1 /* $NetBSD: kern_sig.c,v 1.384 2020/02/01 02:23:23 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 66 */ 67 68 /* 69 * Signal subsystem. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.384 2020/02/01 02:23:23 riastradh Exp $"); 74 75 #include "opt_ptrace.h" 76 #include "opt_dtrace.h" 77 #include "opt_compat_sunos.h" 78 #include "opt_compat_netbsd.h" 79 #include "opt_compat_netbsd32.h" 80 #include "opt_pax.h" 81 82 #define SIGPROP /* include signal properties table */ 83 #include <sys/param.h> 84 #include <sys/signalvar.h> 85 #include <sys/proc.h> 86 #include <sys/ptrace.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 #include <sys/ktrace.h> 90 #include <sys/syslog.h> 91 #include <sys/filedesc.h> 92 #include <sys/file.h> 93 #include <sys/pool.h> 94 #include <sys/ucontext.h> 95 #include <sys/exec.h> 96 #include <sys/kauth.h> 97 #include <sys/acct.h> 98 #include <sys/callout.h> 99 #include <sys/atomic.h> 100 #include <sys/cpu.h> 101 #include <sys/module.h> 102 #include <sys/sdt.h> 103 #include <sys/compat_stub.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm_extern.h> 110 111 #define SIGQUEUE_MAX 32 112 static pool_cache_t sigacts_cache __read_mostly; 113 static pool_cache_t ksiginfo_cache __read_mostly; 114 static callout_t proc_stop_ch __cacheline_aligned; 115 116 sigset_t contsigmask __cacheline_aligned; 117 sigset_t stopsigmask __cacheline_aligned; 118 static sigset_t vforksigmask __cacheline_aligned; 119 sigset_t sigcantmask __cacheline_aligned; 120 121 static void ksiginfo_exechook(struct proc *, void *); 122 static void proc_stop(struct proc *, int); 123 static void proc_stop_done(struct proc *, int); 124 static void proc_stop_callout(void *); 125 static int sigchecktrace(void); 126 static int sigpost(struct lwp *, sig_t, int, int); 127 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *); 128 static int sigunwait(struct proc *, const ksiginfo_t *); 129 static void sigswitch(int, int, bool); 130 static void sigswitch_unlock_and_switch_away(struct lwp *); 131 132 static void sigacts_poolpage_free(struct pool *, void *); 133 static void *sigacts_poolpage_alloc(struct pool *, int); 134 135 /* 136 * DTrace SDT provider definitions 137 */ 138 SDT_PROVIDER_DECLARE(proc); 139 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, 140 "struct lwp *", /* target thread */ 141 "struct proc *", /* target process */ 142 "int"); /* signal */ 143 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard, 144 "struct lwp *", /* target thread */ 145 "struct proc *", /* target process */ 146 "int"); /* signal */ 147 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle, 148 "int", /* signal */ 149 "ksiginfo_t *", /* signal info */ 150 "void (*)(void)"); /* handler address */ 151 152 153 static struct pool_allocator sigactspool_allocator = { 154 .pa_alloc = sigacts_poolpage_alloc, 155 .pa_free = sigacts_poolpage_free 156 }; 157 158 #ifdef DEBUG 159 int kern_logsigexit = 1; 160 #else 161 int kern_logsigexit = 0; 162 #endif 163 164 static const char logcoredump[] = 165 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 166 static const char lognocoredump[] = 167 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 168 169 static kauth_listener_t signal_listener; 170 171 static int 172 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 173 void *arg0, void *arg1, void *arg2, void *arg3) 174 { 175 struct proc *p; 176 int result, signum; 177 178 result = KAUTH_RESULT_DEFER; 179 p = arg0; 180 signum = (int)(unsigned long)arg1; 181 182 if (action != KAUTH_PROCESS_SIGNAL) 183 return result; 184 185 if (kauth_cred_uidmatch(cred, p->p_cred) || 186 (signum == SIGCONT && (curproc->p_session == p->p_session))) 187 result = KAUTH_RESULT_ALLOW; 188 189 return result; 190 } 191 192 static int 193 sigacts_ctor(void *arg __unused, void *obj, int flags __unused) 194 { 195 memset(obj, 0, sizeof(struct sigacts)); 196 return 0; 197 } 198 199 /* 200 * signal_init: 201 * 202 * Initialize global signal-related data structures. 203 */ 204 void 205 signal_init(void) 206 { 207 208 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 209 210 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0, 211 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ? 212 &sigactspool_allocator : NULL, IPL_NONE, sigacts_ctor, NULL, NULL); 213 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0, 214 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL); 215 216 exechook_establish(ksiginfo_exechook, NULL); 217 218 callout_init(&proc_stop_ch, CALLOUT_MPSAFE); 219 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 220 221 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 222 signal_listener_cb, NULL); 223 } 224 225 /* 226 * sigacts_poolpage_alloc: 227 * 228 * Allocate a page for the sigacts memory pool. 229 */ 230 static void * 231 sigacts_poolpage_alloc(struct pool *pp, int flags) 232 { 233 234 return (void *)uvm_km_alloc(kernel_map, 235 PAGE_SIZE * 2, PAGE_SIZE * 2, 236 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 237 | UVM_KMF_WIRED); 238 } 239 240 /* 241 * sigacts_poolpage_free: 242 * 243 * Free a page on behalf of the sigacts memory pool. 244 */ 245 static void 246 sigacts_poolpage_free(struct pool *pp, void *v) 247 { 248 249 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED); 250 } 251 252 /* 253 * sigactsinit: 254 * 255 * Create an initial sigacts structure, using the same signal state 256 * as of specified process. If 'share' is set, share the sigacts by 257 * holding a reference, otherwise just copy it from parent. 258 */ 259 struct sigacts * 260 sigactsinit(struct proc *pp, int share) 261 { 262 struct sigacts *ps = pp->p_sigacts, *ps2; 263 264 if (__predict_false(share)) { 265 atomic_inc_uint(&ps->sa_refcnt); 266 return ps; 267 } 268 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK); 269 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 270 ps2->sa_refcnt = 1; 271 272 mutex_enter(&ps->sa_mutex); 273 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc)); 274 mutex_exit(&ps->sa_mutex); 275 return ps2; 276 } 277 278 /* 279 * sigactsunshare: 280 * 281 * Make this process not share its sigacts, maintaining all signal state. 