPWAIT) != 0)
1905 					sigminusset(&vforksigmask, &ss);
1906 				sigminusset(&l->l_sigmask, &ss);
1907 
1908 				if ((signo = firstsig(&ss)) == 0) {
1909 					/*
1910 					 * No signal pending - clear the
1911 					 * indicator and bail out.
1912 					 */
1913 					lwp_lock(l);
1914 					l->l_flag &= ~LW_PENDSIG;
1915 					lwp_unlock(l);
1916 					sp = NULL;
1917 					break;
1918 				}
1919 			}
1920 		}
1921 
1922 		traced = ISSET(p->p_slflag, PSL_TRACED) &&
1923 		    !sigismember(&p->p_sigctx.ps_sigpass, signo);
1924 
1925 		if (sp) {
1926 			/* Overwrite process' signal context to correspond
1927 			 * to the currently reported LWP.  This is necessary
1928 			 * for PT_GET_SIGINFO to report the correct signal when
1929 			 * multiple LWPs have pending signals.  We do this only
1930 			 * when the signal comes from the queue, for signals
1931 			 * created by the debugger we assume it set correct
1932 			 * siginfo.
1933 			 */
1934 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1935 			if (ksi) {
1936 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
1937 				p->p_sigctx.ps_info = ksi->ksi_info;
1938 			} else {
1939 				p->p_sigctx.ps_lwp = siglwp;
1940 				memset(&p->p_sigctx.ps_info, 0,
1941 				    sizeof(p->p_sigctx.ps_info));
1942 				p->p_sigctx.ps_info._signo = signo;
1943 				p->p_sigctx.ps_info._code = SI_NOINFO;
1944 			}
1945 		}
1946 
1947 		/*
1948 		 * We should see pending but ignored signals only if
1949 		 * we are being traced.
1950 		 */
1951 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1952 		    !traced) {
1953 			/* Discard the signal. */
1954 			continue;
1955 		}
1956 
1957 		/*
1958 		 * If traced, always stop, and stay stopped until released
1959 		 * by the debugger.  If the our parent is our debugger waiting
1960 		 * for us and we vforked, don't hang as we could deadlock.
1961 		 */
1962 		if (traced && signo != SIGKILL &&
1963 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
1964 		     (p->p_pptr == p->p_opptr))) {
1965 			/*
1966 			 * Take the signal, but don't remove it from the
1967 			 * siginfo queue, because the debugger can send
1968 			 * it later.
1969 			 */
1970 			if (sp)
1971 				sigdelset(&sp->sp_set, signo);
1972 			p->p_xsig = signo;
1973 
1974 			/* Handling of signal trace */
1975 			sigswitch(0, signo, false);
1976 			mutex_enter(p->p_lock);
1977 
1978 			/* Check for a signal from the debugger. */
1979 			if ((signo = sigchecktrace()) == 0)
1980 				continue;
1981 
1982 			/* Signals from the debugger are "out of band". */
1983 			sp = NULL;
1984 		}
1985 
1986 		prop = sigprop[signo];
1987 
1988 		/*
1989 		 * Decide whether the signal should be returned.
1990 		 */
1991 		switch ((long)SIGACTION(p, signo).sa_handler) {
1992 		case (long)SIG_DFL:
1993 			/*
1994 			 * Don't take default actions on system processes.
1995 			 */
1996 			if (p->p_pid <= 1) {
1997 #ifdef DIAGNOSTIC
1998 				/*
1999 				 * Are you sure you want to ignore SIGSEGV
2000 				 * in init? XXX
2001 				 */
2002 				printf_nolog("Process (pid %d) got sig %d\n",
2003 				    p->p_pid, signo);
2004 #endif
2005 				continue;
2006 			}
2007 
2008 			/*
2009 			 * If there is a pending stop signal to process with
2010 			 * default action, stop here, then clear the signal.
2011 			 * However, if process is member of an orphaned
2012 			 * process group, ignore tty stop signals.
2013 			 */
2014 			if (prop & SA_STOP) {
2015 				/*
2016 				 * XXX Don't hold proc_lock for p_lflag,
2017 				 * but it's not a big deal.
