xref: /netbsd-src/sys/kern/kern_sig.c (revision 33881f779a77dce6440bdc44610d94de75bebefe)
1 /*	$NetBSD: kern_sig.c,v 1.384 2020/02/01 02:23:23 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 /*
69  * Signal subsystem.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.384 2020/02/01 02:23:23 riastradh Exp $");
74 
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81 
82 #define	SIGPROP		/* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/ptrace.h>
87 #include <sys/systm.h>
88 #include <sys/wait.h>
89 #include <sys/ktrace.h>
90 #include <sys/syslog.h>
91 #include <sys/filedesc.h>
92 #include <sys/file.h>
93 #include <sys/pool.h>
94 #include <sys/ucontext.h>
95 #include <sys/exec.h>
96 #include <sys/kauth.h>
97 #include <sys/acct.h>
98 #include <sys/callout.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101 #include <sys/module.h>
102 #include <sys/sdt.h>
103 #include <sys/compat_stub.h>
104 
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108 
109 #include <uvm/uvm_extern.h>
110 
111 #define	SIGQUEUE_MAX	32
112 static pool_cache_t	sigacts_cache	__read_mostly;
113 static pool_cache_t	ksiginfo_cache	__read_mostly;
114 static callout_t	proc_stop_ch	__cacheline_aligned;
115 
116 sigset_t		contsigmask	__cacheline_aligned;
117 sigset_t		stopsigmask	__cacheline_aligned;
118 static sigset_t		vforksigmask	__cacheline_aligned;
119 sigset_t		sigcantmask	__cacheline_aligned;
120 
121 static void	ksiginfo_exechook(struct proc *, void *);
122 static void	proc_stop(struct proc *, int);
123 static void	proc_stop_done(struct proc *, int);
124 static void	proc_stop_callout(void *);
125 static int	sigchecktrace(void);
126 static int	sigpost(struct lwp *, sig_t, int, int);
127 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
128 static int	sigunwait(struct proc *, const ksiginfo_t *);
129 static void	sigswitch(int, int, bool);
130 static void	sigswitch_unlock_and_switch_away(struct lwp *);
131 
132 static void	sigacts_poolpage_free(struct pool *, void *);
133 static void	*sigacts_poolpage_alloc(struct pool *, int);
134 
135 /*
136  * DTrace SDT provider definitions
137  */
138 SDT_PROVIDER_DECLARE(proc);
139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
140     "struct lwp *", 	/* target thread */
141     "struct proc *", 	/* target process */
142     "int");		/* signal */
143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
144     "struct lwp *",	/* target thread */
145     "struct proc *",	/* target process */
146     "int");  		/* signal */
147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
148     "int", 		/* signal */
149     "ksiginfo_t *", 	/* signal info */
150     "void (*)(void)");	/* handler address */
151 
152 
153 static struct pool_allocator sigactspool_allocator = {
154 	.pa_alloc = sigacts_poolpage_alloc,
155 	.pa_free = sigacts_poolpage_free
156 };
157 
158 #ifdef DEBUG
159 int	kern_logsigexit = 1;
160 #else
161 int	kern_logsigexit = 0;
162 #endif
163 
164 static const char logcoredump[] =
165     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
166 static const char lognocoredump[] =
167     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
168 
169 static kauth_listener_t signal_listener;
170 
171 static int
172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
173     void *arg0, void *arg1, void *arg2, void *arg3)
174 {
175 	struct proc *p;
176 	int result, signum;
177 
178 	result = KAUTH_RESULT_DEFER;
179 	p = arg0;
180 	signum = (int)(unsigned long)arg1;
181 
182 	if (action != KAUTH_PROCESS_SIGNAL)
183 		return result;
184 
185 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
186 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
187 		result = KAUTH_RESULT_ALLOW;
188 
189 	return result;
190 }
191 
192 static int
193 sigacts_ctor(void *arg __unused, void *obj, int flags __unused)
194 {
195 	memset(obj, 0, sizeof(struct sigacts));
196 	return 0;
197 }
198 
199 /*
200  * signal_init:
201  *
202  *	Initialize global signal-related data structures.
203  */
204 void
205 signal_init(void)
206 {
207 
208 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
209 
210 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
211 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
212 	    &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL);
213 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
214 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
215 
216 	exechook_establish(ksiginfo_exechook, NULL);
217 
218 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
219 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
220 
221 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
222 	    signal_listener_cb, NULL);
223 }
224 
225 /*
226  * sigacts_poolpage_alloc:
227  *
228  *	Allocate a page for the sigacts memory pool.
229  */
230 static void *
231 sigacts_poolpage_alloc(struct pool *pp, int flags)
232 {
233 
234 	return (void *)uvm_km_alloc(kernel_map,
235 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
236 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
237 	    | UVM_KMF_WIRED);
238 }
239 
240 /*
241  * sigacts_poolpage_free:
242  *
243  *	Free a page on behalf of the sigacts memory pool.
244  */
245 static void
246 sigacts_poolpage_free(struct pool *pp, void *v)
247 {
248 
249 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
250 }
251 
252 /*
253  * sigactsinit:
254  *
255  *	Create an initial sigacts structure, using the same signal state
256  *	as of specified process.  If 'share' is set, share the sigacts by
257  *	holding a reference, otherwise just copy it from parent.
258  */
259 struct sigacts *
260 sigactsinit(struct proc *pp, int share)
261 {
262 	struct sigacts *ps = pp->p_sigacts, *ps2;
263 
264 	if (__predict_false(share)) {
265 		atomic_inc_uint(&ps->sa_refcnt);
266 		return ps;
267 	}
268 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
269 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
270 	ps2->sa_refcnt = 1;
271 
272 	mutex_enter(&ps->sa_mutex);
273 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
274 	mutex_exit(&ps->sa_mutex);
275 	return ps2;
276 }
277 
278 /*
279  * sigactsunshare:
280  *
281  *	Make this process not share its sigacts, maintaining all signal state.
282  */
283 void
284 sigactsunshare(struct proc *p)
285 {
286 	struct sigacts *ps, *oldps = p->p_sigacts;
287 
288 	if (__predict_true(oldps->sa_refcnt == 1))
289 		return;
290 
291 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
292 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
293 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
294 	ps->sa_refcnt = 1;
295 
296 	p->p_sigacts = ps;
297 	sigactsfree(oldps);
298 }
299 
300 /*
301  * sigactsfree;
302  *
303  *	Release a sigacts structure.
304  */
305 void
306 sigactsfree(struct sigacts *ps)
307 {
308 
309 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
310 		mutex_destroy(&ps->sa_mutex);
311 		pool_cache_put(sigacts_cache, ps);
312 	}
313 }
314 
315 /*
316  * siginit:
317  *
318  *	Initialize signal state for process 0; set to ignore signals that
319  *	are ignored by default and disable the signal stack.  Locking not
320  *	required as the system is still cold.
321  */
322 void
323 siginit(struct proc *p)
324 {
325 	struct lwp *l;
326 	struct sigacts *ps;
327 	int signo, prop;
328 
329 	ps = p->p_sigacts;
330 	sigemptyset(&contsigmask);
331 	sigemptyset(&stopsigmask);
332 	sigemptyset(&vforksigmask);
333 	sigemptyset(&sigcantmask);
334 	for (signo = 1; signo < NSIG; signo++) {
335 		prop = sigprop[signo];
336 		if (prop & SA_CONT)
337 			sigaddset(&contsigmask, signo);
338 		if (prop & SA_STOP)
339 			sigaddset(&stopsigmask, signo);
340 		if (prop & SA_STOP && signo != SIGSTOP)
341 			sigaddset(&vforksigmask, signo);
342 		if (prop & SA_CANTMASK)
343 			sigaddset(&sigcantmask, signo);
344 		if (prop & SA_IGNORE && signo != SIGCONT)
345 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
346 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
347 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
348 	}
349 	sigemptyset(&p->p_sigctx.ps_sigcatch);
350 	p->p_sflag &= ~PS_NOCLDSTOP;
351 
352 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
353 	sigemptyset(&p->p_sigpend.sp_set);
354 
355 	/*
356 	 * Reset per LWP state.
357 	 */
358 	l = LIST_FIRST(&p->p_lwps);
359 	l->l_sigwaited = NULL;
360 	l->l_sigstk = SS_INIT;
361 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
362 	sigemptyset(&l->l_sigpend.sp_set);
363 
364 	/* One reference. */
365 	ps->sa_refcnt = 1;
366 }
367 
368 /*
369  * execsigs:
370  *
371  *	Reset signals for an exec of the specified process.
372  */
373 void
374 execsigs(struct proc *p)
375 {
376 	struct sigacts *ps;
377 	struct lwp *l;
378 	int signo, prop;
379 	sigset_t tset;
380 	ksiginfoq_t kq;
381 
382 	KASSERT(p->p_nlwps == 1);
383 
384 	sigactsunshare(p);
385 	ps = p->p_sigacts;
386 
387 	/*
388 	 * Reset caught signals.  Held signals remain held through
389 	 * l->l_sigmask (unless they were caught, and are now ignored
390 	 * by default).
391 	 *
392 	 * No need to lock yet, the process has only one LWP and
393 	 * at this point the sigacts are private to the process.
394 	 */
395 	sigemptyset(&tset);
396 	for (signo = 1; signo < NSIG; signo++) {
397 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
398 			prop = sigprop[signo];
399 			if (prop & SA_IGNORE) {
400 				if ((prop & SA_CONT) == 0)
401 					sigaddset(&p->p_sigctx.ps_sigignore,
402 					    signo);
403 				sigaddset(&tset, signo);
404 			}
405 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
406 		}
407 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
408 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
409 	}
410 	ksiginfo_queue_init(&kq);
411 
412 	mutex_enter(p->p_lock);
413 	sigclearall(p, &tset, &kq);
414 	sigemptyset(&p->p_sigctx.ps_sigcatch);
415 
416 	/*
417 	 * Reset no zombies if child dies flag as Solaris does.
