xref: /netbsd-src/sys/kern/kern_sig.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: kern_sig.c,v 1.302 2009/12/30 23:31:56 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.302 2009/12/30 23:31:56 rmind Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103 
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106 
107 static void	ksiginfo_exechook(struct proc *, void *);
108 static void	proc_stop_callout(void *);
109 static int	sigchecktrace(void);
110 static int	sigpost(struct lwp *, sig_t, int, int, int);
111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 static int	sigunwait(struct proc *, const ksiginfo_t *);
113 static void	sigswitch(bool, int, int);
114 
115 sigset_t	contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void	sigacts_poolpage_free(struct pool *, void *);
118 static void	*sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 static pool_cache_t siginfo_cache;
121 static pool_cache_t ksiginfo_cache;
122 
123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
124 int (*coredump_vec)(struct lwp *, const char *) =
125     (int (*)(struct lwp *, const char *))enosys;
126 
127 static struct pool_allocator sigactspool_allocator = {
128 	.pa_alloc = sigacts_poolpage_alloc,
129 	.pa_free = sigacts_poolpage_free
130 };
131 
132 #ifdef DEBUG
133 int	kern_logsigexit = 1;
134 #else
135 int	kern_logsigexit = 0;
136 #endif
137 
138 static const char logcoredump[] =
139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
140 static const char lognocoredump[] =
141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
142 
143 static kauth_listener_t signal_listener;
144 
145 static int
146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
147     void *arg0, void *arg1, void *arg2, void *arg3)
148 {
149 	struct proc *p;
150 	int result, signum;
151 
152 	result = KAUTH_RESULT_DEFER;
153 	p = arg0;
154 	signum = (int)(unsigned long)arg1;
155 
156 	if (action != KAUTH_PROCESS_SIGNAL)
157 		return result;
158 
159 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
160 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
161 		result = KAUTH_RESULT_ALLOW;
162 
163 	return result;
164 }
165 
166 /*
167  * signal_init:
168  *
169  *	Initialize global signal-related data structures.
170  */
171 void
172 signal_init(void)
173 {
174 
175 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
176 
177 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
178 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
179 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
180 
181 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
182 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
183 
184 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
185 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
186 
187 	exechook_establish(ksiginfo_exechook, NULL);
188 
189 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
190 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
191 
192 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
193 	    signal_listener_cb, NULL);
194 }
195 
196 /*
197  * sigacts_poolpage_alloc:
198  *
199  *	Allocate a page for the sigacts memory pool.
200  */
201 static void *
202 sigacts_poolpage_alloc(struct pool *pp, int flags)
203 {
204 
205 	return (void *)uvm_km_alloc(kernel_map,
206 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
207 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
208 	    | UVM_KMF_WIRED);
209 }
210 
211 /*
212  * sigacts_poolpage_free:
213  *
214  *	Free a page on behalf of the sigacts memory pool.
215  */
216 static void
217 sigacts_poolpage_free(struct pool *pp, void *v)
218 {
219 
220 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
221 }
222 
223 /*
224  * sigactsinit:
225  *
226  *	Create an initial sigacts structure, using the same signal state
227  *	as of specified process.  If 'share' is set, share the sigacts by
228  *	holding a reference, otherwise just copy it from parent.
229  */
230 struct sigacts *
231 sigactsinit(struct proc *pp, int share)
232 {
233 	struct sigacts *ps = pp->p_sigacts, *ps2;
234 
235 	if (__predict_false(share)) {
236 		atomic_inc_uint(&ps->sa_refcnt);
237 		return ps;
238 	}
239 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
240 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
241 	ps2->sa_refcnt = 1;
242 
243 	mutex_enter(&ps->sa_mutex);
244 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
245 	mutex_exit(&ps->sa_mutex);
246 	return ps2;
247 }
248 
249 /*
250  * sigactsunshare:
251  *
252  *	Make this process not share its sigacts, maintaining all signal state.
253  */
254 void
255 sigactsunshare(struct proc *p)
256 {
257 	struct sigacts *ps, *oldps = p->p_sigacts;
258 
259 	if (__predict_true(oldps->sa_refcnt == 1))
260 		return;
261 
262 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
263 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
264 	memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
265 	ps->sa_refcnt = 1;
266 
267 	p->p_sigacts = ps;
268 	sigactsfree(oldps);
269 }
270 
271 /*
272  * sigactsfree;
273  *
274  *	Release a sigacts structure.
275  */
276 void
277 sigactsfree(struct sigacts *ps)
278 {
279 
280 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
281 		mutex_destroy(&ps->sa_mutex);
282 		pool_cache_put(sigacts_cache, ps);
283 	}
284 }
285 
286 /*
287  * siginit:
288  *
289  *	Initialize signal state for process 0; set to ignore signals that
290  *	are ignored by default and disable the signal stack.  Locking not
291  *	required as the system is still cold.
292  */
293 void
294 siginit(struct proc *p)
295 {
296 	struct lwp *l;
297 	struct sigacts *ps;
298 	int signo, prop;
299 
300 	ps = p->p_sigacts;
301 	sigemptyset(&contsigmask);
302 	sigemptyset(&stopsigmask);
303 	sigemptyset(&sigcantmask);
304 	for (signo = 1; signo < NSIG; signo++) {
305 		prop = sigprop[signo];
306 		if (prop & SA_CONT)
307 			sigaddset(&contsigmask, signo);
308 		if (prop & SA_STOP)
309 			sigaddset(&stopsigmask, signo);
310 		if (prop & SA_CANTMASK)
311 			sigaddset(&sigcantmask, signo);
312 		if (prop & SA_IGNORE && signo != SIGCONT)
313 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
314 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
315 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
316 	}
317 	sigemptyset(&p->p_sigctx.ps_sigcatch);
318 	p->p_sflag &= ~PS_NOCLDSTOP;
319 
320 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
321 	sigemptyset(&p->p_sigpend.sp_set);
322 
323 	/*
324 	 * Reset per LWP state.
325 	 */
326 	l = LIST_FIRST(&p->p_lwps);
327 	l->l_sigwaited = NULL;
328 	l->l_sigstk.ss_flags = SS_DISABLE;
329 	l->l_sigstk.ss_size = 0;
330 	l->l_sigstk.ss_sp = 0;
331 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
332 	sigemptyset(&l->l_sigpend.sp_set);
333 
334 	/* One reference. */
335 	ps->sa_refcnt = 1;
336 }
337 
338 /*
339  * execsigs:
340  *
341  *	Reset signals for an exec of the specified process.
342  */
343 void
344 execsigs(struct proc *p)
345 {
346 	struct sigacts *ps;
347 	struct lwp *l;
348 	int signo, prop;
349 	sigset_t tset;
350 	ksiginfoq_t kq;
351 
352 	KASSERT(p->p_nlwps == 1);
353 
354 	sigactsunshare(p);
355 	ps = p->p_sigacts;
356 
357 	/*
358 	 * Reset caught signals.  Held signals remain held through
359 	 * l->l_sigmask (unless they were caught, and are now ignored
360 	 * by default).
361 	 *
362 	 * No need to lock yet, the process has only one LWP and
363 	 * at this point the sigacts are private to the process.
364 	 */
365 	sigemptyset(&tset);
366 	for (signo = 1; signo < NSIG; signo++) {
367 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
368 			prop = sigprop[signo];
369 			if (prop & SA_IGNORE) {
370 				if ((prop & SA_CONT) == 0)
371 					sigaddset(&p->p_sigctx.ps_sigignore,
372 					    signo);
373 				sigaddset(&tset, signo);
374 			}
375 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
376 		}
377 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
378 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
379 	}
380 	ksiginfo_queue_init(&kq);
381 
382 	mutex_enter(p->p_lock);
383 	sigclearall(p, &tset, &kq);
384 	sigemptyset(&p->p_sigctx.ps_sigcatch);
385 
386 	/*
387 	 * Reset no zombies if child dies flag as Solaris does.
388 	 */
389 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
390 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
391 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
392 
393 	/*
394 	 * Reset per-LWP state.
395 	 */
396 	l = LIST_FIRST(&p->p_lwps);
397 	l->l_sigwaited = NULL;
398 	l->l_sigstk.ss_flags = SS_DISABLE;
399 	l->l_sigstk.ss_size = 0;
400 	l->l_sigstk.ss_sp = 0;
401 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
402 	sigemptyset(&l->l_sigpend.sp_set);
403 	mutex_exit(p->p_lock);
404 
405 	ksiginfo_queue_drain(&kq);
406 }
407 
408 /*
409  * ksiginfo_exechook:
410  *
411  *	Free all pending ksiginfo entries from a process on exec.
