1 /* $NetBSD: kern_sig.c,v 1.294 2008/12/13 20:49:49 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.294 2008/12/13 20:49:49 ad Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_compat_sunos.h" 73 #include "opt_compat_netbsd.h" 74 #include "opt_compat_netbsd32.h" 75 #include "opt_pax.h" 76 #include "opt_sa.h" 77 78 #define SIGPROP /* include signal properties table */ 79 #include <sys/param.h> 80 #include <sys/signalvar.h> 81 #include <sys/proc.h> 82 #include <sys/systm.h> 83 #include <sys/wait.h> 84 #include <sys/ktrace.h> 85 #include <sys/syslog.h> 86 #include <sys/filedesc.h> 87 #include <sys/file.h> 88 #include <sys/malloc.h> 89 #include <sys/pool.h> 90 #include <sys/ucontext.h> 91 #include <sys/sa.h> 92 #include <sys/savar.h> 93 #include <sys/exec.h> 94 #include <sys/kauth.h> 95 #include <sys/acct.h> 96 #include <sys/callout.h> 97 #include <sys/atomic.h> 98 #include <sys/cpu.h> 99 #include <sys/module.h> 100 101 #ifdef PAX_SEGVGUARD 102 #include <sys/pax.h> 103 #endif /* PAX_SEGVGUARD */ 104 105 #include <uvm/uvm.h> 106 #include <uvm/uvm_extern.h> 107 108 static void ksiginfo_exechook(struct proc *, void *); 109 static void proc_stop_callout(void *); 110 111 int sigunwait(struct proc *, const ksiginfo_t *); 112 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 113 int sigpost(struct lwp *, sig_t, int, int, int); 114 int sigchecktrace(void); 115 void sigswitch(bool, int, int); 116 void sigrealloc(ksiginfo_t *); 117 118 sigset_t contsigmask, stopsigmask, sigcantmask; 119 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 120 static void sigacts_poolpage_free(struct pool *, void *); 121 static void *sigacts_poolpage_alloc(struct pool *, int); 122 static callout_t proc_stop_ch; 123 static pool_cache_t siginfo_cache; 124 static pool_cache_t ksiginfo_cache; 125 126 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 127 int (*coredump_vec)(struct lwp *, const char *) = 128 (int (*)(struct lwp *, const char *))enosys; 129 130 static struct pool_allocator sigactspool_allocator = { 131 .pa_alloc = sigacts_poolpage_alloc, 132 .pa_free = sigacts_poolpage_free, 133 }; 134 135 #ifdef DEBUG 136 int kern_logsigexit = 1; 137 #else 138 int kern_logsigexit = 0; 139 #endif 140 141 static const char logcoredump[] = 142 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 143 static const char lognocoredump[] = 144 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 145 146 /* 147 * signal_init: 148 * 149 * Initialize global signal-related data structures. 150 */ 151 void 152 signal_init(void) 153 { 154 155 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 156 157 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 158 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 159 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 160 161 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 162 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 163 164 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 165 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 166 167 exechook_establish(ksiginfo_exechook, NULL); 168 169 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 170 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 171 } 172 173 /* 174 * sigacts_poolpage_alloc: 175 * 176 * Allocate a page for the sigacts memory pool. 177 */ 178 static void * 179 sigacts_poolpage_alloc(struct pool *pp, int flags) 180 { 181 182 return (void *)uvm_km_alloc(kernel_map, 183 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 184 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 185 | UVM_KMF_WIRED); 186 } 187 188 /* 189 * sigacts_poolpage_free: 190 * 191 * Free a page on behalf of the sigacts memory pool. 192 */ 193 static void 194 sigacts_poolpage_free(struct pool *pp, void *v) 195 { 196 197 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 198 } 199 200 /* 201 * sigactsinit: 202 * 203 * Create an initial sigctx structure, using the same signal state as 204 * p. If 'share' is set, share the sigctx_proc part, otherwise just 205 * copy it from parent. 206 */ 207 struct sigacts * 208 sigactsinit(struct proc *pp, int share) 209 { 210 struct sigacts *ps, *ps2; 211 212 ps = pp->p_sigacts; 213 214 if (share) { 215 atomic_inc_uint(&ps->sa_refcnt); 216 ps2 = ps; 217 } else { 218 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 219 /* XXXAD get rid of this */ 220 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 221 mutex_enter(&ps->sa_mutex); 222 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 223 sizeof(ps2->sa_sigdesc)); 224 mutex_exit(&ps->sa_mutex); 225 ps2->sa_refcnt = 1; 226 } 227 228 return ps2; 229 } 230 231 /* 232 * sigactsunshare: 233 * 234 * Make this process not share its sigctx, maintaining all 235 * signal state. 236 */ 237 void 238 sigactsunshare(struct proc *p) 239 { 240 struct sigacts *ps, *oldps; 241 242 oldps = p->p_sigacts; 243 if (oldps->sa_refcnt == 1) 244 return; 245 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 246 /* XXXAD get rid of this */ 247 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 248 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 249 p->p_sigacts = ps; 250 sigactsfree(oldps); 251 } 252 253 /* 254 * sigactsfree; 255 * 256 * Release a sigctx structure. 257 */ 258 void 259 sigactsfree(struct sigacts *ps) 260 { 261 262 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 263 mutex_destroy(&ps->sa_mutex); 264 pool_cache_put(sigacts_cache, ps); 265 } 266 } 267 268 /* 269 * siginit: 270 * 271 * Initialize signal state for process 0; set to ignore signals that 272 * are ignored by default and disable the signal stack. Locking not 273 * required as the system is still cold. 274 */ 275 void 276 siginit(struct proc *p) 277 { 278 struct lwp *l; 279 struct sigacts *ps; 280 int signo, prop; 281 282 ps = p->p_sigacts; 283 sigemptyset(&contsigmask); 284 sigemptyset(&stopsigmask); 285 sigemptyset(&sigcantmask); 286 for (signo = 1; signo < NSIG; signo++) { 287 prop = sigprop[signo]; 288 if (prop & SA_CONT) 289 sigaddset(&contsigmask, signo); 290 if (prop & SA_STOP) 291 sigaddset(&stopsigmask, signo); 292 if (prop & SA_CANTMASK) 293 sigaddset(&sigcantmask, signo); 294 if (prop & SA_IGNORE && signo != SIGCONT) 295 sigaddset(&p->p_sigctx.ps_sigignore, signo); 296 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 297 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 298 } 299 sigemptyset(&p->p_sigctx.ps_sigcatch); 300 p->p_sflag &= ~PS_NOCLDSTOP; 301 302 ksiginfo_queue_init(&p->p_sigpend.sp_info); 303 sigemptyset(&p->p_sigpend.sp_set); 304 305 /* 306 * Reset per LWP state. 307 */ 308 l = LIST_FIRST(&p->p_lwps); 309 l->l_sigwaited = NULL; 310 l->l_sigstk.ss_flags = SS_DISABLE; 311 l->l_sigstk.ss_size = 0; 312 l->l_sigstk.ss_sp = 0; 313 ksiginfo_queue_init(&l->l_sigpend.sp_info); 314 sigemptyset(&l->l_sigpend.sp_set); 315 316 /* One reference. */ 317 ps->sa_refcnt = 1; 318 } 319 320 /* 321 * execsigs: 322 * 323 * Reset signals for an exec of the specified process. 324 */ 325 void 326 execsigs(struct proc *p) 327 { 328 struct sigacts *ps; 329 struct lwp *l; 330 int signo, prop; 331 sigset_t tset; 332 ksiginfoq_t kq; 333 334 KASSERT(p->p_nlwps == 1); 335 336 sigactsunshare(p); 337 ps = p->p_sigacts; 338 339 /* 340 * Reset caught signals. Held signals remain held through 341 * l->l_sigmask (unless they were caught, and are now ignored 342 * by default). 343 * 344 * No need to lock yet, the process has only one LWP and 345 * at this point the sigacts are private to the process. 