418 	 */
419 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
420 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
421 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
422 
423 	/*
424 	 * Reset per-LWP state.
425 	 */
426 	l = LIST_FIRST(&p->p_lwps);
427 	l->l_sigwaited = NULL;
428 	l->l_sigstk = SS_INIT;
429 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
430 	sigemptyset(&l->l_sigpend.sp_set);
431 	mutex_exit(p->p_lock);
432 
433 	ksiginfo_queue_drain(&kq);
434 }
435 
436 /*
437  * ksiginfo_exechook:
438  *
439  *	Free all pending ksiginfo entries from a process on exec.
440  *	Additionally, drain any unused ksiginfo structures in the
441  *	system back to the pool.
442  *
443  *	XXX This should not be a hook, every process has signals.
444  */
445 static void
446 ksiginfo_exechook(struct proc *p, void *v)
447 {
448 	ksiginfoq_t kq;
449 
450 	ksiginfo_queue_init(&kq);
451 
452 	mutex_enter(p->p_lock);
453 	sigclearall(p, NULL, &kq);
454 	mutex_exit(p->p_lock);
455 
456 	ksiginfo_queue_drain(&kq);
457 }
458 
459 /*
460  * ksiginfo_alloc:
461  *
462  *	Allocate a new ksiginfo structure from the pool, and optionally copy
463  *	an existing one.  If the existing ksiginfo_t is from the pool, and
464  *	has not been queued somewhere, then just return it.  Additionally,
465  *	if the existing ksiginfo_t does not contain any information beyond
466  *	the signal number, then just return it.
467  */
468 ksiginfo_t *
469 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
470 {
471 	ksiginfo_t *kp;
472 
473 	if (ok != NULL) {
474 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
475 		    KSI_FROMPOOL)
476 			return ok;
477 		if (KSI_EMPTY_P(ok))
478 			return ok;
479 	}
480 
481 	kp = pool_cache_get(ksiginfo_cache, flags);
482 	if (kp == NULL) {
483 #ifdef DIAGNOSTIC
484 		printf("Out of memory allocating ksiginfo for pid %d\n",
485 		    p->p_pid);
486 #endif
487 		return NULL;
488 	}
489 
490 	if (ok != NULL) {
491 		memcpy(kp, ok, sizeof(*kp));
492 		kp->ksi_flags &= ~KSI_QUEUED;
493 	} else
494 		KSI_INIT_EMPTY(kp);
495 
496 	kp->ksi_flags |= KSI_FROMPOOL;
497 
498 	return kp;
499 }
500 
501 /*
502  * ksiginfo_free:
503  *
504  *	If the given ksiginfo_t is from the pool and has not been queued,
505  *	then free it.
506  */
507 void
508 ksiginfo_free(ksiginfo_t *kp)
509 {
510 
511 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
512 		return;
513 	pool_cache_put(ksiginfo_cache, kp);
514 }
515 
516 /*
517  * ksiginfo_queue_drain:
518  *
519  *	Drain a non-empty ksiginfo_t queue.
520  */
521 void
522 ksiginfo_queue_drain0(ksiginfoq_t *kq)
523 {
524 	ksiginfo_t *ksi;
525 
526 	KASSERT(!TAILQ_EMPTY(kq));
527 
528 	while (!TAILQ_EMPTY(kq)) {
529 		ksi = TAILQ_FIRST(kq);
530 		TAILQ_REMOVE(kq, ksi, ksi_list);
531 		pool_cache_put(ksiginfo_cache, ksi);
532 	}
533 }
534 
535 static int
536 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
537 {
538 	ksiginfo_t *ksi, *nksi;
539 
540 	if (sp == NULL)
541 		goto out;
542 
543 	/* Find siginfo and copy it out. */
544 	int count = 0;
545 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
546 		if (ksi->ksi_signo != signo)
547 			continue;
548 		if (count++ > 0) /* Only remove the first, count all of them */
549 			continue;
550 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
551 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
552 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
553 		ksi->ksi_flags &= ~KSI_QUEUED;
554 		if (out != NULL) {
555 			memcpy(out, ksi, sizeof(*out));
556 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
557 		}
558 		ksiginfo_free(ksi);
559 	}
560 	if (count)
561 		return count;
562 
563 out:
564 	/* If there is no siginfo, then manufacture it. */
565 	if (out != NULL) {
566 		KSI_INIT(out);
567 		out->ksi_info._signo = signo;
568 		out->ksi_info._code = SI_NOINFO;
569 	}
570 	return 0;
571 }
572 
573 /*
574  * sigget:
575  *
576  *	Fetch the first pending signal from a set.  Optionally, also fetch
577  *	or manufacture a ksiginfo element.  Returns the number of the first
578  *	pending signal, or zero.
579  */
580 int
581 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
582 {
583 	sigset_t tset;
584 	int count;
585 
586 	/* If there's no pending set, the signal is from the debugger. */
587 	if (sp == NULL)
588 		goto out;
589 
590 	/* Construct mask from signo, and 'mask'. */
591 	if (signo == 0) {
592 		if (mask != NULL) {
593 			tset = *mask;
594 			__sigandset(&sp->sp_set, &tset);
595 		} else
596 			tset = sp->sp_set;
597 
598 		/* If there are no signals pending - return. */
599 		if ((signo = firstsig(&tset)) == 0)
600 			goto out;
601 	} else {
602 		KASSERT(sigismember(&sp->sp_set, signo));
603 	}
604 
605 	sigdelset(&sp->sp_set, signo);
606 out:
607 	count = siggetinfo(sp, out, signo);
608 	if (count > 1)
609 		sigaddset(&sp->sp_set, signo);
610 	return signo;
611 }
612 
613 /*
614  * sigput:
615  *
616  *	Append a new ksiginfo element to the list of pending ksiginfo's.
617  */
618 static int
619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
620 {
621 	ksiginfo_t *kp;
622 
623 	KASSERT(mutex_owned(p->p_lock));
624 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
625 
626 	sigaddset(&sp->sp_set, ksi->ksi_signo);
627 
628 	/*
629 	 * If there is no siginfo, we are done.
630 	 */
631 	if (KSI_EMPTY_P(ksi))
632 		return 0;
633 
634 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
635 
636 	size_t count = 0;
637 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
638 		count++;
639 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
640 			continue;
641 		if (kp->ksi_signo == ksi->ksi_signo) {
642 			KSI_COPY(ksi, kp);
643 			kp->ksi_flags |= KSI_QUEUED;
644 			return 0;
645 		}
646 	}
647 
648 	if (count >= SIGQUEUE_MAX) {
649 #ifdef DIAGNOSTIC
650 		printf("%s(%d): Signal queue is full signal=%d\n",
651 		    p->p_comm, p->p_pid, ksi->ksi_signo);
652 #endif
653 		return EAGAIN;
654 	}
655 	ksi->ksi_flags |= KSI_QUEUED;
656 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
657 
658 	return 0;
659 }
660 
661 /*
662  * sigclear:
663  *
664  *	Clear all pending signals in the specified set.
665  */
666 void
667 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
668 {
669 	ksiginfo_t *ksi, *next;
670 
671 	if (mask == NULL)
672 		sigemptyset(&sp->sp_set);
673 	else
674 		sigminusset(mask, &sp->sp_set);
675 
676 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
677 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
678 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
679 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
680 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
681 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
682 		}
683 	}
684 }
685 
686 /*
687  * sigclearall:
688  *
689  *	Clear all pending signals in the specified set from a process and
690  *	its LWPs.
691  */
692 void
693 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
694 {
695 	struct lwp *l;
696 
697 	KASSERT(mutex_owned(p->p_lock));
698 
699 	sigclear(&p->p_sigpend, mask, kq);
700 
701 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
702 		sigclear(&l->l_sigpend, mask, kq);
703 	}
704 }
705 
706 /*
707  * sigispending:
708  *
709  *	Return the first signal number if there are pending signals for the
710  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
711  *	and that the signal has been posted to the appopriate queue before
712  *	LW_PENDSIG is set.
713  *
714  *	This should only ever be called with (l == curlwp), unless the
715  *	result does not matter (procfs, sysctl).
716  */
717 int
718 sigispending(struct lwp *l, int signo)
719 {
720 	struct proc *p = l->l_proc;
721 	sigset_t tset;
722 
723 	membar_consumer();
724 
725 	tset = l->l_sigpend.sp_set;
726 	sigplusset(&p->p_sigpend.sp_set, &tset);
727 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
728 	sigminusset(&l->l_sigmask, &tset);
729 
730 	if (signo == 0) {
731 		return firstsig(&tset);
732 	}
733 	return sigismember(&tset, signo) ? signo : 0;
734 }
735 
736 void
737 getucontext(struct lwp *l, ucontext_t *ucp)
738 {
739 	struct proc *p = l->l_proc;
740 
741 	KASSERT(mutex_owned(p->p_lock));
742 
743 	ucp->uc_flags = 0;
744 	ucp->uc_link = l->l_ctxlink;
745 	ucp->uc_sigmask = l->l_sigmask;
746 	ucp->uc_flags |= _UC_SIGMASK;
747 
748 	/*
749 	 * The (unsupplied) definition of the `current execution stack'
750 	 * in the System V Interface Definition appears to allow returning
751 	 * the main context stack.
752 	 */
753 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
754 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
755 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
756 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
757 	} else {
758 		/* Simply copy alternate signal execution stack. */
759 		ucp->uc_stack = l->l_sigstk;
760 	}
761 	ucp->uc_flags |= _UC_STACK;
762 	mutex_exit(p->p_lock);
763 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
764 	mutex_enter(p->p_lock);
765 }
766 
767 int
768 setucontext(struct lwp *l, const ucontext_t *ucp)
769 {
770 	struct proc *p = l->l_proc;
771 	int error;
772 
773 	KASSERT(mutex_owned(p->p_lock));
774 
775 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
776 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
777 		if (error != 0)
778 			return error;
779 	}
780 
781 	mutex_exit(p->p_lock);
782 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
783 	mutex_enter(p->p_lock);
784 	if (error != 0)
785 		return (error);
786 
787 	l->l_ctxlink = ucp->uc_link;
788 
789 	/*
790 	 * If there was stack information, update whether or not we are
791 	 * still running on an alternate signal stack.