412  *	Additionally, drain any unused ksiginfo structures in the
413  *	system back to the pool.
414  *
415  *	XXX This should not be a hook, every process has signals.
416  */
417 static void
418 ksiginfo_exechook(struct proc *p, void *v)
419 {
420 	ksiginfoq_t kq;
421 
422 	ksiginfo_queue_init(&kq);
423 
424 	mutex_enter(p->p_lock);
425 	sigclearall(p, NULL, &kq);
426 	mutex_exit(p->p_lock);
427 
428 	ksiginfo_queue_drain(&kq);
429 }
430 
431 /*
432  * ksiginfo_alloc:
433  *
434  *	Allocate a new ksiginfo structure from the pool, and optionally copy
435  *	an existing one.  If the existing ksiginfo_t is from the pool, and
436  *	has not been queued somewhere, then just return it.  Additionally,
437  *	if the existing ksiginfo_t does not contain any information beyond
438  *	the signal number, then just return it.
439  */
440 ksiginfo_t *
441 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
442 {
443 	ksiginfo_t *kp;
444 
445 	if (ok != NULL) {
446 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
447 		    KSI_FROMPOOL)
448 			return ok;
449 		if (KSI_EMPTY_P(ok))
450 			return ok;
451 	}
452 
453 	kp = pool_cache_get(ksiginfo_cache, flags);
454 	if (kp == NULL) {
455 #ifdef DIAGNOSTIC
456 		printf("Out of memory allocating ksiginfo for pid %d\n",
457 		    p->p_pid);
458 #endif
459 		return NULL;
460 	}
461 
462 	if (ok != NULL) {
463 		memcpy(kp, ok, sizeof(*kp));
464 		kp->ksi_flags &= ~KSI_QUEUED;
465 	} else
466 		KSI_INIT_EMPTY(kp);
467 
468 	kp->ksi_flags |= KSI_FROMPOOL;
469 
470 	return kp;
471 }
472 
473 /*
474  * ksiginfo_free:
475  *
476  *	If the given ksiginfo_t is from the pool and has not been queued,
477  *	then free it.
478  */
479 void
480 ksiginfo_free(ksiginfo_t *kp)
481 {
482 
483 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
484 		return;
485 	pool_cache_put(ksiginfo_cache, kp);
486 }
487 
488 /*
489  * ksiginfo_queue_drain:
490  *
491  *	Drain a non-empty ksiginfo_t queue.
492  */
493 void
494 ksiginfo_queue_drain0(ksiginfoq_t *kq)
495 {
496 	ksiginfo_t *ksi;
497 
498 	KASSERT(!CIRCLEQ_EMPTY(kq));
499 
500 	while (!CIRCLEQ_EMPTY(kq)) {
501 		ksi = CIRCLEQ_FIRST(kq);
502 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
503 		pool_cache_put(ksiginfo_cache, ksi);
504 	}
505 }
506 
507 /*
508  * sigget:
509  *
510  *	Fetch the first pending signal from a set.  Optionally, also fetch
511  *	or manufacture a ksiginfo element.  Returns the number of the first
512  *	pending signal, or zero.
513  */
514 int
515 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
516 {
517 	ksiginfo_t *ksi;
518 	sigset_t tset;
519 
520 	/* If there's no pending set, the signal is from the debugger. */
521 	if (sp == NULL)
522 		goto out;
523 
524 	/* Construct mask from signo, and 'mask'. */
525 	if (signo == 0) {
526 		if (mask != NULL) {
527 			tset = *mask;
528 			__sigandset(&sp->sp_set, &tset);
529 		} else
530 			tset = sp->sp_set;
531 
532 		/* If there are no signals pending - return. */
533 		if ((signo = firstsig(&tset)) == 0)
534 			goto out;
535 	} else {
536 		KASSERT(sigismember(&sp->sp_set, signo));
537 	}
538 
539 	sigdelset(&sp->sp_set, signo);
540 
541 	/* Find siginfo and copy it out. */
542 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
543 		if (ksi->ksi_signo != signo)
544 			continue;
545 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
546 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
547 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
548 		ksi->ksi_flags &= ~KSI_QUEUED;
549 		if (out != NULL) {
550 			memcpy(out, ksi, sizeof(*out));
551 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
552 		}
553 		ksiginfo_free(ksi);	/* XXXSMP */
554 		return signo;
555 	}
556 out:
557 	/* If there is no siginfo, then manufacture it. */
558 	if (out != NULL) {
559 		KSI_INIT(out);
560 		out->ksi_info._signo = signo;
561 		out->ksi_info._code = SI_NOINFO;
562 	}
563 	return signo;
564 }
565 
566 /*
567  * sigput:
568  *
569  *	Append a new ksiginfo element to the list of pending ksiginfo's.
570  */
571 static void
572 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
573 {
574 	ksiginfo_t *kp;
575 
576 	KASSERT(mutex_owned(p->p_lock));
577 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
578 
579 	sigaddset(&sp->sp_set, ksi->ksi_signo);
580 
581 	/*
582 	 * If there is no siginfo, we are done.
583 	 */
584 	if (KSI_EMPTY_P(ksi))
585 		return;
586 
587 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
588 
589 #ifdef notyet	/* XXX: QUEUING */
590 	if (ksi->ksi_signo < SIGRTMIN)
591 #endif
592 	{
593 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
594 			if (kp->ksi_signo == ksi->ksi_signo) {
595 				KSI_COPY(ksi, kp);
596 				kp->ksi_flags |= KSI_QUEUED;
597 				return;
598 			}
599 		}
600 	}
601 
602 	ksi->ksi_flags |= KSI_QUEUED;
603 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
604 }
605 
606 /*
607  * sigclear:
608  *
609  *	Clear all pending signals in the specified set.
610  */
611 void
612 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
613 {
614 	ksiginfo_t *ksi, *next;
615 
616 	if (mask == NULL)
617 		sigemptyset(&sp->sp_set);
618 	else
619 		sigminusset(mask, &sp->sp_set);
620 
621 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
622 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
623 		next = CIRCLEQ_NEXT(ksi, ksi_list);
624 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
625 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
626 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
627 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
628 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
629 		}
630 	}
631 }
632 
633 /*
634  * sigclearall:
635  *
636  *	Clear all pending signals in the specified set from a process and
637  *	its LWPs.
638  */
639 void
640 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
641 {
642 	struct lwp *l;
643 
644 	KASSERT(mutex_owned(p->p_lock));
645 
646 	sigclear(&p->p_sigpend, mask, kq);
647 
648 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
649 		sigclear(&l->l_sigpend, mask, kq);
650 	}
651 }
652 
653 /*
654  * sigispending:
655  *
656  *	Return true if there are pending signals for the current LWP.  May
657  *	be called unlocked provided that LW_PENDSIG is set, and that the
658  *	signal has been posted to the appopriate queue before LW_PENDSIG is
659  *	set.
660  */
661 int
662 sigispending(struct lwp *l, int signo)
663 {
664 	struct proc *p = l->l_proc;
665 	sigset_t tset;
666 
667 	membar_consumer();
668 
669 	tset = l->l_sigpend.sp_set;
670 	sigplusset(&p->p_sigpend.sp_set, &tset);
671 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
672 	sigminusset(&l->l_sigmask, &tset);
673 
674 	if (signo == 0) {
675 		if (firstsig(&tset) != 0)
676 			return EINTR;
677 	} else if (sigismember(&tset, signo))
678 		return EINTR;
679 
680 	return 0;
681 }
682 
683 #ifdef KERN_SA
684 
685 /*
686  * siginfo_alloc:
687  *
688  *	Allocate a new siginfo_t structure from the pool.
689  */
690 siginfo_t *
691 siginfo_alloc(int flags)
692 {
693 
694 	return pool_cache_get(siginfo_cache, flags);
695 }
696 
697 /*
698  * siginfo_free:
699  *
700  *	Return a siginfo_t structure to the pool.
701  */
702 void
703 siginfo_free(void *arg)
704 {
705 
706 	pool_cache_put(siginfo_cache, arg);
707 }
708 
709 #endif
710 
711 void
712 getucontext(struct lwp *l, ucontext_t *ucp)
713 {
714 	struct proc *p = l->l_proc;
715 
716 	KASSERT(mutex_owned(p->p_lock));
717 
718 	ucp->uc_flags = 0;
719 	ucp->uc_link = l->l_ctxlink;
720 
721 #if KERN_SA
722 	if (p->p_sa != NULL)
723 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
724 	else
725 #endif /* KERN_SA */
726 		ucp->uc_sigmask = l->l_sigmask;
727 	ucp->uc_flags |= _UC_SIGMASK;
728 
729 	/*
730 	 * The (unsupplied) definition of the `current execution stack'
731 	 * in the System V Interface Definition appears to allow returning
732 	 * the main context stack.