2018 				 */
2019 				if ((traced &&
2020 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
2021 				     (p->p_pptr == p->p_opptr))) ||
2022 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
2023 				    prop & SA_TTYSTOP)) {
2024 					/* Ignore the signal. */
2025 					continue;
2026 				}
2027 				/* Take the signal. */
2028 				(void)sigget(sp, NULL, signo, NULL);
2029 				p->p_xsig = signo;
2030 				p->p_sflag &= ~PS_CONTINUED;
2031 				signo = 0;
2032 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2033 				mutex_enter(p->p_lock);
2034 			} else if (prop & SA_IGNORE) {
2035 				/*
2036 				 * Except for SIGCONT, shouldn't get here.
2037 				 * Default action is to ignore; drop it.
2038 				 */
2039 				continue;
2040 			}
2041 			break;
2042 
2043 		case (long)SIG_IGN:
2044 #ifdef DEBUG_ISSIGNAL
2045 			/*
2046 			 * Masking above should prevent us ever trying
2047 			 * to take action on an ignored signal other
2048 			 * than SIGCONT, unless process is traced.
2049 			 */
2050 			if ((prop & SA_CONT) == 0 && !traced)
2051 				printf_nolog("issignal\n");
2052 #endif
2053 			continue;
2054 
2055 		default:
2056 			/*
2057 			 * This signal has an action, let postsig() process
2058 			 * it.
2059 			 */
2060 			break;
2061 		}
2062 
2063 		break;
2064 	}
2065 
2066 	l->l_sigpendset = sp;
2067 	return signo;
2068 }
2069 
2070 /*
2071  * Take the action for the specified signal
2072  * from the current set of pending signals.
2073  */
2074 void
2075 postsig(int signo)
2076 {
2077 	struct lwp	*l;
2078 	struct proc	*p;
2079 	struct sigacts	*ps;
2080 	sig_t		action;
2081 	sigset_t	*returnmask;
2082 	ksiginfo_t	ksi;
2083 
2084 	l = curlwp;
2085 	p = l->l_proc;
2086 	ps = p->p_sigacts;
2087 
2088 	KASSERT(mutex_owned(p->p_lock));
2089 	KASSERT(signo > 0);
2090 
2091 	/*
2092 	 * Set the new mask value and also defer further occurrences of this
2093 	 * signal.
2094 	 *
2095 	 * Special case: user has done a sigsuspend.  Here the current mask is
2096 	 * not of interest, but rather the mask from before the sigsuspend is
2097 	 * what we want restored after the signal processing is completed.
2098 	 */
2099 	if (l->l_sigrestore) {
2100 		returnmask = &l->l_sigoldmask;
2101 		l->l_sigrestore = 0;
2102 	} else
2103 		returnmask = &l->l_sigmask;
2104 
2105 	/*
2106 	 * Commit to taking the signal before releasing the mutex.
2107 	 */
2108 	action = SIGACTION_PS(ps, signo).sa_handler;
2109 	l->l_ru.ru_nsignals++;
2110 	if (l->l_sigpendset == NULL) {
2111 		/* From the debugger */
2112 		if (p->p_sigctx.ps_faked &&
2113 		    signo == p->p_sigctx.ps_info._signo) {
2114 			KSI_INIT(&ksi);
2115 			ksi.ksi_info = p->p_sigctx.ps_info;
2116 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
2117 			p->p_sigctx.ps_faked = false;
2118 		} else {
2119 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2120 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
2121 		}
2122 	} else
2123 		sigget(l->l_sigpendset, &ksi, signo, NULL);
2124 
2125 	if (ktrpoint(KTR_PSIG)) {
2126 		mutex_exit(p->p_lock);
2127 		if (p->p_emul->e_ktrpsig)
2128 			p->p_emul->e_ktrpsig(signo, action,
2129 			    returnmask, &ksi);
2130 		else
2131 			ktrpsig(signo, action, returnmask, &ksi);
2132 		mutex_enter(p->p_lock);
2133 	}
2134 
2135 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2136 
2137 	if (action == SIG_DFL) {
2138 		/*
2139 		 * Default action, where the default is to kill
2140 		 * the process.  (Other cases were ignored above.)
2141 		 */
2142 		sigexit(l, signo);
2143 		return;
2144 	}
2145 
2146 	/*
2147 	 * If we get here, the signal must be caught.
2148 	 */
2149 #ifdef DIAGNOSTIC
2150 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2151 		panic("postsig action");
2152 #endif
2153 
2154 	kpsendsig(l, &ksi, returnmask);
2155 }
2156 
2157 /*
2158  * sendsig:
2159  *
2160  *	Default signal delivery method for NetBSD.