346 */ 347 sigemptyset(&tset); 348 for (signo = 1; signo < NSIG; signo++) { 349 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 350 prop = sigprop[signo]; 351 if (prop & SA_IGNORE) { 352 if ((prop & SA_CONT) == 0) 353 sigaddset(&p->p_sigctx.ps_sigignore, 354 signo); 355 sigaddset(&tset, signo); 356 } 357 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 358 } 359 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 360 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 361 } 362 ksiginfo_queue_init(&kq); 363 364 mutex_enter(p->p_lock); 365 sigclearall(p, &tset, &kq); 366 sigemptyset(&p->p_sigctx.ps_sigcatch); 367 368 /* 369 * Reset no zombies if child dies flag as Solaris does. 370 */ 371 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 372 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 373 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 374 375 /* 376 * Reset per-LWP state. 377 */ 378 l = LIST_FIRST(&p->p_lwps); 379 l->l_sigwaited = NULL; 380 l->l_sigstk.ss_flags = SS_DISABLE; 381 l->l_sigstk.ss_size = 0; 382 l->l_sigstk.ss_sp = 0; 383 ksiginfo_queue_init(&l->l_sigpend.sp_info); 384 sigemptyset(&l->l_sigpend.sp_set); 385 mutex_exit(p->p_lock); 386 387 ksiginfo_queue_drain(&kq); 388 } 389 390 /* 391 * ksiginfo_exechook: 392 * 393 * Free all pending ksiginfo entries from a process on exec. 394 * Additionally, drain any unused ksiginfo structures in the 395 * system back to the pool. 396 * 397 * XXX This should not be a hook, every process has signals. 398 */ 399 static void 400 ksiginfo_exechook(struct proc *p, void *v) 401 { 402 ksiginfoq_t kq; 403 404 ksiginfo_queue_init(&kq); 405 406 mutex_enter(p->p_lock); 407 sigclearall(p, NULL, &kq); 408 mutex_exit(p->p_lock); 409 410 ksiginfo_queue_drain(&kq); 411 } 412 413 /* 414 * ksiginfo_alloc: 415 * 416 * Allocate a new ksiginfo structure from the pool, and optionally copy 417 * an existing one. If the existing ksiginfo_t is from the pool, and 418 * has not been queued somewhere, then just return it. Additionally, 419 * if the existing ksiginfo_t does not contain any information beyond 420 * the signal number, then just return it. 421 */ 422 ksiginfo_t * 423 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 424 { 425 ksiginfo_t *kp; 426 427 if (ok != NULL) { 428 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 429 KSI_FROMPOOL) 430 return ok; 431 if (KSI_EMPTY_P(ok)) 432 return ok; 433 } 434 435 kp = pool_cache_get(ksiginfo_cache, flags); 436 if (kp == NULL) { 437 #ifdef DIAGNOSTIC 438 printf("Out of memory allocating ksiginfo for pid %d\n", 439 p->p_pid); 440 #endif 441 return NULL; 442 } 443 444 if (ok != NULL) { 445 memcpy(kp, ok, sizeof(*kp)); 446 kp->ksi_flags &= ~KSI_QUEUED; 447 } else 448 KSI_INIT_EMPTY(kp); 449 450 kp->ksi_flags |= KSI_FROMPOOL; 451 452 return kp; 453 } 454 455 /* 456 * ksiginfo_free: 457 * 458 * If the given ksiginfo_t is from the pool and has not been queued, 459 * then free it. 460 */ 461 void 462 ksiginfo_free(ksiginfo_t *kp) 463 { 464 465 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 466 return; 467 pool_cache_put(ksiginfo_cache, kp); 468 } 469 470 /* 471 * ksiginfo_queue_drain: 472 * 473 * Drain a non-empty ksiginfo_t queue. 474 */ 475 void 476 ksiginfo_queue_drain0(ksiginfoq_t *kq) 477 { 478 ksiginfo_t *ksi; 479 480 KASSERT(!CIRCLEQ_EMPTY(kq)); 481 482 while (!CIRCLEQ_EMPTY(kq)) { 483 ksi = CIRCLEQ_FIRST(kq); 484 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 485 pool_cache_put(ksiginfo_cache, ksi); 486 } 487 } 488 489 /* 490 * sigget: 491 * 492 * Fetch the first pending signal from a set. Optionally, also fetch 493 * or manufacture a ksiginfo element. Returns the number of the first 494 * pending signal, or zero. 495 */ 496 int 497 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 498 { 499 ksiginfo_t *ksi; 500 sigset_t tset; 501 502 /* If there's no pending set, the signal is from the debugger. */ 503 if (sp == NULL) 504 goto out; 505 506 /* Construct mask from signo, and 'mask'. */ 507 if (signo == 0) { 508 if (mask != NULL) { 509 tset = *mask; 510 __sigandset(&sp->sp_set, &tset); 511 } else 512 tset = sp->sp_set; 513 514 /* If there are no signals pending, that's it. */ 515 if ((signo = firstsig(&tset)) == 0) 516 goto out; 517 } else { 518 KASSERT(sigismember(&sp->sp_set, signo)); 519 } 520 521 sigdelset(&sp->sp_set, signo); 522 523 /* Find siginfo and copy it out. */ 524 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 525 if (ksi->ksi_signo == signo) { 526 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 527 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 528 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 529 ksi->ksi_flags &= ~KSI_QUEUED; 530 if (out != NULL) { 531 memcpy(out, ksi, sizeof(*out)); 532 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 533 } 534 ksiginfo_free(ksi); 535 return signo; 536 } 537 } 538 539 out: 540 /* If there's no siginfo, then manufacture it. */ 541 if (out != NULL) { 542 KSI_INIT(out); 543 out->ksi_info._signo = signo; 544 out->ksi_info._code = SI_NOINFO; 545 } 546 547 return signo; 548 } 549 550 /* 551 * sigput: 552 * 553 * Append a new ksiginfo element to the list of pending ksiginfo's, if 554 * we need to (e.g. SA_SIGINFO was requested). 555 */ 556 void 557 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 558 { 559 ksiginfo_t *kp; 560 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 561 562 KASSERT(mutex_owned(p->p_lock)); 563 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 564 565 sigaddset(&sp->sp_set, ksi->ksi_signo); 566 567 /* 568 * If there is no siginfo, or is not required (and we don't add 569 * it for the benefit of ktrace, we are done). 570 */ 571 if (KSI_EMPTY_P(ksi) || 572 (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0)) 573 return; 574 575 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 576 577 #ifdef notyet /* XXX: QUEUING */ 578 if (ksi->ksi_signo < SIGRTMIN) 579 #endif 580 { 581 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 582 if (kp->ksi_signo == ksi->ksi_signo) { 583 KSI_COPY(ksi, kp); 584 kp->ksi_flags |= KSI_QUEUED; 585 return; 586 } 587 } 588 } 589 590 ksi->ksi_flags |= KSI_QUEUED; 591 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 592 } 593 594 /* 595 * sigclear: 596 * 597 * Clear all pending signals in the specified set. 598 */ 599 void 600 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 601 { 602 ksiginfo_t *ksi, *next; 603 604 if (mask == NULL) 605 sigemptyset(&sp->sp_set); 606 else 607 sigminusset(mask, &sp->sp_set); 608 609 ksi = CIRCLEQ_FIRST(&sp->sp_info); 610 for (; ksi != (void *)&sp->sp_info; ksi = next) { 611 next = CIRCLEQ_NEXT(ksi, ksi_list); 612 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 613 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 614 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 615 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 616 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 617 } 618 } 619 } 620 621 /* 622 * sigclearall: 623 * 624 * Clear all pending signals in the specified set from a process and 625 * its LWPs. 626 */ 627 void 628 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 629 { 630 struct lwp *l; 631 632 KASSERT(mutex_owned(p->p_lock)); 633 634 sigclear(&p->p_sigpend, mask, kq); 635 636 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 637 sigclear(&l->l_sigpend, mask, kq); 638 } 639 } 640 641 /* 642 * sigispending: 643 * 644 * Return true if there are pending signals for the current LWP. May 645 * be called unlocked provided that