282 */ 283 void 284 sigactsunshare(struct proc *p) 285 { 286 struct sigacts *ps, *oldps = p->p_sigacts; 287 288 if (__predict_true(oldps->sa_refcnt == 1)) 289 return; 290 291 ps = pool_cache_get(sigacts_cache, PR_WAITOK); 292 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 293 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc)); 294 ps->sa_refcnt = 1; 295 296 p->p_sigacts = ps; 297 sigactsfree(oldps); 298 } 299 300 /* 301 * sigactsfree; 302 * 303 * Release a sigacts structure. 304 */ 305 void 306 sigactsfree(struct sigacts *ps) 307 { 308 309 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) { 310 mutex_destroy(&ps->sa_mutex); 311 pool_cache_put(sigacts_cache, ps); 312 } 313 } 314 315 /* 316 * siginit: 317 * 318 * Initialize signal state for process 0; set to ignore signals that 319 * are ignored by default and disable the signal stack. Locking not 320 * required as the system is still cold. 321 */ 322 void 323 siginit(struct proc *p) 324 { 325 struct lwp *l; 326 struct sigacts *ps; 327 int signo, prop; 328 329 ps = p->p_sigacts; 330 sigemptyset(&contsigmask); 331 sigemptyset(&stopsigmask); 332 sigemptyset(&vforksigmask); 333 sigemptyset(&sigcantmask); 334 for (signo = 1; signo < NSIG; signo++) { 335 prop = sigprop[signo]; 336 if (prop & SA_CONT) 337 sigaddset(&contsigmask, signo); 338 if (prop & SA_STOP) 339 sigaddset(&stopsigmask, signo); 340 if (prop & SA_STOP && signo != SIGSTOP) 341 sigaddset(&vforksigmask, signo); 342 if (prop & SA_CANTMASK) 343 sigaddset(&sigcantmask, signo); 344 if (prop & SA_IGNORE && signo != SIGCONT) 345 sigaddset(&p->p_sigctx.ps_sigignore, signo); 346 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 347 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 348 } 349 sigemptyset(&p->p_sigctx.ps_sigcatch); 350 p->p_sflag &= ~PS_NOCLDSTOP; 351 352 ksiginfo_queue_init(&p->p_sigpend.sp_info); 353 sigemptyset(&p->p_sigpend.sp_set); 354 355 /* 356 * Reset per LWP state. 357 */ 358 l = LIST_FIRST(&p->p_lwps); 359 l->l_sigwaited = NULL; 360 l->l_sigstk = SS_INIT; 361 ksiginfo_queue_init(&l->l_sigpend.sp_info); 362 sigemptyset(&l->l_sigpend.sp_set); 363 364 /* One reference. */ 365 ps->sa_refcnt = 1; 366 } 367 368 /* 369 * execsigs: 370 * 371 * Reset signals for an exec of the specified process. 372 */ 373 void 374 execsigs(struct proc *p) 375 { 376 struct sigacts *ps; 377 struct lwp *l; 378 int signo, prop; 379 sigset_t tset; 380 ksiginfoq_t kq; 381 382 KASSERT(p->p_nlwps == 1); 383 384 sigactsunshare(p); 385 ps = p->p_sigacts; 386 387 /* 388 * Reset caught signals. Held signals remain held through 389 * l->l_sigmask (unless they were caught, and are now ignored 390 * by default). 391 * 392 * No need to lock yet, the process has only one LWP and 393 * at this point the sigacts are private to the process. 394 */ 395 sigemptyset(&tset); 396 for (signo = 1; signo < NSIG; signo++) { 397 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 398 prop = sigprop[signo]; 399 if (prop & SA_IGNORE) { 400 if ((prop & SA_CONT) == 0) 401 sigaddset(&p->p_sigctx.ps_sigignore, 402 signo); 403 sigaddset(&tset, signo); 404 } 405 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 406 } 407 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 408 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 409 } 410 ksiginfo_queue_init(&kq); 411 412 mutex_enter(p->p_lock); 413 sigclearall(p, &tset, &kq); 414 sigemptyset(&p->p_sigctx.ps_sigcatch); 415 416 /* 417 * Reset no zombies if child dies flag as Solaris does. 418 */ 419 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 420 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 421 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 422 423 /* 424 * Reset per-LWP state. 425 */ 426 l = LIST_FIRST(&p->p_lwps); 427 l->l_sigwaited = NULL; 428 l->l_sigstk = SS_INIT; 429 ksiginfo_queue_init(&l->l_sigpend.sp_info); 430 sigemptyset(&l->l_sigpend.sp_set); 431 mutex_exit(p->p_lock); 432 433 ksiginfo_queue_drain(&kq); 434 } 435 436 /* 437 * ksiginfo_exechook: 438 * 439 * Free all pending ksiginfo entries from a process on exec. 440 * Additionally, drain any unused ksiginfo structures in the 441 * system back to the pool. 442 * 443 * XXX This should not be a hook, every process has signals. 444 */ 445 static void 446 ksiginfo_exechook(struct proc *p, void *v) 447 { 448 ksiginfoq_t kq; 449 450 ksiginfo_queue_init(&kq); 451 452 mutex_enter(p->p_lock); 453 sigclearall(p, NULL, &kq); 454 mutex_exit(p->p_lock); 455 456 ksiginfo_queue_drain(&kq); 457 } 458 459 /* 460 * ksiginfo_alloc: 461 * 462 * Allocate a new ksiginfo structure from the pool, and optionally copy 463 * an existing one. If the existing ksiginfo_t is from the pool, and 464 * has not been queued somewhere, then just return it. Additionally, 465 * if the existing ksiginfo_t does not contain any information beyond 466 * the signal number, then just return it. 467 */ 468 ksiginfo_t * 469 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 470 { 471 ksiginfo_t *kp; 472 473 if (ok != NULL) { 474 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 475 KSI_FROMPOOL) 476 return ok; 477 if (KSI_EMPTY_P(ok)) 478 return ok; 479 } 480 481 kp = pool_cache_get(ksiginfo_cache, flags); 482 if (kp == NULL) { 483 #ifdef DIAGNOSTIC 484 printf("Out of memory allocating ksiginfo for pid %d\n", 485 p->p_pid); 486 #endif 487 return NULL; 488 } 489 490 if (ok != NULL) { 491 memcpy(kp, ok, sizeof(*kp)); 492 kp->ksi_flags &= ~KSI_QUEUED; 493 } else 494 KSI_INIT_EMPTY(kp); 495 496 kp->ksi_flags |= KSI_FROMPOOL; 497 498 return kp; 499 } 500 501 /* 502 * ksiginfo_free: 503 * 504 * If the given ksiginfo_t is from the pool and has not been queued, 505 * then free it. 506 */ 507 void 508 ksiginfo_free(ksiginfo_t *kp) 509 { 510 511 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 512 return; 513 pool_cache_put(ksiginfo_cache, kp); 514 } 515 516 /* 517 * ksiginfo_queue_drain: 518 * 519 * Drain a non-empty ksiginfo_t queue. 