2161  */
2162 void
2163 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2164 {
2165 	struct sigacts *sa;
2166 	int sig;
2167 
2168 	sig = ksi->ksi_signo;
2169 	sa = curproc->p_sigacts;
2170 
2171 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2172 	case __SIGTRAMP_SIGCODE_VERSION:
2173 #ifdef __HAVE_STRUCT_SIGCONTEXT
2174 	case __SIGTRAMP_SIGCONTEXT_VERSION_MIN ...
2175 	     __SIGTRAMP_SIGCONTEXT_VERSION_MAX:
2176 		/* Compat for 1.6 and earlier. */
2177 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2178 		    break);
2179 		return;
2180 #endif /* __HAVE_STRUCT_SIGCONTEXT */
2181 	case __SIGTRAMP_SIGINFO_VERSION_MIN ...
2182 	     __SIGTRAMP_SIGINFO_VERSION_MAX:
2183 		sendsig_siginfo(ksi, mask);
2184 		return;
2185 	default:
2186 		break;
2187 	}
2188 
2189 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2190 	sigexit(curlwp, SIGILL);
2191 }
2192 
2193 /*
2194  * sendsig_reset:
2195  *
2196  *	Reset the signal action.  Called from emulation specific sendsig()
2197  *	before unlocking to deliver the signal.
2198  */
2199 void
2200 sendsig_reset(struct lwp *l, int signo)
2201 {
2202 	struct proc *p = l->l_proc;
2203 	struct sigacts *ps = p->p_sigacts;
2204 
2205 	KASSERT(mutex_owned(p->p_lock));
2206 
2207 	p->p_sigctx.ps_lwp = 0;
2208 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2209 
2210 	mutex_enter(&ps->sa_mutex);
2211 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2212 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2213 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2214 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2215 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2216 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2217 	}
2218 	mutex_exit(&ps->sa_mutex);
2219 }
2220 
2221 /*
2222  * Kill the current process for stated reason.
2223  */
2224 void
2225 killproc(struct proc *p, const char *why)
2226 {
2227 
2228 	KASSERT(mutex_owned(&proc_lock));
2229 
2230 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2231 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2232 	psignal(p, SIGKILL);
2233 }
2234 
2235 /*
2236  * Force the current process to exit with the specified signal, dumping core
2237  * if appropriate.  We bypass the normal tests for masked and caught
2238  * signals, allowing unrecoverable failures to terminate the process without
2239  * changing signal state.  Mark the accounting record with the signal
2240  * termination.  If dumping core, save the signal number for the debugger.
2241  * Calls exit and does not return.
2242  */
2243 void
2244 sigexit(struct lwp *l, int signo)
2245 {
2246 	int exitsig, error, docore;
2247 	struct proc *p;
2248 	struct lwp *t;
2249 
2250 	p = l->l_proc;
2251 
2252 	KASSERT(mutex_owned(p->p_lock));
2253 	KERNEL_UNLOCK_ALL(l, NULL);
2254 
2255 	/*
2256 	 * Don't permit coredump() multiple times in the same process.
2257 	 * Call back into sigexit, where we will be suspended until
2258 	 * the deed is done.  Note that this is a recursive call, but
2259 	 * LW_WCORE will prevent us from coming back this way.
2260 	 */
2261 	if ((p->p_sflag & PS_WCORE) != 0) {
2262 		lwp_lock(l);
2263 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2264 		lwp_unlock(l);
2265 		mutex_exit(p->p_lock);
2266 		lwp_userret(l);
2267 		panic("sigexit 1");
2268 		/* NOTREACHED */
2269 	}
2270 
2271 	/* If process is already on the way out, then bail now. */
2272 	if ((p->p_sflag & PS_WEXIT) != 0) {
2273 		mutex_exit(p->p_lock);
2274 		lwp_exit(l);
2275 		panic("sigexit 2");
2276 		/* NOTREACHED */
2277 	}
2278 
2279 	/*
2280 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2281 	 * so that their registers are available long enough to be dumped.
2282  	 */
2283 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2284 		p->p_sflag |= PS_WCORE;
2285 		for (;;) {
2286 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2287 				lwp_lock(t);
2288 				if (t == l) {
2289 					t->l_flag &=
2290 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
2291 					lwp_unlock(t);
2292 					continue;
2293 				}
2294 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2295 				lwp_suspend(l, t);
2296 			}
2297 
2298 			if (p->p_nrlwps == 1)
2299 				break;
2300 
2301 			/*
2302 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2303 			 * for everyone else to stop before proceeding.