733 	 */
734 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
735 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
736 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
737 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
738 	} else {
739 		/* Simply copy alternate signal execution stack. */
740 		ucp->uc_stack = l->l_sigstk;
741 	}
742 	ucp->uc_flags |= _UC_STACK;
743 	mutex_exit(p->p_lock);
744 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
745 	mutex_enter(p->p_lock);
746 }
747 
748 /*
749  * getucontext_sa:
750  *      Get a ucontext_t for use in SA upcall generation.
751  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
752  * fudge things with uc_link (which is usually NULL for libpthread
753  * code), and 3) we report an empty signal mask.
754  */
755 void
756 getucontext_sa(struct lwp *l, ucontext_t *ucp)
757 {
758 	ucp->uc_flags = 0;
759 	ucp->uc_link = l->l_ctxlink;
760 
761 	sigemptyset(&ucp->uc_sigmask);
762 	ucp->uc_flags |= _UC_SIGMASK;
763 
764 	/*
765 	 * The (unsupplied) definition of the `current execution stack'
766 	 * in the System V Interface Definition appears to allow returning
767 	 * the main context stack.
768 	 */
769 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
770 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
771 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
772 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
773 	} else {
774 		/* Simply copy alternate signal execution stack. */
775 		ucp->uc_stack = l->l_sigstk;
776 	}
777 	ucp->uc_flags |= _UC_STACK;
778 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
779 }
780 
781 int
782 setucontext(struct lwp *l, const ucontext_t *ucp)
783 {
784 	struct proc *p = l->l_proc;
785 	int error;
786 
787 	KASSERT(mutex_owned(p->p_lock));
788 
789 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
790 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
791 		if (error != 0)
792 			return error;
793 	}
794 
795 	mutex_exit(p->p_lock);
796 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
797 	mutex_enter(p->p_lock);
798 	if (error != 0)
799 		return (error);
800 
801 	l->l_ctxlink = ucp->uc_link;
802 
803 	/*
804 	 * If there was stack information, update whether or not we are
805 	 * still running on an alternate signal stack.
806 	 */
807 	if ((ucp->uc_flags & _UC_STACK) != 0) {
808 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
809 			l->l_sigstk.ss_flags |= SS_ONSTACK;
810 		else
811 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
812 	}
813 
814 	return 0;
815 }
816 
817 /*
818  * killpg1: common code for kill process group/broadcast kill.
819  */
820 int
821 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
822 {
823 	struct proc	*p, *cp;
824 	kauth_cred_t	pc;
825 	struct pgrp	*pgrp;
826 	int		nfound;
827 	int		signo = ksi->ksi_signo;
828 
829 	cp = l->l_proc;
830 	pc = l->l_cred;
831 	nfound = 0;
832 
833 	mutex_enter(proc_lock);
834 	if (all) {
835 		/*
836 		 * Broadcast.
837 		 */
838 		PROCLIST_FOREACH(p, &allproc) {
839 			if (p->p_pid <= 1 || p == cp ||
840 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
841 				continue;
842 			mutex_enter(p->p_lock);
843 			if (kauth_authorize_process(pc,
844 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
845 			    NULL) == 0) {
846 				nfound++;
847 				if (signo)
848 					kpsignal2(p, ksi);
849 			}
850 			mutex_exit(p->p_lock);
851 		}
852 	} else {
853 		if (pgid == 0)
854 			/* Zero pgid means send to my process group. */
855 			pgrp = cp->p_pgrp;
856 		else {
857 			pgrp = pg_find(pgid, PFIND_LOCKED);
858 			if (pgrp == NULL)
859 				goto out;
860 		}
861 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
862 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
863 				continue;
864 			mutex_enter(p->p_lock);
865 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
866 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
867 				nfound++;
868 				if (signo && P_ZOMBIE(p) == 0)
869 					kpsignal2(p, ksi);
870 			}
871 			mutex_exit(p->p_lock);
872 		}
873 	}
874 out:
875 	mutex_exit(proc_lock);
876 	return nfound ? 0 : ESRCH;
877 }
878 
879 /*
880  * Send a signal to a process group.  If checktty is set, limit to members
881  * which have a controlling terminal.
882  */
883 void
884 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
885 {
886 	ksiginfo_t ksi;
887 
888 	KASSERT(!cpu_intr_p());
889 	KASSERT(mutex_owned(proc_lock));
890 
891 	KSI_INIT_EMPTY(&ksi);
892 	ksi.ksi_signo = sig;
893 	kpgsignal(pgrp, &ksi, NULL, checkctty);
894 }
895 
896 void
897 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
898 {
899 	struct proc *p;
900 
901 	KASSERT(!cpu_intr_p());
902 	KASSERT(mutex_owned(proc_lock));
903 	KASSERT(pgrp != NULL);
904 
905 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
906 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
907 			kpsignal(p, ksi, data);
908 }
909 
910 /*
911  * Send a signal caused by a trap to the current LWP.  If it will be caught
912  * immediately, deliver it with correct code.  Otherwise, post it normally.
913  */
914 void
915 trapsignal(struct lwp *l, ksiginfo_t *ksi)
916 {
917 	struct proc	*p;
918 	struct sigacts	*ps;
919 	int signo = ksi->ksi_signo;
920 	sigset_t *mask;
921 
922 	KASSERT(KSI_TRAP_P(ksi));
923 
924 	ksi->ksi_lid = l->l_lid;
925 	p = l->l_proc;
926 
927 	KASSERT(!cpu_intr_p());
928 	mutex_enter(proc_lock);
929 	mutex_enter(p->p_lock);
930 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
931 	ps = p->p_sigacts;
932 	if ((p->p_slflag & PSL_TRACED) == 0 &&
933 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
934 	    !sigismember(mask, signo)) {
935 		mutex_exit(proc_lock);
936 		l->l_ru.ru_nsignals++;
937 		kpsendsig(l, ksi, mask);
938 		mutex_exit(p->p_lock);
939 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
940 	} else {
941 		/* XXX for core dump/debugger */
942 		p->p_sigctx.ps_lwp = l->l_lid;
943 		p->p_sigctx.ps_signo = ksi->ksi_signo;
944 		p->p_sigctx.ps_code = ksi->ksi_trap;
945 		kpsignal2(p, ksi);
946 		mutex_exit(p->p_lock);
947 		mutex_exit(proc_lock);
948 	}
949 }
950 
951 /*
952  * Fill in signal information and signal the parent for a child status change.
953  */
954 void
955 child_psignal(struct proc *p, int mask)
956 {
957 	ksiginfo_t ksi;
958 	struct proc *q;
959 	int xstat;
960 
961 	KASSERT(mutex_owned(proc_lock));
962 	KASSERT(mutex_owned(p->p_lock));
963 
964 	xstat = p->p_xstat;
965 
966 	KSI_INIT(&ksi);
967 	ksi.ksi_signo = SIGCHLD;
968 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
969 	ksi.ksi_pid = p->p_pid;
970 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
971 	ksi.ksi_status = xstat;
972 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
973 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
974 
975 	q = p->p_pptr;
976 
977 	mutex_exit(p->p_lock);
978 	mutex_enter(q->p_lock);
979 
980 	if ((q->p_sflag & mask) == 0)
981 		kpsignal2(q, &ksi);
982 
983 	mutex_exit(q->p_lock);
984 	mutex_enter(p->p_lock);
985 }
986 
987 void
988 psignal(struct proc *p, int signo)
989 {
990 	ksiginfo_t ksi;
991 
992 	KASSERT(!cpu_intr_p());
993 	KASSERT(mutex_owned(proc_lock));
994 
995 	KSI_INIT_EMPTY(&ksi);
996 	ksi.ksi_signo = signo;
997 	mutex_enter(p->p_lock);
998 	kpsignal2(p, &ksi);
999 	mutex_exit(p->p_lock);
1000 }
1001 
1002 void
1003 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1004 {
1005 	fdfile_t *ff;
1006 	file_t *fp;
1007 	fdtab_t *dt;
1008 
1009 	KASSERT(!cpu_intr_p());
1010 	KASSERT(mutex_owned(proc_lock));
1011 
1012 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1013 		size_t fd;
1014 		filedesc_t *fdp = p->p_fd;
1015 
1016 		/* XXXSMP locking */
1017 		ksi->ksi_fd = -1;
1018 		dt = fdp->fd_dt;
1019 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1020 			if ((ff = dt->dt_ff[fd]) == NULL)
1021 				continue;
1022 			if ((fp = ff->ff_file) == NULL)
1023 				continue;
1024 			if (fp->f_data == data) {
1025 				ksi->ksi_fd = fd;
1026 				break;
1027 			}
1028 		}
1029 	}
1030 	mutex_enter(p->p_lock);
1031 	kpsignal2(p, ksi);
1032 	mutex_exit(p->p_lock);
1033 }
1034 
1035 /*
1036  * sigismasked:
1037  *
1038  *	Returns true if signal is ignored or masked for the specified LWP.