LW_PENDSIG is set, and that the 646 * signal has been posted to the appopriate queue before LW_PENDSIG is 647 * set. 648 */ 649 int 650 sigispending(struct lwp *l, int signo) 651 { 652 struct proc *p = l->l_proc; 653 sigset_t tset; 654 655 membar_consumer(); 656 657 tset = l->l_sigpend.sp_set; 658 sigplusset(&p->p_sigpend.sp_set, &tset); 659 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 660 sigminusset(&l->l_sigmask, &tset); 661 662 if (signo == 0) { 663 if (firstsig(&tset) != 0) 664 return EINTR; 665 } else if (sigismember(&tset, signo)) 666 return EINTR; 667 668 return 0; 669 } 670 671 /* 672 * siginfo_alloc: 673 * 674 * Allocate a new siginfo_t structure from the pool. 675 */ 676 siginfo_t * 677 siginfo_alloc(int flags) 678 { 679 680 return pool_cache_get(siginfo_cache, flags); 681 } 682 683 /* 684 * siginfo_free: 685 * 686 * Return a siginfo_t structure to the pool. 687 */ 688 void 689 siginfo_free(void *arg) 690 { 691 692 pool_cache_put(siginfo_cache, arg); 693 } 694 695 void 696 getucontext(struct lwp *l, ucontext_t *ucp) 697 { 698 struct proc *p = l->l_proc; 699 700 KASSERT(mutex_owned(p->p_lock)); 701 702 ucp->uc_flags = 0; 703 ucp->uc_link = l->l_ctxlink; 704 705 #if KERN_SA 706 if (p->p_sa != NULL) 707 ucp->uc_sigmask = p->p_sa->sa_sigmask; 708 else 709 #endif /* KERN_SA */ 710 ucp->uc_sigmask = l->l_sigmask; 711 ucp->uc_flags |= _UC_SIGMASK; 712 713 /* 714 * The (unsupplied) definition of the `current execution stack' 715 * in the System V Interface Definition appears to allow returning 716 * the main context stack. 717 */ 718 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 719 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 720 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 721 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 722 } else { 723 /* Simply copy alternate signal execution stack. */ 724 ucp->uc_stack = l->l_sigstk; 725 } 726 ucp->uc_flags |= _UC_STACK; 727 mutex_exit(p->p_lock); 728 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 729 mutex_enter(p->p_lock); 730 } 731 732 /* 733 * getucontext_sa: 734 * Get a ucontext_t for use in SA upcall generation. 735 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 736 * fudge things with uc_link (which is usually NULL for libpthread 737 * code), and 3) we report an empty signal mask. 738 */ 739 void 740 getucontext_sa(struct lwp *l, ucontext_t *ucp) 741 { 742 ucp->uc_flags = 0; 743 ucp->uc_link = l->l_ctxlink; 744 745 sigemptyset(&ucp->uc_sigmask); 746 ucp->uc_flags |= _UC_SIGMASK; 747 748 /* 749 * The (unsupplied) definition of the `current execution stack' 750 * in the System V Interface Definition appears to allow returning 751 * the main context stack. 752 */ 753 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 754 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 755 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 756 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 757 } else { 758 /* Simply copy alternate signal execution stack. */ 759 ucp->uc_stack = l->l_sigstk; 760 } 761 ucp->uc_flags |= _UC_STACK; 762 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 763 } 764 765 int 766 setucontext(struct lwp *l, const ucontext_t *ucp) 767 { 768 struct proc *p = l->l_proc; 769 int error; 770 771 KASSERT(mutex_owned(p->p_lock)); 772 773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 775 if (error != 0) 776 return error; 777 } 778 779 mutex_exit(p->p_lock); 780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 781 mutex_enter(p->p_lock); 782 if (error != 0) 783 return (error); 784 785 l->l_ctxlink = ucp->uc_link; 786 787 /* 788 * If there was stack information, update whether or not we are 789 * still running on an alternate signal stack. 790 */ 791 if ((ucp->uc_flags & _UC_STACK) != 0) { 792 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 793 l->l_sigstk.ss_flags |= SS_ONSTACK; 794 else 795 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 796 } 797 798 return 0; 799 } 800 801 /* 802 * Common code for kill process group/broadcast kill. cp is calling 803 * process. 804 */ 805 int 806 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 807 { 808 struct proc *p, *cp; 809 kauth_cred_t pc; 810 struct pgrp *pgrp; 811 int nfound; 812 int signo = ksi->ksi_signo; 813 814 cp = l->l_proc; 815 pc = l->l_cred; 816 nfound = 0; 817 818 mutex_enter(proc_lock); 819 if (all) { 820 /* 821 * broadcast 822 */ 823 PROCLIST_FOREACH(p, &allproc) { 824 if (p->p_pid <= 1 || p == cp || 825 p->p_flag & (PK_SYSTEM|PK_MARKER)) 826 continue; 827 mutex_enter(p->p_lock); 828 if (kauth_authorize_process(pc, 829 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 830 NULL) == 0) { 831 nfound++; 832 if (signo) 833 kpsignal2(p, ksi); 834 } 835 mutex_exit(p->p_lock); 836 } 837 } else { 838 if (pgid == 0) 839 /* 840 * zero pgid means send to my process group. 841 */ 842 pgrp = cp->p_pgrp; 843 else { 844 pgrp = pg_find(pgid, PFIND_LOCKED); 845 if (pgrp == NULL) 846 goto out; 847 } 848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 849 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 850 continue; 851 mutex_enter(p->p_lock); 852 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 853 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 854 nfound++; 855 if (signo && P_ZOMBIE(p) == 0) 856 kpsignal2(p, ksi); 857 } 858 mutex_exit(p->p_lock); 859 } 860 } 861 out: 862 mutex_exit(proc_lock); 863 return (nfound ? 0 : ESRCH); 864 } 865 866 /* 867 * Send a signal to a process group. If checktty is 1, limit to members 868 * which have a controlling terminal. 869 */ 870 void 871 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 872 { 873 ksiginfo_t ksi; 874 875 KASSERT(!cpu_intr_p()); 876 KASSERT(mutex_owned(proc_lock)); 877 878 KSI_INIT_EMPTY(&ksi); 879 ksi.ksi_signo = sig; 880 kpgsignal(pgrp, &ksi, NULL, checkctty); 881 } 882 883 void 884 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 885 { 886 struct proc *p; 887 888 KASSERT(!cpu_intr_p()); 889 KASSERT(mutex_owned(proc_lock)); 890 891 if (pgrp) 892 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 893 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 894 kpsignal(p, ksi, data); 895 } 896 897 /* 898 * Send a signal caused by a trap to the current LWP. If it will be caught 899 * immediately, deliver it with correct code. Otherwise, post it normally. 900 */ 901 void 902 trapsignal(struct lwp *l, ksiginfo_t *ksi) 903 { 904 struct proc *p; 905 struct sigacts *ps; 906 int signo = ksi->ksi_signo; 907 sigset_t *mask; 908 909 KASSERT(KSI_TRAP_P(ksi)); 910 911 ksi->ksi_lid = l->l_lid; 912 p = l->l_proc; 913 914 KASSERT(!cpu_intr_p()); 915 mutex_enter(proc_lock); 916 mutex_enter(p->p_lock); 917 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 918 ps = p->p_sigacts; 919 if ((p->p_slflag & PSL_TRACED) == 0 && 920 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 921 !sigismember(mask, signo)) { 922 mutex_exit(proc_lock); 923 l->l_ru.ru_nsignals++; 924 kpsendsig(l, ksi, mask); 925 mutex_exit(p->p_lock); 926 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 927 mask, ksi); 928 } else { 929 /* XXX for core dump/debugger */ 930 p->p_sigctx.ps_lwp = l->l_lid; 931 p->p_sigctx.ps_signo = ksi->ksi_signo; 932 p->p_sigctx.ps_code = ksi->ksi_trap; 933 kpsignal2(p, ksi); 934 mutex_exit(p->p_lock); 935 mutex_exit(proc_lock); 936 } 937 } 938 939 /* 940 * Fill in signal information and signal the parent for a child status change. 