2304 			 */
2305 			p->p_nlwpwait++;
2306 			cv_broadcast(&p->p_lwpcv);
2307 			cv_wait(&p->p_lwpcv, p->p_lock);
2308 			p->p_nlwpwait--;
2309 		}
2310 	}
2311 
2312 	exitsig = signo;
2313 	p->p_acflag |= AXSIG;
2314 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2315 	p->p_sigctx.ps_info._signo = signo;
2316 	p->p_sigctx.ps_info._code = SI_NOINFO;
2317 
2318 	if (docore) {
2319 		mutex_exit(p->p_lock);
2320 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2321 
2322 		if (kern_logsigexit) {
2323 			int uid = l->l_cred ?
2324 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2325 
2326 			if (error)
2327 				log(LOG_INFO, lognocoredump, p->p_pid,
2328 				    p->p_comm, uid, signo, error);
2329 			else
2330 				log(LOG_INFO, logcoredump, p->p_pid,
2331 				    p->p_comm, uid, signo);
2332 		}
2333 
2334 #ifdef PAX_SEGVGUARD
2335 		rw_enter(&exec_lock, RW_WRITER);
2336 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2337 		rw_exit(&exec_lock);
2338 #endif /* PAX_SEGVGUARD */
2339 
2340 		/* Acquire the sched state mutex.  exit1() will release it. */
2341 		mutex_enter(p->p_lock);
2342 		if (error == 0)
2343 			p->p_sflag |= PS_COREDUMP;
2344 	}
2345 
2346 	/* No longer dumping core. */
2347 	p->p_sflag &= ~PS_WCORE;
2348 
2349 	exit1(l, 0, exitsig);
2350 	/* NOTREACHED */
2351 }
2352 
2353 /*
2354  * Since the "real" code may (or may not) be present in loadable module,
2355  * we provide routines here which calls the module hooks.
2356  */
2357 
2358 int
2359 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2360 {
2361 
2362 	int retval;
2363 
2364 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2365 	return retval;
2366 }
2367 
2368 int
2369 coredump_netbsd32(struct lwp *l, struct coredump_iostate *iocookie)
2370 {
2371 
2372 	int retval;
2373 
2374 	MODULE_HOOK_CALL(coredump_netbsd32_hook, (l, iocookie), ENOSYS, retval);
2375 	return retval;
2376 }
2377 
2378 int
2379 coredump_elf32(struct lwp *l, struct coredump_iostate *iocookie)
2380 {
2381 	int retval;
2382 
2383 	MODULE_HOOK_CALL(coredump_elf32_hook, (l, iocookie), ENOSYS, retval);
2384 	return retval;
2385 }
2386 
2387 int
2388 coredump_elf64(struct lwp *l, struct coredump_iostate *iocookie)
2389 {
2390 	int retval;
2391 
2392 	MODULE_HOOK_CALL(coredump_elf64_hook, (l, iocookie), ENOSYS, retval);
2393 	return retval;
2394 }
2395 
2396 /*
2397  * Put process 'p' into the stopped state and optionally, notify the parent.
2398  */
2399 void
2400 proc_stop(struct proc *p, int signo)
2401 {
2402 	struct lwp *l;
2403 
2404 	KASSERT(mutex_owned(p->p_lock));
2405 
2406 	/*
2407 	 * First off, set the stopping indicator and bring all sleeping
2408 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2409 	 * unlock between here and the p->p_nrlwps check below.
2410 	 */
2411 	p->p_sflag |= PS_STOPPING;
2412 	membar_producer();
2413 
2414 	proc_stop_lwps(p);
2415 
2416 	/*
2417 	 * If there are no LWPs available to take the signal, then we
2418 	 * signal the parent process immediately.  Otherwise, the last
2419 	 * LWP to stop will take care of it.
2420 	 */
2421 
2422 	if (p->p_nrlwps == 0) {
2423 		proc_stop_done(p, PS_NOCLDSTOP);
2424 	} else {
2425 		/*
2426 		 * Have the remaining LWPs come to a halt, and trigger
2427 		 * proc_stop_callout() to ensure that they do.