520 */ 521 void 522 ksiginfo_queue_drain0(ksiginfoq_t *kq) 523 { 524 ksiginfo_t *ksi; 525 526 KASSERT(!TAILQ_EMPTY(kq)); 527 528 while (!TAILQ_EMPTY(kq)) { 529 ksi = TAILQ_FIRST(kq); 530 TAILQ_REMOVE(kq, ksi, ksi_list); 531 pool_cache_put(ksiginfo_cache, ksi); 532 } 533 } 534 535 static int 536 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo) 537 { 538 ksiginfo_t *ksi, *nksi; 539 540 if (sp == NULL) 541 goto out; 542 543 /* Find siginfo and copy it out. */ 544 int count = 0; 545 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) { 546 if (ksi->ksi_signo != signo) 547 continue; 548 if (count++ > 0) /* Only remove the first, count all of them */ 549 continue; 550 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 551 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 552 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 553 ksi->ksi_flags &= ~KSI_QUEUED; 554 if (out != NULL) { 555 memcpy(out, ksi, sizeof(*out)); 556 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 557 } 558 ksiginfo_free(ksi); 559 } 560 if (count) 561 return count; 562 563 out: 564 /* If there is no siginfo, then manufacture it. */ 565 if (out != NULL) { 566 KSI_INIT(out); 567 out->ksi_info._signo = signo; 568 out->ksi_info._code = SI_NOINFO; 569 } 570 return 0; 571 } 572 573 /* 574 * sigget: 575 * 576 * Fetch the first pending signal from a set. Optionally, also fetch 577 * or manufacture a ksiginfo element. Returns the number of the first 578 * pending signal, or zero. 579 */ 580 int 581 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask) 582 { 583 sigset_t tset; 584 int count; 585 586 /* If there's no pending set, the signal is from the debugger. */ 587 if (sp == NULL) 588 goto out; 589 590 /* Construct mask from signo, and 'mask'. */ 591 if (signo == 0) { 592 if (mask != NULL) { 593 tset = *mask; 594 __sigandset(&sp->sp_set, &tset); 595 } else 596 tset = sp->sp_set; 597 598 /* If there are no signals pending - return. */ 599 if ((signo = firstsig(&tset)) == 0) 600 goto out; 601 } else { 602 KASSERT(sigismember(&sp->sp_set, signo)); 603 } 604 605 sigdelset(&sp->sp_set, signo); 606 out: 607 count = siggetinfo(sp, out, signo); 608 if (count > 1) 609 sigaddset(&sp->sp_set, signo); 610 return signo; 611 } 612 613 /* 614 * sigput: 615 * 616 * Append a new ksiginfo element to the list of pending ksiginfo's. 617 */ 618 static int 619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 620 { 621 ksiginfo_t *kp; 622 623 KASSERT(mutex_owned(p->p_lock)); 624 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 625 626 sigaddset(&sp->sp_set, ksi->ksi_signo); 627 628 /* 629 * If there is no siginfo, we are done. 630 */ 631 if (KSI_EMPTY_P(ksi)) 632 return 0; 633 634 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 635 636 size_t count = 0; 637 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) { 638 count++; 639 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX) 640 continue; 641 if (kp->ksi_signo == ksi->ksi_signo) { 642 KSI_COPY(ksi, kp); 643 kp->ksi_flags |= KSI_QUEUED; 644 return 0; 645 } 646 } 647 648 if (count >= SIGQUEUE_MAX) { 649 #ifdef DIAGNOSTIC 650 printf("%s(%d): Signal queue is full signal=%d\n", 651 p->p_comm, p->p_pid, ksi->ksi_signo); 652 #endif 653 return EAGAIN; 654 } 655 ksi->ksi_flags |= KSI_QUEUED; 656 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 657 658 return 0; 659 } 660 661 /* 662 * sigclear: 663 * 664 * Clear all pending signals in the specified set. 665 */ 666 void 667 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq) 668 { 669 ksiginfo_t *ksi, *next; 670 671 if (mask == NULL) 672 sigemptyset(&sp->sp_set); 673 else 674 sigminusset(mask, &sp->sp_set); 675 676 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) { 677 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 678 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list); 679 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 680 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 681 TAILQ_INSERT_TAIL(kq, ksi, ksi_list); 682 } 683 } 684 } 685 686 /* 687 * sigclearall: 688 * 689 * Clear all pending signals in the specified set from a process and 690 * its LWPs. 691 */ 692 void 693 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq) 694 { 695 struct lwp *l; 696 697 KASSERT(mutex_owned(p->p_lock)); 698 699 sigclear(&p->p_sigpend, mask, kq); 700 701 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 702 sigclear(&l->l_sigpend, mask, kq); 703 } 704 } 705 706 /* 707 * sigispending: 708 * 709 * Return the first signal number if there are pending signals for the 710 * current LWP. May be called unlocked provided that LW_PENDSIG is set, 711 * and that the signal has been posted to the appopriate queue before 712 * LW_PENDSIG is set. 713 * 714 * This should only ever be called with (l == curlwp), unless the 715 * result does not matter (procfs, sysctl). 716 */ 717 int 718 sigispending(struct lwp *l, int signo) 719 { 720 struct proc *p = l->l_proc; 721 sigset_t tset; 722 723 membar_consumer(); 724 725 tset = l->l_sigpend.sp_set; 726 sigplusset(&p->p_sigpend.sp_set, &tset); 727 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 728 sigminusset(&l->l_sigmask, &tset); 729 730 if (signo == 0) { 731 return firstsig(&tset); 732 } 733 return sigismember(&tset, signo) ? signo : 0; 734 } 735 736 void 737 getucontext(struct lwp *l, ucontext_t *ucp) 738 { 739 struct proc *p = l->l_proc; 740 741 KASSERT(mutex_owned(p->p_lock)); 742 743 ucp->uc_flags = 0; 744 ucp->uc_link = l->l_ctxlink; 745 ucp->uc_sigmask = l->l_sigmask; 746 ucp->uc_flags |= _UC_SIGMASK; 747 748 /* 749 * The (unsupplied) definition of the `current execution stack' 750 * in the System V Interface Definition appears to allow returning 751 * the main context stack. 752 */ 753 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 754 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase; 755 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 756 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 757 } else { 758 /* Simply copy alternate signal execution stack. */ 759 ucp->uc_stack = l->l_sigstk; 760 } 761 ucp->uc_flags |= _UC_STACK; 762 mutex_exit(p->p_lock); 763 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 764 mutex_enter(p->p_lock); 765 } 766 767 int 768 setucontext(struct lwp *l, const ucontext_t *ucp) 769 { 770 struct proc *p = l->l_proc; 771 int error; 772 773 KASSERT(mutex_owned(p->p_lock)); 774 775 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 776 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 777 if (error != 0) 778 return error; 779 } 780 781 mutex_exit(p->p_lock); 782 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 783 mutex_enter(p->p_lock); 784 if (error != 0) 785 return (error); 786 787 l->l_ctxlink = ucp->uc_link; 788 789 /* 790 * If there was stack information, update whether or not we are 791 * still running on an alternate signal stack. 