941 */ 942 void 943 child_psignal(struct proc *p, int mask) 944 { 945 ksiginfo_t ksi; 946 struct proc *q; 947 int xstat; 948 949 KASSERT(mutex_owned(proc_lock)); 950 KASSERT(mutex_owned(p->p_lock)); 951 952 xstat = p->p_xstat; 953 954 KSI_INIT(&ksi); 955 ksi.ksi_signo = SIGCHLD; 956 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 957 ksi.ksi_pid = p->p_pid; 958 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 959 ksi.ksi_status = xstat; 960 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 961 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 962 963 q = p->p_pptr; 964 965 mutex_exit(p->p_lock); 966 mutex_enter(q->p_lock); 967 968 if ((q->p_sflag & mask) == 0) 969 kpsignal2(q, &ksi); 970 971 mutex_exit(q->p_lock); 972 mutex_enter(p->p_lock); 973 } 974 975 void 976 psignal(struct proc *p, int signo) 977 { 978 ksiginfo_t ksi; 979 980 KASSERT(!cpu_intr_p()); 981 KASSERT(mutex_owned(proc_lock)); 982 983 KSI_INIT_EMPTY(&ksi); 984 ksi.ksi_signo = signo; 985 mutex_enter(p->p_lock); 986 kpsignal2(p, &ksi); 987 mutex_exit(p->p_lock); 988 } 989 990 void 991 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 992 { 993 fdfile_t *ff; 994 file_t *fp; 995 996 KASSERT(!cpu_intr_p()); 997 KASSERT(mutex_owned(proc_lock)); 998 999 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1000 size_t fd; 1001 filedesc_t *fdp = p->p_fd; 1002 1003 /* XXXSMP locking */ 1004 ksi->ksi_fd = -1; 1005 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 1006 if ((ff = fdp->fd_ofiles[fd]) == NULL) 1007 continue; 1008 if ((fp = ff->ff_file) == NULL) 1009 continue; 1010 if (fp->f_data == data) { 1011 ksi->ksi_fd = fd; 1012 break; 1013 } 1014 } 1015 } 1016 mutex_enter(p->p_lock); 1017 kpsignal2(p, ksi); 1018 mutex_exit(p->p_lock); 1019 } 1020 1021 /* 1022 * sigismasked: 1023 * 1024 * Returns true if signal is ignored or masked for the specified LWP. 1025 */ 1026 int 1027 sigismasked(struct lwp *l, int sig) 1028 { 1029 struct proc *p = l->l_proc; 1030 1031 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1032 sigismember(&l->l_sigmask, sig) 1033 #if KERN_SA 1034 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1035 #endif /* KERN_SA */ 1036 ); 1037 } 1038 1039 /* 1040 * sigpost: 1041 * 1042 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1043 * be able to take the signal. 1044 */ 1045 int 1046 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1047 { 1048 int rv, masked; 1049 struct proc *p = l->l_proc; 1050 1051 KASSERT(mutex_owned(p->p_lock)); 1052 1053 /* 1054 * If the LWP is on the way out, sigclear() will be busy draining all 1055 * pending signals. Don't give it more. 1056 */ 1057 if (l->l_refcnt == 0) 1058 return 0; 1059 1060 /* 1061 * Have the LWP check for signals. This ensures that even if no LWP 1062 * is found to take the signal immediately, it should be taken soon. 1063 */ 1064 lwp_lock(l); 1065 l->l_flag |= LW_PENDSIG; 1066 1067 /* 1068 * When sending signals to SA processes, we first try to find an 1069 * idle VP to take it. 1070 */ 1071 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1072 lwp_unlock(l); 1073 return 0; 1074 } 1075 1076 /* 1077 * SIGCONT can be masked, but must always restart stopped LWPs. 1078 */ 1079 #if KERN_SA 1080 if (p->p_sa != NULL) 1081 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1082 else 1083 #endif /* KERN_SA */ 1084 masked = sigismember(&l->l_sigmask, sig); 1085 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1086 lwp_unlock(l); 1087 return 0; 1088 } 1089 1090 /* 1091 * If killing the process, make it run fast. 1092 */ 1093 if (__predict_false((prop & SA_KILL) != 0) && 1094 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1095 KASSERT(l->l_class == SCHED_OTHER); 1096 lwp_changepri(l, MAXPRI_USER); 1097 } 1098 1099 /* 1100 * If the LWP is running or on a run queue, then we win. If it's 1101 * sleeping interruptably, wake it and make it take the signal. If 1102 * the sleep isn't interruptable, then the chances are it will get 1103 * to see the signal soon anyhow. If suspended, it can't take the 1104 * signal right now. If it's LWP private or for all LWPs, save it 1105 * for later; otherwise punt. 1106 */ 1107 rv = 0; 1108 1109 switch (l->l_stat) { 1110 case LSRUN: 1111 case LSONPROC: 1112 lwp_need_userret(l); 1113 rv = 1; 1114 break; 1115 1116 case LSSLEEP: 1117 if ((l->l_flag & LW_SINTR) != 0) { 1118 /* setrunnable() will release the lock. */ 1119 setrunnable(l); 1120 return 1; 1121 } 1122 break; 1123 1124 case LSSUSPENDED: 1125 if ((prop & SA_KILL) != 0) { 1126 /* lwp_continue() will release the lock. */ 1127 lwp_continue(l); 1128 return 1; 1129 } 1130 break; 1131 1132 case LSSTOP: 1133 if ((prop & SA_STOP) != 0) 1134 break; 1135 1136 /* 1137 * If the LWP is stopped and we are sending a continue 1138 * signal, then start it again. 1139 */ 1140 if ((prop & SA_CONT) != 0) { 1141 if (l->l_wchan != NULL) { 1142 l->l_stat = LSSLEEP; 1143 p->p_nrlwps++; 1144 rv = 1; 1145 break; 1146 } 1147 /* setrunnable() will release the lock. */ 1148 setrunnable(l); 1149 return 1; 1150 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1151 /* setrunnable() will release the lock. */ 1152 setrunnable(l); 1153 return 1; 1154 } 1155 break; 1156 1157 default: 1158 break; 1159 } 1160 1161 lwp_unlock(l); 1162 return rv; 1163 } 1164 1165 /* 1166 * Notify an LWP that it has a pending signal. 1167 */ 1168 void 1169 signotify(struct lwp *l) 1170 { 1171 KASSERT(lwp_locked(l, NULL)); 1172 1173 l->l_flag |= LW_PENDSIG; 1174 lwp_need_userret(l); 1175 } 1176 1177 /* 1178 * Find an LWP within process p that is waiting on signal ksi, and hand 1179 * it on. 1180 */ 1181 int 1182 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1183 { 1184 struct lwp *l; 1185 int signo; 1186 1187 KASSERT(mutex_owned(p->p_lock)); 1188 1189 signo = ksi->ksi_signo; 1190 1191 if (ksi->ksi_lid != 0) { 1192 /* 1193 * Signal came via _lwp_kill(). Find the LWP and see if 1194 * it's interested. 1195 */ 1196 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1197 return 0; 1198 if (l->l_sigwaited == NULL || 1199 !sigismember(&l->l_sigwaitset, signo)) 1200 return 0; 1201 } else { 1202 /* 1203 * Look for any LWP that may be interested. 1204 */ 1205 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1206 KASSERT(l->l_sigwaited != NULL); 1207 if (sigismember(&l->l_sigwaitset, signo)) 1208 break; 1209 } 1210 } 1211 1212 if (l != NULL) { 1213 l->l_sigwaited->ksi_info = ksi->ksi_info; 1214 l->l_sigwaited = NULL; 1215 LIST_REMOVE(l, l_sigwaiter); 1216 cv_signal(&l->l_sigcv); 1217 return 1; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * Send the signal to the process. If the signal has an action, the action 1225 * is usually performed by the target process rather than the caller; we add 1226 * the signal to the set of pending signals for the process. 1227 * 1228 * Exceptions: 1229 * o When a stop signal is sent to a sleeping process that takes the 1230 * default action, the process is stopped without awakening it. 1231 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1232 * regardless of the signal action (eg, blocked or ignored). 1233 * 1234 * Other ignored signals are discarded immediately. 1235 */ 1236 void 1237 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1238 { 1239 int prop, lid, toall, signo = ksi->ksi_signo; 1240 struct sigacts *sa; 1241 struct lwp *l; 1242 ksiginfo_t *kp; 1243 ksiginfoq_t kq; 1244 sig_t action; 1245 #ifdef KERN_SA 1246 struct sadata_vp *vp; 1247 #endif 1248 1249 KASSERT(!cpu_intr_p()); 1250 KASSERT(mutex_owned(proc_lock)); 1251 KASSERT(mutex_owned(p->p_lock)); 1252 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1253 KASSERT(signo > 0 && signo < NSIG); 1254 1255 /* 1256 * If the process is being created by fork, is a zombie or is 1257 * exiting, then just drop the signal here and bail out. 1258 */ 1259 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1260 return; 1261 1262 /* 1263 * Notify any interested parties of the signal. 