2428 		 */
2429 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2430 			sigpost(l, SIG_DFL, SA_STOP, signo);
2431 		}
2432 		callout_schedule(&proc_stop_ch, 1);
2433 	}
2434 }
2435 
2436 /*
2437  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2438  * but wait for them to come to a halt at the kernel-user boundary.  This is
2439  * to allow LWPs to release any locks that they may hold before stopping.
2440  *
2441  * Non-interruptable sleeps can be long, and there is the potential for an
2442  * LWP to begin sleeping interruptably soon after the process has been set
2443  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2444  * stopping, and so complete halt of the process and the return of status
2445  * information to the parent could be delayed indefinitely.
2446  *
2447  * To handle this race, proc_stop_callout() runs once per tick while there
2448  * are stopping processes in the system.  It sets LWPs that are sleeping
2449  * interruptably into the LSSTOP state.
2450  *
2451  * Note that we are not concerned about keeping all LWPs stopped while the
2452  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2453  * What we do need to ensure is that all LWPs in a stopping process have
2454  * stopped at least once, so that notification can be sent to the parent
2455  * process.
2456  */
2457 static void
2458 proc_stop_callout(void *cookie)
2459 {
2460 	bool more, restart;
2461 	struct proc *p;
2462 
2463 	(void)cookie;
2464 
2465 	do {
2466 		restart = false;
2467 		more = false;
2468 
2469 		mutex_enter(&proc_lock);
2470 		PROCLIST_FOREACH(p, &allproc) {
2471 			mutex_enter(p->p_lock);
2472 
2473 			if ((p->p_sflag & PS_STOPPING) == 0) {
2474 				mutex_exit(p->p_lock);
2475 				continue;
2476 			}
2477 
2478 			/* Stop any LWPs sleeping interruptably. */
2479 			proc_stop_lwps(p);
2480 			if (p->p_nrlwps == 0) {
2481 				/*
2482 				 * We brought the process to a halt.
2483 				 * Mark it as stopped and notify the
2484 				 * parent.
2485 				 *
2486 				 * Note that proc_stop_done() will
2487 				 * drop p->p_lock briefly.
2488 				 * Arrange to restart and check
2489 				 * all processes again.
2490 				 */
2491 				restart = true;
2492 				proc_stop_done(p, PS_NOCLDSTOP);
2493 			} else
2494 				more = true;
2495 
2496 			mutex_exit(p->p_lock);
2497 			if (restart)
2498 				break;
2499 		}
2500 		mutex_exit(&proc_lock);
2501 	} while (restart);
2502 
2503 	/*
2504 	 * If we noted processes that are stopping but still have
2505 	 * running LWPs, then arrange to check again in 1 tick.
2506 	 */
2507 	if (more)
2508 		callout_schedule(&proc_stop_ch, 1);
2509 }
2510 
2511 /*
2512  * Given a process in state SSTOP, set the state back to SACTIVE and
2513  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2514  */
2515 void
2516 proc_unstop(struct proc *p)
2517 {
2518 	struct lwp *l;
2519 	int sig;
2520 
2521 	KASSERT(mutex_owned(&proc_lock));
2522 	KASSERT(mutex_owned(p->p_lock));
2523 
2524 	p->p_stat = SACTIVE;
2525 	p->p_sflag &= ~PS_STOPPING;
2526 	sig = p->p_xsig;
2527 
2528 	if (!p->p_waited)
2529 		p->p_pptr->p_nstopchild--;
2530 
2531 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2532 		lwp_lock(l);
2533 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2534 			lwp_unlock(l);
2535 			continue;
2536 		}
2537 		if (l->l_wchan == NULL) {
2538 			setrunnable(l);
2539 			continue;
2540 		}
2541 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2542 			setrunnable(l);
2543 			sig = 0;
2544 		} else {
2545 			l->l_stat = LSSLEEP;
2546 			p->p_nrlwps++;
2547 			lwp_unlock(l);
2548 		}
2549 	}
2550 }
2551 
2552 void
2553 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2554                const register_t *ret, int error)
2555 {
2556 	struct lwp *l = curlwp;
2557 	struct proc *p = l->l_proc;
2558 	struct sigacts *ps;
2559 	sigset_t *mask;
2560 	sig_t action;
2561 	ksiginfo_t ksi;
2562 	size_t i, sy_narg;
2563 	const int signo = SIGTRAP;
2564 
2565 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2566 	KASSERT(p->p_pptr != initproc);
2567 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2568 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2569 
2570 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2571 
2572 	KSI_INIT_TRAP(&ksi);
2573 	ksi.ksi_lid = l->l_lid;
2574 	ksi.ksi_signo = signo;
2575 	ksi.ksi_code = trapno;
2576 
2577 	ksi.ksi_sysnum = sysnum;
2578 	if (trapno == TRAP_SCE) {
2579 		ksi.ksi_retval[0] = 0;
2580 		ksi.ksi_retval[1] = 0;
2581 		ksi.ksi_error = 0;
2582 	} else {
2583 		ksi.ksi_retval[0] = ret[0];
2584 		ksi.ksi_retval[1] = ret[1];
2585 		ksi.ksi_error = error;
2586 	}
2587 
2588 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2589 
2590 	for (i = 0; i < sy_narg; i++)
2591 		ksi.ksi_args[i] = args[i];
2592 
2593 	mutex_enter(p->p_lock);
2594 
2595 repeat:
2596 	/*
2597 	 * If we are exiting, demise now.
