1 /* $NetBSD: kern_sig.c,v 1.302 2009/12/30 23:31:56 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.302 2009/12/30 23:31:56 rmind Exp $"); 70 71 #include "opt_ptrace.h" 72 #include "opt_compat_sunos.h" 73 #include "opt_compat_netbsd.h" 74 #include "opt_compat_netbsd32.h" 75 #include "opt_pax.h" 76 #include "opt_sa.h" 77 78 #define SIGPROP /* include signal properties table */ 79 #include <sys/param.h> 80 #include <sys/signalvar.h> 81 #include <sys/proc.h> 82 #include <sys/systm.h> 83 #include <sys/wait.h> 84 #include <sys/ktrace.h> 85 #include <sys/syslog.h> 86 #include <sys/filedesc.h> 87 #include <sys/file.h> 88 #include <sys/pool.h> 89 #include <sys/ucontext.h> 90 #include <sys/sa.h> 91 #include <sys/savar.h> 92 #include <sys/exec.h> 93 #include <sys/kauth.h> 94 #include <sys/acct.h> 95 #include <sys/callout.h> 96 #include <sys/atomic.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 100 #ifdef PAX_SEGVGUARD 101 #include <sys/pax.h> 102 #endif /* PAX_SEGVGUARD */ 103 104 #include <uvm/uvm.h> 105 #include <uvm/uvm_extern.h> 106 107 static void ksiginfo_exechook(struct proc *, void *); 108 static void proc_stop_callout(void *); 109 static int sigchecktrace(void); 110 static int sigpost(struct lwp *, sig_t, int, int, int); 111 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 112 static int sigunwait(struct proc *, const ksiginfo_t *); 113 static void sigswitch(bool, int, int); 114 115 sigset_t contsigmask, stopsigmask, sigcantmask; 116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */ 117 static void sigacts_poolpage_free(struct pool *, void *); 118 static void *sigacts_poolpage_alloc(struct pool *, int); 119 static callout_t proc_stop_ch; 120 static pool_cache_t siginfo_cache; 121 static pool_cache_t ksiginfo_cache; 122 123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *); 124 int (*coredump_vec)(struct lwp *, const char *) = 125 (int (*)(struct lwp *, const char *))enosys; 126 127 static struct pool_allocator sigactspool_allocator = { 128 .pa_alloc = sigacts_poolpage_alloc, 129 .pa_free = sigacts_poolpage_free 130 }; 131 132 #ifdef DEBUG 133 int kern_logsigexit = 1; 134 #else 135 int kern_logsigexit = 0; 136 #endif 137 138 static const char logcoredump[] = 139 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 140 static const char lognocoredump[] = 141 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 142 143 static kauth_listener_t signal_listener; 144 145 static int 146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 147 void *arg0, void *arg1, void *arg2, void *arg3) 148 { 149 struct proc *p; 150 int result, signum; 151 152 result = KAUTH_RESULT_DEFER; 153 p = arg0; 154 signum = (int)(unsigned long)arg1; 155 156 if (action != KAUTH_PROCESS_SIGNAL) 157 return result; 158 159 if (kauth_cred_uidmatch(cred, p->p_cred) || 160 (signum == SIGCONT && (curproc->p_session == p->p_session))) 161 result = KAUTH_RESULT_ALLOW; 162 163 return result; 164 } 165 166 /* 167 * signal_init: 168 * 169 * Initialize global signal-related data structures. 170 */ 171 void 172 signal_init(void) 173 { 174 175 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 176 177 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 178 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 179 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL); 180 181 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0, 182 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL); 183 184 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 185 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 186 187 exechook_establish(ksiginfo_exechook, NULL); 188 189 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 190 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 191 192 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 193 signal_listener_cb, NULL); 194 } 195 196 /* 197 * sigacts_poolpage_alloc: 198 * 199 * Allocate a page for the sigacts memory pool. 200 */ 201 static void * 202 sigacts_poolpage_alloc(struct pool *pp, int flags) 203 { 204 205 return (void *)uvm_km_alloc(kernel_map, 206 PAGE_SIZE * 2, PAGE_SIZE * 2, 207 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 208 | UVM_KMF_WIRED); 209 } 210 211 /* 212 * sigacts_poolpage_free: 213 * 214 * Free a page on behalf of the sigacts memory pool. 215 */ 216 static void 217 sigacts_poolpage_free(struct pool *pp, void *v) 218 { 219 220 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 221 } 222 223 /* 224 * sigactsinit: 225 * 226 * Create an initial sigacts structure, using the same signal state 227 * as of specified process. If 'share' is set, share the sigacts by 228 * holding a reference, otherwise just copy it from parent. 229 */ 230 struct sigacts * 231 sigactsinit(struct proc *pp, int share) 232 { 233 struct sigacts *ps = pp->p_sigacts, *ps2; 234 235 if (__predict_false(share)) { 236 atomic_inc_uint(&ps->sa_refcnt); 237 return ps; 238 } 239 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 240 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 241 ps2->sa_refcnt = 1; 242 243 mutex_enter(&ps->sa_mutex); 244 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 245 mutex_exit(&ps->sa_mutex); 246 return ps2; 247 } 248 249 /* 250 * sigactsunshare: 251 * 252 * Make this process not share its sigacts, maintaining all signal state. 253 */ 254 void 255 sigactsunshare(struct proc *p) 256 { 257 struct sigacts *ps, *oldps = p->p_sigacts; 258 259 if (__predict_true(oldps->sa_refcnt == 1)) 260 return; 261 262 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 263 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 264 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 265 ps->sa_refcnt = 1; 266 267 p->p_sigacts = ps; 268 sigactsfree(oldps); 269 } 270 271 /* 272 * sigactsfree; 273 * 274 * Release a sigacts structure. 275 */ 276 void 277 sigactsfree(struct sigacts *ps) 278 { 279 280 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 281 mutex_destroy(&ps->sa_mutex); 282 pool_cache_put(sigacts_cache, ps); 283 } 284 } 285 286 /* 287 * siginit: 288 * 289 * Initialize signal state for process 0; set to ignore signals that 290 * are ignored by default and disable the signal stack. Locking not 291 * required as the system is still cold. 292 */ 293 void 294 siginit(struct proc *p) 295 { 296 struct lwp *l; 297 struct sigacts *ps; 298 int signo, prop; 299 300 ps = p->p_sigacts; 301 sigemptyset(&contsigmask); 302 sigemptyset(&stopsigmask); 303 sigemptyset(&sigcantmask); 304 for (signo = 1; signo < NSIG; signo++) { 305 prop = sigprop[signo]; 306 if (prop & SA_CONT) 307 sigaddset(&contsigmask, signo); 308 if (prop & SA_STOP) 309 sigaddset(&stopsigmask, signo); 310 if (prop & SA_CANTMASK) 311 sigaddset(&sigcantmask, signo); 312 if (prop & SA_IGNORE && signo != SIGCONT) 313 sigaddset(&p->p_sigctx.ps_sigignore, signo); 314 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 315 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 316 } 317 sigemptyset(&p->p_sigctx.ps_sigcatch); 318 p->p_sflag &= ~PS_NOCLDSTOP; 319 320 ksiginfo_queue_init(&p->p_sigpend.sp_info); 321 sigemptyset(&p->p_sigpend.sp_set); 322 323 /* 324 * Reset per LWP state. 325 */ 326 l = LIST_FIRST(&p->p_lwps); 327 l->l_sigwaited = NULL; 328 l->l_sigstk.ss_flags = SS_DISABLE; 329 l->l_sigstk.ss_size = 0; 330 l->l_sigstk.ss_sp = 0; 331 ksiginfo_queue_init(&l->l_sigpend.sp_info); 332 sigemptyset(&l->l_sigpend.sp_set); 333 334 /* One reference. */ 335 ps->sa_refcnt = 1; 336 } 337 338 /* 339 * execsigs: 340 * 341 * Reset signals for an exec of the specified process. 