792 	 */
793 	if ((ucp->uc_flags & _UC_STACK) != 0) {
794 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
795 			l->l_sigstk.ss_flags |= SS_ONSTACK;
796 		else
797 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
798 	}
799 
800 	return 0;
801 }
802 
803 /*
804  * killpg1: common code for kill process group/broadcast kill.
805  */
806 int
807 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
808 {
809 	struct proc	*p, *cp;
810 	kauth_cred_t	pc;
811 	struct pgrp	*pgrp;
812 	int		nfound;
813 	int		signo = ksi->ksi_signo;
814 
815 	cp = l->l_proc;
816 	pc = l->l_cred;
817 	nfound = 0;
818 
819 	mutex_enter(proc_lock);
820 	if (all) {
821 		/*
822 		 * Broadcast.
823 		 */
824 		PROCLIST_FOREACH(p, &allproc) {
825 			if (p->p_pid <= 1 || p == cp ||
826 			    (p->p_flag & PK_SYSTEM) != 0)
827 				continue;
828 			mutex_enter(p->p_lock);
829 			if (kauth_authorize_process(pc,
830 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
831 			    NULL) == 0) {
832 				nfound++;
833 				if (signo)
834 					kpsignal2(p, ksi);
835 			}
836 			mutex_exit(p->p_lock);
837 		}
838 	} else {
839 		if (pgid == 0)
840 			/* Zero pgid means send to my process group. */
841 			pgrp = cp->p_pgrp;
842 		else {
843 			pgrp = pgrp_find(pgid);
844 			if (pgrp == NULL)
845 				goto out;
846 		}
847 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
848 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
849 				continue;
850 			mutex_enter(p->p_lock);
851 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
852 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
853 				nfound++;
854 				if (signo && P_ZOMBIE(p) == 0)
855 					kpsignal2(p, ksi);
856 			}
857 			mutex_exit(p->p_lock);
858 		}
859 	}
860 out:
861 	mutex_exit(proc_lock);
862 	return nfound ? 0 : ESRCH;
863 }
864 
865 /*
866  * Send a signal to a process group.  If checktty is set, limit to members
867  * which have a controlling terminal.
868  */
869 void
870 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
871 {
872 	ksiginfo_t ksi;
873 
874 	KASSERT(!cpu_intr_p());
875 	KASSERT(mutex_owned(proc_lock));
876 
877 	KSI_INIT_EMPTY(&ksi);
878 	ksi.ksi_signo = sig;
879 	kpgsignal(pgrp, &ksi, NULL, checkctty);
880 }
881 
882 void
883 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
884 {
885 	struct proc *p;
886 
887 	KASSERT(!cpu_intr_p());
888 	KASSERT(mutex_owned(proc_lock));
889 	KASSERT(pgrp != NULL);
890 
891 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
892 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
893 			kpsignal(p, ksi, data);
894 }
895 
896 /*
897  * Send a signal caused by a trap to the current LWP.  If it will be caught
898  * immediately, deliver it with correct code.  Otherwise, post it normally.
899  */
900 void
901 trapsignal(struct lwp *l, ksiginfo_t *ksi)
902 {
903 	struct proc	*p;
904 	struct sigacts	*ps;
905 	int signo = ksi->ksi_signo;
906 	sigset_t *mask;
907 	sig_t action;
908 
909 	KASSERT(KSI_TRAP_P(ksi));
910 
911 	ksi->ksi_lid = l->l_lid;
912 	p = l->l_proc;
913 
914 	KASSERT(!cpu_intr_p());
915 	mutex_enter(proc_lock);
916 	mutex_enter(p->p_lock);
917 
918 repeat:
919 	/*
920 	 * If we are exiting, demise now.
921 	 *
922 	 * This avoids notifying tracer and deadlocking.
923 	 */
924 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
925 		mutex_exit(p->p_lock);
926 		mutex_exit(proc_lock);
927 		lwp_exit(l);
928 		panic("trapsignal");
929 		/* NOTREACHED */
930 	}
931 
932 	/*
933 	 * The process is already stopping.
934 	 */
935 	if ((p->p_sflag & PS_STOPPING) != 0) {
936 		mutex_exit(proc_lock);
937 		sigswitch_unlock_and_switch_away(l);
938 		mutex_enter(proc_lock);
939 		mutex_enter(p->p_lock);
940 		goto repeat;
941 	}
942 
943 	mask = &l->l_sigmask;
944 	ps = p->p_sigacts;
945 	action = SIGACTION_PS(ps, signo).sa_handler;
946 
947 	if (ISSET(p->p_slflag, PSL_TRACED) &&
948 	    !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) &&
949 	    p->p_xsig != SIGKILL &&
950 	    !sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
951 		p->p_xsig = signo;
952 		p->p_sigctx.ps_faked = true;
953 		p->p_sigctx.ps_lwp = ksi->ksi_lid;
954 		p->p_sigctx.ps_info = ksi->ksi_info;
955 		sigswitch(0, signo, true);
956 
957 		if (ktrpoint(KTR_PSIG)) {
958 			if (p->p_emul->e_ktrpsig)
959 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
960 			else
961 				ktrpsig(signo, action, mask, ksi);
962 		}
963 		return;
964 	}
965 
966 	const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo);
967 	const bool masked = sigismember(mask, signo);
968 	if (caught && !masked) {
969 		mutex_exit(proc_lock);
970 		l->l_ru.ru_nsignals++;
971 		kpsendsig(l, ksi, mask);
972 		mutex_exit(p->p_lock);
973 
974 		if (ktrpoint(KTR_PSIG)) {
975 			if (p->p_emul->e_ktrpsig)
976 				p->p_emul->e_ktrpsig(signo, action, mask, ksi);
977 			else
978 				ktrpsig(signo, action, mask, ksi);
979 		}
980 		return;
981 	}
982 
983 	/*
984 	 * If the signal is masked or ignored, then unmask it and
985 	 * reset it to the default action so that the process or
986 	 * its tracer will be notified.
987 	 */
988 	const bool ignored = action == SIG_IGN;
989 	if (masked || ignored) {
990 		mutex_enter(&ps->sa_mutex);
991 		sigdelset(mask, signo);
992 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
993 		sigdelset(&p->p_sigctx.ps_sigignore, signo);
994 		sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo);
995 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
996 		mutex_exit(&ps->sa_mutex);
997 	}
998 
999 	kpsignal2(p, ksi);
1000 	mutex_exit(p->p_lock);
1001 	mutex_exit(proc_lock);
1002 }
1003 
1004 /*
1005  * Fill in signal information and signal the parent for a child status change.
1006  */
1007 void
1008 child_psignal(struct proc *p, int mask)
1009 {
1010 	ksiginfo_t ksi;
1011 	struct proc *q;
1012 	int xsig;
1013 
1014 	KASSERT(mutex_owned(proc_lock));
1015 	KASSERT(mutex_owned(p->p_lock));
1016 
1017 	xsig = p->p_xsig;
1018 
1019 	KSI_INIT(&ksi);
1020 	ksi.ksi_signo = SIGCHLD;
1021 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1022 	ksi.ksi_pid = p->p_pid;
1023 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1024 	ksi.ksi_status = xsig;
1025 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1026 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1027 
1028 	q = p->p_pptr;
1029 
1030 	mutex_exit(p->p_lock);
1031 	mutex_enter(q->p_lock);
1032 
1033 	if ((q->p_sflag & mask) == 0)
1034 		kpsignal2(q, &ksi);
1035 
1036 	mutex_exit(q->p_lock);
1037 	mutex_enter(p->p_lock);
1038 }
1039 
1040 void
1041 psignal(struct proc *p, int signo)
1042 {
1043 	ksiginfo_t ksi;
1044 
1045 	KASSERT(!cpu_intr_p());
1046 	KASSERT(mutex_owned(proc_lock));
1047 
1048 	KSI_INIT_EMPTY(&ksi);
1049 	ksi.ksi_signo = signo;
1050 	mutex_enter(p->p_lock);
1051 	kpsignal2(p, &ksi);
1052 	mutex_exit(p->p_lock);
1053 }
1054 
1055 void
1056 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1057 {
1058 	fdfile_t *ff;
1059 	file_t *fp;
1060 	fdtab_t *dt;
1061 
1062 	KASSERT(!cpu_intr_p());
1063 	KASSERT(mutex_owned(proc_lock));
1064 
1065 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1066 		size_t fd;
1067 		filedesc_t *fdp = p->p_fd;
1068 
1069 		/* XXXSMP locking */
1070 		ksi->ksi_fd = -1;
1071 		dt = atomic_load_consume(&fdp->fd_dt);
1072 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1073 			if ((ff = dt->dt_ff[fd]) == NULL)
1074 				continue;
1075 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL)
1076 				continue;
1077 			if (fp->f_data == data) {
1078 				ksi->ksi_fd = fd;
1079 				break;
1080 			}
1081 		}
1082 	}
1083 	mutex_enter(p->p_lock);
1084 	kpsignal2(p, ksi);
1085 	mutex_exit(p->p_lock);
1086 }
1087 
1088 /*
1089  * sigismasked:
1090  *
1091  *	Returns true if signal is ignored or masked for the specified LWP.
1092  */
1093 int
1094 sigismasked(struct lwp *l, int sig)
1095 {
1096 	struct proc *p = l->l_proc;
1097 
1098 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1099 	    sigismember(&l->l_sigmask, sig);
1100 }
1101 
1102 /*
1103  * sigpost:
1104  *
1105  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
1106  *	be able to take the signal.