1039  */
1040 int
1041 sigismasked(struct lwp *l, int sig)
1042 {
1043 	struct proc *p = l->l_proc;
1044 
1045 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1046 	    sigismember(&l->l_sigmask, sig)
1047 #if KERN_SA
1048 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1049 #endif /* KERN_SA */
1050 	    );
1051 }
1052 
1053 /*
1054  * sigpost:
1055  *
1056  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1057  *	be able to take the signal.
1058  */
1059 static int
1060 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1061 {
1062 	int rv, masked;
1063 	struct proc *p = l->l_proc;
1064 
1065 	KASSERT(mutex_owned(p->p_lock));
1066 
1067 	/*
1068 	 * If the LWP is on the way out, sigclear() will be busy draining all
1069 	 * pending signals.  Don't give it more.
1070 	 */
1071 	if (l->l_refcnt == 0)
1072 		return 0;
1073 
1074 	/*
1075 	 * Have the LWP check for signals.  This ensures that even if no LWP
1076 	 * is found to take the signal immediately, it should be taken soon.
1077 	 */
1078 	lwp_lock(l);
1079 	l->l_flag |= LW_PENDSIG;
1080 
1081 	/*
1082 	 * When sending signals to SA processes, we first try to find an
1083 	 * idle VP to take it.
1084 	 */
1085 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1086 		lwp_unlock(l);
1087 		return 0;
1088 	}
1089 
1090 	/*
1091 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1092 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1093 	 */
1094 #if KERN_SA
1095 	if (p->p_sa != NULL)
1096 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1097 	else
1098 #endif
1099 		masked = sigismember(&l->l_sigmask, sig);
1100 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1101 		lwp_unlock(l);
1102 		return 0;
1103 	}
1104 
1105 	/*
1106 	 * If killing the process, make it run fast.
1107 	 */
1108 	if (__predict_false((prop & SA_KILL) != 0) &&
1109 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1110 		KASSERT(l->l_class == SCHED_OTHER);
1111 		lwp_changepri(l, MAXPRI_USER);
1112 	}
1113 
1114 	/*
1115 	 * If the LWP is running or on a run queue, then we win.  If it's
1116 	 * sleeping interruptably, wake it and make it take the signal.  If
1117 	 * the sleep isn't interruptable, then the chances are it will get
1118 	 * to see the signal soon anyhow.  If suspended, it can't take the
1119 	 * signal right now.  If it's LWP private or for all LWPs, save it
1120 	 * for later; otherwise punt.
1121 	 */
1122 	rv = 0;
1123 
1124 	switch (l->l_stat) {
1125 	case LSRUN:
1126 	case LSONPROC:
1127 		lwp_need_userret(l);
1128 		rv = 1;
1129 		break;
1130 
1131 	case LSSLEEP:
1132 		if ((l->l_flag & LW_SINTR) != 0) {
1133 			/* setrunnable() will release the lock. */
1134 			setrunnable(l);
1135 			return 1;
1136 		}
1137 		break;
1138 
1139 	case LSSUSPENDED:
1140 		if ((prop & SA_KILL) != 0) {
1141 			/* lwp_continue() will release the lock. */
1142 			lwp_continue(l);
1143 			return 1;
1144 		}
1145 		break;
1146 
1147 	case LSSTOP:
1148 		if ((prop & SA_STOP) != 0)
1149 			break;
1150 
1151 		/*
1152 		 * If the LWP is stopped and we are sending a continue
1153 		 * signal, then start it again.
1154 		 */
1155 		if ((prop & SA_CONT) != 0) {
1156 			if (l->l_wchan != NULL) {
1157 				l->l_stat = LSSLEEP;
1158 				p->p_nrlwps++;
1159 				rv = 1;
1160 				break;
1161 			}
1162 			/* setrunnable() will release the lock. */
1163 			setrunnable(l);
1164 			return 1;
1165 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1166 			/* setrunnable() will release the lock. */
1167 			setrunnable(l);
1168 			return 1;
1169 		}
1170 		break;
1171 
1172 	default:
1173 		break;
1174 	}
1175 
1176 	lwp_unlock(l);
1177 	return rv;
1178 }
1179 
1180 /*
1181  * Notify an LWP that it has a pending signal.
1182  */
1183 void
1184 signotify(struct lwp *l)
1185 {
1186 	KASSERT(lwp_locked(l, NULL));
1187 
1188 	l->l_flag |= LW_PENDSIG;
1189 	lwp_need_userret(l);
1190 }
1191 
1192 /*
1193  * Find an LWP within process p that is waiting on signal ksi, and hand
1194  * it on.
1195  */
1196 static int
1197 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1198 {
1199 	struct lwp *l;
1200 	int signo;
1201 
1202 	KASSERT(mutex_owned(p->p_lock));
1203 
1204 	signo = ksi->ksi_signo;
1205 
1206 	if (ksi->ksi_lid != 0) {
1207 		/*
1208 		 * Signal came via _lwp_kill().  Find the LWP and see if
1209 		 * it's interested.
1210 		 */
1211 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1212 			return 0;
1213 		if (l->l_sigwaited == NULL ||
1214 		    !sigismember(&l->l_sigwaitset, signo))
1215 			return 0;
1216 	} else {
1217 		/*
1218 		 * Look for any LWP that may be interested.
1219 		 */
1220 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1221 			KASSERT(l->l_sigwaited != NULL);
1222 			if (sigismember(&l->l_sigwaitset, signo))
1223 				break;
1224 		}
1225 	}
1226 
1227 	if (l != NULL) {
1228 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1229 		l->l_sigwaited = NULL;
1230 		LIST_REMOVE(l, l_sigwaiter);
1231 		cv_signal(&l->l_sigcv);
1232 		return 1;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Send the signal to the process.  If the signal has an action, the action
1240  * is usually performed by the target process rather than the caller; we add
1241  * the signal to the set of pending signals for the process.
1242  *
1243  * Exceptions:
1244  *   o When a stop signal is sent to a sleeping process that takes the
1245  *     default action, the process is stopped without awakening it.
1246  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1247  *     regardless of the signal action (eg, blocked or ignored).
1248  *
1249  * Other ignored signals are discarded immediately.
1250  */
1251 void
1252 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1253 {
1254 	int prop, signo = ksi->ksi_signo;
1255 	struct sigacts *sa;
1256 	struct lwp *l;
1257 	ksiginfo_t *kp;
1258 	lwpid_t lid;
1259 	sig_t action;
1260 	bool toall;
1261 
1262 	KASSERT(!cpu_intr_p());
1263 	KASSERT(mutex_owned(proc_lock));
1264 	KASSERT(mutex_owned(p->p_lock));
1265 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1266 	KASSERT(signo > 0 && signo < NSIG);
1267 
1268 	/*
1269 	 * If the process is being created by fork, is a zombie or is
1270 	 * exiting, then just drop the signal here and bail out.
1271 	 */
1272 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1273 		return;
1274 
1275 	/*
1276 	 * Notify any interested parties of the signal.
1277 	 */
1278 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1279 
1280 	/*
1281 	 * Some signals including SIGKILL must act on the entire process.
1282 	 */
1283 	kp = NULL;
1284 	prop = sigprop[signo];
1285 	toall = ((prop & SA_TOALL) != 0);
1286 	lid = toall ? 0 : ksi->ksi_lid;
1287 
1288 	/*
1289 	 * If proc is traced, always give parent a chance.
1290 	 */
1291 	if (p->p_slflag & PSL_TRACED) {
1292 		action = SIG_DFL;
1293 
1294 		if (lid == 0) {
1295 			/*
1296 			 * If the process is being traced and the signal
1297 			 * is being caught, make sure to save any ksiginfo.