342 */ 343 void 344 execsigs(struct proc *p) 345 { 346 struct sigacts *ps; 347 struct lwp *l; 348 int signo, prop; 349 sigset_t tset; 350 ksiginfoq_t kq; 351 352 KASSERT(p->p_nlwps == 1); 353 354 sigactsunshare(p); 355 ps = p->p_sigacts; 356 357 /* 358 * Reset caught signals. Held signals remain held through 359 * l->l_sigmask (unless they were caught, and are now ignored 360 * by default). 361 * 362 * No need to lock yet, the process has only one LWP and 363 * at this point the sigacts are private to the process. 364 */ 365 sigemptyset(&tset); 366 for (signo = 1; signo < NSIG; signo++) { 367 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 368 prop = sigprop[signo]; 369 if (prop & SA_IGNORE) { 370 if ((prop & SA_CONT) == 0) 371 sigaddset(&p->p_sigctx.ps_sigignore, 372 signo); 373 sigaddset(&tset, signo); 374 } 375 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 376 } 377 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 378 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 379 } 380 ksiginfo_queue_init(&kq); 381 382 mutex_enter(p->p_lock); 383 sigclearall(p, &tset, &kq); 384 sigemptyset(&p->p_sigctx.ps_sigcatch); 385 386 /* 387 * Reset no zombies if child dies flag as Solaris does. 388 */ 389 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 390 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 391 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 392 393 /* 394 * Reset per-LWP state. 395 */ 396 l = LIST_FIRST(&p->p_lwps); 397 l->l_sigwaited = NULL; 398 l->l_sigstk.ss_flags = SS_DISABLE; 399 l->l_sigstk.ss_size = 0; 400 l->l_sigstk.ss_sp = 0; 401 ksiginfo_queue_init(&l->l_sigpend.sp_info); 402 sigemptyset(&l->l_sigpend.sp_set); 403 mutex_exit(p->p_lock); 404 405 ksiginfo_queue_drain(&kq); 406 } 407 408 /* 409 * ksiginfo_exechook: 410 * 411 * Free all pending ksiginfo entries from a process on exec. 412 * Additionally, drain any unused ksiginfo structures in the 413 * system back to the pool. 414 * 415 * XXX This should not be a hook, every process has signals. 416 */ 417 static void 418 ksiginfo_exechook(struct proc *p, void *v) 419 { 420 ksiginfoq_t kq; 421 422 ksiginfo_queue_init(&kq); 423 424 mutex_enter(p->p_lock); 425 sigclearall(p, NULL, &kq); 426 mutex_exit(p->p_lock); 427 428 ksiginfo_queue_drain(&kq); 429 } 430 431 /* 432 * ksiginfo_alloc: 433 * 434 * Allocate a new ksiginfo structure from the pool, and optionally copy 435 * an existing one. If the existing ksiginfo_t is from the pool, and 436 * has not been queued somewhere, then just return it. Additionally, 437 * if the existing ksiginfo_t does not contain any information beyond 438 * the signal number, then just return it. 439 */ 440 ksiginfo_t * 441 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 442 { 443 ksiginfo_t *kp; 444 445 if (ok != NULL) { 446 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 447 KSI_FROMPOOL) 448 return ok; 449 if (KSI_EMPTY_P(ok)) 450 return ok; 451 } 452 453 kp = pool_cache_get(ksiginfo_cache, flags); 454 if (kp == NULL) { 455 #ifdef DIAGNOSTIC 456 printf("Out of memory allocating ksiginfo for pid %d\n", 457 p->p_pid); 458 #endif 459 return NULL; 460 } 461 462 if (ok != NULL) { 463 memcpy(kp, ok, sizeof(*kp)); 464 kp->ksi_flags &= ~KSI_QUEUED; 465 } else 466 KSI_INIT_EMPTY(kp); 467 468 kp->ksi_flags |= KSI_FROMPOOL; 469 470 return kp; 471 } 472 473 /* 474 * ksiginfo_free: 475 * 476 * If the given ksiginfo_t is from the pool and has not been queued, 477 * then free it. 478 */ 479 void 480 ksiginfo_free(ksiginfo_t *kp) 481 { 482 483 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 484 return; 485 pool_cache_put(ksiginfo_cache, kp); 486 } 487 488 /* 489 * ksiginfo_queue_drain: 490 * 491 * Drain a non-empty ksiginfo_t queue. 492 */ 493 void 494 ksiginfo_queue_drain0(ksiginfoq_t *kq) 495 { 496 ksiginfo_t *ksi; 497 498 KASSERT(!CIRCLEQ_EMPTY(kq)); 499 500 while (!CIRCLEQ_EMPTY(kq)) { 501 ksi = CIRCLEQ_FIRST(kq); 502 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 503 pool_cache_put(ksiginfo_cache, ksi); 504 } 505 } 506 507 /* 508 * sigget: 509 * 510 * Fetch the first pending signal from a set. Optionally, also fetch 511 * or manufacture a ksiginfo element. Returns the number of the first 512 * pending signal, or zero. 513 */ 514 int 515 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 516 { 517 ksiginfo_t *ksi; 518 sigset_t tset; 519 520 /* If there's no pending set, the signal is from the debugger. */ 521 if (sp == NULL) 522 goto out; 523 524 /* Construct mask from signo, and 'mask'. */ 525 if (signo == 0) { 526 if (mask != NULL) { 527 tset = *mask; 528 __sigandset(&sp->sp_set, &tset); 529 } else 530 tset = sp->sp_set; 531 532 /* If there are no signals pending - return. */ 533 if ((signo = firstsig(&tset)) == 0) 534 goto out; 535 } else { 536 KASSERT(sigismember(&sp->sp_set, signo)); 537 } 538 539 sigdelset(&sp->sp_set, signo); 540 541 /* Find siginfo and copy it out. */ 542 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 543 if (ksi->ksi_signo != signo) 544 continue; 545 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 546 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 547 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 548 ksi->ksi_flags &= ~KSI_QUEUED; 549 if (out != NULL) { 550 memcpy(out, ksi, sizeof(*out)); 551 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 552 } 553 ksiginfo_free(ksi); /* XXXSMP */ 554 return signo; 555 } 556 out: 557 /* If there is no siginfo, then manufacture it. */ 558 if (out != NULL) { 559 KSI_INIT(out); 560 out->ksi_info._signo = signo; 561 out->ksi_info._code = SI_NOINFO; 562 } 563 return signo; 564 } 565 566 /* 567 * sigput: 568 * 569 * Append a new ksiginfo element to the list of pending ksiginfo's. 570 */ 571 static void 572 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 573 { 574 ksiginfo_t *kp; 575 576 KASSERT(mutex_owned(p->p_lock)); 577 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 578 579 sigaddset(&sp->sp_set, ksi->ksi_signo); 580 581 /* 582 * If there is no siginfo, we are done. 583 */ 584 if (KSI_EMPTY_P(ksi)) 585 return; 586 587 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 588 589 #ifdef notyet /* XXX: QUEUING */ 590 if (ksi->ksi_signo < SIGRTMIN) 591 #endif 592 { 593 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 594 if (kp->ksi_signo == ksi->ksi_signo) { 595 KSI_COPY(ksi, kp); 596 kp->ksi_flags |= KSI_QUEUED; 597 return; 598 } 599 } 600 } 601 602 ksi->ksi_flags |= KSI_QUEUED; 603 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 604 } 605 606 /* 607 * sigclear: 608 * 609 * Clear all pending signals in the specified set. 610 */ 611 void 612 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 613 { 614 ksiginfo_t *ksi, *next; 615 616 if (mask == NULL) 617 sigemptyset(&sp->sp_set); 618 else 619 sigminusset(mask, &sp->sp_set); 620 621 ksi = CIRCLEQ_FIRST(&sp->sp_info); 622 for (; ksi != (void *)&sp->sp_info; ksi = next) { 623 next = CIRCLEQ_NEXT(ksi, ksi_list); 624 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 625 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 626 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 627 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 628 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 629 } 630 } 631 } 632 633 /* 634 * sigclearall: 635 * 636 * Clear all pending signals in the specified set from a process and 637 * its LWPs. 638 */ 639 void 640 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 641 { 642 struct lwp *l; 643 644 KASSERT(mutex_owned(p->p_lock)); 645 646 sigclear(&p->p_sigpend, mask, kq); 647 648 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 