1264 */ 1265 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1266 1267 /* 1268 * Some signals including SIGKILL must act on the entire process. 1269 */ 1270 kp = NULL; 1271 prop = sigprop[signo]; 1272 toall = ((prop & SA_TOALL) != 0); 1273 1274 if (toall) 1275 lid = 0; 1276 else 1277 lid = ksi->ksi_lid; 1278 1279 /* 1280 * If proc is traced, always give parent a chance. 1281 */ 1282 if (p->p_slflag & PSL_TRACED) { 1283 action = SIG_DFL; 1284 1285 if (lid == 0) { 1286 /* 1287 * If the process is being traced and the signal 1288 * is being caught, make sure to save any ksiginfo. 1289 */ 1290 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1291 return; 1292 sigput(&p->p_sigpend, p, kp); 1293 } 1294 } else { 1295 /* 1296 * If the signal was the result of a trap and is not being 1297 * caught, then reset it to default action so that the 1298 * process dumps core immediately. 1299 */ 1300 if (KSI_TRAP_P(ksi)) { 1301 sa = p->p_sigacts; 1302 mutex_enter(&sa->sa_mutex); 1303 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1304 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1305 SIGACTION(p, signo).sa_handler = SIG_DFL; 1306 } 1307 mutex_exit(&sa->sa_mutex); 1308 } 1309 1310 /* 1311 * If the signal is being ignored, then drop it. Note: we 1312 * don't set SIGCONT in ps_sigignore, and if it is set to 1313 * SIG_IGN, action will be SIG_DFL here. 1314 */ 1315 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1316 return; 1317 1318 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1319 action = SIG_CATCH; 1320 else { 1321 action = SIG_DFL; 1322 1323 /* 1324 * If sending a tty stop signal to a member of an 1325 * orphaned process group, discard the signal here if 1326 * the action is default; don't stop the process below 1327 * if sleeping, and don't clear any pending SIGCONT. 1328 */ 1329 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1330 return; 1331 1332 if (prop & SA_KILL && p->p_nice > NZERO) 1333 p->p_nice = NZERO; 1334 } 1335 } 1336 1337 /* 1338 * If stopping or continuing a process, discard any pending 1339 * signals that would do the inverse. 1340 */ 1341 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1342 ksiginfo_queue_init(&kq); 1343 if ((prop & SA_CONT) != 0) 1344 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1345 if ((prop & SA_STOP) != 0) 1346 sigclear(&p->p_sigpend, &contsigmask, &kq); 1347 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1348 } 1349 1350 /* 1351 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1352 * please!), check if any LWPs are waiting on it. If yes, pass on 1353 * the signal info. The signal won't be processed further here. 1354 */ 1355 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1356 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1357 sigunwait(p, ksi)) 1358 return; 1359 1360 /* 1361 * XXXSMP Should be allocated by the caller, we're holding locks 1362 * here. 1363 */ 1364 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1365 return; 1366 1367 /* 1368 * LWP private signals are easy - just find the LWP and post 1369 * the signal to it. 1370 */ 1371 if (lid != 0) { 1372 l = lwp_find(p, lid); 1373 if (l != NULL) { 1374 sigput(&l->l_sigpend, p, kp); 1375 membar_producer(); 1376 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1377 } 1378 goto out; 1379 } 1380 1381 /* 1382 * Some signals go to all LWPs, even if posted with _lwp_kill() 1383 * or for an SA process. 1384 */ 1385 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1386 if ((p->p_slflag & PSL_TRACED) != 0) 1387 goto deliver; 1388 1389 /* 1390 * If SIGCONT is default (or ignored) and process is 1391 * asleep, we are finished; the process should not 1392 * be awakened. 1393 */ 1394 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1395 goto out; 1396 1397 sigput(&p->p_sigpend, p, kp); 1398 } else { 1399 /* 1400 * Process is stopped or stopping. If traced, then no 1401 * further action is necessary. 1402 */ 1403 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1404 goto out; 1405 1406 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1407 /* 1408 * Re-adjust p_nstopchild if the process wasn't 1409 * collected by its parent. 1410 */ 1411 p->p_stat = SACTIVE; 1412 p->p_sflag &= ~PS_STOPPING; 1413 if (!p->p_waited) 1414 p->p_pptr->p_nstopchild--; 1415 1416 /* 1417 * If SIGCONT is default (or ignored), we continue 1418 * the process but don't leave the signal in 1419 * ps_siglist, as it has no further action. If 1420 * SIGCONT is held, we continue the process and 1421 * leave the signal in ps_siglist. If the process 1422 * catches SIGCONT, let it handle the signal itself. 1423 * If it isn't waiting on an event, then it goes 1424 * back to run state. Otherwise, process goes back 1425 * to sleep state. 1426 */ 1427 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1428 sigput(&p->p_sigpend, p, kp); 1429 } else if ((prop & SA_STOP) != 0) { 1430 /* 1431 * Already stopped, don't need to stop again. 1432 * (If we did the shell could get confused.) 1433 */ 1434 goto out; 1435 } else 1436 sigput(&p->p_sigpend, p, kp); 1437 } 1438 1439 deliver: 1440 /* 1441 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1442 * visible on the per process list (for sigispending()). This 1443 * is unlikely to be needed in practice, but... 1444 */ 1445 membar_producer(); 1446 1447 /* 1448 * Try to find an LWP that can take the signal. 1449 */ 1450 #if KERN_SA 1451 if ((p->p_sa != NULL) && !toall) { 1452 /* 1453 * If we're in this delivery path, we are delivering a 1454 * signal that needs to go to one thread in the process. 1455 * 1456 * In the SA case, we try to find an idle LWP that can take 1457 * the signal. If that fails, only then do we consider 1458 * interrupting active LWPs. Since the signal's going to 1459 * just one thread, we need only look at "blessed" lwps, 1460 * so scan the vps for them. 1461 */ 1462 l = NULL; 1463 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1464 l = vp->savp_lwp; 1465 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1466 break; 1467 } 1468 1469 if (l == NULL) { 1470 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1471 l = vp->savp_lwp; 1472 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1473 break; 1474 } 1475 } 1476 } else /* Catch the brace below if we're defined */ 1477 #endif /* KERN_SA */ 1478 { 1479 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1480 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1481 break; 1482 } 1483 1484 out: 1485 /* 1486 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1487 * with locks held. The caller should take care of this. 1488 */ 1489 ksiginfo_free(kp); 1490 } 1491 1492 void 1493 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1494 { 1495 struct proc *p = l->l_proc; 1496 #ifdef KERN_SA 1497 struct lwp *le, *li; 1498 siginfo_t *si; 1499 int f; 1500 #endif /* KERN_SA */ 1501 1502 KASSERT(mutex_owned(p->p_lock)); 1503 1504 #ifdef KERN_SA 1505 if (p->p_sflag & PS_SA) { 1506 /* f indicates if we should clear LP_SA_NOBLOCK */ 1507 f = ~l->l_pflag & LP_SA_NOBLOCK; 1508 l->l_pflag |= LP_SA_NOBLOCK; 1509 1510 mutex_exit(p->p_lock); 1511 /* XXXUPSXXX What if not on sa_vp? */ 1512 /* 1513 * WRS: I think it won't matter, beyond the 1514 * question of what exactly we do with a signal 1515 * to a blocked user thread. Also, we try hard to always 1516 * send signals to blessed lwps, so we would only send 1517 * to a non-blessed lwp under special circumstances. 