1298 			 */
1299 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1300 				return;
1301 			sigput(&p->p_sigpend, p, kp);
1302 		}
1303 	} else {
1304 		/*
1305 		 * If the signal was the result of a trap and is not being
1306 		 * caught, then reset it to default action so that the
1307 		 * process dumps core immediately.
1308 		 */
1309 		if (KSI_TRAP_P(ksi)) {
1310 			sa = p->p_sigacts;
1311 			mutex_enter(&sa->sa_mutex);
1312 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1313 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1314 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1315 			}
1316 			mutex_exit(&sa->sa_mutex);
1317 		}
1318 
1319 		/*
1320 		 * If the signal is being ignored, then drop it.  Note: we
1321 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1322 		 * SIG_IGN, action will be SIG_DFL here.
1323 		 */
1324 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1325 			return;
1326 
1327 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1328 			action = SIG_CATCH;
1329 		else {
1330 			action = SIG_DFL;
1331 
1332 			/*
1333 			 * If sending a tty stop signal to a member of an
1334 			 * orphaned process group, discard the signal here if
1335 			 * the action is default; don't stop the process below
1336 			 * if sleeping, and don't clear any pending SIGCONT.
1337 			 */
1338 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1339 				return;
1340 
1341 			if (prop & SA_KILL && p->p_nice > NZERO)
1342 				p->p_nice = NZERO;
1343 		}
1344 	}
1345 
1346 	/*
1347 	 * If stopping or continuing a process, discard any pending
1348 	 * signals that would do the inverse.
1349 	 */
1350 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1351 		ksiginfoq_t kq;
1352 
1353 		ksiginfo_queue_init(&kq);
1354 		if ((prop & SA_CONT) != 0)
1355 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1356 		if ((prop & SA_STOP) != 0)
1357 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1358 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1359 	}
1360 
1361 	/*
1362 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1363 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1364 	 * the signal info.  The signal won't be processed further here.
1365 	 */
1366 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1367 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1368 	    sigunwait(p, ksi))
1369 		return;
1370 
1371 	/*
1372 	 * XXXSMP Should be allocated by the caller, we're holding locks
1373 	 * here.
1374 	 */
1375 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1376 		return;
1377 
1378 	/*
1379 	 * LWP private signals are easy - just find the LWP and post
1380 	 * the signal to it.
1381 	 */
1382 	if (lid != 0) {
1383 		l = lwp_find(p, lid);
1384 		if (l != NULL) {
1385 			sigput(&l->l_sigpend, p, kp);
1386 			membar_producer();
1387 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1388 		}
1389 		goto out;
1390 	}
1391 
1392 	/*
1393 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1394 	 * or for an SA process.
1395 	 */
1396 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1397 		if ((p->p_slflag & PSL_TRACED) != 0)
1398 			goto deliver;
1399 
1400 		/*
1401 		 * If SIGCONT is default (or ignored) and process is
1402 		 * asleep, we are finished; the process should not
1403 		 * be awakened.
1404 		 */
1405 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1406 			goto out;
1407 	} else {
1408 		/*
1409 		 * Process is stopped or stopping.
1410 		 * - If traced, then no action is needed, unless killing.
1411 		 * - Run the process only if sending SIGCONT or SIGKILL.
1412 		 */
1413 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1414 			goto out;
1415 		}
1416 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1417 			/*
1418 			 * Re-adjust p_nstopchild if the process wasn't
1419 			 * collected by its parent.
1420 			 */
1421 			p->p_stat = SACTIVE;
1422 			p->p_sflag &= ~PS_STOPPING;
1423 			if (!p->p_waited) {
1424 				p->p_pptr->p_nstopchild--;
1425 			}
1426 			if (p->p_slflag & PSL_TRACED) {
1427 				KASSERT(signo == SIGKILL);
1428 				goto deliver;
1429 			}
1430 			/*
1431 			 * Do not make signal pending if SIGCONT is default.
1432 			 *
1433 			 * If the process catches SIGCONT, let it handle the
1434 			 * signal itself (if waiting on event - process runs,
1435 			 * otherwise continues sleeping).
1436 			 */
1437 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1438 				KASSERT(signo != SIGKILL);
1439 				goto deliver;
1440 			}
1441 		} else if ((prop & SA_STOP) != 0) {
1442 			/*
1443 			 * Already stopped, don't need to stop again.
1444 			 * (If we did the shell could get confused.)
1445 			 */
1446 			goto out;
1447 		}
1448 	}
1449 	/*
1450 	 * Make signal pending.
1451 	 */
1452 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1453 	sigput(&p->p_sigpend, p, kp);
1454 
1455 deliver:
1456 	/*
1457 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1458 	 * visible on the per process list (for sigispending()).  This
1459 	 * is unlikely to be needed in practice, but...
1460 	 */
1461 	membar_producer();
1462 
1463 	/*
1464 	 * Try to find an LWP that can take the signal.
1465 	 */
1466 #if KERN_SA
1467 	if ((p->p_sa != NULL) && !toall) {
1468 		struct sadata_vp *vp;
1469 		/*
1470 		 * If we're in this delivery path, we are delivering a
1471 		 * signal that needs to go to one thread in the process.
1472 		 *
1473 		 * In the SA case, we try to find an idle LWP that can take
1474 		 * the signal.  If that fails, only then do we consider
1475 		 * interrupting active LWPs. Since the signal's going to
1476 		 * just one thread, we need only look at "blessed" lwps,
1477 		 * so scan the vps for them.
1478 		 */
1479 		l = NULL;
1480 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1481 			l = vp->savp_lwp;
1482 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1483 				break;
1484 		}
1485 
1486 		if (l == NULL) {
1487 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1488 				l = vp->savp_lwp;
1489 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1490 					break;
1491 			}
1492 		}
1493 		/* Delivered, skip next. */
1494 		goto out;
1495 	}
1496 #endif
1497 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1498 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1499 			break;
1500 	}
1501 out:
1502 	/*
1503 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1504 	 * with locks held.  The caller should take care of this.
1505 	 */
1506 	ksiginfo_free(kp);
1507 }
1508 
1509 void
1510 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1511 {
1512 	struct proc *p = l->l_proc;
1513 #ifdef KERN_SA
1514 	struct lwp *le, *li;
1515 	siginfo_t *si;
1516 	int f;
1517 #endif /* KERN_SA */
1518 
1519 	KASSERT(mutex_owned(p->p_lock));
1520 
1521 #ifdef KERN_SA
1522 	if (p->p_sflag & PS_SA) {
1523 		/* f indicates if we should clear LP_SA_NOBLOCK */
1524 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1525 		l->l_pflag |= LP_SA_NOBLOCK;
1526 
1527 		mutex_exit(p->p_lock);
1528 		/* XXXUPSXXX What if not on sa_vp? */
1529 		/*
1530 		 * WRS: I think it won't matter, beyond the
1531 		 * question of what exactly we do with a signal
1532 		 * to a blocked user thread. Also, we try hard to always
1533 		 * send signals to blessed lwps, so we would only send
1534 		 * to a non-blessed lwp under special circumstances.
1535 		 */
1536 		si = siginfo_alloc(PR_WAITOK);
1537 
1538 		si->_info = ksi->ksi_info;
1539 
1540 		/*
1541 		 * Figure out if we're the innocent victim or the main
1542 		 * perpitrator.
1543 		 */
1544 		le = li = NULL;
1545 		if (KSI_TRAP_P(ksi))
1546 			le = l;
1547 		else
1548 			li = l;
1549 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1550 		    sizeof(*si), si, siginfo_free) != 0) {
1551 			siginfo_free(si);
1552 #if 0
1553 			if (KSI_TRAP_P(ksi))
1554 				/* XXX What dowe do here? The signal
1555 				 * didn't make it
1556 				 */;
1557 #endif
1558 		}
1559 		l->l_pflag ^= f;
1560 		mutex_enter(p->p_lock);
1561 		return;
1562 	}
1563 #endif /* KERN_SA */
1564 
1565 	(*p->p_emul->e_sendsig)(ksi, mask);
1566 }
1567 
1568 /*
1569  * Stop any LWPs sleeping interruptably.
1570  */
1571 static void
1572 proc_stop_lwps(struct proc *p)
1573 {
1574 	struct lwp *l;
1575 
1576 	KASSERT(mutex_owned(p->p_lock));
1577 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1578 
1579 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1580 		lwp_lock(l);
1581 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1582 			l->l_stat = LSSTOP;
1583 			p->p_nrlwps--;
1584 		}
1585 		lwp_unlock(l);
1586 	}
1587 }
1588 
1589 /*
1590  * Finish stopping of a process.  Mark it stopped and notify the parent.