649 sigclear(&l->l_sigpend, mask, kq); 650 } 651 } 652 653 /* 654 * sigispending: 655 * 656 * Return true if there are pending signals for the current LWP. May 657 * be called unlocked provided that LW_PENDSIG is set, and that the 658 * signal has been posted to the appopriate queue before LW_PENDSIG is 659 * set. 660 */ 661 int 662 sigispending(struct lwp *l, int signo) 663 { 664 struct proc *p = l->l_proc; 665 sigset_t tset; 666 667 membar_consumer(); 668 669 tset = l->l_sigpend.sp_set; 670 sigplusset(&p->p_sigpend.sp_set, &tset); 671 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 672 sigminusset(&l->l_sigmask, &tset); 673 674 if (signo == 0) { 675 if (firstsig(&tset) != 0) 676 return EINTR; 677 } else if (sigismember(&tset, signo)) 678 return EINTR; 679 680 return 0; 681 } 682 683 #ifdef KERN_SA 684 685 /* 686 * siginfo_alloc: 687 * 688 * Allocate a new siginfo_t structure from the pool. 689 */ 690 siginfo_t * 691 siginfo_alloc(int flags) 692 { 693 694 return pool_cache_get(siginfo_cache, flags); 695 } 696 697 /* 698 * siginfo_free: 699 * 700 * Return a siginfo_t structure to the pool. 701 */ 702 void 703 siginfo_free(void *arg) 704 { 705 706 pool_cache_put(siginfo_cache, arg); 707 } 708 709 #endif 710 711 void 712 getucontext(struct lwp *l, ucontext_t *ucp) 713 { 714 struct proc *p = l->l_proc; 715 716 KASSERT(mutex_owned(p->p_lock)); 717 718 ucp->uc_flags = 0; 719 ucp->uc_link = l->l_ctxlink; 720 721 #if KERN_SA 722 if (p->p_sa != NULL) 723 ucp->uc_sigmask = p->p_sa->sa_sigmask; 724 else 725 #endif /* KERN_SA */ 726 ucp->uc_sigmask = l->l_sigmask; 727 ucp->uc_flags |= _UC_SIGMASK; 728 729 /* 730 * The (unsupplied) definition of the `current execution stack' 731 * in the System V Interface Definition appears to allow returning 732 * the main context stack. 733 */ 734 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 735 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 736 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 737 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 738 } else { 739 /* Simply copy alternate signal execution stack. */ 740 ucp->uc_stack = l->l_sigstk; 741 } 742 ucp->uc_flags |= _UC_STACK; 743 mutex_exit(p->p_lock); 744 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 745 mutex_enter(p->p_lock); 746 } 747 748 /* 749 * getucontext_sa: 750 * Get a ucontext_t for use in SA upcall generation. 751 * Teweaked version of getucontext(). We 1) do not take p_lock, 2) 752 * fudge things with uc_link (which is usually NULL for libpthread 753 * code), and 3) we report an empty signal mask. 754 */ 755 void 756 getucontext_sa(struct lwp *l, ucontext_t *ucp) 757 { 758 ucp->uc_flags = 0; 759 ucp->uc_link = l->l_ctxlink; 760 761 sigemptyset(&ucp->uc_sigmask); 762 ucp->uc_flags |= _UC_SIGMASK; 763 764 /* 765 * The (unsupplied) definition of the `current execution stack' 766 * in the System V Interface Definition appears to allow returning 767 * the main context stack. 768 */ 769 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 770 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 771 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 772 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 773 } else { 774 /* Simply copy alternate signal execution stack. */ 775 ucp->uc_stack = l->l_sigstk; 776 } 777 ucp->uc_flags |= _UC_STACK; 778 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 779 } 780 781 int 782 setucontext(struct lwp *l, const ucontext_t *ucp) 783 { 784 struct proc *p = l->l_proc; 785 int error; 786 787 KASSERT(mutex_owned(p->p_lock)); 788 789 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 790 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 791 if (error != 0) 792 return error; 793 } 794 795 mutex_exit(p->p_lock); 796 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 797 mutex_enter(p->p_lock); 798 if (error != 0) 799 return (error); 800 801 l->l_ctxlink = ucp->uc_link; 802 803 /* 804 * If there was stack information, update whether or not we are 805 * still running on an alternate signal stack. 806 */ 807 if ((ucp->uc_flags & _UC_STACK) != 0) { 808 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 809 l->l_sigstk.ss_flags |= SS_ONSTACK; 810 else 811 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 812 } 813 814 return 0; 815 } 816 817 /* 818 * killpg1: common code for kill process group/broadcast kill. 819 */ 820 int 821 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 822 { 823 struct proc *p, *cp; 824 kauth_cred_t pc; 825 struct pgrp *pgrp; 826 int nfound; 827 int signo = ksi->ksi_signo; 828 829 cp = l->l_proc; 830 pc = l->l_cred; 831 nfound = 0; 832 833 mutex_enter(proc_lock); 834 if (all) { 835 /* 836 * Broadcast. 837 */ 838 PROCLIST_FOREACH(p, &allproc) { 839 if (p->p_pid <= 1 || p == cp || 840 p->p_flag & (PK_SYSTEM|PK_MARKER)) 841 continue; 842 mutex_enter(p->p_lock); 843 if (kauth_authorize_process(pc, 844 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 845 NULL) == 0) { 846 nfound++; 847 if (signo) 848 kpsignal2(p, ksi); 849 } 850 mutex_exit(p->p_lock); 851 } 852 } else { 853 if (pgid == 0) 854 /* Zero pgid means send to my process group. */ 855 pgrp = cp->p_pgrp; 856 else { 857 pgrp = pg_find(pgid, PFIND_LOCKED); 858 if (pgrp == NULL) 859 goto out; 860 } 861 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 862 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 863 continue; 864 mutex_enter(p->p_lock); 865 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 866 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 867 nfound++; 868 if (signo && P_ZOMBIE(p) == 0) 869 kpsignal2(p, ksi); 870 } 871 mutex_exit(p->p_lock); 872 } 873 } 874 out: 875 mutex_exit(proc_lock); 876 return nfound ? 0 : ESRCH; 877 } 878 879 /* 880 * Send a signal to a process group. If checktty is set, limit to members 881 * which have a controlling terminal. 882 */ 883 void 884 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 885 { 886 ksiginfo_t ksi; 887 888 KASSERT(!cpu_intr_p()); 889 KASSERT(mutex_owned(proc_lock)); 890 891 KSI_INIT_EMPTY(&ksi); 892 ksi.ksi_signo = sig; 893 kpgsignal(pgrp, &ksi, NULL, checkctty); 894 } 895 896 void 897 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 898 { 899 struct proc *p; 900 901 KASSERT(!cpu_intr_p()); 902 KASSERT(mutex_owned(proc_lock)); 903 KASSERT(pgrp != NULL); 904 905 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 906 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 907 kpsignal(p, ksi, data); 908 } 909 910 /* 911 * Send a signal caused by a trap to the current LWP. If it will be caught 912 * immediately, deliver it with correct code. Otherwise, post it normally. 913 */ 914 void 915 trapsignal(struct lwp *l, ksiginfo_t *ksi) 916 { 917 struct proc *p; 918 struct sigacts *ps; 919 int signo = ksi->ksi_signo; 920 sigset_t *mask; 921 922 KASSERT(KSI_TRAP_P(ksi)); 923 924 ksi->ksi_lid = l->l_lid; 925 p = l->l_proc; 926 927 KASSERT(!cpu_intr_p()); 928 mutex_enter(proc_lock); 929 mutex_enter(p->p_lock); 930 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 931 ps = p->p_sigacts; 932 if ((p->p_slflag & PSL_TRACED) == 0 && 933 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 934 !sigismember(mask, signo)) { 935 mutex_exit(proc_lock); 936 l->l_ru.ru_nsignals++; 937 kpsendsig(l, ksi, mask); 938 mutex_exit(p->p_lock); 939 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi); 940 } else { 941 /* XXX for core dump/debugger */ 942 p->p_sigctx.ps_lwp = l->l_lid; 943 p->p_sigctx.ps_signo = ksi->ksi_signo; 944 p->p_sigctx.ps_code = ksi->ksi_trap; 945 kpsignal2(p, ksi); 946 mutex_exit(p->p_lock); 947 mutex_exit(proc_lock); 948 } 949 } 950 951 /* 952 * Fill in signal information and signal the parent for a child status change. 