1518 */ 1519 si = siginfo_alloc(PR_WAITOK); 1520 1521 si->_info = ksi->ksi_info; 1522 1523 /* 1524 * Figure out if we're the innocent victim or the main 1525 * perpitrator. 1526 */ 1527 le = li = NULL; 1528 if (KSI_TRAP_P(ksi)) 1529 le = l; 1530 else 1531 li = l; 1532 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1533 sizeof(*si), si, siginfo_free) != 0) { 1534 siginfo_free(si); 1535 #if 0 1536 if (KSI_TRAP_P(ksi)) 1537 /* XXX What dowe do here? The signal 1538 * didn't make it 1539 */; 1540 #endif 1541 } 1542 l->l_pflag ^= f; 1543 mutex_enter(p->p_lock); 1544 return; 1545 } 1546 #endif /* KERN_SA */ 1547 1548 (*p->p_emul->e_sendsig)(ksi, mask); 1549 } 1550 1551 /* 1552 * Stop any LWPs sleeping interruptably. 1553 */ 1554 static void 1555 proc_stop_lwps(struct proc *p) 1556 { 1557 struct lwp *l; 1558 1559 KASSERT(mutex_owned(p->p_lock)); 1560 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1561 1562 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1563 lwp_lock(l); 1564 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1565 l->l_stat = LSSTOP; 1566 p->p_nrlwps--; 1567 } 1568 lwp_unlock(l); 1569 } 1570 } 1571 1572 /* 1573 * Finish stopping of a process. Mark it stopped and notify the parent. 1574 * 1575 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1576 */ 1577 static void 1578 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1579 { 1580 1581 KASSERT(mutex_owned(proc_lock)); 1582 KASSERT(mutex_owned(p->p_lock)); 1583 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1584 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1585 1586 p->p_sflag &= ~PS_STOPPING; 1587 p->p_stat = SSTOP; 1588 p->p_waited = 0; 1589 p->p_pptr->p_nstopchild++; 1590 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1591 if (ppsig) { 1592 /* child_psignal drops p_lock briefly. */ 1593 child_psignal(p, ppmask); 1594 } 1595 cv_broadcast(&p->p_pptr->p_waitcv); 1596 } 1597 } 1598 1599 /* 1600 * Stop the current process and switch away when being stopped or traced. 1601 */ 1602 void 1603 sigswitch(bool ppsig, int ppmask, int signo) 1604 { 1605 struct lwp *l = curlwp; 1606 struct proc *p = l->l_proc; 1607 int biglocks; 1608 1609 KASSERT(mutex_owned(p->p_lock)); 1610 KASSERT(l->l_stat == LSONPROC); 1611 KASSERT(p->p_nrlwps > 0); 1612 1613 /* 1614 * On entry we know that the process needs to stop. If it's 1615 * the result of a 'sideways' stop signal that has been sourced 1616 * through issignal(), then stop other LWPs in the process too. 1617 */ 1618 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1619 KASSERT(signo != 0); 1620 proc_stop(p, 1, signo); 1621 KASSERT(p->p_nrlwps > 0); 1622 } 1623 1624 /* 1625 * If we are the last live LWP, and the stop was a result of 1626 * a new signal, then signal the parent. 1627 */ 1628 if ((p->p_sflag & PS_STOPPING) != 0) { 1629 if (!mutex_tryenter(proc_lock)) { 1630 mutex_exit(p->p_lock); 1631 mutex_enter(proc_lock); 1632 mutex_enter(p->p_lock); 1633 } 1634 1635 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1636 /* 1637 * Note that proc_stop_done() can drop 1638 * p->p_lock briefly. 1639 */ 1640 proc_stop_done(p, ppsig, ppmask); 1641 } 1642 1643 mutex_exit(proc_lock); 1644 } 1645 1646 /* 1647 * Unlock and switch away. 1648 */ 1649 KERNEL_UNLOCK_ALL(l, &biglocks); 1650 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1651 p->p_nrlwps--; 1652 lwp_lock(l); 1653 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1654 l->l_stat = LSSTOP; 1655 lwp_unlock(l); 1656 } 1657 1658 mutex_exit(p->p_lock); 1659 lwp_lock(l); 1660 mi_switch(l); 1661 KERNEL_LOCK(biglocks, l); 1662 mutex_enter(p->p_lock); 1663 } 1664 1665 /* 1666 * Check for a signal from the debugger. 1667 */ 1668 int 1669 sigchecktrace(void) 1670 { 1671 struct lwp *l = curlwp; 1672 struct proc *p = l->l_proc; 1673 sigset_t *mask; 1674 int signo; 1675 1676 KASSERT(mutex_owned(p->p_lock)); 1677 1678 /* If there's a pending SIGKILL, process it immediately. */ 1679 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1680 return 0; 1681 1682 /* 1683 * If we are no longer being traced, or the parent didn't 1684 * give us a signal, look for more signals. 1685 */ 1686 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1687 return 0; 1688 1689 /* 1690 * If the new signal is being masked, look for other signals. 1691 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1692 */ 1693 signo = p->p_xstat; 1694 p->p_xstat = 0; 1695 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1696 if (sigismember(mask, signo)) 1697 signo = 0; 1698 1699 return signo; 1700 } 1701 1702 /* 1703 * If the current process has received a signal (should be caught or cause 1704 * termination, should interrupt current syscall), return the signal number. 1705 * 1706 * Stop signals with default action are processed immediately, then cleared; 1707 * they aren't returned. This is checked after each entry to the system for 1708 * a syscall or trap. 1709 * 1710 * We will also return -1 if the process is exiting and the current LWP must 1711 * follow suit. 1712 */ 1713 int 1714 issignal(struct lwp *l) 1715 { 1716 struct proc *p; 1717 int signo, prop; 1718 sigpend_t *sp; 1719 sigset_t ss; 1720 1721 p = l->l_proc; 1722 sp = NULL; 1723 signo = 0; 1724 1725 KASSERT(p == curproc); 1726 KASSERT(mutex_owned(p->p_lock)); 1727 1728 for (;;) { 1729 /* Discard any signals that we have decided not to take. */ 1730 if (signo != 0) 1731 (void)sigget(sp, NULL, signo, NULL); 1732 1733 /* Bail out if we do not own the virtual processor */ 1734 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1735 break; 1736 1737 /* 1738 * If the process is stopped/stopping, then stop ourselves 1739 * now that we're on the kernel/userspace boundary. When 1740 * we awaken, check for a signal from the debugger. 1741 */ 1742 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1743 sigswitch(true, PS_NOCLDSTOP, 0); 1744 signo = sigchecktrace(); 1745 } else 1746 signo = 0; 1747 1748 /* Signals from the debugger are "out of band". */ 1749 sp = NULL; 1750 1751 /* 1752 * If the debugger didn't provide a signal, find a pending 1753 * signal from our set. Check per-LWP signals first, and 1754 * then per-process. 1755 */ 1756 if (signo == 0) { 1757 sp = &l->l_sigpend; 1758 ss = sp->sp_set; 1759 if ((p->p_lflag & PL_PPWAIT) != 0) 1760 sigminusset(&stopsigmask, &ss); 1761 sigminusset(&l->l_sigmask, &ss); 1762 1763 if ((signo = firstsig(&ss)) == 0) { 1764 sp = &p->p_sigpend; 1765 ss = sp->sp_set; 1766 if ((p->p_lflag & PL_PPWAIT) != 0) 1767 sigminusset(&stopsigmask, &ss); 1768 sigminusset(&l->l_sigmask, &ss); 1769 1770 if ((signo = firstsig(&ss)) == 0) { 1771 /* 1772 * No signal pending - clear the 1773 * indicator and bail out. 1774 */ 1775 lwp_lock(l); 1776 l->l_flag &= ~LW_PENDSIG; 1777 lwp_unlock(l); 1778 sp = NULL; 1779 break; 1780 } 1781 } 1782 } 1783 1784 /* 1785 * We should see pending but ignored signals only if 1786 * we are being traced. 1787 */ 1788 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1789 (p->p_slflag & PSL_TRACED) == 0) { 1790 /* Discard the signal. */ 1791 continue; 1792 } 1793 1794 /* 1795 * If traced, always stop, and stay stopped until released 1796 * by the debugger. If the our parent process is waiting 1797 * for us, don't hang as we could deadlock. 