1107  */
1108 static int
1109 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1110 {
1111 	int rv, masked;
1112 	struct proc *p = l->l_proc;
1113 
1114 	KASSERT(mutex_owned(p->p_lock));
1115 
1116 	/*
1117 	 * If the LWP is on the way out, sigclear() will be busy draining all
1118 	 * pending signals.  Don't give it more.
1119 	 */
1120 	if (l->l_refcnt == 0)
1121 		return 0;
1122 
1123 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1124 
1125 	lwp_lock(l);
1126 	if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) {
1127 		if ((prop & SA_KILL) != 0)
1128 			l->l_flag &= ~LW_DBGSUSPEND;
1129 		else {
1130 			lwp_unlock(l);
1131 			return 0;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Have the LWP check for signals.  This ensures that even if no LWP
1137 	 * is found to take the signal immediately, it should be taken soon.
1138 	 */
1139 	signotify(l);
1140 
1141 	/*
1142 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1143 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1144 	 */
1145 	masked = sigismember(&l->l_sigmask, sig);
1146 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1147 		lwp_unlock(l);
1148 		return 0;
1149 	}
1150 
1151 	/*
1152 	 * If killing the process, make it run fast.
1153 	 */
1154 	if (__predict_false((prop & SA_KILL) != 0) &&
1155 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1156 		KASSERT(l->l_class == SCHED_OTHER);
1157 		lwp_changepri(l, MAXPRI_USER);
1158 	}
1159 
1160 	/*
1161 	 * If the LWP is running or on a run queue, then we win.  If it's
1162 	 * sleeping interruptably, wake it and make it take the signal.  If
1163 	 * the sleep isn't interruptable, then the chances are it will get
1164 	 * to see the signal soon anyhow.  If suspended, it can't take the
1165 	 * signal right now.  If it's LWP private or for all LWPs, save it
1166 	 * for later; otherwise punt.
1167 	 */
1168 	rv = 0;
1169 
1170 	switch (l->l_stat) {
1171 	case LSRUN:
1172 	case LSONPROC:
1173 		rv = 1;
1174 		break;
1175 
1176 	case LSSLEEP:
1177 		if ((l->l_flag & LW_SINTR) != 0) {
1178 			/* setrunnable() will release the lock. */
1179 			setrunnable(l);
1180 			return 1;
1181 		}
1182 		break;
1183 
1184 	case LSSUSPENDED:
1185 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1186 			/* lwp_continue() will release the lock. */
1187 			lwp_continue(l);
1188 			return 1;
1189 		}
1190 		break;
1191 
1192 	case LSSTOP:
1193 		if ((prop & SA_STOP) != 0)
1194 			break;
1195 
1196 		/*
1197 		 * If the LWP is stopped and we are sending a continue
1198 		 * signal, then start it again.
1199 		 */
1200 		if ((prop & SA_CONT) != 0) {
1201 			if (l->l_wchan != NULL) {
1202 				l->l_stat = LSSLEEP;
1203 				p->p_nrlwps++;
1204 				rv = 1;
1205 				break;
1206 			}
1207 			/* setrunnable() will release the lock. */
1208 			setrunnable(l);
1209 			return 1;
1210 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1211 			/* setrunnable() will release the lock. */
1212 			setrunnable(l);
1213 			return 1;
1214 		}
1215 		break;
1216 
1217 	default:
1218 		break;
1219 	}
1220 
1221 	lwp_unlock(l);
1222 	return rv;
1223 }
1224 
1225 /*
1226  * Notify an LWP that it has a pending signal.
1227  */
1228 void
1229 signotify(struct lwp *l)
1230 {
1231 	KASSERT(lwp_locked(l, NULL));
1232 
1233 	l->l_flag |= LW_PENDSIG;
1234 	lwp_need_userret(l);
1235 }
1236 
1237 /*
1238  * Find an LWP within process p that is waiting on signal ksi, and hand
1239  * it on.
1240  */
1241 static int
1242 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1243 {
1244 	struct lwp *l;
1245 	int signo;
1246 
1247 	KASSERT(mutex_owned(p->p_lock));
1248 
1249 	signo = ksi->ksi_signo;
1250 
1251 	if (ksi->ksi_lid != 0) {
1252 		/*
1253 		 * Signal came via _lwp_kill().  Find the LWP and see if
1254 		 * it's interested.
1255 		 */
1256 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1257 			return 0;
1258 		if (l->l_sigwaited == NULL ||
1259 		    !sigismember(&l->l_sigwaitset, signo))
1260 			return 0;
1261 	} else {
1262 		/*
1263 		 * Look for any LWP that may be interested.
1264 		 */
1265 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1266 			KASSERT(l->l_sigwaited != NULL);
1267 			if (sigismember(&l->l_sigwaitset, signo))
1268 				break;
1269 		}
1270 	}
1271 
1272 	if (l != NULL) {
1273 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1274 		l->l_sigwaited = NULL;
1275 		LIST_REMOVE(l, l_sigwaiter);
1276 		cv_signal(&l->l_sigcv);
1277 		return 1;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Send the signal to the process.  If the signal has an action, the action
1285  * is usually performed by the target process rather than the caller; we add
1286  * the signal to the set of pending signals for the process.
1287  *
1288  * Exceptions:
1289  *   o When a stop signal is sent to a sleeping process that takes the
1290  *     default action, the process is stopped without awakening it.
1291  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1292  *     regardless of the signal action (eg, blocked or ignored).
1293  *
1294  * Other ignored signals are discarded immediately.
1295  */
1296 int
1297 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1298 {
1299 	int prop, signo = ksi->ksi_signo;
1300 	struct lwp *l = NULL;
1301 	ksiginfo_t *kp;
1302 	lwpid_t lid;
1303 	sig_t action;
1304 	bool toall;
1305 	int error = 0;
1306 
1307 	KASSERT(!cpu_intr_p());
1308 	KASSERT(mutex_owned(proc_lock));
1309 	KASSERT(mutex_owned(p->p_lock));
1310 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1311 	KASSERT(signo > 0 && signo < NSIG);
1312 
1313 	/*
1314 	 * If the process is being created by fork, is a zombie or is
1315 	 * exiting, then just drop the signal here and bail out.
1316 	 */
1317 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1318 		return 0;
1319 
1320 	/*
1321 	 * Notify any interested parties of the signal.
1322 	 */
1323 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1324 
1325 	/*
1326 	 * Some signals including SIGKILL must act on the entire process.
1327 	 */
1328 	kp = NULL;
1329 	prop = sigprop[signo];
1330 	toall = ((prop & SA_TOALL) != 0);
1331 	lid = toall ? 0 : ksi->ksi_lid;
1332 
1333 	/*
1334 	 * If proc is traced, always give parent a chance.
1335 	 */
1336 	if (p->p_slflag & PSL_TRACED) {
1337 		action = SIG_DFL;
1338 
1339 		if (lid == 0) {
1340 			/*
1341 			 * If the process is being traced and the signal
1342 			 * is being caught, make sure to save any ksiginfo.
1343 			 */
1344 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1345 				goto discard;
1346 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1347 				goto out;
1348 		}
1349 	} else {
1350 
1351 		/*
1352 		 * If the signal is being ignored, then drop it.  Note: we
1353 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1354 		 * SIG_IGN, action will be SIG_DFL here.
1355 		 */
1356 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1357 			goto discard;
1358 
1359 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1360 			action = SIG_CATCH;
1361 		else {
1362 			action = SIG_DFL;
1363 
1364 			/*
1365 			 * If sending a tty stop signal to a member of an
1366 			 * orphaned process group, discard the signal here if
1367 			 * the action is default; don't stop the process below
1368 			 * if sleeping, and don't clear any pending SIGCONT.
1369 			 */
1370 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1371 				goto discard;
1372 
1373 			if (prop & SA_KILL && p->p_nice > NZERO)
1374 				p->p_nice = NZERO;
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * If stopping or continuing a process, discard any pending
1380 	 * signals that would do the inverse.
1381 	 */
1382 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1383 		ksiginfoq_t kq;
1384 
1385 		ksiginfo_queue_init(&kq);
1386 		if ((prop & SA_CONT) != 0)
1387 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1388 		if ((prop & SA_STOP) != 0)
1389 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1390 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1391 	}
1392 
1393 	/*
1394 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1395 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1396 	 * the signal info.  The signal won't be processed further here.
1397 	 */
1398 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1399 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1400 	    sigunwait(p, ksi))
1401 		goto discard;
1402 
1403 	/*
1404 	 * XXXSMP Should be allocated by the caller, we're holding locks
1405 	 * here.
1406 	 */
1407 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1408 		goto discard;
1409 
1410 	/*
1411 	 * LWP private signals are easy - just find the LWP and post
1412 	 * the signal to it.
1413 	 */
1414 	if (lid != 0) {
1415 		l = lwp_find(p, lid);
1416 		if (l != NULL) {
1417 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1418 				goto out;
1419 			membar_producer();
1420 			if (sigpost(l, action, prop, kp->ksi_signo) != 0)
1421 				signo = -1;
1422 		}
1423 		goto out;
1424 	}
1425 
1426 	/*
1427 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1428 	 * or for an SA process.
1429 	 */
1430 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1431 		if ((p->p_slflag & PSL_TRACED) != 0)
1432 			goto deliver;
1433 
1434 		/*
1435 		 * If SIGCONT is default (or ignored) and process is
1436 		 * asleep, we are finished; the process should not
1437 		 * be awakened.
1438 		 */
1439 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1440 			goto out;
1441 	} else {
1442 		/*
1443 		 * Process is stopped or stopping.
1444 		 * - If traced, then no action is needed, unless killing.
1445 		 * - Run the process only if sending SIGCONT or SIGKILL.
1446 		 */
1447 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1448 			goto out;
1449 		}
1450 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1451 			/*
1452 			 * Re-adjust p_nstopchild if the process was
1453 			 * stopped but not yet collected by its parent.