792 */ 793 if ((ucp->uc_flags & _UC_STACK) != 0) { 794 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 795 l->l_sigstk.ss_flags |= SS_ONSTACK; 796 else 797 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 798 } 799 800 return 0; 801 } 802 803 /* 804 * killpg1: common code for kill process group/broadcast kill. 805 */ 806 int 807 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 808 { 809 struct proc *p, *cp; 810 kauth_cred_t pc; 811 struct pgrp *pgrp; 812 int nfound; 813 int signo = ksi->ksi_signo; 814 815 cp = l->l_proc; 816 pc = l->l_cred; 817 nfound = 0; 818 819 mutex_enter(proc_lock); 820 if (all) { 821 /* 822 * Broadcast. 823 */ 824 PROCLIST_FOREACH(p, &allproc) { 825 if (p->p_pid <= 1 || p == cp || 826 (p->p_flag & PK_SYSTEM) != 0) 827 continue; 828 mutex_enter(p->p_lock); 829 if (kauth_authorize_process(pc, 830 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL, 831 NULL) == 0) { 832 nfound++; 833 if (signo) 834 kpsignal2(p, ksi); 835 } 836 mutex_exit(p->p_lock); 837 } 838 } else { 839 if (pgid == 0) 840 /* Zero pgid means send to my process group. */ 841 pgrp = cp->p_pgrp; 842 else { 843 pgrp = pgrp_find(pgid); 844 if (pgrp == NULL) 845 goto out; 846 } 847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 848 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 849 continue; 850 mutex_enter(p->p_lock); 851 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL, 852 p, KAUTH_ARG(signo), NULL, NULL) == 0) { 853 nfound++; 854 if (signo && P_ZOMBIE(p) == 0) 855 kpsignal2(p, ksi); 856 } 857 mutex_exit(p->p_lock); 858 } 859 } 860 out: 861 mutex_exit(proc_lock); 862 return nfound ? 0 : ESRCH; 863 } 864 865 /* 866 * Send a signal to a process group. If checktty is set, limit to members 867 * which have a controlling terminal. 868 */ 869 void 870 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 871 { 872 ksiginfo_t ksi; 873 874 KASSERT(!cpu_intr_p()); 875 KASSERT(mutex_owned(proc_lock)); 876 877 KSI_INIT_EMPTY(&ksi); 878 ksi.ksi_signo = sig; 879 kpgsignal(pgrp, &ksi, NULL, checkctty); 880 } 881 882 void 883 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 884 { 885 struct proc *p; 886 887 KASSERT(!cpu_intr_p()); 888 KASSERT(mutex_owned(proc_lock)); 889 KASSERT(pgrp != NULL); 890 891 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 892 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 893 kpsignal(p, ksi, data); 894 } 895 896 /* 897 * Send a signal caused by a trap to the current LWP. If it will be caught 898 * immediately, deliver it with correct code. Otherwise, post it normally. 899 */ 900 void 901 trapsignal(struct lwp *l, ksiginfo_t *ksi) 902 { 903 struct proc *p; 904 struct sigacts *ps; 905 int signo = ksi->ksi_signo; 906 sigset_t *mask; 907 sig_t action; 908 909 KASSERT(KSI_TRAP_P(ksi)); 910 911 ksi->ksi_lid = l->l_lid; 912 p = l->l_proc; 913 914 KASSERT(!cpu_intr_p()); 915 mutex_enter(proc_lock); 916 mutex_enter(p->p_lock); 917 918 repeat: 919 /* 920 * If we are exiting, demise now. 921 * 922 * This avoids notifying tracer and deadlocking. 923 */ 924 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 925 mutex_exit(p->p_lock); 926 mutex_exit(proc_lock); 927 lwp_exit(l); 928 panic("trapsignal"); 929 /* NOTREACHED */ 930 } 931 932 /* 933 * The process is already stopping. 934 */ 935 if ((p->p_sflag & PS_STOPPING) != 0) { 936 mutex_exit(proc_lock); 937 sigswitch_unlock_and_switch_away(l); 938 mutex_enter(proc_lock); 939 mutex_enter(p->p_lock); 940 goto repeat; 941 } 942 943 mask = &l->l_sigmask; 944 ps = p->p_sigacts; 945 action = SIGACTION_PS(ps, signo).sa_handler; 946 947 if (ISSET(p->p_slflag, PSL_TRACED) && 948 !(p->p_pptr == p->p_opptr && ISSET(p->p_lflag, PL_PPWAIT)) && 949 p->p_xsig != SIGKILL && 950 !sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 951 p->p_xsig = signo; 952 p->p_sigctx.ps_faked = true; 953 p->p_sigctx.ps_lwp = ksi->ksi_lid; 954 p->p_sigctx.ps_info = ksi->ksi_info; 955 sigswitch(0, signo, true); 956 957 if (ktrpoint(KTR_PSIG)) { 958 if (p->p_emul->e_ktrpsig) 959 p->p_emul->e_ktrpsig(signo, action, mask, ksi); 960 else 961 ktrpsig(signo, action, mask, ksi); 962 } 963 return; 964 } 965 966 const bool caught = sigismember(&p->p_sigctx.ps_sigcatch, signo); 967 const bool masked = sigismember(mask, signo); 968 if (caught && !masked) { 969 mutex_exit(proc_lock); 970 l->l_ru.ru_nsignals++; 971 kpsendsig(l, ksi, mask); 972 mutex_exit(p->p_lock); 973 974 if (ktrpoint(KTR_PSIG)) { 975 if (p->p_emul->e_ktrpsig) 976 p->p_emul->e_ktrpsig(signo, action, mask, ksi); 977 else 978 ktrpsig(signo, action, mask, ksi); 979 } 980 return; 981 } 982 983 /* 984 * If the signal is masked or ignored, then unmask it and 985 * reset it to the default action so that the process or 986 * its tracer will be notified. 987 */ 988 const bool ignored = action == SIG_IGN; 989 if (masked || ignored) { 990 mutex_enter(&ps->sa_mutex); 991 sigdelset(mask, signo); 992 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 993 sigdelset(&p->p_sigctx.ps_sigignore, signo); 994 sigdelset(&SIGACTION_PS(ps, signo).sa_mask, signo); 995 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 996 mutex_exit(&ps->sa_mutex); 997 } 998 999 kpsignal2(p, ksi); 1000 mutex_exit(p->p_lock); 1001 mutex_exit(proc_lock); 1002 } 1003 1004 /* 1005 * Fill in signal information and signal the parent for a child status change. 