1798 */ 1799 if ((p->p_slflag & PSL_TRACED) != 0 && 1800 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1801 /* Take the signal. */ 1802 (void)sigget(sp, NULL, signo, NULL); 1803 p->p_xstat = signo; 1804 1805 /* Emulation-specific handling of signal trace */ 1806 if (p->p_emul->e_tracesig == NULL || 1807 (*p->p_emul->e_tracesig)(p, signo) == 0) 1808 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1809 signo); 1810 1811 /* Check for a signal from the debugger. */ 1812 if ((signo = sigchecktrace()) == 0) 1813 continue; 1814 1815 /* Signals from the debugger are "out of band". */ 1816 sp = NULL; 1817 } 1818 1819 prop = sigprop[signo]; 1820 1821 /* 1822 * Decide whether the signal should be returned. 1823 */ 1824 switch ((long)SIGACTION(p, signo).sa_handler) { 1825 case (long)SIG_DFL: 1826 /* 1827 * Don't take default actions on system processes. 1828 */ 1829 if (p->p_pid <= 1) { 1830 #ifdef DIAGNOSTIC 1831 /* 1832 * Are you sure you want to ignore SIGSEGV 1833 * in init? XXX 1834 */ 1835 printf_nolog("Process (pid %d) got sig %d\n", 1836 p->p_pid, signo); 1837 #endif 1838 continue; 1839 } 1840 1841 /* 1842 * If there is a pending stop signal to process with 1843 * default action, stop here, then clear the signal. 1844 * However, if process is member of an orphaned 1845 * process group, ignore tty stop signals. 1846 */ 1847 if (prop & SA_STOP) { 1848 /* 1849 * XXX Don't hold proc_lock for p_lflag, 1850 * but it's not a big deal. 1851 */ 1852 if (p->p_slflag & PSL_TRACED || 1853 ((p->p_lflag & PL_ORPHANPG) != 0 && 1854 prop & SA_TTYSTOP)) { 1855 /* Ignore the signal. */ 1856 continue; 1857 } 1858 /* Take the signal. */ 1859 (void)sigget(sp, NULL, signo, NULL); 1860 p->p_xstat = signo; 1861 signo = 0; 1862 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1863 } else if (prop & SA_IGNORE) { 1864 /* 1865 * Except for SIGCONT, shouldn't get here. 1866 * Default action is to ignore; drop it. 1867 */ 1868 continue; 1869 } 1870 break; 1871 1872 case (long)SIG_IGN: 1873 #ifdef DEBUG_ISSIGNAL 1874 /* 1875 * Masking above should prevent us ever trying 1876 * to take action on an ignored signal other 1877 * than SIGCONT, unless process is traced. 1878 */ 1879 if ((prop & SA_CONT) == 0 && 1880 (p->p_slflag & PSL_TRACED) == 0) 1881 printf_nolog("issignal\n"); 1882 #endif 1883 continue; 1884 1885 default: 1886 /* 1887 * This signal has an action, let postsig() process 1888 * it. 1889 */ 1890 break; 1891 } 1892 1893 break; 1894 } 1895 1896 l->l_sigpendset = sp; 1897 return signo; 1898 } 1899 1900 /* 1901 * Take the action for the specified signal 1902 * from the current set of pending signals. 1903 */ 1904 void 1905 postsig(int signo) 1906 { 1907 struct lwp *l; 1908 struct proc *p; 1909 struct sigacts *ps; 1910 sig_t action; 1911 sigset_t *returnmask; 1912 ksiginfo_t ksi; 1913 1914 l = curlwp; 1915 p = l->l_proc; 1916 ps = p->p_sigacts; 1917 1918 KASSERT(mutex_owned(p->p_lock)); 1919 KASSERT(signo > 0); 1920 1921 /* 1922 * Set the new mask value and also defer further occurrences of this 1923 * signal. 1924 * 1925 * Special case: user has done a sigsuspend. Here the current mask is 1926 * not of interest, but rather the mask from before the sigsuspend is 1927 * what we want restored after the signal processing is completed. 1928 */ 1929 if (l->l_sigrestore) { 1930 returnmask = &l->l_sigoldmask; 1931 l->l_sigrestore = 0; 1932 } else 1933 returnmask = &l->l_sigmask; 1934 1935 /* 1936 * Commit to taking the signal before releasing the mutex. 1937 */ 1938 action = SIGACTION_PS(ps, signo).sa_handler; 1939 l->l_ru.ru_nsignals++; 1940 sigget(l->l_sigpendset, &ksi, signo, NULL); 1941 1942 if (ktrpoint(KTR_PSIG)) { 1943 mutex_exit(p->p_lock); 1944 ktrpsig(signo, action, returnmask, &ksi); 1945 mutex_enter(p->p_lock); 1946 } 1947 1948 if (action == SIG_DFL) { 1949 /* 1950 * Default action, where the default is to kill 1951 * the process. (Other cases were ignored above.) 1952 */ 1953 sigexit(l, signo); 1954 return; 1955 } 1956 1957 /* 1958 * If we get here, the signal must be caught. 1959 */ 1960 #ifdef DIAGNOSTIC 1961 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1962 panic("postsig action"); 1963 #endif 1964 1965 kpsendsig(l, &ksi, returnmask); 1966 } 1967 1968 /* 1969 * sendsig: 1970 * 1971 * Default signal delivery method for NetBSD. 1972 */ 1973 void 1974 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1975 { 1976 struct sigacts *sa; 1977 int sig; 1978 1979 sig = ksi->ksi_signo; 1980 sa = curproc->p_sigacts; 1981 1982 switch (sa->sa_sigdesc[sig].sd_vers) { 1983 case 0: 1984 case 1: 1985 /* Compat for 1.6 and earlier. */ 1986 if (sendsig_sigcontext_vec == NULL) { 1987 break; 1988 } 1989 (*sendsig_sigcontext_vec)(ksi, mask); 1990 return; 1991 case 2: 1992 case 3: 1993 sendsig_siginfo(ksi, mask); 1994 return; 1995 default: 1996 break; 1997 } 1998 1999 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2000 sigexit(curlwp, SIGILL); 2001 } 2002 2003 /* 2004 * sendsig_reset: 2005 * 2006 * Reset the signal action. Called from emulation specific sendsig() 2007 * before unlocking to deliver the signal. 2008 */ 2009 void 2010 sendsig_reset(struct lwp *l, int signo) 2011 { 2012 struct proc *p = l->l_proc; 2013 struct sigacts *ps = p->p_sigacts; 2014 sigset_t *mask; 2015 2016 KASSERT(mutex_owned(p->p_lock)); 2017 2018 p->p_sigctx.ps_lwp = 0; 2019 p->p_sigctx.ps_code = 0; 2020 p->p_sigctx.ps_signo = 0; 2021 2022 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2023 2024 mutex_enter(&ps->sa_mutex); 2025 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2026 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2027 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2028 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2029 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2030 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2031 } 2032 mutex_exit(&ps->sa_mutex); 2033 } 2034 2035 /* 2036 * Kill the current process for stated reason. 2037 */ 2038 void 2039 killproc(struct proc *p, const char *why) 2040 { 2041 2042 KASSERT(mutex_owned(proc_lock)); 2043 2044 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2045 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2046 psignal(p, SIGKILL); 2047 } 2048 2049 /* 2050 * Force the current process to exit with the specified signal, dumping core 2051 * if appropriate. We bypass the normal tests for masked and caught 2052 * signals, allowing unrecoverable failures to terminate the process without 2053 * changing signal state. Mark the accounting record with the signal 2054 * termination. If dumping core, save the signal number for the debugger. 2055 * Calls exit and does not return. 2056 */ 2057 void 2058 sigexit(struct lwp *l, int signo) 2059 { 2060 int exitsig, error, docore; 2061 struct proc *p; 2062 struct lwp *t; 2063 2064 p = l->l_proc; 2065 2066 KASSERT(mutex_owned(p->p_lock)); 2067 KERNEL_UNLOCK_ALL(l, NULL); 2068 2069 /* 2070 * Don't permit coredump() multiple times in the same process. 2071 * Call back into sigexit, where we will be suspended until 2072 * the deed is done. Note that this is a recursive call, but 2073 * LW_WCORE will prevent us from coming back this way. 2074 */ 2075 if ((p->p_sflag & PS_WCORE) != 0) { 2076 lwp_lock(l); 2077 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2078 lwp_unlock(l); 2079 mutex_exit(p->p_lock); 2080 lwp_userret(l); 2081 panic("sigexit 1"); 2082 /* NOTREACHED */ 2083 } 2084 2085 /* If process is already on the way out, then bail now. */ 2086 if ((p->p_sflag & PS_WEXIT) != 0) { 2087 mutex_exit(p->p_lock); 2088 lwp_exit(l); 2089 panic("sigexit 2"); 2090 /* NOTREACHED */ 2091 } 2092 2093 /* 2094 * Prepare all other LWPs for exit. If dumping core, suspend them 2095 * so that their registers are available long enough to be dumped. 