1454 			 */
1455 			if (p->p_stat == SSTOP && !p->p_waited)
1456 				p->p_pptr->p_nstopchild--;
1457 			p->p_stat = SACTIVE;
1458 			p->p_sflag &= ~PS_STOPPING;
1459 			if (p->p_slflag & PSL_TRACED) {
1460 				KASSERT(signo == SIGKILL);
1461 				goto deliver;
1462 			}
1463 			/*
1464 			 * Do not make signal pending if SIGCONT is default.
1465 			 *
1466 			 * If the process catches SIGCONT, let it handle the
1467 			 * signal itself (if waiting on event - process runs,
1468 			 * otherwise continues sleeping).
1469 			 */
1470 			if ((prop & SA_CONT) != 0) {
1471 				p->p_xsig = SIGCONT;
1472 				p->p_sflag |= PS_CONTINUED;
1473 				child_psignal(p, 0);
1474 				if (action == SIG_DFL) {
1475 					KASSERT(signo != SIGKILL);
1476 					goto deliver;
1477 				}
1478 			}
1479 		} else if ((prop & SA_STOP) != 0) {
1480 			/*
1481 			 * Already stopped, don't need to stop again.
1482 			 * (If we did the shell could get confused.)
1483 			 */
1484 			goto out;
1485 		}
1486 	}
1487 	/*
1488 	 * Make signal pending.
1489 	 */
1490 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1491 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1492 		goto out;
1493 deliver:
1494 	/*
1495 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1496 	 * visible on the per process list (for sigispending()).  This
1497 	 * is unlikely to be needed in practice, but...
1498 	 */
1499 	membar_producer();
1500 
1501 	/*
1502 	 * Try to find an LWP that can take the signal.
1503 	 */
1504 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1505 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1506 			break;
1507 	}
1508 	signo = -1;
1509 out:
1510 	/*
1511 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1512 	 * with locks held.  The caller should take care of this.
1513 	 */
1514 	ksiginfo_free(kp);
1515 	if (signo == -1)
1516 		return error;
1517 discard:
1518 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1519 	return error;
1520 }
1521 
1522 void
1523 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1524 {
1525 	struct proc *p = l->l_proc;
1526 
1527 	KASSERT(mutex_owned(p->p_lock));
1528 	(*p->p_emul->e_sendsig)(ksi, mask);
1529 }
1530 
1531 /*
1532  * Stop any LWPs sleeping interruptably.
1533  */
1534 static void
1535 proc_stop_lwps(struct proc *p)
1536 {
1537 	struct lwp *l;
1538 
1539 	KASSERT(mutex_owned(p->p_lock));
1540 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1541 
1542 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1543 		lwp_lock(l);
1544 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1545 			l->l_stat = LSSTOP;
1546 			p->p_nrlwps--;
1547 		}
1548 		lwp_unlock(l);
1549 	}
1550 }
1551 
1552 /*
1553  * Finish stopping of a process.  Mark it stopped and notify the parent.
1554  *
1555  * Drop p_lock briefly if ppsig is true.
1556  */
1557 static void
1558 proc_stop_done(struct proc *p, int ppmask)
1559 {
1560 
1561 	KASSERT(mutex_owned(proc_lock));
1562 	KASSERT(mutex_owned(p->p_lock));
1563 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1564 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1565 
1566 	p->p_sflag &= ~PS_STOPPING;
1567 	p->p_stat = SSTOP;
1568 	p->p_waited = 0;
1569 	p->p_pptr->p_nstopchild++;
1570 
1571 	/* child_psignal drops p_lock briefly. */
1572 	child_psignal(p, ppmask);
1573 	cv_broadcast(&p->p_pptr->p_waitcv);
1574 }
1575 
1576 /*
1577  * Stop the current process and switch away to the debugger notifying
1578  * an event specific to a traced process only.
1579  */
1580 void
1581 eventswitch(int code, int pe_report_event, int entity)
1582 {
1583 	struct lwp *l = curlwp;
1584 	struct proc *p = l->l_proc;
1585 	struct sigacts *ps;
1586 	sigset_t *mask;
1587 	sig_t action;
1588 	ksiginfo_t ksi;
1589 	const int signo = SIGTRAP;
1590 
1591 	KASSERT(mutex_owned(proc_lock));
1592 	KASSERT(mutex_owned(p->p_lock));
1593 	KASSERT(p->p_pptr != initproc);
1594 	KASSERT(l->l_stat == LSONPROC);
1595 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
1596 	KASSERT(!ISSET(l->l_flag, LW_SYSTEM));
1597 	KASSERT(p->p_nrlwps > 0);
1598 	KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) ||
1599 	        (code == TRAP_EXEC));
1600 	KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */
1601 	KASSERT((code != TRAP_LWP) || (entity > 0));
1602 
1603 repeat:
1604 	/*
1605 	 * If we are exiting, demise now.
1606 	 *
1607 	 * This avoids notifying tracer and deadlocking.
1608 	 */
1609 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
1610 		mutex_exit(p->p_lock);
1611 		mutex_exit(proc_lock);
1612 
1613 		if (pe_report_event == PTRACE_LWP_EXIT) {
1614 			/* Avoid double lwp_exit() and panic. */
1615 			return;
1616 		}
1617 
1618 		lwp_exit(l);
1619 		panic("eventswitch");
1620 		/* NOTREACHED */
1621 	}
1622 
1623 	/*
1624 	 * If we are no longer traced, abandon this event signal.
1625 	 *
1626 	 * This avoids killing a process after detaching the debugger.
1627 	 */
1628 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
1629 		mutex_exit(p->p_lock);
1630 		mutex_exit(proc_lock);
1631 		return;
1632 	}
1633 
1634 	/*
1635 	 * If there's a pending SIGKILL process it immediately.
1636 	 */
1637 	if (p->p_xsig == SIGKILL ||
1638 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
1639 		mutex_exit(p->p_lock);
1640 		mutex_exit(proc_lock);
1641 		return;
1642 	}
1643 
1644 	/*
1645 	 * The process is already stopping.
1646 	 */
1647 	if ((p->p_sflag & PS_STOPPING) != 0) {
1648 		mutex_exit(proc_lock);
1649 		sigswitch_unlock_and_switch_away(l);
1650 		mutex_enter(proc_lock);
1651 		mutex_enter(p->p_lock);
1652 		goto repeat;
1653 	}
1654 
1655 	KSI_INIT_TRAP(&ksi);
1656 	ksi.ksi_lid = l->l_lid;
1657 	ksi.ksi_signo = signo;
1658 	ksi.ksi_code = code;
1659 	ksi.ksi_pe_report_event = pe_report_event;
1660 
1661 	CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp));
1662 	ksi.ksi_pe_other_pid = entity;
1663 
1664 	/* Needed for ktrace */
1665 	ps = p->p_sigacts;
1666 	action = SIGACTION_PS(ps, signo).sa_handler;
1667 	mask = &l->l_sigmask;
1668 
1669 	p->p_xsig = signo;
1670 	p->p_sigctx.ps_faked = true;
1671 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
1672 	p->p_sigctx.ps_info = ksi.ksi_info;
1673 
1674 	sigswitch(0, signo, true);
1675 
1676 	if (code == TRAP_CHLD) {
1677 		mutex_enter(proc_lock);
1678 		while (l->l_vforkwaiting)
1679 			cv_wait(&l->l_waitcv, proc_lock);
1680 		mutex_exit(proc_lock);
1681 	}
1682 
1683 	if (ktrpoint(KTR_PSIG)) {
1684 		if (p->p_emul->e_ktrpsig)
1685 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
1686 		else
1687 			ktrpsig(signo, action, mask, &ksi);
1688 	}
1689 }
1690 
1691 /*
1692  * Stop the current process and switch away when being stopped or traced.
1693  */
1694 static void
1695 sigswitch(int ppmask, int signo, bool proc_lock_held)
1696 {
1697 	struct lwp *l = curlwp;
1698 	struct proc *p = l->l_proc;
1699 
1700 	KASSERT(mutex_owned(p->p_lock));
1701 	KASSERT(l->l_stat == LSONPROC);
1702 	KASSERT(p->p_nrlwps > 0);
1703 
1704 	if (proc_lock_held) {
1705 		KASSERT(mutex_owned(proc_lock));
1706 	} else {
1707 		KASSERT(!mutex_owned(proc_lock));
1708 	}
1709 
1710 	/*
1711 	 * On entry we know that the process needs to stop.  If it's
1712 	 * the result of a 'sideways' stop signal that has been sourced
1713 	 * through issignal(), then stop other LWPs in the process too.
1714 	 */
1715 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1716 		KASSERT(signo != 0);
1717 		proc_stop(p, signo);
1718 		KASSERT(p->p_nrlwps > 0);
1719 	}
1720 
1721 	/*
1722 	 * If we are the last live LWP, and the stop was a result of
1723 	 * a new signal, then signal the parent.
1724 	 */
1725 	if ((p->p_sflag & PS_STOPPING) != 0) {
1726 		if (!proc_lock_held && !mutex_tryenter(proc_lock)) {
1727 			mutex_exit(p->p_lock);
1728 			mutex_enter(proc_lock);
1729 			mutex_enter(p->p_lock);
1730 		}
1731 
1732 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1733 			/*
1734 			 * Note that proc_stop_done() can drop
1735 			 * p->p_lock briefly.
1736 			 */
1737 			proc_stop_done(p, ppmask);
1738 		}
1739 
1740 		mutex_exit(proc_lock);
1741 	}
1742 
1743 	sigswitch_unlock_and_switch_away(l);
1744 }
1745 
1746 /*
1747  * Unlock and switch away.