1591  *
1592  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1593  */
1594 static void
1595 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1596 {
1597 
1598 	KASSERT(mutex_owned(proc_lock));
1599 	KASSERT(mutex_owned(p->p_lock));
1600 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1601 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1602 
1603 	p->p_sflag &= ~PS_STOPPING;
1604 	p->p_stat = SSTOP;
1605 	p->p_waited = 0;
1606 	p->p_pptr->p_nstopchild++;
1607 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1608 		if (ppsig) {
1609 			/* child_psignal drops p_lock briefly. */
1610 			child_psignal(p, ppmask);
1611 		}
1612 		cv_broadcast(&p->p_pptr->p_waitcv);
1613 	}
1614 }
1615 
1616 /*
1617  * Stop the current process and switch away when being stopped or traced.
1618  */
1619 static void
1620 sigswitch(bool ppsig, int ppmask, int signo)
1621 {
1622 	struct lwp *l = curlwp;
1623 	struct proc *p = l->l_proc;
1624 	int biglocks;
1625 
1626 	KASSERT(mutex_owned(p->p_lock));
1627 	KASSERT(l->l_stat == LSONPROC);
1628 	KASSERT(p->p_nrlwps > 0);
1629 
1630 	/*
1631 	 * On entry we know that the process needs to stop.  If it's
1632 	 * the result of a 'sideways' stop signal that has been sourced
1633 	 * through issignal(), then stop other LWPs in the process too.
1634 	 */
1635 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1636 		KASSERT(signo != 0);
1637 		proc_stop(p, 1, signo);
1638 		KASSERT(p->p_nrlwps > 0);
1639 	}
1640 
1641 	/*
1642 	 * If we are the last live LWP, and the stop was a result of
1643 	 * a new signal, then signal the parent.
1644 	 */
1645 	if ((p->p_sflag & PS_STOPPING) != 0) {
1646 		if (!mutex_tryenter(proc_lock)) {
1647 			mutex_exit(p->p_lock);
1648 			mutex_enter(proc_lock);
1649 			mutex_enter(p->p_lock);
1650 		}
1651 
1652 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1653 			/*
1654 			 * Note that proc_stop_done() can drop
1655 			 * p->p_lock briefly.
1656 			 */
1657 			proc_stop_done(p, ppsig, ppmask);
1658 		}
1659 
1660 		mutex_exit(proc_lock);
1661 	}
1662 
1663 	/*
1664 	 * Unlock and switch away.
1665 	 */
1666 	KERNEL_UNLOCK_ALL(l, &biglocks);
1667 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1668 		p->p_nrlwps--;
1669 		lwp_lock(l);
1670 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1671 		l->l_stat = LSSTOP;
1672 		lwp_unlock(l);
1673 	}
1674 
1675 	mutex_exit(p->p_lock);
1676 	lwp_lock(l);
1677 	mi_switch(l);
1678 	KERNEL_LOCK(biglocks, l);
1679 	mutex_enter(p->p_lock);
1680 }
1681 
1682 /*
1683  * Check for a signal from the debugger.
1684  */
1685 static int
1686 sigchecktrace(void)
1687 {
1688 	struct lwp *l = curlwp;
1689 	struct proc *p = l->l_proc;
1690 	sigset_t *mask;
1691 	int signo;
1692 
1693 	KASSERT(mutex_owned(p->p_lock));
1694 
1695 	/* If there's a pending SIGKILL, process it immediately. */
1696 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1697 		return 0;
1698 
1699 	/*
1700 	 * If we are no longer being traced, or the parent didn't
1701 	 * give us a signal, look for more signals.
1702 	 */
1703 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1704 		return 0;
1705 
1706 	/*
1707 	 * If the new signal is being masked, look for other signals.
1708 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1709 	 */
1710 	signo = p->p_xstat;
1711 	p->p_xstat = 0;
1712 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1713 	if (sigismember(mask, signo))
1714 		signo = 0;
1715 
1716 	return signo;
1717 }
1718 
1719 /*
1720  * If the current process has received a signal (should be caught or cause
1721  * termination, should interrupt current syscall), return the signal number.
1722  *
1723  * Stop signals with default action are processed immediately, then cleared;
1724  * they aren't returned.  This is checked after each entry to the system for
1725  * a syscall or trap.
1726  *
1727  * We will also return -1 if the process is exiting and the current LWP must
1728  * follow suit.
1729  */
1730 int
1731 issignal(struct lwp *l)
1732 {
1733 	struct proc *p;
1734 	int signo, prop;
1735 	sigpend_t *sp;
1736 	sigset_t ss;
1737 
1738 	p = l->l_proc;
1739 	sp = NULL;
1740 	signo = 0;
1741 
1742 	KASSERT(p == curproc);
1743 	KASSERT(mutex_owned(p->p_lock));
1744 
1745 	for (;;) {
1746 		/* Discard any signals that we have decided not to take. */
1747 		if (signo != 0)
1748 			(void)sigget(sp, NULL, signo, NULL);
1749 
1750 		/* Bail out if we do not own the virtual processor */
1751 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1752 			break;
1753 
1754 		/*
1755 		 * If the process is stopped/stopping, then stop ourselves
1756 		 * now that we're on the kernel/userspace boundary.  When
1757 		 * we awaken, check for a signal from the debugger.
1758 		 */
1759 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1760 			sigswitch(true, PS_NOCLDSTOP, 0);
1761 			signo = sigchecktrace();
1762 		} else
1763 			signo = 0;
1764 
1765 		/* Signals from the debugger are "out of band". */
1766 		sp = NULL;
1767 
1768 		/*
1769 		 * If the debugger didn't provide a signal, find a pending
1770 		 * signal from our set.  Check per-LWP signals first, and
1771 		 * then per-process.
1772 		 */
1773 		if (signo == 0) {
1774 			sp = &l->l_sigpend;
1775 			ss = sp->sp_set;
1776 			if ((p->p_lflag & PL_PPWAIT) != 0)
1777 				sigminusset(&stopsigmask, &ss);
1778 			sigminusset(&l->l_sigmask, &ss);
1779 
1780 			if ((signo = firstsig(&ss)) == 0) {
1781 				sp = &p->p_sigpend;
1782 				ss = sp->sp_set;
1783 				if ((p->p_lflag & PL_PPWAIT) != 0)
1784 					sigminusset(&stopsigmask, &ss);
1785 				sigminusset(&l->l_sigmask, &ss);
1786 
1787 				if ((signo = firstsig(&ss)) == 0) {
1788 					/*
1789 					 * No signal pending - clear the
1790 					 * indicator and bail out.
1791 					 */
1792 					lwp_lock(l);
1793 					l->l_flag &= ~LW_PENDSIG;
1794 					lwp_unlock(l);
1795 					sp = NULL;
1796 					break;
1797 				}
1798 			}
1799 		}
1800 
1801 		/*
1802 		 * We should see pending but ignored signals only if
1803 		 * we are being traced.
1804 		 */
1805 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1806 		    (p->p_slflag & PSL_TRACED) == 0) {
1807 			/* Discard the signal. */
1808 			continue;
1809 		}
1810 
1811 		/*
1812 		 * If traced, always stop, and stay stopped until released
1813 		 * by the debugger.  If the our parent process is waiting
1814 		 * for us, don't hang as we could deadlock.
1815 		 */
1816 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1817 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1818 			/* Take the signal. */
1819 			(void)sigget(sp, NULL, signo, NULL);
1820 			p->p_xstat = signo;
1821 
1822 			/* Emulation-specific handling of signal trace */
1823 			if (p->p_emul->e_tracesig == NULL ||
1824 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1825 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1826 				    signo);
1827 
1828 			/* Check for a signal from the debugger. */
1829 			if ((signo = sigchecktrace()) == 0)
1830 				continue;
1831 
1832 			/* Signals from the debugger are "out of band". */
1833 			sp = NULL;
1834 		}
1835 
1836 		prop = sigprop[signo];
1837 
1838 		/*
1839 		 * Decide whether the signal should be returned.
1840 		 */
1841 		switch ((long)SIGACTION(p, signo).sa_handler) {
1842 		case (long)SIG_DFL:
1843 			/*
1844 			 * Don't take default actions on system processes.