2096 */ 2097 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2098 p->p_sflag |= PS_WCORE; 2099 for (;;) { 2100 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2101 lwp_lock(t); 2102 if (t == l) { 2103 t->l_flag &= ~LW_WSUSPEND; 2104 lwp_unlock(t); 2105 continue; 2106 } 2107 t->l_flag |= (LW_WCORE | LW_WEXIT); 2108 lwp_suspend(l, t); 2109 } 2110 2111 if (p->p_nrlwps == 1) 2112 break; 2113 2114 /* 2115 * Kick any LWPs sitting in lwp_wait1(), and wait 2116 * for everyone else to stop before proceeding. 2117 */ 2118 p->p_nlwpwait++; 2119 cv_broadcast(&p->p_lwpcv); 2120 cv_wait(&p->p_lwpcv, p->p_lock); 2121 p->p_nlwpwait--; 2122 } 2123 } 2124 2125 exitsig = signo; 2126 p->p_acflag |= AXSIG; 2127 p->p_sigctx.ps_signo = signo; 2128 2129 if (docore) { 2130 mutex_exit(p->p_lock); 2131 if ((error = (*coredump_vec)(l, NULL)) == 0) 2132 exitsig |= WCOREFLAG; 2133 2134 if (kern_logsigexit) { 2135 int uid = l->l_cred ? 2136 (int)kauth_cred_geteuid(l->l_cred) : -1; 2137 2138 if (error) 2139 log(LOG_INFO, lognocoredump, p->p_pid, 2140 p->p_comm, uid, signo, error); 2141 else 2142 log(LOG_INFO, logcoredump, p->p_pid, 2143 p->p_comm, uid, signo); 2144 } 2145 2146 #ifdef PAX_SEGVGUARD 2147 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2148 #endif /* PAX_SEGVGUARD */ 2149 /* Acquire the sched state mutex. exit1() will release it. */ 2150 mutex_enter(p->p_lock); 2151 } 2152 2153 /* No longer dumping core. */ 2154 p->p_sflag &= ~PS_WCORE; 2155 2156 exit1(l, W_EXITCODE(0, exitsig)); 2157 /* NOTREACHED */ 2158 } 2159 2160 /* 2161 * Put process 'p' into the stopped state and optionally, notify the parent. 2162 */ 2163 void 2164 proc_stop(struct proc *p, int notify, int signo) 2165 { 2166 struct lwp *l; 2167 2168 KASSERT(mutex_owned(p->p_lock)); 2169 2170 /* 2171 * First off, set the stopping indicator and bring all sleeping 2172 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2173 * unlock between here and the p->p_nrlwps check below. 2174 */ 2175 p->p_sflag |= PS_STOPPING; 2176 if (notify) 2177 p->p_sflag |= PS_NOTIFYSTOP; 2178 else 2179 p->p_sflag &= ~PS_NOTIFYSTOP; 2180 membar_producer(); 2181 2182 proc_stop_lwps(p); 2183 2184 /* 2185 * If there are no LWPs available to take the signal, then we 2186 * signal the parent process immediately. Otherwise, the last 2187 * LWP to stop will take care of it. 2188 */ 2189 2190 if (p->p_nrlwps == 0) { 2191 proc_stop_done(p, true, PS_NOCLDSTOP); 2192 } else { 2193 /* 2194 * Have the remaining LWPs come to a halt, and trigger 2195 * proc_stop_callout() to ensure that they do. 2196 */ 2197 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2198 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2199 callout_schedule(&proc_stop_ch, 1); 2200 } 2201 } 2202 2203 /* 2204 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2205 * but wait for them to come to a halt at the kernel-user boundary. This is 2206 * to allow LWPs to release any locks that they may hold before stopping. 2207 * 2208 * Non-interruptable sleeps can be long, and there is the potential for an 2209 * LWP to begin sleeping interruptably soon after the process has been set 2210 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2211 * stopping, and so complete halt of the process and the return of status 2212 * information to the parent could be delayed indefinitely. 2213 * 2214 * To handle this race, proc_stop_callout() runs once per tick while there 2215 * are stopping processes in the system. It sets LWPs that are sleeping 2216 * interruptably into the LSSTOP state. 2217 * 2218 * Note that we are not concerned about keeping all LWPs stopped while the 2219 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2220 * What we do need to ensure is that all LWPs in a stopping process have 2221 * stopped at least once, so that notification can be sent to the parent 2222 * process. 2223 */ 2224 static void 2225 proc_stop_callout(void *cookie) 2226 { 2227 bool more, restart; 2228 struct proc *p; 2229 2230 (void)cookie; 2231 2232 do { 2233 restart = false; 2234 more = false; 2235 2236 mutex_enter(proc_lock); 2237 PROCLIST_FOREACH(p, &allproc) { 2238 if ((p->p_flag & PK_MARKER) != 0) 2239 continue; 2240 mutex_enter(p->p_lock); 2241 2242 if ((p->p_sflag & PS_STOPPING) == 0) { 2243 mutex_exit(p->p_lock); 2244 continue; 2245 } 2246 2247 /* Stop any LWPs sleeping interruptably. */ 2248 proc_stop_lwps(p); 2249 if (p->p_nrlwps == 0) { 2250 /* 2251 * We brought the process to a halt. 2252 * Mark it as stopped and notify the 2253 * parent. 2254 */ 2255 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2256 /* 2257 * Note that proc_stop_done() will 2258 * drop p->p_lock briefly. 2259 * Arrange to restart and check 2260 * all processes again. 2261 */ 2262 restart = true; 2263 } 2264 proc_stop_done(p, true, PS_NOCLDSTOP); 2265 } else 2266 more = true; 2267 2268 mutex_exit(p->p_lock); 2269 if (restart) 2270 break; 2271 } 2272 mutex_exit(proc_lock); 2273 } while (restart); 2274 2275 /* 2276 * If we noted processes that are stopping but still have 2277 * running LWPs, then arrange to check again in 1 tick. 2278 */ 2279 if (more) 2280 callout_schedule(&proc_stop_ch, 1); 2281 } 2282 2283 /* 2284 * Given a process in state SSTOP, set the state back to SACTIVE and 2285 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2286 */ 2287 void 2288 proc_unstop(struct proc *p) 2289 { 2290 struct lwp *l; 2291 int sig; 2292 2293 KASSERT(mutex_owned(proc_lock)); 2294 KASSERT(mutex_owned(p->p_lock)); 2295 2296 p->p_stat = SACTIVE; 2297 p->p_sflag &= ~PS_STOPPING; 2298 sig = p->p_xstat; 2299 2300 if (!p->p_waited) 2301 p->p_pptr->p_nstopchild--; 2302 2303 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2304 lwp_lock(l); 2305 if (l->l_stat != LSSTOP) { 2306 lwp_unlock(l); 2307 continue; 2308 } 2309 if (l->l_wchan == NULL) { 2310 setrunnable(l); 2311 continue; 2312 } 2313 if (sig && (l->l_flag & LW_SINTR) != 0) { 2314 setrunnable(l); 2315 sig = 0; 2316 } else { 2317 l->l_stat = LSSLEEP; 2318 p->p_nrlwps++; 2319 lwp_unlock(l); 2320 } 2321 } 2322 } 2323 2324 static int 2325 filt_sigattach(struct knote *kn) 2326 { 2327 struct proc *p = curproc; 2328 2329 kn->kn_obj = p; 2330 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2331 2332 mutex_enter(p->p_lock); 2333 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2334 mutex_exit(p->p_lock); 2335 2336 return (0); 2337 } 2338 2339 static void 2340 filt_sigdetach(struct knote *kn) 2341 { 2342 struct proc *p = kn->kn_obj; 2343 2344 mutex_enter(p->p_lock); 2345 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2346 mutex_exit(p->p_lock); 2347 } 2348 2349 /* 2350 * signal knotes are shared with proc knotes, so we apply a mask to 2351 * the hint in order to differentiate them from process hints. This 2352 * could be avoided by using a signal-specific knote list, but probably 2353 * isn't worth the trouble. 2354 */ 2355 static int 2356 filt_signal(struct knote *kn, long hint) 2357 { 2358 2359 if (hint & NOTE_SIGNAL) { 2360 hint &= ~NOTE_SIGNAL; 2361 2362 if (kn->kn_id == hint) 2363 kn->kn_data++; 2364 } 2365 return (kn->kn_data != 0); 2366 } 2367 2368 const struct filterops sig_filtops = { 2369 0, filt_sigattach, filt_sigdetach, filt_signal 2370 }; 2371