1006 */ 1007 void 1008 child_psignal(struct proc *p, int mask) 1009 { 1010 ksiginfo_t ksi; 1011 struct proc *q; 1012 int xsig; 1013 1014 KASSERT(mutex_owned(proc_lock)); 1015 KASSERT(mutex_owned(p->p_lock)); 1016 1017 xsig = p->p_xsig; 1018 1019 KSI_INIT(&ksi); 1020 ksi.ksi_signo = SIGCHLD; 1021 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 1022 ksi.ksi_pid = p->p_pid; 1023 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 1024 ksi.ksi_status = xsig; 1025 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 1026 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 1027 1028 q = p->p_pptr; 1029 1030 mutex_exit(p->p_lock); 1031 mutex_enter(q->p_lock); 1032 1033 if ((q->p_sflag & mask) == 0) 1034 kpsignal2(q, &ksi); 1035 1036 mutex_exit(q->p_lock); 1037 mutex_enter(p->p_lock); 1038 } 1039 1040 void 1041 psignal(struct proc *p, int signo) 1042 { 1043 ksiginfo_t ksi; 1044 1045 KASSERT(!cpu_intr_p()); 1046 KASSERT(mutex_owned(proc_lock)); 1047 1048 KSI_INIT_EMPTY(&ksi); 1049 ksi.ksi_signo = signo; 1050 mutex_enter(p->p_lock); 1051 kpsignal2(p, &ksi); 1052 mutex_exit(p->p_lock); 1053 } 1054 1055 void 1056 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 1057 { 1058 fdfile_t *ff; 1059 file_t *fp; 1060 fdtab_t *dt; 1061 1062 KASSERT(!cpu_intr_p()); 1063 KASSERT(mutex_owned(proc_lock)); 1064 1065 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 1066 size_t fd; 1067 filedesc_t *fdp = p->p_fd; 1068 1069 /* XXXSMP locking */ 1070 ksi->ksi_fd = -1; 1071 dt = atomic_load_consume(&fdp->fd_dt); 1072 for (fd = 0; fd < dt->dt_nfiles; fd++) { 1073 if ((ff = dt->dt_ff[fd]) == NULL) 1074 continue; 1075 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) 1076 continue; 1077 if (fp->f_data == data) { 1078 ksi->ksi_fd = fd; 1079 break; 1080 } 1081 } 1082 } 1083 mutex_enter(p->p_lock); 1084 kpsignal2(p, ksi); 1085 mutex_exit(p->p_lock); 1086 } 1087 1088 /* 1089 * sigismasked: 1090 * 1091 * Returns true if signal is ignored or masked for the specified LWP. 1092 */ 1093 int 1094 sigismasked(struct lwp *l, int sig) 1095 { 1096 struct proc *p = l->l_proc; 1097 1098 return sigismember(&p->p_sigctx.ps_sigignore, sig) || 1099 sigismember(&l->l_sigmask, sig); 1100 } 1101 1102 /* 1103 * sigpost: 1104 * 1105 * Post a pending signal to an LWP. Returns non-zero if the LWP may 1106 * be able to take the signal. 1107 */ 1108 static int 1109 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1110 { 1111 int rv, masked; 1112 struct proc *p = l->l_proc; 1113 1114 KASSERT(mutex_owned(p->p_lock)); 1115 1116 /* 1117 * If the LWP is on the way out, sigclear() will be busy draining all 1118 * pending signals. Don't give it more. 1119 */ 1120 if (l->l_refcnt == 0) 1121 return 0; 1122 1123 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0); 1124 1125 lwp_lock(l); 1126 if (__predict_false((l->l_flag & LW_DBGSUSPEND) != 0)) { 1127 if ((prop & SA_KILL) != 0) 1128 l->l_flag &= ~LW_DBGSUSPEND; 1129 else { 1130 lwp_unlock(l); 1131 return 0; 1132 } 1133 } 1134 1135 /* 1136 * Have the LWP check for signals. This ensures that even if no LWP 1137 * is found to take the signal immediately, it should be taken soon. 1138 */ 1139 signotify(l); 1140 1141 /* 1142 * SIGCONT can be masked, but if LWP is stopped, it needs restart. 1143 * Note: SIGKILL and SIGSTOP cannot be masked. 1144 */ 1145 masked = sigismember(&l->l_sigmask, sig); 1146 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1147 lwp_unlock(l); 1148 return 0; 1149 } 1150 1151 /* 1152 * If killing the process, make it run fast. 1153 */ 1154 if (__predict_false((prop & SA_KILL) != 0) && 1155 action == SIG_DFL && l->l_priority < MAXPRI_USER) { 1156 KASSERT(l->l_class == SCHED_OTHER); 1157 lwp_changepri(l, MAXPRI_USER); 1158 } 1159 1160 /* 1161 * If the LWP is running or on a run queue, then we win. If it's 1162 * sleeping interruptably, wake it and make it take the signal. If 1163 * the sleep isn't interruptable, then the chances are it will get 1164 * to see the signal soon anyhow. If suspended, it can't take the 1165 * signal right now. If it's LWP private or for all LWPs, save it 1166 * for later; otherwise punt. 1167 */ 1168 rv = 0; 1169 1170 switch (l->l_stat) { 1171 case LSRUN: 1172 case LSONPROC: 1173 rv = 1; 1174 break; 1175 1176 case LSSLEEP: 1177 if ((l->l_flag & LW_SINTR) != 0) { 1178 /* setrunnable() will release the lock. */ 1179 setrunnable(l); 1180 return 1; 1181 } 1182 break; 1183 1184 case LSSUSPENDED: 1185 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) { 1186 /* lwp_continue() will release the lock. */ 1187 lwp_continue(l); 1188 return 1; 1189 } 1190 break; 1191 1192 case LSSTOP: 1193 if ((prop & SA_STOP) != 0) 1194 break; 1195 1196 /* 1197 * If the LWP is stopped and we are sending a continue 1198 * signal, then start it again. 1199 */ 1200 if ((prop & SA_CONT) != 0) { 1201 if (l->l_wchan != NULL) { 1202 l->l_stat = LSSLEEP; 1203 p->p_nrlwps++; 1204 rv = 1; 1205 break; 1206 } 1207 /* setrunnable() will release the lock. */ 1208 setrunnable(l); 1209 return 1; 1210 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1211 /* setrunnable() will release the lock. */ 1212 setrunnable(l); 1213 return 1; 1214 } 1215 break; 1216 1217 default: 1218 break; 1219 } 1220 1221 lwp_unlock(l); 1222 return rv; 1223 } 1224 1225 /* 1226 * Notify an LWP that it has a pending signal. 1227 */ 1228 void 1229 signotify(struct lwp *l) 1230 { 1231 KASSERT(lwp_locked(l, NULL)); 1232 1233 l->l_flag |= LW_PENDSIG; 1234 lwp_need_userret(l); 1235 } 1236 1237 /* 1238 * Find an LWP within process p that is waiting on signal ksi, and hand 1239 * it on. 1240 */ 1241 static int 1242 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1243 { 1244 struct lwp *l; 1245 int signo; 1246 1247 KASSERT(mutex_owned(p->p_lock)); 1248 1249 signo = ksi->ksi_signo; 1250 1251 if (ksi->ksi_lid != 0) { 1252 /* 1253 * Signal came via _lwp_kill(). Find the LWP and see if 1254 * it's interested. 1255 */ 1256 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1257 return 0; 1258 if (l->l_sigwaited == NULL || 1259 !sigismember(&l->l_sigwaitset, signo)) 1260 return 0; 1261 } else { 1262 /* 1263 * Look for any LWP that may be interested. 1264 */ 1265 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1266 KASSERT(l->l_sigwaited != NULL); 1267 if (sigismember(&l->l_sigwaitset, signo)) 1268 break; 1269 } 1270 } 1271 1272 if (l != NULL) { 1273 l->l_sigwaited->ksi_info = ksi->ksi_info; 1274 l->l_sigwaited = NULL; 1275 LIST_REMOVE(l, l_sigwaiter); 1276 cv_signal(&l->l_sigcv); 1277 return 1; 1278 } 1279 1280 return 0; 1281 } 1282 1283 /* 1284 * Send the signal to the process. If the signal has an action, the action 1285 * is usually performed by the target process rather than the caller; we add 1286 * the signal to the set of pending signals for the process. 