1748  */
1749 static void
1750 sigswitch_unlock_and_switch_away(struct lwp *l)
1751 {
1752 	struct proc *p;
1753 	int biglocks;
1754 
1755 	p = l->l_proc;
1756 
1757 	KASSERT(mutex_owned(p->p_lock));
1758 	KASSERT(!mutex_owned(proc_lock));
1759 
1760 	KASSERT(l->l_stat == LSONPROC);
1761 	KASSERT(p->p_nrlwps > 0);
1762 
1763 	KERNEL_UNLOCK_ALL(l, &biglocks);
1764 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1765 		p->p_nrlwps--;
1766 		lwp_lock(l);
1767 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1768 		l->l_stat = LSSTOP;
1769 		lwp_unlock(l);
1770 	}
1771 
1772 	mutex_exit(p->p_lock);
1773 	lwp_lock(l);
1774 	spc_lock(l->l_cpu);
1775 	mi_switch(l);
1776 	KERNEL_LOCK(biglocks, l);
1777 }
1778 
1779 /*
1780  * Check for a signal from the debugger.
1781  */
1782 static int
1783 sigchecktrace(void)
1784 {
1785 	struct lwp *l = curlwp;
1786 	struct proc *p = l->l_proc;
1787 	int signo;
1788 
1789 	KASSERT(mutex_owned(p->p_lock));
1790 
1791 	/* If there's a pending SIGKILL, process it immediately. */
1792 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1793 		return 0;
1794 
1795 	/*
1796 	 * If we are no longer being traced, or the parent didn't
1797 	 * give us a signal, or we're stopping, look for more signals.
1798 	 */
1799 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1800 	    (p->p_sflag & PS_STOPPING) != 0)
1801 		return 0;
1802 
1803 	/*
1804 	 * If the new signal is being masked, look for other signals.
1805 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1806 	 */
1807 	signo = p->p_xsig;
1808 	p->p_xsig = 0;
1809 	if (sigismember(&l->l_sigmask, signo)) {
1810 		signo = 0;
1811 	}
1812 	return signo;
1813 }
1814 
1815 /*
1816  * If the current process has received a signal (should be caught or cause
1817  * termination, should interrupt current syscall), return the signal number.
1818  *
1819  * Stop signals with default action are processed immediately, then cleared;
1820  * they aren't returned.  This is checked after each entry to the system for
1821  * a syscall or trap.
1822  *
1823  * We will also return -1 if the process is exiting and the current LWP must
1824  * follow suit.
1825  */
1826 int
1827 issignal(struct lwp *l)
1828 {
1829 	struct proc *p;
1830 	int siglwp, signo, prop;
1831 	sigpend_t *sp;
1832 	sigset_t ss;
1833 
1834 	p = l->l_proc;
1835 	sp = NULL;
1836 	signo = 0;
1837 
1838 	KASSERT(p == curproc);
1839 	KASSERT(mutex_owned(p->p_lock));
1840 
1841 	for (;;) {
1842 		/* Discard any signals that we have decided not to take. */
1843 		if (signo != 0) {
1844 			(void)sigget(sp, NULL, signo, NULL);
1845 		}
1846 
1847 		/*
1848 		 * If the process is stopped/stopping, then stop ourselves
1849 		 * now that we're on the kernel/userspace boundary.  When
1850 		 * we awaken, check for a signal from the debugger.
1851 		 */
1852 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1853 			sigswitch_unlock_and_switch_away(l);
1854 			mutex_enter(p->p_lock);
1855 			continue;
1856 		} else if (p->p_stat == SACTIVE)
1857 			signo = sigchecktrace();
1858 		else
1859 			signo = 0;
1860 
1861 		/* Signals from the debugger are "out of band". */
1862 		sp = NULL;
1863 
1864 		/*
1865 		 * If the debugger didn't provide a signal, find a pending
1866 		 * signal from our set.  Check per-LWP signals first, and
1867 		 * then per-process.
1868 		 */
1869 		if (signo == 0) {
1870 			sp = &l->l_sigpend;
1871 			ss = sp->sp_set;
1872 			siglwp = l->l_lid;
1873 			if ((p->p_lflag & PL_PPWAIT) != 0)
1874 				sigminusset(&vforksigmask, &ss);
1875 			sigminusset(&l->l_sigmask, &ss);
1876 
1877 			if ((signo = firstsig(&ss)) == 0) {
1878 				sp = &p->p_sigpend;
1879 				ss = sp->sp_set;
1880 				siglwp = 0;
1881 				if ((p->p_lflag & PL_PPWAIT) != 0)
1882 					sigminusset(&vforksigmask, &ss);
1883 				sigminusset(&l->l_sigmask, &ss);
1884 
1885 				if ((signo = firstsig(&ss)) == 0) {
1886 					/*
1887 					 * No signal pending - clear the
1888 					 * indicator and bail out.
1889 					 */
1890 					lwp_lock(l);
1891 					l->l_flag &= ~LW_PENDSIG;
1892 					lwp_unlock(l);
1893 					sp = NULL;
1894 					break;
1895 				}
1896 			}
1897 		}
1898 
1899 		if (sp) {
1900 			/* Overwrite process' signal context to correspond
1901 			 * to the currently reported LWP.  This is necessary
1902 			 * for PT_GET_SIGINFO to report the correct signal when
1903 			 * multiple LWPs have pending signals.  We do this only
1904 			 * when the signal comes from the queue, for signals
1905 			 * created by the debugger we assume it set correct
1906 			 * siginfo.
1907 			 */
1908 			ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info);
1909 			if (ksi) {
1910 				p->p_sigctx.ps_lwp = ksi->ksi_lid;
1911 				p->p_sigctx.ps_info = ksi->ksi_info;
1912 			} else {
1913 				p->p_sigctx.ps_lwp = siglwp;
1914 				memset(&p->p_sigctx.ps_info, 0,
1915 				    sizeof(p->p_sigctx.ps_info));
1916 				p->p_sigctx.ps_info._signo = signo;
1917 				p->p_sigctx.ps_info._code = SI_NOINFO;
1918 			}
1919 		}
1920 
1921 		/*
1922 		 * We should see pending but ignored signals only if
1923 		 * we are being traced.
1924 		 */
1925 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1926 		    (p->p_slflag & PSL_TRACED) == 0) {
1927 			/* Discard the signal. */
1928 			continue;
1929 		}
1930 
1931 		/*
1932 		 * If traced, always stop, and stay stopped until released
1933 		 * by the debugger.  If the our parent is our debugger waiting
1934 		 * for us and we vforked, don't hang as we could deadlock.
1935 		 */
1936 		if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL &&
1937 		    !(ISSET(p->p_lflag, PL_PPWAIT) &&
1938 		     (p->p_pptr == p->p_opptr))) {
1939 			/*
1940 			 * Take the signal, but don't remove it from the
1941 			 * siginfo queue, because the debugger can send
1942 			 * it later.
1943 			 */
1944 			if (sp)
1945 				sigdelset(&sp->sp_set, signo);
1946 			p->p_xsig = signo;
1947 
1948 			/* Handling of signal trace */
1949 			sigswitch(0, signo, false);
1950 			mutex_enter(p->p_lock);
1951 
1952 			/* Check for a signal from the debugger. */
1953 			if ((signo = sigchecktrace()) == 0)
1954 				continue;
1955 
1956 			/* Signals from the debugger are "out of band". */
1957 			sp = NULL;
1958 		}
1959 
1960 		prop = sigprop[signo];
1961 
1962 		/*
1963 		 * Decide whether the signal should be returned.
1964 		 */
1965 		switch ((long)SIGACTION(p, signo).sa_handler) {
1966 		case (long)SIG_DFL:
1967 			/*
1968 			 * Don't take default actions on system processes.
1969 			 */
1970 			if (p->p_pid <= 1) {
1971 #ifdef DIAGNOSTIC
1972 				/*
1973 				 * Are you sure you want to ignore SIGSEGV
1974 				 * in init? XXX
1975 				 */
1976 				printf_nolog("Process (pid %d) got sig %d\n",
1977 				    p->p_pid, signo);
1978 #endif
1979 				continue;
1980 			}
1981 
1982 			/*
1983 			 * If there is a pending stop signal to process with
1984 			 * default action, stop here, then clear the signal.
1985 			 * However, if process is member of an orphaned
1986 			 * process group, ignore tty stop signals.
1987 			 */
1988 			if (prop & SA_STOP) {
1989 				/*
1990 				 * XXX Don't hold proc_lock for p_lflag,
1991 				 * but it's not a big deal.
1992 				 */
1993 				if ((ISSET(p->p_slflag, PSL_TRACED) &&
1994 				     !(ISSET(p->p_lflag, PL_PPWAIT) &&
1995 				     (p->p_pptr == p->p_opptr))) ||
1996 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1997 				    prop & SA_TTYSTOP)) {
1998 					/* Ignore the signal. */
1999 					continue;
2000 				}
2001 				/* Take the signal. */
2002 				(void)sigget(sp, NULL, signo, NULL);
2003 				p->p_xsig = signo;
2004 				p->p_sflag &= ~PS_CONTINUED;
2005 				signo = 0;
2006 				sigswitch(PS_NOCLDSTOP, p->p_xsig, false);
2007 				mutex_enter(p->p_lock);
2008 			} else if (prop & SA_IGNORE) {
2009 				/*
2010 				 * Except for SIGCONT, shouldn't get here.
2011 				 * Default action is to ignore; drop it.
2012 				 */
2013 				continue;
2014 			}
2015 			break;
2016 
2017 		case (long)SIG_IGN:
2018 #ifdef DEBUG_ISSIGNAL
2019 			/*
2020 			 * Masking above should prevent us ever trying
2021 			 * to take action on an ignored signal other
2022 			 * than SIGCONT, unless process is traced.
2023 			 */
2024 			if ((prop & SA_CONT) == 0 &&
2025 			    (p->p_slflag & PSL_TRACED) == 0)
2026 				printf_nolog("issignal\n");
2027 #endif
2028 			continue;
2029 
2030 		default:
2031 			/*
2032 			 * This signal has an action, let postsig() process
2033 			 * it.