953 */ 954 void 955 child_psignal(struct proc *p, int mask) 956 { 957 ksiginfo_t ksi; 958 struct proc *q; 959 int xstat; 960 961 KASSERT(mutex_owned(proc_lock)); 962 KASSERT(mutex_owned(p->p_lock)); 963 964 xstat = p->p_xstat; 965 966 KSI_INIT(&ksi); 967 ksi.ksi_signo = SIGCHLD; 968 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 969 ksi.ksi_pid = p->p_pid; 970 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 971 ksi.ksi_status = xstat; 972 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 973 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 974 975 q = p->p_pptr; 976 977 mutex_exit(p->p_lock); 978 mutex_enter(q->p_lock); 979 980 if ((q->p_sflag & mask) == 0) 981 kpsignal2(q, &ksi); 982 983 mutex_exit(q->p_lock); 984 mutex_enter(p->p_lock); 985 } 986 987 void 988 psignal(struct proc *p, int signo) 989 { 990 ksiginfo_t ksi; 991 992 KASSERT(!cpu_intr_p()); 993 KASSERT(mutex_owned(proc_lock)); 994 995 KSI_INIT_EMPTY(&ksi); 996 ksi.ksi_signo = signo; 997 mutex_enter(p->p_lock); 998 kpsignal2(p, &ksi); 999 mutex_exit(p->p_lock); 1000 } 1001 1002 void 1003 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1004 { 1005 fdfile_t *ff; 1006 file_t *fp; 1007 fdtab_t *dt; 1008 1009 KASSERT(!cpu_intr_p()); 1010 KASSERT(mutex_owned(proc_lock)); 1011 1012 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1013 size_t fd; 1014 filedesc_t *fdp = p->p_fd; 1015 1016 /* XXXSMP locking */ 1017 ksi->ksi_fd = -1; 1018 dt = fdp->fd_dt; 1019 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1020 if ((ff = dt->dt_ff[fd]) == NULL) 1021 continue; 1022 if ((fp = ff->ff_file) == NULL) 1023 continue; 1024 if (fp->f_data == data) { 1025 ksi->ksi_fd = fd; 1026 break; 1027 } 1028 } 1029 } 1030 mutex_enter(p->p_lock); 1031 kpsignal2(p, ksi); 1032 mutex_exit(p->p_lock); 1033 } 1034 1035 /* 1036 * sigismasked: 1037 * 1038 * Returns true if signal is ignored or masked for the specified LWP. 1039 */ 1040 int 1041 sigismasked(struct lwp *l, int sig) 1042 { 1043 struct proc *p = l->l_proc; 1044 1045 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1046 sigismember(&l->l_sigmask, sig) 1047 #if KERN_SA 1048 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig)) 1049 #endif /* KERN_SA */ 1050 ); 1051 } 1052 1053 /* 1054 * sigpost: 1055 * 1056 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1057 * be able to take the signal. 1058 */ 1059 static int 1060 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck) 1061 { 1062 int rv, masked; 1063 struct proc *p = l->l_proc; 1064 1065 KASSERT(mutex_owned(p->p_lock)); 1066 1067 /* 1068 * If the LWP is on the way out, sigclear() will be busy draining all 1069 * pending signals. Don't give it more. 1070 */ 1071 if (l->l_refcnt == 0) 1072 return 0; 1073 1074 /* 1075 * Have the LWP check for signals. This ensures that even if no LWP 1076 * is found to take the signal immediately, it should be taken soon. 1077 */ 1078 lwp_lock(l); 1079 l->l_flag |= LW_PENDSIG; 1080 1081 /* 1082 * When sending signals to SA processes, we first try to find an 1083 * idle VP to take it. 1084 */ 1085 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) { 1086 lwp_unlock(l); 1087 return 0; 1088 } 1089 1090 /* 1091 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1092 * Note: SIGKILL and SIGSTOP cannot be masked. 1093 */ 1094 #if KERN_SA 1095 if (p->p_sa != NULL) 1096 masked = sigismember(&p->p_sa->sa_sigmask, sig); 1097 else 1098 #endif 1099 masked = sigismember(&l->l_sigmask, sig); 1100 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1101 lwp_unlock(l); 1102 return 0; 1103 } 1104 1105 /* 1106 * If killing the process, make it run fast. 1107 */ 1108 if (__predict_false((prop & SA_KILL) != 0) && 1109 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1110 KASSERT(l->l_class == SCHED_OTHER); 1111 lwp_changepri(l, MAXPRI_USER); 1112 } 1113 1114 /* 1115 * If the LWP is running or on a run queue, then we win. If it's 1116 * sleeping interruptably, wake it and make it take the signal. If 1117 * the sleep isn't interruptable, then the chances are it will get 1118 * to see the signal soon anyhow. If suspended, it can't take the 1119 * signal right now. If it's LWP private or for all LWPs, save it 1120 * for later; otherwise punt. 1121 */ 1122 rv = 0; 1123 1124 switch (l->l_stat) { 1125 case LSRUN: 1126 case LSONPROC: 1127 lwp_need_userret(l); 1128 rv = 1; 1129 break; 1130 1131 case LSSLEEP: 1132 if ((l->l_flag & LW_SINTR) != 0) { 1133 /* setrunnable() will release the lock. */ 1134 setrunnable(l); 1135 return 1; 1136 } 1137 break; 1138 1139 case LSSUSPENDED: 1140 if ((prop & SA_KILL) != 0) { 1141 /* lwp_continue() will release the lock. */ 1142 lwp_continue(l); 1143 return 1; 1144 } 1145 break; 1146 1147 case LSSTOP: 1148 if ((prop & SA_STOP) != 0) 1149 break; 1150 1151 /* 1152 * If the LWP is stopped and we are sending a continue 1153 * signal, then start it again. 1154 */ 1155 if ((prop & SA_CONT) != 0) { 1156 if (l->l_wchan != NULL) { 1157 l->l_stat = LSSLEEP; 1158 p->p_nrlwps++; 1159 rv = 1; 1160 break; 1161 } 1162 /* setrunnable() will release the lock. */ 1163 setrunnable(l); 1164 return 1; 1165 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1166 /* setrunnable() will release the lock. */ 1167 setrunnable(l); 1168 return 1; 1169 } 1170 break; 1171 1172 default: 1173 break; 1174 } 1175 1176 lwp_unlock(l); 1177 return rv; 1178 } 1179 1180 /* 1181 * Notify an LWP that it has a pending signal. 1182 */ 1183 void 1184 signotify(struct lwp *l) 1185 { 1186 KASSERT(lwp_locked(l, NULL)); 1187 1188 l->l_flag |= LW_PENDSIG; 1189 lwp_need_userret(l); 1190 } 1191 1192 /* 1193 * Find an LWP within process p that is waiting on signal ksi, and hand 1194 * it on. 1195 */ 1196 static int 1197 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1198 { 1199 struct lwp *l; 1200 int signo; 1201 1202 KASSERT(mutex_owned(p->p_lock)); 1203 1204 signo = ksi->ksi_signo; 1205 1206 if (ksi->ksi_lid != 0) { 1207 /* 1208 * Signal came via _lwp_kill(). Find the LWP and see if 1209 * it's interested. 1210 */ 1211 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1212 return 0; 1213 if (l->l_sigwaited == NULL || 1214 !sigismember(&l->l_sigwaitset, signo)) 1215 return 0; 1216 } else { 1217 /* 1218 * Look for any LWP that may be interested. 1219 */ 1220 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1221 KASSERT(l->l_sigwaited != NULL); 1222 if (sigismember(&l->l_sigwaitset, signo)) 1223 break; 1224 } 1225 } 1226 1227 if (l != NULL) { 1228 l->l_sigwaited->ksi_info = ksi->ksi_info; 1229 l->l_sigwaited = NULL; 1230 LIST_REMOVE(l, l_sigwaiter); 1231 cv_signal(&l->l_sigcv); 1232 return 1; 1233 } 1234 1235 return 0; 1236 } 1237 1238 /* 1239 * Send the signal to the process. If the signal has an action, the action 1240 * is usually performed by the target process rather than the caller; we add 1241 * the signal to the set of pending signals for the process. 1242 * 1243 * Exceptions: 1244 * o When a stop signal is sent to a sleeping process that takes the 1245 * default action, the process is stopped without awakening it. 1246 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1247 * regardless of the signal action (eg, blocked or ignored). 1248 * 1249 * Other ignored signals are discarded immediately. 