2598 	 *
2599 	 * This avoids notifying tracer and deadlocking.
2600 	 */
2601 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2602 		mutex_exit(p->p_lock);
2603 		lwp_exit(l);
2604 		panic("proc_stoptrace");
2605 		/* NOTREACHED */
2606 	}
2607 
2608 	/*
2609 	 * If there's a pending SIGKILL process it immediately.
2610 	 */
2611 	if (p->p_xsig == SIGKILL ||
2612 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2613 		mutex_exit(p->p_lock);
2614 		return;
2615 	}
2616 
2617 	/*
2618 	 * If we are no longer traced, abandon this event signal.
2619 	 *
2620 	 * This avoids killing a process after detaching the debugger.
2621 	 */
2622 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2623 		mutex_exit(p->p_lock);
2624 		return;
2625 	}
2626 
2627 	/*
2628 	 * The process is already stopping.
2629 	 */
2630 	if ((p->p_sflag & PS_STOPPING) != 0) {
2631 		sigswitch_unlock_and_switch_away(l);
2632 		mutex_enter(p->p_lock);
2633 		goto repeat;
2634 	}
2635 
2636 	/* Needed for ktrace */
2637 	ps = p->p_sigacts;
2638 	action = SIGACTION_PS(ps, signo).sa_handler;
2639 	mask = &l->l_sigmask;
2640 
2641 	p->p_xsig = signo;
2642 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
2643 	p->p_sigctx.ps_info = ksi.ksi_info;
2644 	sigswitch(0, signo, false);
2645 
2646 	if (ktrpoint(KTR_PSIG)) {
2647 		if (p->p_emul->e_ktrpsig)
2648 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2649 		else
2650 			ktrpsig(signo, action, mask, &ksi);
2651 	}
2652 }
2653 
2654 static int
2655 filt_sigattach(struct knote *kn)
2656 {
2657 	struct proc *p = curproc;
2658 
2659 	kn->kn_obj = p;
2660 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2661 
2662 	mutex_enter(p->p_lock);
2663 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2664 	mutex_exit(p->p_lock);
2665 
2666 	return 0;
2667 }
2668 
2669 static void
2670 filt_sigdetach(struct knote *kn)
2671 {
2672 	struct proc *p = kn->kn_obj;
2673 
2674 	mutex_enter(p->p_lock);
2675 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2676 	mutex_exit(p->p_lock);
2677 }
2678 
2679 /*
2680  * Signal knotes are shared with proc knotes, so we apply a mask to
2681  * the hint in order to differentiate them from process hints.  This
2682  * could be avoided by using a signal-specific knote list, but probably
2683  * isn't worth the trouble.
2684  */
2685 static int
2686 filt_signal(struct knote *kn, long hint)
2687 {
2688 
2689 	if (hint & NOTE_SIGNAL) {
2690 		hint &= ~NOTE_SIGNAL;
2691 
2692 		if (kn->kn_id == hint)
2693 			kn->kn_data++;
2694 	}
2695 	return (kn->kn_data != 0);
2696 }
2697 
2698 const struct filterops sig_filtops = {
2699 	.f_flags = FILTEROP_MPSAFE,
2700 	.f_attach = filt_sigattach,
2701 	.f_detach = filt_sigdetach,
2702 	.f_event = filt_signal,
2703 };
2704