2034 			 */
2035 			break;
2036 		}
2037 
2038 		break;
2039 	}
2040 
2041 	l->l_sigpendset = sp;
2042 	return signo;
2043 }
2044 
2045 /*
2046  * Take the action for the specified signal
2047  * from the current set of pending signals.
2048  */
2049 void
2050 postsig(int signo)
2051 {
2052 	struct lwp	*l;
2053 	struct proc	*p;
2054 	struct sigacts	*ps;
2055 	sig_t		action;
2056 	sigset_t	*returnmask;
2057 	ksiginfo_t	ksi;
2058 
2059 	l = curlwp;
2060 	p = l->l_proc;
2061 	ps = p->p_sigacts;
2062 
2063 	KASSERT(mutex_owned(p->p_lock));
2064 	KASSERT(signo > 0);
2065 
2066 	/*
2067 	 * Set the new mask value and also defer further occurrences of this
2068 	 * signal.
2069 	 *
2070 	 * Special case: user has done a sigsuspend.  Here the current mask is
2071 	 * not of interest, but rather the mask from before the sigsuspend is
2072 	 * what we want restored after the signal processing is completed.
2073 	 */
2074 	if (l->l_sigrestore) {
2075 		returnmask = &l->l_sigoldmask;
2076 		l->l_sigrestore = 0;
2077 	} else
2078 		returnmask = &l->l_sigmask;
2079 
2080 	/*
2081 	 * Commit to taking the signal before releasing the mutex.
2082 	 */
2083 	action = SIGACTION_PS(ps, signo).sa_handler;
2084 	l->l_ru.ru_nsignals++;
2085 	if (l->l_sigpendset == NULL) {
2086 		/* From the debugger */
2087 		if (p->p_sigctx.ps_faked &&
2088 		    signo == p->p_sigctx.ps_info._signo) {
2089 			KSI_INIT(&ksi);
2090 			ksi.ksi_info = p->p_sigctx.ps_info;
2091 			ksi.ksi_lid = p->p_sigctx.ps_lwp;
2092 			p->p_sigctx.ps_faked = false;
2093 		} else {
2094 			if (!siggetinfo(&l->l_sigpend, &ksi, signo))
2095 				(void)siggetinfo(&p->p_sigpend, &ksi, signo);
2096 		}
2097 	} else
2098 		sigget(l->l_sigpendset, &ksi, signo, NULL);
2099 
2100 	if (ktrpoint(KTR_PSIG)) {
2101 		mutex_exit(p->p_lock);
2102 		if (p->p_emul->e_ktrpsig)
2103 			p->p_emul->e_ktrpsig(signo, action,
2104 			    returnmask, &ksi);
2105 		else
2106 			ktrpsig(signo, action, returnmask, &ksi);
2107 		mutex_enter(p->p_lock);
2108 	}
2109 
2110 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
2111 
2112 	if (action == SIG_DFL) {
2113 		/*
2114 		 * Default action, where the default is to kill
2115 		 * the process.  (Other cases were ignored above.)
2116 		 */
2117 		sigexit(l, signo);
2118 		return;
2119 	}
2120 
2121 	/*
2122 	 * If we get here, the signal must be caught.
2123 	 */
2124 #ifdef DIAGNOSTIC
2125 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2126 		panic("postsig action");
2127 #endif
2128 
2129 	kpsendsig(l, &ksi, returnmask);
2130 }
2131 
2132 /*
2133  * sendsig:
2134  *
2135  *	Default signal delivery method for NetBSD.
2136  */
2137 void
2138 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2139 {
2140 	struct sigacts *sa;
2141 	int sig;
2142 
2143 	sig = ksi->ksi_signo;
2144 	sa = curproc->p_sigacts;
2145 
2146 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2147 	case 0:
2148 	case 1:
2149 		/* Compat for 1.6 and earlier. */
2150 		MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask),
2151 		    break);
2152 		return;
2153 	case 2:
2154 	case 3:
2155 		sendsig_siginfo(ksi, mask);
2156 		return;
2157 	default:
2158 		break;
2159 	}
2160 
2161 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2162 	sigexit(curlwp, SIGILL);
2163 }
2164 
2165 /*
2166  * sendsig_reset:
2167  *
2168  *	Reset the signal action.  Called from emulation specific sendsig()
2169  *	before unlocking to deliver the signal.
2170  */
2171 void
2172 sendsig_reset(struct lwp *l, int signo)
2173 {
2174 	struct proc *p = l->l_proc;
2175 	struct sigacts *ps = p->p_sigacts;
2176 
2177 	KASSERT(mutex_owned(p->p_lock));
2178 
2179 	p->p_sigctx.ps_lwp = 0;
2180 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2181 
2182 	mutex_enter(&ps->sa_mutex);
2183 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
2184 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2185 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2186 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2187 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2188 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2189 	}
2190 	mutex_exit(&ps->sa_mutex);
2191 }
2192 
2193 /*
2194  * Kill the current process for stated reason.
2195  */
2196 void
2197 killproc(struct proc *p, const char *why)
2198 {
2199 
2200 	KASSERT(mutex_owned(proc_lock));
2201 
2202 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2203 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2204 	psignal(p, SIGKILL);
2205 }
2206 
2207 /*
2208  * Force the current process to exit with the specified signal, dumping core
2209  * if appropriate.  We bypass the normal tests for masked and caught
2210  * signals, allowing unrecoverable failures to terminate the process without
2211  * changing signal state.  Mark the accounting record with the signal
2212  * termination.  If dumping core, save the signal number for the debugger.
2213  * Calls exit and does not return.
2214  */
2215 void
2216 sigexit(struct lwp *l, int signo)
2217 {
2218 	int exitsig, error, docore;
2219 	struct proc *p;
2220 	struct lwp *t;
2221 
2222 	p = l->l_proc;
2223 
2224 	KASSERT(mutex_owned(p->p_lock));
2225 	KERNEL_UNLOCK_ALL(l, NULL);
2226 
2227 	/*
2228 	 * Don't permit coredump() multiple times in the same process.
2229 	 * Call back into sigexit, where we will be suspended until
2230 	 * the deed is done.  Note that this is a recursive call, but
2231 	 * LW_WCORE will prevent us from coming back this way.
2232 	 */
2233 	if ((p->p_sflag & PS_WCORE) != 0) {
2234 		lwp_lock(l);
2235 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2236 		lwp_unlock(l);
2237 		mutex_exit(p->p_lock);
2238 		lwp_userret(l);
2239 		panic("sigexit 1");
2240 		/* NOTREACHED */
2241 	}
2242 
2243 	/* If process is already on the way out, then bail now. */
2244 	if ((p->p_sflag & PS_WEXIT) != 0) {
2245 		mutex_exit(p->p_lock);
2246 		lwp_exit(l);
2247 		panic("sigexit 2");
2248 		/* NOTREACHED */
2249 	}
2250 
2251 	/*
2252 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2253 	 * so that their registers are available long enough to be dumped.
2254  	 */
2255 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2256 		p->p_sflag |= PS_WCORE;
2257 		for (;;) {
2258 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2259 				lwp_lock(t);
2260 				if (t == l) {
2261 					t->l_flag &=
2262 					    ~(LW_WSUSPEND | LW_DBGSUSPEND);
2263 					lwp_unlock(t);
2264 					continue;
2265 				}
2266 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2267 				lwp_suspend(l, t);
2268 			}
2269 
2270 			if (p->p_nrlwps == 1)
2271 				break;
2272 
2273 			/*
2274 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2275 			 * for everyone else to stop before proceeding.
2276 			 */
2277 			p->p_nlwpwait++;
2278 			cv_broadcast(&p->p_lwpcv);
2279 			cv_wait(&p->p_lwpcv, p->p_lock);
2280 			p->p_nlwpwait--;
2281 		}
2282 	}
2283 
2284 	exitsig = signo;
2285 	p->p_acflag |= AXSIG;
2286 	memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info));
2287 	p->p_sigctx.ps_info._signo = signo;
2288 	p->p_sigctx.ps_info._code = SI_NOINFO;
2289 
2290 	if (docore) {
2291 		mutex_exit(p->p_lock);
2292 		MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error);
2293 
2294 		if (kern_logsigexit) {
2295 			int uid = l->l_cred ?
2296 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2297 
2298 			if (error)
2299 				log(LOG_INFO, lognocoredump, p->p_pid,
2300 				    p->p_comm, uid, signo, error);
2301 			else
2302 				log(LOG_INFO, logcoredump, p->p_pid,
2303 				    p->p_comm, uid, signo);
2304 		}
2305 
2306 #ifdef PAX_SEGVGUARD
2307 		rw_enter(&exec_lock, RW_WRITER);
2308 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2309 		rw_exit(&exec_lock);
2310 #endif /* PAX_SEGVGUARD */
2311 
2312 		/* Acquire the sched state mutex.  exit1() will release it. */
2313 		mutex_enter(p->p_lock);
2314 		if (error == 0)
2315 			p->p_sflag |= PS_COREDUMP;
2316 	}
2317 
2318 	/* No longer dumping core. */
2319 	p->p_sflag &= ~PS_WCORE;
2320 
2321 	exit1(l, 0, exitsig);
2322 	/* NOTREACHED */
2323 }
2324 
2325 /*
2326  * Many emulations have a common coredump_netbsd() established as their
2327  * dump routine.  Since the "real" code may (or may not) be present in
2328  * loadable module, we provide a routine here which calls the module
2329  * hook.
2330  */
2331 
2332 int
2333 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie)
2334 {
2335 	int retval;
2336 
2337 	MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval);
2338 	return retval;
2339 }
2340 
2341 /*
2342  * Put process 'p' into the stopped state and optionally, notify the parent.
2343  */
2344 void
2345 proc_stop(struct proc *p, int signo)
2346 {
2347 	struct lwp *l;
2348 
2349 	KASSERT(mutex_owned(p->p_lock));
2350 
2351 	/*
2352 	 * First off, set the stopping indicator and bring all sleeping
2353 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2354 	 * unlock between here and the p->p_nrlwps check below.