1250 */ 1251 void 1252 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1253 { 1254 int prop, signo = ksi->ksi_signo; 1255 struct sigacts *sa; 1256 struct lwp *l; 1257 ksiginfo_t *kp; 1258 lwpid_t lid; 1259 sig_t action; 1260 bool toall; 1261 1262 KASSERT(!cpu_intr_p()); 1263 KASSERT(mutex_owned(proc_lock)); 1264 KASSERT(mutex_owned(p->p_lock)); 1265 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1266 KASSERT(signo > 0 && signo < NSIG); 1267 1268 /* 1269 * If the process is being created by fork, is a zombie or is 1270 * exiting, then just drop the signal here and bail out. 1271 */ 1272 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1273 return; 1274 1275 /* 1276 * Notify any interested parties of the signal. 1277 */ 1278 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1279 1280 /* 1281 * Some signals including SIGKILL must act on the entire process. 1282 */ 1283 kp = NULL; 1284 prop = sigprop[signo]; 1285 toall = ((prop & SA_TOALL) != 0); 1286 lid = toall ? 0 : ksi->ksi_lid; 1287 1288 /* 1289 * If proc is traced, always give parent a chance. 1290 */ 1291 if (p->p_slflag & PSL_TRACED) { 1292 action = SIG_DFL; 1293 1294 if (lid == 0) { 1295 /* 1296 * If the process is being traced and the signal 1297 * is being caught, make sure to save any ksiginfo. 1298 */ 1299 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1300 return; 1301 sigput(&p->p_sigpend, p, kp); 1302 } 1303 } else { 1304 /* 1305 * If the signal was the result of a trap and is not being 1306 * caught, then reset it to default action so that the 1307 * process dumps core immediately. 1308 */ 1309 if (KSI_TRAP_P(ksi)) { 1310 sa = p->p_sigacts; 1311 mutex_enter(&sa->sa_mutex); 1312 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1313 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1314 SIGACTION(p, signo).sa_handler = SIG_DFL; 1315 } 1316 mutex_exit(&sa->sa_mutex); 1317 } 1318 1319 /* 1320 * If the signal is being ignored, then drop it. Note: we 1321 * don't set SIGCONT in ps_sigignore, and if it is set to 1322 * SIG_IGN, action will be SIG_DFL here. 1323 */ 1324 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1325 return; 1326 1327 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1328 action = SIG_CATCH; 1329 else { 1330 action = SIG_DFL; 1331 1332 /* 1333 * If sending a tty stop signal to a member of an 1334 * orphaned process group, discard the signal here if 1335 * the action is default; don't stop the process below 1336 * if sleeping, and don't clear any pending SIGCONT. 1337 */ 1338 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1339 return; 1340 1341 if (prop & SA_KILL && p->p_nice > NZERO) 1342 p->p_nice = NZERO; 1343 } 1344 } 1345 1346 /* 1347 * If stopping or continuing a process, discard any pending 1348 * signals that would do the inverse. 1349 */ 1350 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1351 ksiginfoq_t kq; 1352 1353 ksiginfo_queue_init(&kq); 1354 if ((prop & SA_CONT) != 0) 1355 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1356 if ((prop & SA_STOP) != 0) 1357 sigclear(&p->p_sigpend, &contsigmask, &kq); 1358 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1359 } 1360 1361 /* 1362 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1363 * please!), check if any LWPs are waiting on it. If yes, pass on 1364 * the signal info. The signal won't be processed further here. 1365 */ 1366 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1367 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1368 sigunwait(p, ksi)) 1369 return; 1370 1371 /* 1372 * XXXSMP Should be allocated by the caller, we're holding locks 1373 * here. 1374 */ 1375 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1376 return; 1377 1378 /* 1379 * LWP private signals are easy - just find the LWP and post 1380 * the signal to it. 1381 */ 1382 if (lid != 0) { 1383 l = lwp_find(p, lid); 1384 if (l != NULL) { 1385 sigput(&l->l_sigpend, p, kp); 1386 membar_producer(); 1387 (void)sigpost(l, action, prop, kp->ksi_signo, 0); 1388 } 1389 goto out; 1390 } 1391 1392 /* 1393 * Some signals go to all LWPs, even if posted with _lwp_kill() 1394 * or for an SA process. 1395 */ 1396 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1397 if ((p->p_slflag & PSL_TRACED) != 0) 1398 goto deliver; 1399 1400 /* 1401 * If SIGCONT is default (or ignored) and process is 1402 * asleep, we are finished; the process should not 1403 * be awakened. 1404 */ 1405 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1406 goto out; 1407 } else { 1408 /* 1409 * Process is stopped or stopping. 1410 * - If traced, then no action is needed, unless killing. 1411 * - Run the process only if sending SIGCONT or SIGKILL. 1412 */ 1413 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1414 goto out; 1415 } 1416 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1417 /* 1418 * Re-adjust p_nstopchild if the process wasn't 1419 * collected by its parent. 1420 */ 1421 p->p_stat = SACTIVE; 1422 p->p_sflag &= ~PS_STOPPING; 1423 if (!p->p_waited) { 1424 p->p_pptr->p_nstopchild--; 1425 } 1426 if (p->p_slflag & PSL_TRACED) { 1427 KASSERT(signo == SIGKILL); 1428 goto deliver; 1429 } 1430 /* 1431 * Do not make signal pending if SIGCONT is default. 1432 * 1433 * If the process catches SIGCONT, let it handle the 1434 * signal itself (if waiting on event - process runs, 1435 * otherwise continues sleeping). 1436 */ 1437 if ((prop & SA_CONT) != 0 && action == SIG_DFL) { 1438 KASSERT(signo != SIGKILL); 1439 goto deliver; 1440 } 1441 } else if ((prop & SA_STOP) != 0) { 1442 /* 1443 * Already stopped, don't need to stop again. 1444 * (If we did the shell could get confused.) 1445 */ 1446 goto out; 1447 } 1448 } 1449 /* 1450 * Make signal pending. 1451 */ 1452 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1453 sigput(&p->p_sigpend, p, kp); 1454 1455 deliver: 1456 /* 1457 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1458 * visible on the per process list (for sigispending()). This 1459 * is unlikely to be needed in practice, but... 1460 */ 1461 membar_producer(); 1462 1463 /* 1464 * Try to find an LWP that can take the signal. 1465 */ 1466 #if KERN_SA 1467 if ((p->p_sa != NULL) && !toall) { 1468 struct sadata_vp *vp; 1469 /* 1470 * If we're in this delivery path, we are delivering a 1471 * signal that needs to go to one thread in the process. 1472 * 1473 * In the SA case, we try to find an idle LWP that can take 1474 * the signal. If that fails, only then do we consider 1475 * interrupting active LWPs. Since the signal's going to 1476 * just one thread, we need only look at "blessed" lwps, 1477 * so scan the vps for them. 1478 */ 1479 l = NULL; 1480 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1481 l = vp->savp_lwp; 1482 if (sigpost(l, action, prop, kp->ksi_signo, 1)) 1483 break; 1484 } 1485 1486 if (l == NULL) { 1487 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1488 l = vp->savp_lwp; 1489 if (sigpost(l, action, prop, kp->ksi_signo, 0)) 1490 break; 1491 } 1492 } 1493 /* Delivered, skip next. */ 1494 goto out; 1495 } 1496 #endif 1497 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1498 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall) 1499 break; 1500 } 1501 out: 1502 /* 1503 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1504 * with locks held. The caller should take care of this. 1505 */ 1506 ksiginfo_free(kp); 1507 } 1508 1509 void 1510 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1511 { 1512 struct proc *p = l->l_proc; 1513 #ifdef KERN_SA 1514 struct lwp *le, *li; 1515 siginfo_t *si; 1516 int f; 1517 #endif /* KERN_SA */ 1518 1519 KASSERT(mutex_owned(p->p_lock)); 1520 1521 #ifdef KERN_SA 1522 if (p->p_sflag & PS_SA) { 1523 /* f indicates if we should clear LP_SA_NOBLOCK */ 1524 f = ~l->l_pflag & LP_SA_NOBLOCK; 1525 l->l_pflag |= LP_SA_NOBLOCK; 1526 1527 mutex_exit(p->p_lock); 1528 /* XXXUPSXXX What if not on sa_vp? */ 1529 /* 1530 * WRS: I think it won't matter, beyond the 1531 * question of what exactly we do with a signal 1532 * to a blocked user thread. Also, we try hard to always 1533 * send signals to blessed lwps, so we would only send 1534 * to a non-blessed lwp under special circumstances. 