1845 			 */
1846 			if (p->p_pid <= 1) {
1847 #ifdef DIAGNOSTIC
1848 				/*
1849 				 * Are you sure you want to ignore SIGSEGV
1850 				 * in init? XXX
1851 				 */
1852 				printf_nolog("Process (pid %d) got sig %d\n",
1853 				    p->p_pid, signo);
1854 #endif
1855 				continue;
1856 			}
1857 
1858 			/*
1859 			 * If there is a pending stop signal to process with
1860 			 * default action, stop here, then clear the signal.
1861 			 * However, if process is member of an orphaned
1862 			 * process group, ignore tty stop signals.
1863 			 */
1864 			if (prop & SA_STOP) {
1865 				/*
1866 				 * XXX Don't hold proc_lock for p_lflag,
1867 				 * but it's not a big deal.
1868 				 */
1869 				if (p->p_slflag & PSL_TRACED ||
1870 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1871 				    prop & SA_TTYSTOP)) {
1872 					/* Ignore the signal. */
1873 					continue;
1874 				}
1875 				/* Take the signal. */
1876 				(void)sigget(sp, NULL, signo, NULL);
1877 				p->p_xstat = signo;
1878 				signo = 0;
1879 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1880 			} else if (prop & SA_IGNORE) {
1881 				/*
1882 				 * Except for SIGCONT, shouldn't get here.
1883 				 * Default action is to ignore; drop it.
1884 				 */
1885 				continue;
1886 			}
1887 			break;
1888 
1889 		case (long)SIG_IGN:
1890 #ifdef DEBUG_ISSIGNAL
1891 			/*
1892 			 * Masking above should prevent us ever trying
1893 			 * to take action on an ignored signal other
1894 			 * than SIGCONT, unless process is traced.
1895 			 */
1896 			if ((prop & SA_CONT) == 0 &&
1897 			    (p->p_slflag & PSL_TRACED) == 0)
1898 				printf_nolog("issignal\n");
1899 #endif
1900 			continue;
1901 
1902 		default:
1903 			/*
1904 			 * This signal has an action, let postsig() process
1905 			 * it.
1906 			 */
1907 			break;
1908 		}
1909 
1910 		break;
1911 	}
1912 
1913 	l->l_sigpendset = sp;
1914 	return signo;
1915 }
1916 
1917 /*
1918  * Take the action for the specified signal
1919  * from the current set of pending signals.
1920  */
1921 void
1922 postsig(int signo)
1923 {
1924 	struct lwp	*l;
1925 	struct proc	*p;
1926 	struct sigacts	*ps;
1927 	sig_t		action;
1928 	sigset_t	*returnmask;
1929 	ksiginfo_t	ksi;
1930 
1931 	l = curlwp;
1932 	p = l->l_proc;
1933 	ps = p->p_sigacts;
1934 
1935 	KASSERT(mutex_owned(p->p_lock));
1936 	KASSERT(signo > 0);
1937 
1938 	/*
1939 	 * Set the new mask value and also defer further occurrences of this
1940 	 * signal.
1941 	 *
1942 	 * Special case: user has done a sigsuspend.  Here the current mask is
1943 	 * not of interest, but rather the mask from before the sigsuspend is
1944 	 * what we want restored after the signal processing is completed.
1945 	 */
1946 	if (l->l_sigrestore) {
1947 		returnmask = &l->l_sigoldmask;
1948 		l->l_sigrestore = 0;
1949 	} else
1950 		returnmask = &l->l_sigmask;
1951 
1952 	/*
1953 	 * Commit to taking the signal before releasing the mutex.
1954 	 */
1955 	action = SIGACTION_PS(ps, signo).sa_handler;
1956 	l->l_ru.ru_nsignals++;
1957 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1958 
1959 	if (ktrpoint(KTR_PSIG)) {
1960 		mutex_exit(p->p_lock);
1961 		ktrpsig(signo, action, returnmask, &ksi);
1962 		mutex_enter(p->p_lock);
1963 	}
1964 
1965 	if (action == SIG_DFL) {
1966 		/*
1967 		 * Default action, where the default is to kill
1968 		 * the process.  (Other cases were ignored above.)
1969 		 */
1970 		sigexit(l, signo);
1971 		return;
1972 	}
1973 
1974 	/*
1975 	 * If we get here, the signal must be caught.
1976 	 */
1977 #ifdef DIAGNOSTIC
1978 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1979 		panic("postsig action");
1980 #endif
1981 
1982 	kpsendsig(l, &ksi, returnmask);
1983 }
1984 
1985 /*
1986  * sendsig:
1987  *
1988  *	Default signal delivery method for NetBSD.
1989  */
1990 void
1991 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1992 {
1993 	struct sigacts *sa;
1994 	int sig;
1995 
1996 	sig = ksi->ksi_signo;
1997 	sa = curproc->p_sigacts;
1998 
1999 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2000 	case 0:
2001 	case 1:
2002 		/* Compat for 1.6 and earlier. */
2003 		if (sendsig_sigcontext_vec == NULL) {
2004 			break;
2005 		}
2006 		(*sendsig_sigcontext_vec)(ksi, mask);
2007 		return;
2008 	case 2:
2009 	case 3:
2010 		sendsig_siginfo(ksi, mask);
2011 		return;
2012 	default:
2013 		break;
2014 	}
2015 
2016 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2017 	sigexit(curlwp, SIGILL);
2018 }
2019 
2020 /*
2021  * sendsig_reset:
2022  *
2023  *	Reset the signal action.  Called from emulation specific sendsig()
2024  *	before unlocking to deliver the signal.
2025  */
2026 void
2027 sendsig_reset(struct lwp *l, int signo)
2028 {
2029 	struct proc *p = l->l_proc;
2030 	struct sigacts *ps = p->p_sigacts;
2031 	sigset_t *mask;
2032 
2033 	KASSERT(mutex_owned(p->p_lock));
2034 
2035 	p->p_sigctx.ps_lwp = 0;
2036 	p->p_sigctx.ps_code = 0;
2037 	p->p_sigctx.ps_signo = 0;
2038 
2039 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2040 
2041 	mutex_enter(&ps->sa_mutex);
2042 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2043 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2044 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2045 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2046 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2047 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2048 	}
2049 	mutex_exit(&ps->sa_mutex);
2050 }
2051 
2052 /*
2053  * Kill the current process for stated reason.
2054  */
2055 void
2056 killproc(struct proc *p, const char *why)
2057 {
2058 
2059 	KASSERT(mutex_owned(proc_lock));
2060 
2061 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2062 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2063 	psignal(p, SIGKILL);
2064 }
2065 
2066 /*
2067  * Force the current process to exit with the specified signal, dumping core
2068  * if appropriate.  We bypass the normal tests for masked and caught
2069  * signals, allowing unrecoverable failures to terminate the process without
2070  * changing signal state.  Mark the accounting record with the signal
2071  * termination.  If dumping core, save the signal number for the debugger.
2072  * Calls exit and does not return.
2073  */
2074 void
2075 sigexit(struct lwp *l, int signo)
2076 {
2077 	int exitsig, error, docore;
2078 	struct proc *p;
2079 	struct lwp *t;
2080 
2081 	p = l->l_proc;
2082 
2083 	KASSERT(mutex_owned(p->p_lock));
2084 	KERNEL_UNLOCK_ALL(l, NULL);
2085 
2086 	/*
2087 	 * Don't permit coredump() multiple times in the same process.
2088 	 * Call back into sigexit, where we will be suspended until
2089 	 * the deed is done.  Note that this is a recursive call, but
2090 	 * LW_WCORE will prevent us from coming back this way.
2091 	 */
2092 	if ((p->p_sflag & PS_WCORE) != 0) {
2093 		lwp_lock(l);
2094 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2095 		lwp_unlock(l);
2096 		mutex_exit(p->p_lock);
2097 		lwp_userret(l);
2098 		panic("sigexit 1");
2099 		/* NOTREACHED */
2100 	}
2101 
2102 	/* If process is already on the way out, then bail now. */
2103 	if ((p->p_sflag & PS_WEXIT) != 0) {
2104 		mutex_exit(p->p_lock);
2105 		lwp_exit(l);
2106 		panic("sigexit 2");
2107 		/* NOTREACHED */
2108 	}
2109 
2110 	/*
2111 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2112 	 * so that their registers are available long enough to be dumped.