2355 	 */
2356 	p->p_sflag |= PS_STOPPING;
2357 	membar_producer();
2358 
2359 	proc_stop_lwps(p);
2360 
2361 	/*
2362 	 * If there are no LWPs available to take the signal, then we
2363 	 * signal the parent process immediately.  Otherwise, the last
2364 	 * LWP to stop will take care of it.
2365 	 */
2366 
2367 	if (p->p_nrlwps == 0) {
2368 		proc_stop_done(p, PS_NOCLDSTOP);
2369 	} else {
2370 		/*
2371 		 * Have the remaining LWPs come to a halt, and trigger
2372 		 * proc_stop_callout() to ensure that they do.
2373 		 */
2374 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2375 			sigpost(l, SIG_DFL, SA_STOP, signo);
2376 		}
2377 		callout_schedule(&proc_stop_ch, 1);
2378 	}
2379 }
2380 
2381 /*
2382  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2383  * but wait for them to come to a halt at the kernel-user boundary.  This is
2384  * to allow LWPs to release any locks that they may hold before stopping.
2385  *
2386  * Non-interruptable sleeps can be long, and there is the potential for an
2387  * LWP to begin sleeping interruptably soon after the process has been set
2388  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2389  * stopping, and so complete halt of the process and the return of status
2390  * information to the parent could be delayed indefinitely.
2391  *
2392  * To handle this race, proc_stop_callout() runs once per tick while there
2393  * are stopping processes in the system.  It sets LWPs that are sleeping
2394  * interruptably into the LSSTOP state.
2395  *
2396  * Note that we are not concerned about keeping all LWPs stopped while the
2397  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2398  * What we do need to ensure is that all LWPs in a stopping process have
2399  * stopped at least once, so that notification can be sent to the parent
2400  * process.
2401  */
2402 static void
2403 proc_stop_callout(void *cookie)
2404 {
2405 	bool more, restart;
2406 	struct proc *p;
2407 
2408 	(void)cookie;
2409 
2410 	do {
2411 		restart = false;
2412 		more = false;
2413 
2414 		mutex_enter(proc_lock);
2415 		PROCLIST_FOREACH(p, &allproc) {
2416 			mutex_enter(p->p_lock);
2417 
2418 			if ((p->p_sflag & PS_STOPPING) == 0) {
2419 				mutex_exit(p->p_lock);
2420 				continue;
2421 			}
2422 
2423 			/* Stop any LWPs sleeping interruptably. */
2424 			proc_stop_lwps(p);
2425 			if (p->p_nrlwps == 0) {
2426 				/*
2427 				 * We brought the process to a halt.
2428 				 * Mark it as stopped and notify the
2429 				 * parent.
2430 				 *
2431 				 * Note that proc_stop_done() will
2432 				 * drop p->p_lock briefly.
2433 				 * Arrange to restart and check
2434 				 * all processes again.
2435 				 */
2436 				restart = true;
2437 				proc_stop_done(p, PS_NOCLDSTOP);
2438 			} else
2439 				more = true;
2440 
2441 			mutex_exit(p->p_lock);
2442 			if (restart)
2443 				break;
2444 		}
2445 		mutex_exit(proc_lock);
2446 	} while (restart);
2447 
2448 	/*
2449 	 * If we noted processes that are stopping but still have
2450 	 * running LWPs, then arrange to check again in 1 tick.
2451 	 */
2452 	if (more)
2453 		callout_schedule(&proc_stop_ch, 1);
2454 }
2455 
2456 /*
2457  * Given a process in state SSTOP, set the state back to SACTIVE and
2458  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2459  */
2460 void
2461 proc_unstop(struct proc *p)
2462 {
2463 	struct lwp *l;
2464 	int sig;
2465 
2466 	KASSERT(mutex_owned(proc_lock));
2467 	KASSERT(mutex_owned(p->p_lock));
2468 
2469 	p->p_stat = SACTIVE;
2470 	p->p_sflag &= ~PS_STOPPING;
2471 	sig = p->p_xsig;
2472 
2473 	if (!p->p_waited)
2474 		p->p_pptr->p_nstopchild--;
2475 
2476 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2477 		lwp_lock(l);
2478 		if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) {
2479 			lwp_unlock(l);
2480 			continue;
2481 		}
2482 		if (l->l_wchan == NULL) {
2483 			setrunnable(l);
2484 			continue;
2485 		}
2486 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2487 			setrunnable(l);
2488 			sig = 0;
2489 		} else {
2490 			l->l_stat = LSSLEEP;
2491 			p->p_nrlwps++;
2492 			lwp_unlock(l);
2493 		}
2494 	}
2495 }
2496 
2497 void
2498 proc_stoptrace(int trapno, int sysnum, const register_t args[],
2499                const register_t *ret, int error)
2500 {
2501 	struct lwp *l = curlwp;
2502 	struct proc *p = l->l_proc;
2503 	struct sigacts *ps;
2504 	sigset_t *mask;
2505 	sig_t action;
2506 	ksiginfo_t ksi;
2507 	size_t i, sy_narg;
2508 	const int signo = SIGTRAP;
2509 
2510 	KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX));
2511 	KASSERT(p->p_pptr != initproc);
2512 	KASSERT(ISSET(p->p_slflag, PSL_TRACED));
2513 	KASSERT(ISSET(p->p_slflag, PSL_SYSCALL));
2514 
2515 	sy_narg = p->p_emul->e_sysent[sysnum].sy_narg;
2516 
2517 	KSI_INIT_TRAP(&ksi);
2518 	ksi.ksi_lid = l->l_lid;
2519 	ksi.ksi_signo = signo;
2520 	ksi.ksi_code = trapno;
2521 
2522 	ksi.ksi_sysnum = sysnum;
2523 	if (trapno == TRAP_SCE) {
2524 		ksi.ksi_retval[0] = 0;
2525 		ksi.ksi_retval[1] = 0;
2526 		ksi.ksi_error = 0;
2527 	} else {
2528 		ksi.ksi_retval[0] = ret[0];
2529 		ksi.ksi_retval[1] = ret[1];
2530 		ksi.ksi_error = error;
2531 	}
2532 
2533 	memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args));
2534 
2535 	for (i = 0; i < sy_narg; i++)
2536 		ksi.ksi_args[i] = args[i];
2537 
2538 	mutex_enter(p->p_lock);
2539 
2540 repeat:
2541 	/*
2542 	 * If we are exiting, demise now.
2543 	 *
2544 	 * This avoids notifying tracer and deadlocking.
2545 	 */
2546 	if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) {
2547 		mutex_exit(p->p_lock);
2548 		lwp_exit(l);
2549 		panic("proc_stoptrace");
2550 		/* NOTREACHED */
2551 	}
2552 
2553 	/*
2554 	 * If there's a pending SIGKILL process it immediately.
2555 	 */
2556 	if (p->p_xsig == SIGKILL ||
2557 	    sigismember(&p->p_sigpend.sp_set, SIGKILL)) {
2558 		mutex_exit(p->p_lock);
2559 		return;
2560 	}
2561 
2562 	/*
2563 	 * If we are no longer traced, abandon this event signal.
2564 	 *
2565 	 * This avoids killing a process after detaching the debugger.
2566 	 */
2567 	if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) {
2568 		mutex_exit(p->p_lock);
2569 		return;
2570 	}
2571 
2572 	/*
2573 	 * The process is already stopping.
2574 	 */
2575 	if ((p->p_sflag & PS_STOPPING) != 0) {
2576 		sigswitch_unlock_and_switch_away(l);
2577 		mutex_enter(p->p_lock);
2578 		goto repeat;
2579 	}
2580 
2581 	/* Needed for ktrace */
2582 	ps = p->p_sigacts;
2583 	action = SIGACTION_PS(ps, signo).sa_handler;
2584 	mask = &l->l_sigmask;
2585 
2586 	p->p_xsig = signo;
2587 	p->p_sigctx.ps_lwp = ksi.ksi_lid;
2588 	p->p_sigctx.ps_info = ksi.ksi_info;
2589 	sigswitch(0, signo, false);
2590 
2591 	if (ktrpoint(KTR_PSIG)) {
2592 		if (p->p_emul->e_ktrpsig)
2593 			p->p_emul->e_ktrpsig(signo, action, mask, &ksi);
2594 		else
2595 			ktrpsig(signo, action, mask, &ksi);
2596 	}
2597 }
2598 
2599 static int
2600 filt_sigattach(struct knote *kn)
2601 {
2602 	struct proc *p = curproc;
2603 
2604 	kn->kn_obj = p;
2605 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
2606 
2607 	mutex_enter(p->p_lock);
2608 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2609 	mutex_exit(p->p_lock);
2610 
2611 	return 0;
2612 }
2613 
2614 static void
2615 filt_sigdetach(struct knote *kn)
2616 {
2617 	struct proc *p = kn->kn_obj;
2618 
2619 	mutex_enter(p->p_lock);
2620 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2621 	mutex_exit(p->p_lock);
2622 }
2623 
2624 /*
2625  * Signal knotes are shared with proc knotes, so we apply a mask to
2626  * the hint in order to differentiate them from process hints.  This
2627  * could be avoided by using a signal-specific knote list, but probably
2628  * isn't worth the trouble.
2629  */
2630 static int
2631 filt_signal(struct knote *kn, long hint)
2632 {
2633 
2634 	if (hint & NOTE_SIGNAL) {
2635 		hint &= ~NOTE_SIGNAL;
2636 
2637 		if (kn->kn_id == hint)
2638 			kn->kn_data++;
2639 	}
2640 	return (kn->kn_data != 0);
2641 }
2642 
2643 const struct filterops sig_filtops = {
2644 		.f_isfd = 0,
2645 		.f_attach = filt_sigattach,
2646 		.f_detach = filt_sigdetach,
2647 		.f_event = filt_signal,
2648 };
2649