1535 */ 1536 si = siginfo_alloc(PR_WAITOK); 1537 1538 si->_info = ksi->ksi_info; 1539 1540 /* 1541 * Figure out if we're the innocent victim or the main 1542 * perpitrator. 1543 */ 1544 le = li = NULL; 1545 if (KSI_TRAP_P(ksi)) 1546 le = l; 1547 else 1548 li = l; 1549 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1550 sizeof(*si), si, siginfo_free) != 0) { 1551 siginfo_free(si); 1552 #if 0 1553 if (KSI_TRAP_P(ksi)) 1554 /* XXX What dowe do here? The signal 1555 * didn't make it 1556 */; 1557 #endif 1558 } 1559 l->l_pflag ^= f; 1560 mutex_enter(p->p_lock); 1561 return; 1562 } 1563 #endif /* KERN_SA */ 1564 1565 (*p->p_emul->e_sendsig)(ksi, mask); 1566 } 1567 1568 /* 1569 * Stop any LWPs sleeping interruptably. 1570 */ 1571 static void 1572 proc_stop_lwps(struct proc *p) 1573 { 1574 struct lwp *l; 1575 1576 KASSERT(mutex_owned(p->p_lock)); 1577 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1578 1579 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1580 lwp_lock(l); 1581 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1582 l->l_stat = LSSTOP; 1583 p->p_nrlwps--; 1584 } 1585 lwp_unlock(l); 1586 } 1587 } 1588 1589 /* 1590 * Finish stopping of a process. Mark it stopped and notify the parent. 1591 * 1592 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true. 1593 */ 1594 static void 1595 proc_stop_done(struct proc *p, bool ppsig, int ppmask) 1596 { 1597 1598 KASSERT(mutex_owned(proc_lock)); 1599 KASSERT(mutex_owned(p->p_lock)); 1600 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1601 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1602 1603 p->p_sflag &= ~PS_STOPPING; 1604 p->p_stat = SSTOP; 1605 p->p_waited = 0; 1606 p->p_pptr->p_nstopchild++; 1607 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1608 if (ppsig) { 1609 /* child_psignal drops p_lock briefly. */ 1610 child_psignal(p, ppmask); 1611 } 1612 cv_broadcast(&p->p_pptr->p_waitcv); 1613 } 1614 } 1615 1616 /* 1617 * Stop the current process and switch away when being stopped or traced. 1618 */ 1619 static void 1620 sigswitch(bool ppsig, int ppmask, int signo) 1621 { 1622 struct lwp *l = curlwp; 1623 struct proc *p = l->l_proc; 1624 int biglocks; 1625 1626 KASSERT(mutex_owned(p->p_lock)); 1627 KASSERT(l->l_stat == LSONPROC); 1628 KASSERT(p->p_nrlwps > 0); 1629 1630 /* 1631 * On entry we know that the process needs to stop. If it's 1632 * the result of a 'sideways' stop signal that has been sourced 1633 * through issignal(), then stop other LWPs in the process too. 1634 */ 1635 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1636 KASSERT(signo != 0); 1637 proc_stop(p, 1, signo); 1638 KASSERT(p->p_nrlwps > 0); 1639 } 1640 1641 /* 1642 * If we are the last live LWP, and the stop was a result of 1643 * a new signal, then signal the parent. 1644 */ 1645 if ((p->p_sflag & PS_STOPPING) != 0) { 1646 if (!mutex_tryenter(proc_lock)) { 1647 mutex_exit(p->p_lock); 1648 mutex_enter(proc_lock); 1649 mutex_enter(p->p_lock); 1650 } 1651 1652 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1653 /* 1654 * Note that proc_stop_done() can drop 1655 * p->p_lock briefly. 1656 */ 1657 proc_stop_done(p, ppsig, ppmask); 1658 } 1659 1660 mutex_exit(proc_lock); 1661 } 1662 1663 /* 1664 * Unlock and switch away. 1665 */ 1666 KERNEL_UNLOCK_ALL(l, &biglocks); 1667 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1668 p->p_nrlwps--; 1669 lwp_lock(l); 1670 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1671 l->l_stat = LSSTOP; 1672 lwp_unlock(l); 1673 } 1674 1675 mutex_exit(p->p_lock); 1676 lwp_lock(l); 1677 mi_switch(l); 1678 KERNEL_LOCK(biglocks, l); 1679 mutex_enter(p->p_lock); 1680 } 1681 1682 /* 1683 * Check for a signal from the debugger. 1684 */ 1685 static int 1686 sigchecktrace(void) 1687 { 1688 struct lwp *l = curlwp; 1689 struct proc *p = l->l_proc; 1690 sigset_t *mask; 1691 int signo; 1692 1693 KASSERT(mutex_owned(p->p_lock)); 1694 1695 /* If there's a pending SIGKILL, process it immediately. */ 1696 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1697 return 0; 1698 1699 /* 1700 * If we are no longer being traced, or the parent didn't 1701 * give us a signal, look for more signals. 1702 */ 1703 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1704 return 0; 1705 1706 /* 1707 * If the new signal is being masked, look for other signals. 1708 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1709 */ 1710 signo = p->p_xstat; 1711 p->p_xstat = 0; 1712 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 1713 if (sigismember(mask, signo)) 1714 signo = 0; 1715 1716 return signo; 1717 } 1718 1719 /* 1720 * If the current process has received a signal (should be caught or cause 1721 * termination, should interrupt current syscall), return the signal number. 1722 * 1723 * Stop signals with default action are processed immediately, then cleared; 1724 * they aren't returned. This is checked after each entry to the system for 1725 * a syscall or trap. 1726 * 1727 * We will also return -1 if the process is exiting and the current LWP must 1728 * follow suit. 1729 */ 1730 int 1731 issignal(struct lwp *l) 1732 { 1733 struct proc *p; 1734 int signo, prop; 1735 sigpend_t *sp; 1736 sigset_t ss; 1737 1738 p = l->l_proc; 1739 sp = NULL; 1740 signo = 0; 1741 1742 KASSERT(p == curproc); 1743 KASSERT(mutex_owned(p->p_lock)); 1744 1745 for (;;) { 1746 /* Discard any signals that we have decided not to take. */ 1747 if (signo != 0) 1748 (void)sigget(sp, NULL, signo, NULL); 1749 1750 /* Bail out if we do not own the virtual processor */ 1751 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l) 1752 break; 1753 1754 /* 1755 * If the process is stopped/stopping, then stop ourselves 1756 * now that we're on the kernel/userspace boundary. When 1757 * we awaken, check for a signal from the debugger. 1758 */ 1759 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1760 sigswitch(true, PS_NOCLDSTOP, 0); 1761 signo = sigchecktrace(); 1762 } else 1763 signo = 0; 1764 1765 /* Signals from the debugger are "out of band". */ 1766 sp = NULL; 1767 1768 /* 1769 * If the debugger didn't provide a signal, find a pending 1770 * signal from our set. Check per-LWP signals first, and 1771 * then per-process. 1772 */ 1773 if (signo == 0) { 1774 sp = &l->l_sigpend; 1775 ss = sp->sp_set; 1776 if ((p->p_lflag & PL_PPWAIT) != 0) 1777 sigminusset(&stopsigmask, &ss); 1778 sigminusset(&l->l_sigmask, &ss); 1779 1780 if ((signo = firstsig(&ss)) == 0) { 1781 sp = &p->p_sigpend; 1782 ss = sp->sp_set; 1783 if ((p->p_lflag & PL_PPWAIT) != 0) 1784 sigminusset(&stopsigmask, &ss); 1785 sigminusset(&l->l_sigmask, &ss); 1786 1787 if ((signo = firstsig(&ss)) == 0) { 1788 /* 1789 * No signal pending - clear the 1790 * indicator and bail out. 1791 */ 1792 lwp_lock(l); 1793 l->l_flag &= ~LW_PENDSIG; 1794 lwp_unlock(l); 1795 sp = NULL; 1796 break; 1797 } 1798 } 1799 } 1800 1801 /* 1802 * We should see pending but ignored signals only if 1803 * we are being traced. 1804 */ 1805 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1806 (p->p_slflag & PSL_TRACED) == 0) { 1807 /* Discard the signal. */ 1808 continue; 1809 } 1810 1811 /* 1812 * If traced, always stop, and stay stopped until released 1813 * by the debugger. If the our parent process is waiting 1814 * for us, don't hang as we could deadlock. 