2113  	 */
2114 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2115 		p->p_sflag |= PS_WCORE;
2116 		for (;;) {
2117 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2118 				lwp_lock(t);
2119 				if (t == l) {
2120 					t->l_flag &= ~LW_WSUSPEND;
2121 					lwp_unlock(t);
2122 					continue;
2123 				}
2124 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2125 				lwp_suspend(l, t);
2126 			}
2127 
2128 			if (p->p_nrlwps == 1)
2129 				break;
2130 
2131 			/*
2132 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2133 			 * for everyone else to stop before proceeding.
2134 			 */
2135 			p->p_nlwpwait++;
2136 			cv_broadcast(&p->p_lwpcv);
2137 			cv_wait(&p->p_lwpcv, p->p_lock);
2138 			p->p_nlwpwait--;
2139 		}
2140 	}
2141 
2142 	exitsig = signo;
2143 	p->p_acflag |= AXSIG;
2144 	p->p_sigctx.ps_signo = signo;
2145 
2146 	if (docore) {
2147 		mutex_exit(p->p_lock);
2148 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2149 			exitsig |= WCOREFLAG;
2150 
2151 		if (kern_logsigexit) {
2152 			int uid = l->l_cred ?
2153 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2154 
2155 			if (error)
2156 				log(LOG_INFO, lognocoredump, p->p_pid,
2157 				    p->p_comm, uid, signo, error);
2158 			else
2159 				log(LOG_INFO, logcoredump, p->p_pid,
2160 				    p->p_comm, uid, signo);
2161 		}
2162 
2163 #ifdef PAX_SEGVGUARD
2164 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2165 #endif /* PAX_SEGVGUARD */
2166 		/* Acquire the sched state mutex.  exit1() will release it. */
2167 		mutex_enter(p->p_lock);
2168 	}
2169 
2170 	/* No longer dumping core. */
2171 	p->p_sflag &= ~PS_WCORE;
2172 
2173 	exit1(l, W_EXITCODE(0, exitsig));
2174 	/* NOTREACHED */
2175 }
2176 
2177 /*
2178  * Put process 'p' into the stopped state and optionally, notify the parent.
2179  */
2180 void
2181 proc_stop(struct proc *p, int notify, int signo)
2182 {
2183 	struct lwp *l;
2184 
2185 	KASSERT(mutex_owned(p->p_lock));
2186 
2187 	/*
2188 	 * First off, set the stopping indicator and bring all sleeping
2189 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2190 	 * unlock between here and the p->p_nrlwps check below.
2191 	 */
2192 	p->p_sflag |= PS_STOPPING;
2193 	if (notify)
2194 		p->p_sflag |= PS_NOTIFYSTOP;
2195 	else
2196 		p->p_sflag &= ~PS_NOTIFYSTOP;
2197 	membar_producer();
2198 
2199 	proc_stop_lwps(p);
2200 
2201 	/*
2202 	 * If there are no LWPs available to take the signal, then we
2203 	 * signal the parent process immediately.  Otherwise, the last
2204 	 * LWP to stop will take care of it.
2205 	 */
2206 
2207 	if (p->p_nrlwps == 0) {
2208 		proc_stop_done(p, true, PS_NOCLDSTOP);
2209 	} else {
2210 		/*
2211 		 * Have the remaining LWPs come to a halt, and trigger
2212 		 * proc_stop_callout() to ensure that they do.
2213 		 */
2214 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2215 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2216 		callout_schedule(&proc_stop_ch, 1);
2217 	}
2218 }
2219 
2220 /*
2221  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2222  * but wait for them to come to a halt at the kernel-user boundary.  This is
2223  * to allow LWPs to release any locks that they may hold before stopping.
2224  *
2225  * Non-interruptable sleeps can be long, and there is the potential for an
2226  * LWP to begin sleeping interruptably soon after the process has been set
2227  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2228  * stopping, and so complete halt of the process and the return of status
2229  * information to the parent could be delayed indefinitely.
2230  *
2231  * To handle this race, proc_stop_callout() runs once per tick while there
2232  * are stopping processes in the system.  It sets LWPs that are sleeping
2233  * interruptably into the LSSTOP state.
2234  *
2235  * Note that we are not concerned about keeping all LWPs stopped while the
2236  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2237  * What we do need to ensure is that all LWPs in a stopping process have
2238  * stopped at least once, so that notification can be sent to the parent
2239  * process.
2240  */
2241 static void
2242 proc_stop_callout(void *cookie)
2243 {
2244 	bool more, restart;
2245 	struct proc *p;
2246 
2247 	(void)cookie;
2248 
2249 	do {
2250 		restart = false;
2251 		more = false;
2252 
2253 		mutex_enter(proc_lock);
2254 		PROCLIST_FOREACH(p, &allproc) {
2255 			if ((p->p_flag & PK_MARKER) != 0)
2256 				continue;
2257 			mutex_enter(p->p_lock);
2258 
2259 			if ((p->p_sflag & PS_STOPPING) == 0) {
2260 				mutex_exit(p->p_lock);
2261 				continue;
2262 			}
2263 
2264 			/* Stop any LWPs sleeping interruptably. */
2265 			proc_stop_lwps(p);
2266 			if (p->p_nrlwps == 0) {
2267 				/*
2268 				 * We brought the process to a halt.
2269 				 * Mark it as stopped and notify the
2270 				 * parent.
2271 				 */
2272 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2273 					/*
2274 					 * Note that proc_stop_done() will
2275 					 * drop p->p_lock briefly.
2276 					 * Arrange to restart and check
2277 					 * all processes again.
2278 					 */
2279 					restart = true;
2280 				}
2281 				proc_stop_done(p, true, PS_NOCLDSTOP);
2282 			} else
2283 				more = true;
2284 
2285 			mutex_exit(p->p_lock);
2286 			if (restart)
2287 				break;
2288 		}
2289 		mutex_exit(proc_lock);
2290 	} while (restart);
2291 
2292 	/*
2293 	 * If we noted processes that are stopping but still have
2294 	 * running LWPs, then arrange to check again in 1 tick.
2295 	 */
2296 	if (more)
2297 		callout_schedule(&proc_stop_ch, 1);
2298 }
2299 
2300 /*
2301  * Given a process in state SSTOP, set the state back to SACTIVE and
2302  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2303  */
2304 void
2305 proc_unstop(struct proc *p)
2306 {
2307 	struct lwp *l;
2308 	int sig;
2309 
2310 	KASSERT(mutex_owned(proc_lock));
2311 	KASSERT(mutex_owned(p->p_lock));
2312 
2313 	p->p_stat = SACTIVE;
2314 	p->p_sflag &= ~PS_STOPPING;
2315 	sig = p->p_xstat;
2316 
2317 	if (!p->p_waited)
2318 		p->p_pptr->p_nstopchild--;
2319 
2320 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2321 		lwp_lock(l);
2322 		if (l->l_stat != LSSTOP) {
2323 			lwp_unlock(l);
2324 			continue;
2325 		}
2326 		if (l->l_wchan == NULL) {
2327 			setrunnable(l);
2328 			continue;
2329 		}
2330 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2331 			setrunnable(l);
2332 			sig = 0;
2333 		} else {
2334 			l->l_stat = LSSLEEP;
2335 			p->p_nrlwps++;
2336 			lwp_unlock(l);
2337 		}
2338 	}
2339 }
2340 
2341 static int
2342 filt_sigattach(struct knote *kn)
2343 {
2344 	struct proc *p = curproc;
2345 
2346 	kn->kn_obj = p;
2347 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2348 
2349 	mutex_enter(p->p_lock);
2350 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2351 	mutex_exit(p->p_lock);
2352 
2353 	return 0;
2354 }
2355 
2356 static void
2357 filt_sigdetach(struct knote *kn)
2358 {
2359 	struct proc *p = kn->kn_obj;
2360 
2361 	mutex_enter(p->p_lock);
2362 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2363 	mutex_exit(p->p_lock);
2364 }
2365 
2366 /*
2367  * Signal knotes are shared with proc knotes, so we apply a mask to
2368  * the hint in order to differentiate them from process hints.  This
2369  * could be avoided by using a signal-specific knote list, but probably
2370  * isn't worth the trouble.
2371  */
2372 static int
2373 filt_signal(struct knote *kn, long hint)
2374 {
2375 
2376 	if (hint & NOTE_SIGNAL) {
2377 		hint &= ~NOTE_SIGNAL;
2378 
2379 		if (kn->kn_id == hint)
2380 			kn->kn_data++;
2381 	}
2382 	return (kn->kn_data != 0);
2383 }
2384 
2385 const struct filterops sig_filtops = {
2386 	0, filt_sigattach, filt_sigdetach, filt_signal
2387 };
2388