1287 * 1288 * Exceptions: 1289 * o When a stop signal is sent to a sleeping process that takes the 1290 * default action, the process is stopped without awakening it. 1291 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1292 * regardless of the signal action (eg, blocked or ignored). 1293 * 1294 * Other ignored signals are discarded immediately. 1295 */ 1296 int 1297 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1298 { 1299 int prop, signo = ksi->ksi_signo; 1300 struct lwp *l = NULL; 1301 ksiginfo_t *kp; 1302 lwpid_t lid; 1303 sig_t action; 1304 bool toall; 1305 int error = 0; 1306 1307 KASSERT(!cpu_intr_p()); 1308 KASSERT(mutex_owned(proc_lock)); 1309 KASSERT(mutex_owned(p->p_lock)); 1310 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1311 KASSERT(signo > 0 && signo < NSIG); 1312 1313 /* 1314 * If the process is being created by fork, is a zombie or is 1315 * exiting, then just drop the signal here and bail out. 1316 */ 1317 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1318 return 0; 1319 1320 /* 1321 * Notify any interested parties of the signal. 1322 */ 1323 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1324 1325 /* 1326 * Some signals including SIGKILL must act on the entire process. 1327 */ 1328 kp = NULL; 1329 prop = sigprop[signo]; 1330 toall = ((prop & SA_TOALL) != 0); 1331 lid = toall ? 0 : ksi->ksi_lid; 1332 1333 /* 1334 * If proc is traced, always give parent a chance. 1335 */ 1336 if (p->p_slflag & PSL_TRACED) { 1337 action = SIG_DFL; 1338 1339 if (lid == 0) { 1340 /* 1341 * If the process is being traced and the signal 1342 * is being caught, make sure to save any ksiginfo. 1343 */ 1344 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1345 goto discard; 1346 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1347 goto out; 1348 } 1349 } else { 1350 1351 /* 1352 * If the signal is being ignored, then drop it. Note: we 1353 * don't set SIGCONT in ps_sigignore, and if it is set to 1354 * SIG_IGN, action will be SIG_DFL here. 1355 */ 1356 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1357 goto discard; 1358 1359 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1360 action = SIG_CATCH; 1361 else { 1362 action = SIG_DFL; 1363 1364 /* 1365 * If sending a tty stop signal to a member of an 1366 * orphaned process group, discard the signal here if 1367 * the action is default; don't stop the process below 1368 * if sleeping, and don't clear any pending SIGCONT. 1369 */ 1370 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1371 goto discard; 1372 1373 if (prop & SA_KILL && p->p_nice > NZERO) 1374 p->p_nice = NZERO; 1375 } 1376 } 1377 1378 /* 1379 * If stopping or continuing a process, discard any pending 1380 * signals that would do the inverse. 1381 */ 1382 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1383 ksiginfoq_t kq; 1384 1385 ksiginfo_queue_init(&kq); 1386 if ((prop & SA_CONT) != 0) 1387 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1388 if ((prop & SA_STOP) != 0) 1389 sigclear(&p->p_sigpend, &contsigmask, &kq); 1390 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1391 } 1392 1393 /* 1394 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1395 * please!), check if any LWPs are waiting on it. If yes, pass on 1396 * the signal info. The signal won't be processed further here. 1397 */ 1398 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1399 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1400 sigunwait(p, ksi)) 1401 goto discard; 1402 1403 /* 1404 * XXXSMP Should be allocated by the caller, we're holding locks 1405 * here. 1406 */ 1407 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1408 goto discard; 1409 1410 /* 1411 * LWP private signals are easy - just find the LWP and post 1412 * the signal to it. 1413 */ 1414 if (lid != 0) { 1415 l = lwp_find(p, lid); 1416 if (l != NULL) { 1417 if ((error = sigput(&l->l_sigpend, p, kp)) != 0) 1418 goto out; 1419 membar_producer(); 1420 if (sigpost(l, action, prop, kp->ksi_signo) != 0) 1421 signo = -1; 1422 } 1423 goto out; 1424 } 1425 1426 /* 1427 * Some signals go to all LWPs, even if posted with _lwp_kill() 1428 * or for an SA process. 1429 */ 1430 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1431 if ((p->p_slflag & PSL_TRACED) != 0) 1432 goto deliver; 1433 1434 /* 1435 * If SIGCONT is default (or ignored) and process is 1436 * asleep, we are finished; the process should not 1437 * be awakened. 1438 */ 1439 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1440 goto out; 1441 } else { 1442 /* 1443 * Process is stopped or stopping. 1444 * - If traced, then no action is needed, unless killing. 1445 * - Run the process only if sending SIGCONT or SIGKILL. 1446 */ 1447 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) { 1448 goto out; 1449 } 1450 if ((prop & SA_CONT) != 0 || signo == SIGKILL) { 1451 /* 1452 * Re-adjust p_nstopchild if the process was 1453 * stopped but not yet collected by its parent. 1454 */ 1455 if (p->p_stat == SSTOP && !p->p_waited) 1456 p->p_pptr->p_nstopchild--; 1457 p->p_stat = SACTIVE; 1458 p->p_sflag &= ~PS_STOPPING; 1459 if (p->p_slflag & PSL_TRACED) { 1460 KASSERT(signo == SIGKILL); 1461 goto deliver; 1462 } 1463 /* 1464 * Do not make signal pending if SIGCONT is default. 1465 * 1466 * If the process catches SIGCONT, let it handle the 1467 * signal itself (if waiting on event - process runs, 1468 * otherwise continues sleeping). 1469 */ 1470 if ((prop & SA_CONT) != 0) { 1471 p->p_xsig = SIGCONT; 1472 p->p_sflag |= PS_CONTINUED; 1473 child_psignal(p, 0); 1474 if (action == SIG_DFL) { 1475 KASSERT(signo != SIGKILL); 1476 goto deliver; 1477 } 1478 } 1479 } else if ((prop & SA_STOP) != 0) { 1480 /* 1481 * Already stopped, don't need to stop again. 1482 * (If we did the shell could get confused.) 1483 */ 1484 goto out; 1485 } 1486 } 1487 /* 1488 * Make signal pending. 1489 */ 1490 KASSERT((p->p_slflag & PSL_TRACED) == 0); 1491 if ((error = sigput(&p->p_sigpend, p, kp)) != 0) 1492 goto out; 1493 deliver: 1494 /* 1495 * Before we set LW_PENDSIG on any LWP, ensure that the signal is 1496 * visible on the per process list (for sigispending()). This 1497 * is unlikely to be needed in practice, but... 1498 */ 1499 membar_producer(); 1500 1501 /* 1502 * Try to find an LWP that can take the signal. 