1815 */ 1816 if ((p->p_slflag & PSL_TRACED) != 0 && 1817 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) { 1818 /* Take the signal. */ 1819 (void)sigget(sp, NULL, signo, NULL); 1820 p->p_xstat = signo; 1821 1822 /* Emulation-specific handling of signal trace */ 1823 if (p->p_emul->e_tracesig == NULL || 1824 (*p->p_emul->e_tracesig)(p, signo) == 0) 1825 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1826 signo); 1827 1828 /* Check for a signal from the debugger. */ 1829 if ((signo = sigchecktrace()) == 0) 1830 continue; 1831 1832 /* Signals from the debugger are "out of band". */ 1833 sp = NULL; 1834 } 1835 1836 prop = sigprop[signo]; 1837 1838 /* 1839 * Decide whether the signal should be returned. 1840 */ 1841 switch ((long)SIGACTION(p, signo).sa_handler) { 1842 case (long)SIG_DFL: 1843 /* 1844 * Don't take default actions on system processes. 1845 */ 1846 if (p->p_pid <= 1) { 1847 #ifdef DIAGNOSTIC 1848 /* 1849 * Are you sure you want to ignore SIGSEGV 1850 * in init? XXX 1851 */ 1852 printf_nolog("Process (pid %d) got sig %d\n", 1853 p->p_pid, signo); 1854 #endif 1855 continue; 1856 } 1857 1858 /* 1859 * If there is a pending stop signal to process with 1860 * default action, stop here, then clear the signal. 1861 * However, if process is member of an orphaned 1862 * process group, ignore tty stop signals. 1863 */ 1864 if (prop & SA_STOP) { 1865 /* 1866 * XXX Don't hold proc_lock for p_lflag, 1867 * but it's not a big deal. 1868 */ 1869 if (p->p_slflag & PSL_TRACED || 1870 ((p->p_lflag & PL_ORPHANPG) != 0 && 1871 prop & SA_TTYSTOP)) { 1872 /* Ignore the signal. */ 1873 continue; 1874 } 1875 /* Take the signal. */ 1876 (void)sigget(sp, NULL, signo, NULL); 1877 p->p_xstat = signo; 1878 signo = 0; 1879 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1880 } else if (prop & SA_IGNORE) { 1881 /* 1882 * Except for SIGCONT, shouldn't get here. 1883 * Default action is to ignore; drop it. 1884 */ 1885 continue; 1886 } 1887 break; 1888 1889 case (long)SIG_IGN: 1890 #ifdef DEBUG_ISSIGNAL 1891 /* 1892 * Masking above should prevent us ever trying 1893 * to take action on an ignored signal other 1894 * than SIGCONT, unless process is traced. 1895 */ 1896 if ((prop & SA_CONT) == 0 && 1897 (p->p_slflag & PSL_TRACED) == 0) 1898 printf_nolog("issignal\n"); 1899 #endif 1900 continue; 1901 1902 default: 1903 /* 1904 * This signal has an action, let postsig() process 1905 * it. 1906 */ 1907 break; 1908 } 1909 1910 break; 1911 } 1912 1913 l->l_sigpendset = sp; 1914 return signo; 1915 } 1916 1917 /* 1918 * Take the action for the specified signal 1919 * from the current set of pending signals. 1920 */ 1921 void 1922 postsig(int signo) 1923 { 1924 struct lwp *l; 1925 struct proc *p; 1926 struct sigacts *ps; 1927 sig_t action; 1928 sigset_t *returnmask; 1929 ksiginfo_t ksi; 1930 1931 l = curlwp; 1932 p = l->l_proc; 1933 ps = p->p_sigacts; 1934 1935 KASSERT(mutex_owned(p->p_lock)); 1936 KASSERT(signo > 0); 1937 1938 /* 1939 * Set the new mask value and also defer further occurrences of this 1940 * signal. 1941 * 1942 * Special case: user has done a sigsuspend. Here the current mask is 1943 * not of interest, but rather the mask from before the sigsuspend is 1944 * what we want restored after the signal processing is completed. 1945 */ 1946 if (l->l_sigrestore) { 1947 returnmask = &l->l_sigoldmask; 1948 l->l_sigrestore = 0; 1949 } else 1950 returnmask = &l->l_sigmask; 1951 1952 /* 1953 * Commit to taking the signal before releasing the mutex. 1954 */ 1955 action = SIGACTION_PS(ps, signo).sa_handler; 1956 l->l_ru.ru_nsignals++; 1957 sigget(l->l_sigpendset, &ksi, signo, NULL); 1958 1959 if (ktrpoint(KTR_PSIG)) { 1960 mutex_exit(p->p_lock); 1961 ktrpsig(signo, action, returnmask, &ksi); 1962 mutex_enter(p->p_lock); 1963 } 1964 1965 if (action == SIG_DFL) { 1966 /* 1967 * Default action, where the default is to kill 1968 * the process. (Other cases were ignored above.) 1969 */ 1970 sigexit(l, signo); 1971 return; 1972 } 1973 1974 /* 1975 * If we get here, the signal must be caught. 1976 */ 1977 #ifdef DIAGNOSTIC 1978 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1979 panic("postsig action"); 1980 #endif 1981 1982 kpsendsig(l, &ksi, returnmask); 1983 } 1984 1985 /* 1986 * sendsig: 1987 * 1988 * Default signal delivery method for NetBSD. 1989 */ 1990 void 1991 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 1992 { 1993 struct sigacts *sa; 1994 int sig; 1995 1996 sig = ksi->ksi_signo; 1997 sa = curproc->p_sigacts; 1998 1999 switch (sa->sa_sigdesc[sig].sd_vers) { 2000 case 0: 2001 case 1: 2002 /* Compat for 1.6 and earlier. */ 2003 if (sendsig_sigcontext_vec == NULL) { 2004 break; 2005 } 2006 (*sendsig_sigcontext_vec)(ksi, mask); 2007 return; 2008 case 2: 2009 case 3: 2010 sendsig_siginfo(ksi, mask); 2011 return; 2012 default: 2013 break; 2014 } 2015 2016 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2017 sigexit(curlwp, SIGILL); 2018 } 2019 2020 /* 2021 * sendsig_reset: 2022 * 2023 * Reset the signal action. Called from emulation specific sendsig() 2024 * before unlocking to deliver the signal. 2025 */ 2026 void 2027 sendsig_reset(struct lwp *l, int signo) 2028 { 2029 struct proc *p = l->l_proc; 2030 struct sigacts *ps = p->p_sigacts; 2031 sigset_t *mask; 2032 2033 KASSERT(mutex_owned(p->p_lock)); 2034 2035 p->p_sigctx.ps_lwp = 0; 2036 p->p_sigctx.ps_code = 0; 2037 p->p_sigctx.ps_signo = 0; 2038 2039 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask; 2040 2041 mutex_enter(&ps->sa_mutex); 2042 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask); 2043 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2044 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2045 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2046 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2047 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2048 } 2049 mutex_exit(&ps->sa_mutex); 2050 } 2051 2052 /* 2053 * Kill the current process for stated reason. 2054 */ 2055 void 2056 killproc(struct proc *p, const char *why) 2057 { 2058 2059 KASSERT(mutex_owned(proc_lock)); 2060 2061 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2062 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2063 psignal(p, SIGKILL); 2064 } 2065 2066 /* 2067 * Force the current process to exit with the specified signal, dumping core 2068 * if appropriate. We bypass the normal tests for masked and caught 2069 * signals, allowing unrecoverable failures to terminate the process without 2070 * changing signal state. Mark the accounting record with the signal 2071 * termination. If dumping core, save the signal number for the debugger. 2072 * Calls exit and does not return. 2073 */ 2074 void 2075 sigexit(struct lwp *l, int signo) 2076 { 2077 int exitsig, error, docore; 2078 struct proc *p; 2079 struct lwp *t; 2080 2081 p = l->l_proc; 2082 2083 KASSERT(mutex_owned(p->p_lock)); 2084 KERNEL_UNLOCK_ALL(l, NULL); 2085 2086 /* 2087 * Don't permit coredump() multiple times in the same process. 2088 * Call back into sigexit, where we will be suspended until 2089 * the deed is done. Note that this is a recursive call, but 2090 * LW_WCORE will prevent us from coming back this way. 2091 */ 2092 if ((p->p_sflag & PS_WCORE) != 0) { 2093 lwp_lock(l); 2094 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2095 lwp_unlock(l); 2096 mutex_exit(p->p_lock); 2097 lwp_userret(l); 2098 panic("sigexit 1"); 2099 /* NOTREACHED */ 2100 } 2101 2102 /* If process is already on the way out, then bail now. */ 2103 if ((p->p_sflag & PS_WEXIT) != 0) { 2104 mutex_exit(p->p_lock); 2105 lwp_exit(l); 2106 panic("sigexit 2"); 2107 /* NOTREACHED */ 2108 } 2109 2110 /* 2111 * Prepare all other LWPs for exit. If dumping core, suspend them 2112 * so that their registers are available long enough to be dumped. 