1503 */ 1504 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1505 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1506 break; 1507 } 1508 signo = -1; 1509 out: 1510 /* 1511 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1512 * with locks held. The caller should take care of this. 1513 */ 1514 ksiginfo_free(kp); 1515 if (signo == -1) 1516 return error; 1517 discard: 1518 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0); 1519 return error; 1520 } 1521 1522 void 1523 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1524 { 1525 struct proc *p = l->l_proc; 1526 1527 KASSERT(mutex_owned(p->p_lock)); 1528 (*p->p_emul->e_sendsig)(ksi, mask); 1529 } 1530 1531 /* 1532 * Stop any LWPs sleeping interruptably. 1533 */ 1534 static void 1535 proc_stop_lwps(struct proc *p) 1536 { 1537 struct lwp *l; 1538 1539 KASSERT(mutex_owned(p->p_lock)); 1540 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1541 1542 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1543 lwp_lock(l); 1544 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 1545 l->l_stat = LSSTOP; 1546 p->p_nrlwps--; 1547 } 1548 lwp_unlock(l); 1549 } 1550 } 1551 1552 /* 1553 * Finish stopping of a process. Mark it stopped and notify the parent. 1554 * 1555 * Drop p_lock briefly if ppsig is true. 1556 */ 1557 static void 1558 proc_stop_done(struct proc *p, int ppmask) 1559 { 1560 1561 KASSERT(mutex_owned(proc_lock)); 1562 KASSERT(mutex_owned(p->p_lock)); 1563 KASSERT((p->p_sflag & PS_STOPPING) != 0); 1564 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc)); 1565 1566 p->p_sflag &= ~PS_STOPPING; 1567 p->p_stat = SSTOP; 1568 p->p_waited = 0; 1569 p->p_pptr->p_nstopchild++; 1570 1571 /* child_psignal drops p_lock briefly. */ 1572 child_psignal(p, ppmask); 1573 cv_broadcast(&p->p_pptr->p_waitcv); 1574 } 1575 1576 /* 1577 * Stop the current process and switch away to the debugger notifying 1578 * an event specific to a traced process only. 1579 */ 1580 void 1581 eventswitch(int code, int pe_report_event, int entity) 1582 { 1583 struct lwp *l = curlwp; 1584 struct proc *p = l->l_proc; 1585 struct sigacts *ps; 1586 sigset_t *mask; 1587 sig_t action; 1588 ksiginfo_t ksi; 1589 const int signo = SIGTRAP; 1590 1591 KASSERT(mutex_owned(proc_lock)); 1592 KASSERT(mutex_owned(p->p_lock)); 1593 KASSERT(p->p_pptr != initproc); 1594 KASSERT(l->l_stat == LSONPROC); 1595 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 1596 KASSERT(!ISSET(l->l_flag, LW_SYSTEM)); 1597 KASSERT(p->p_nrlwps > 0); 1598 KASSERT((code == TRAP_CHLD) || (code == TRAP_LWP) || 1599 (code == TRAP_EXEC)); 1600 KASSERT((code != TRAP_CHLD) || (entity > 1)); /* prevent pid1 */ 1601 KASSERT((code != TRAP_LWP) || (entity > 0)); 1602 1603 repeat: 1604 /* 1605 * If we are exiting, demise now. 1606 * 1607 * This avoids notifying tracer and deadlocking. 1608 */ 1609 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 1610 mutex_exit(p->p_lock); 1611 mutex_exit(proc_lock); 1612 1613 if (pe_report_event == PTRACE_LWP_EXIT) { 1614 /* Avoid double lwp_exit() and panic. */ 1615 return; 1616 } 1617 1618 lwp_exit(l); 1619 panic("eventswitch"); 1620 /* NOTREACHED */ 1621 } 1622 1623 /* 1624 * If we are no longer traced, abandon this event signal. 1625 * 1626 * This avoids killing a process after detaching the debugger. 1627 */ 1628 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) { 1629 mutex_exit(p->p_lock); 1630 mutex_exit(proc_lock); 1631 return; 1632 } 1633 1634 /* 1635 * If there's a pending SIGKILL process it immediately. 1636 */ 1637 if (p->p_xsig == SIGKILL || 1638 sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 1639 mutex_exit(p->p_lock); 1640 mutex_exit(proc_lock); 1641 return; 1642 } 1643 1644 /* 1645 * The process is already stopping. 1646 */ 1647 if ((p->p_sflag & PS_STOPPING) != 0) { 1648 mutex_exit(proc_lock); 1649 sigswitch_unlock_and_switch_away(l); 1650 mutex_enter(proc_lock); 1651 mutex_enter(p->p_lock); 1652 goto repeat; 1653 } 1654 1655 KSI_INIT_TRAP(&ksi); 1656 ksi.ksi_lid = l->l_lid; 1657 ksi.ksi_signo = signo; 1658 ksi.ksi_code = code; 1659 ksi.ksi_pe_report_event = pe_report_event; 1660 1661 CTASSERT(sizeof(ksi.ksi_pe_other_pid) == sizeof(ksi.ksi_pe_lwp)); 1662 ksi.ksi_pe_other_pid = entity; 1663 1664 /* Needed for ktrace */ 1665 ps = p->p_sigacts; 1666 action = SIGACTION_PS(ps, signo).sa_handler; 1667 mask = &l->l_sigmask; 1668 1669 p->p_xsig = signo; 1670 p->p_sigctx.ps_faked = true; 1671 p->p_sigctx.ps_lwp = ksi.ksi_lid; 1672 p->p_sigctx.ps_info = ksi.ksi_info; 1673 1674 sigswitch(0, signo, true); 1675 1676 if (code == TRAP_CHLD) { 1677 mutex_enter(proc_lock); 1678 while (l->l_vforkwaiting) 1679 cv_wait(&l->l_waitcv, proc_lock); 1680 mutex_exit(proc_lock); 1681 } 1682 1683 if (ktrpoint(KTR_PSIG)) { 1684 if (p->p_emul->e_ktrpsig) 1685 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 1686 else 1687 ktrpsig(signo, action, mask, &ksi); 1688 } 1689 } 1690 1691 /* 1692 * Stop the current process and switch away when being stopped or traced. 1693 */ 1694 static void 1695 sigswitch(int ppmask, int signo, bool proc_lock_held) 1696 { 1697 struct lwp *l = curlwp; 1698 struct proc *p = l->l_proc; 1699 1700 KASSERT(mutex_owned(p->p_lock)); 1701 KASSERT(l->l_stat == LSONPROC); 1702 KASSERT(p->p_nrlwps > 0); 1703 1704 if (proc_lock_held) { 1705 KASSERT(mutex_owned(proc_lock)); 1706 } else { 1707 KASSERT(!mutex_owned(proc_lock)); 1708 } 1709 1710 /* 1711 * On entry we know that the process needs to stop. If it's 1712 * the result of a 'sideways' stop signal that has been sourced 1713 * through issignal(), then stop other LWPs in the process too. 1714 */ 1715 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1716 KASSERT(signo != 0); 1717 proc_stop(p, signo); 1718 KASSERT(p->p_nrlwps > 0); 1719 } 1720 1721 /* 1722 * If we are the last live LWP, and the stop was a result of 1723 * a new signal, then signal the parent. 1724 */ 1725 if ((p->p_sflag & PS_STOPPING) != 0) { 1726 if (!proc_lock_held && !mutex_tryenter(proc_lock)) { 1727 mutex_exit(p->p_lock); 1728 mutex_enter(proc_lock); 1729 mutex_enter(p->p_lock); 1730 } 1731 1732 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1733 /* 1734 * Note that proc_stop_done() can drop 1735 * p->p_lock briefly. 