2113 */ 2114 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2115 p->p_sflag |= PS_WCORE; 2116 for (;;) { 2117 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2118 lwp_lock(t); 2119 if (t == l) { 2120 t->l_flag &= ~LW_WSUSPEND; 2121 lwp_unlock(t); 2122 continue; 2123 } 2124 t->l_flag |= (LW_WCORE | LW_WEXIT); 2125 lwp_suspend(l, t); 2126 } 2127 2128 if (p->p_nrlwps == 1) 2129 break; 2130 2131 /* 2132 * Kick any LWPs sitting in lwp_wait1(), and wait 2133 * for everyone else to stop before proceeding. 2134 */ 2135 p->p_nlwpwait++; 2136 cv_broadcast(&p->p_lwpcv); 2137 cv_wait(&p->p_lwpcv, p->p_lock); 2138 p->p_nlwpwait--; 2139 } 2140 } 2141 2142 exitsig = signo; 2143 p->p_acflag |= AXSIG; 2144 p->p_sigctx.ps_signo = signo; 2145 2146 if (docore) { 2147 mutex_exit(p->p_lock); 2148 if ((error = (*coredump_vec)(l, NULL)) == 0) 2149 exitsig |= WCOREFLAG; 2150 2151 if (kern_logsigexit) { 2152 int uid = l->l_cred ? 2153 (int)kauth_cred_geteuid(l->l_cred) : -1; 2154 2155 if (error) 2156 log(LOG_INFO, lognocoredump, p->p_pid, 2157 p->p_comm, uid, signo, error); 2158 else 2159 log(LOG_INFO, logcoredump, p->p_pid, 2160 p->p_comm, uid, signo); 2161 } 2162 2163 #ifdef PAX_SEGVGUARD 2164 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2165 #endif /* PAX_SEGVGUARD */ 2166 /* Acquire the sched state mutex. exit1() will release it. */ 2167 mutex_enter(p->p_lock); 2168 } 2169 2170 /* No longer dumping core. */ 2171 p->p_sflag &= ~PS_WCORE; 2172 2173 exit1(l, W_EXITCODE(0, exitsig)); 2174 /* NOTREACHED */ 2175 } 2176 2177 /* 2178 * Put process 'p' into the stopped state and optionally, notify the parent. 2179 */ 2180 void 2181 proc_stop(struct proc *p, int notify, int signo) 2182 { 2183 struct lwp *l; 2184 2185 KASSERT(mutex_owned(p->p_lock)); 2186 2187 /* 2188 * First off, set the stopping indicator and bring all sleeping 2189 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2190 * unlock between here and the p->p_nrlwps check below. 2191 */ 2192 p->p_sflag |= PS_STOPPING; 2193 if (notify) 2194 p->p_sflag |= PS_NOTIFYSTOP; 2195 else 2196 p->p_sflag &= ~PS_NOTIFYSTOP; 2197 membar_producer(); 2198 2199 proc_stop_lwps(p); 2200 2201 /* 2202 * If there are no LWPs available to take the signal, then we 2203 * signal the parent process immediately. Otherwise, the last 2204 * LWP to stop will take care of it. 2205 */ 2206 2207 if (p->p_nrlwps == 0) { 2208 proc_stop_done(p, true, PS_NOCLDSTOP); 2209 } else { 2210 /* 2211 * Have the remaining LWPs come to a halt, and trigger 2212 * proc_stop_callout() to ensure that they do. 2213 */ 2214 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2215 sigpost(l, SIG_DFL, SA_STOP, signo, 0); 2216 callout_schedule(&proc_stop_ch, 1); 2217 } 2218 } 2219 2220 /* 2221 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2222 * but wait for them to come to a halt at the kernel-user boundary. This is 2223 * to allow LWPs to release any locks that they may hold before stopping. 2224 * 2225 * Non-interruptable sleeps can be long, and there is the potential for an 2226 * LWP to begin sleeping interruptably soon after the process has been set 2227 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2228 * stopping, and so complete halt of the process and the return of status 2229 * information to the parent could be delayed indefinitely. 2230 * 2231 * To handle this race, proc_stop_callout() runs once per tick while there 2232 * are stopping processes in the system. It sets LWPs that are sleeping 2233 * interruptably into the LSSTOP state. 2234 * 2235 * Note that we are not concerned about keeping all LWPs stopped while the 2236 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2237 * What we do need to ensure is that all LWPs in a stopping process have 2238 * stopped at least once, so that notification can be sent to the parent 2239 * process. 2240 */ 2241 static void 2242 proc_stop_callout(void *cookie) 2243 { 2244 bool more, restart; 2245 struct proc *p; 2246 2247 (void)cookie; 2248 2249 do { 2250 restart = false; 2251 more = false; 2252 2253 mutex_enter(proc_lock); 2254 PROCLIST_FOREACH(p, &allproc) { 2255 if ((p->p_flag & PK_MARKER) != 0) 2256 continue; 2257 mutex_enter(p->p_lock); 2258 2259 if ((p->p_sflag & PS_STOPPING) == 0) { 2260 mutex_exit(p->p_lock); 2261 continue; 2262 } 2263 2264 /* Stop any LWPs sleeping interruptably. */ 2265 proc_stop_lwps(p); 2266 if (p->p_nrlwps == 0) { 2267 /* 2268 * We brought the process to a halt. 2269 * Mark it as stopped and notify the 2270 * parent. 2271 */ 2272 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2273 /* 2274 * Note that proc_stop_done() will 2275 * drop p->p_lock briefly. 2276 * Arrange to restart and check 2277 * all processes again. 2278 */ 2279 restart = true; 2280 } 2281 proc_stop_done(p, true, PS_NOCLDSTOP); 2282 } else 2283 more = true; 2284 2285 mutex_exit(p->p_lock); 2286 if (restart) 2287 break; 2288 } 2289 mutex_exit(proc_lock); 2290 } while (restart); 2291 2292 /* 2293 * If we noted processes that are stopping but still have 2294 * running LWPs, then arrange to check again in 1 tick. 2295 */ 2296 if (more) 2297 callout_schedule(&proc_stop_ch, 1); 2298 } 2299 2300 /* 2301 * Given a process in state SSTOP, set the state back to SACTIVE and 2302 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2303 */ 2304 void 2305 proc_unstop(struct proc *p) 2306 { 2307 struct lwp *l; 2308 int sig; 2309 2310 KASSERT(mutex_owned(proc_lock)); 2311 KASSERT(mutex_owned(p->p_lock)); 2312 2313 p->p_stat = SACTIVE; 2314 p->p_sflag &= ~PS_STOPPING; 2315 sig = p->p_xstat; 2316 2317 if (!p->p_waited) 2318 p->p_pptr->p_nstopchild--; 2319 2320 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2321 lwp_lock(l); 2322 if (l->l_stat != LSSTOP) { 2323 lwp_unlock(l); 2324 continue; 2325 } 2326 if (l->l_wchan == NULL) { 2327 setrunnable(l); 2328 continue; 2329 } 2330 if (sig && (l->l_flag & LW_SINTR) != 0) { 2331 setrunnable(l); 2332 sig = 0; 2333 } else { 2334 l->l_stat = LSSLEEP; 2335 p->p_nrlwps++; 2336 lwp_unlock(l); 2337 } 2338 } 2339 } 2340 2341 static int 2342 filt_sigattach(struct knote *kn) 2343 { 2344 struct proc *p = curproc; 2345 2346 kn->kn_obj = p; 2347 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2348 2349 mutex_enter(p->p_lock); 2350 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2351 mutex_exit(p->p_lock); 2352 2353 return 0; 2354 } 2355 2356 static void 2357 filt_sigdetach(struct knote *kn) 2358 { 2359 struct proc *p = kn->kn_obj; 2360 2361 mutex_enter(p->p_lock); 2362 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2363 mutex_exit(p->p_lock); 2364 } 2365 2366 /* 2367 * Signal knotes are shared with proc knotes, so we apply a mask to 2368 * the hint in order to differentiate them from process hints. This 2369 * could be avoided by using a signal-specific knote list, but probably 2370 * isn't worth the trouble. 2371 */ 2372 static int 2373 filt_signal(struct knote *kn, long hint) 2374 { 2375 2376 if (hint & NOTE_SIGNAL) { 2377 hint &= ~NOTE_SIGNAL; 2378 2379 if (kn->kn_id == hint) 2380 kn->kn_data++; 2381 } 2382 return (kn->kn_data != 0); 2383 } 2384 2385 const struct filterops sig_filtops = { 2386 0, filt_sigattach, filt_sigdetach, filt_signal 2387 }; 2388