1736 */ 1737 proc_stop_done(p, ppmask); 1738 } 1739 1740 mutex_exit(proc_lock); 1741 } 1742 1743 sigswitch_unlock_and_switch_away(l); 1744 } 1745 1746 /* 1747 * Unlock and switch away. 1748 */ 1749 static void 1750 sigswitch_unlock_and_switch_away(struct lwp *l) 1751 { 1752 struct proc *p; 1753 int biglocks; 1754 1755 p = l->l_proc; 1756 1757 KASSERT(mutex_owned(p->p_lock)); 1758 KASSERT(!mutex_owned(proc_lock)); 1759 1760 KASSERT(l->l_stat == LSONPROC); 1761 KASSERT(p->p_nrlwps > 0); 1762 1763 KERNEL_UNLOCK_ALL(l, &biglocks); 1764 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1765 p->p_nrlwps--; 1766 lwp_lock(l); 1767 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1768 l->l_stat = LSSTOP; 1769 lwp_unlock(l); 1770 } 1771 1772 mutex_exit(p->p_lock); 1773 lwp_lock(l); 1774 spc_lock(l->l_cpu); 1775 mi_switch(l); 1776 KERNEL_LOCK(biglocks, l); 1777 } 1778 1779 /* 1780 * Check for a signal from the debugger. 1781 */ 1782 static int 1783 sigchecktrace(void) 1784 { 1785 struct lwp *l = curlwp; 1786 struct proc *p = l->l_proc; 1787 int signo; 1788 1789 KASSERT(mutex_owned(p->p_lock)); 1790 1791 /* If there's a pending SIGKILL, process it immediately. */ 1792 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1793 return 0; 1794 1795 /* 1796 * If we are no longer being traced, or the parent didn't 1797 * give us a signal, or we're stopping, look for more signals. 1798 */ 1799 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 || 1800 (p->p_sflag & PS_STOPPING) != 0) 1801 return 0; 1802 1803 /* 1804 * If the new signal is being masked, look for other signals. 1805 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1806 */ 1807 signo = p->p_xsig; 1808 p->p_xsig = 0; 1809 if (sigismember(&l->l_sigmask, signo)) { 1810 signo = 0; 1811 } 1812 return signo; 1813 } 1814 1815 /* 1816 * If the current process has received a signal (should be caught or cause 1817 * termination, should interrupt current syscall), return the signal number. 1818 * 1819 * Stop signals with default action are processed immediately, then cleared; 1820 * they aren't returned. This is checked after each entry to the system for 1821 * a syscall or trap. 1822 * 1823 * We will also return -1 if the process is exiting and the current LWP must 1824 * follow suit. 1825 */ 1826 int 1827 issignal(struct lwp *l) 1828 { 1829 struct proc *p; 1830 int siglwp, signo, prop; 1831 sigpend_t *sp; 1832 sigset_t ss; 1833 1834 p = l->l_proc; 1835 sp = NULL; 1836 signo = 0; 1837 1838 KASSERT(p == curproc); 1839 KASSERT(mutex_owned(p->p_lock)); 1840 1841 for (;;) { 1842 /* Discard any signals that we have decided not to take. */ 1843 if (signo != 0) { 1844 (void)sigget(sp, NULL, signo, NULL); 1845 } 1846 1847 /* 1848 * If the process is stopped/stopping, then stop ourselves 1849 * now that we're on the kernel/userspace boundary. When 1850 * we awaken, check for a signal from the debugger. 1851 */ 1852 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1853 sigswitch_unlock_and_switch_away(l); 1854 mutex_enter(p->p_lock); 1855 continue; 1856 } else if (p->p_stat == SACTIVE) 1857 signo = sigchecktrace(); 1858 else 1859 signo = 0; 1860 1861 /* Signals from the debugger are "out of band". */ 1862 sp = NULL; 1863 1864 /* 1865 * If the debugger didn't provide a signal, find a pending 1866 * signal from our set. Check per-LWP signals first, and 1867 * then per-process. 1868 */ 1869 if (signo == 0) { 1870 sp = &l->l_sigpend; 1871 ss = sp->sp_set; 1872 siglwp = l->l_lid; 1873 if ((p->p_lflag & PL_PPWAIT) != 0) 1874 sigminusset(&vforksigmask, &ss); 1875 sigminusset(&l->l_sigmask, &ss); 1876 1877 if ((signo = firstsig(&ss)) == 0) { 1878 sp = &p->p_sigpend; 1879 ss = sp->sp_set; 1880 siglwp = 0; 1881 if ((p->p_lflag & PL_PPWAIT) != 0) 1882 sigminusset(&vforksigmask, &ss); 1883 sigminusset(&l->l_sigmask, &ss); 1884 1885 if ((signo = firstsig(&ss)) == 0) { 1886 /* 1887 * No signal pending - clear the 1888 * indicator and bail out. 1889 */ 1890 lwp_lock(l); 1891 l->l_flag &= ~LW_PENDSIG; 1892 lwp_unlock(l); 1893 sp = NULL; 1894 break; 1895 } 1896 } 1897 } 1898 1899 if (sp) { 1900 /* Overwrite process' signal context to correspond 1901 * to the currently reported LWP. This is necessary 1902 * for PT_GET_SIGINFO to report the correct signal when 1903 * multiple LWPs have pending signals. We do this only 1904 * when the signal comes from the queue, for signals 1905 * created by the debugger we assume it set correct 1906 * siginfo. 1907 */ 1908 ksiginfo_t *ksi = TAILQ_FIRST(&sp->sp_info); 1909 if (ksi) { 1910 p->p_sigctx.ps_lwp = ksi->ksi_lid; 1911 p->p_sigctx.ps_info = ksi->ksi_info; 1912 } else { 1913 p->p_sigctx.ps_lwp = siglwp; 1914 memset(&p->p_sigctx.ps_info, 0, 1915 sizeof(p->p_sigctx.ps_info)); 1916 p->p_sigctx.ps_info._signo = signo; 1917 p->p_sigctx.ps_info._code = SI_NOINFO; 1918 } 1919 } 1920 1921 /* 1922 * We should see pending but ignored signals only if 1923 * we are being traced. 1924 */ 1925 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1926 (p->p_slflag & PSL_TRACED) == 0) { 1927 /* Discard the signal. */ 1928 continue; 1929 } 1930 1931 /* 1932 * If traced, always stop, and stay stopped until released 1933 * by the debugger. If the our parent is our debugger waiting 1934 * for us and we vforked, don't hang as we could deadlock. 1935 */ 1936 if (ISSET(p->p_slflag, PSL_TRACED) && signo != SIGKILL && 1937 !(ISSET(p->p_lflag, PL_PPWAIT) && 1938 (p->p_pptr == p->p_opptr))) { 1939 /* 1940 * Take the signal, but don't remove it from the 1941 * siginfo queue, because the debugger can send 1942 * it later. 1943 */ 1944 if (sp) 1945 sigdelset(&sp->sp_set, signo); 1946 p->p_xsig = signo; 1947 1948 /* Handling of signal trace */ 1949 sigswitch(0, signo, false); 1950 mutex_enter(p->p_lock); 1951 1952 /* Check for a signal from the debugger. */ 1953 if ((signo = sigchecktrace()) == 0) 1954 continue; 1955 1956 /* Signals from the debugger are "out of band". */ 1957 sp = NULL; 1958 } 1959 1960 prop = sigprop[signo]; 1961 1962 /* 1963 * Decide whether the signal should be returned. 1964 */ 1965 switch ((long)SIGACTION(p, signo).sa_handler) { 1966 case (long)SIG_DFL: 1967 /* 1968 * Don't take default actions on system processes. 1969 */ 1970 if (p->p_pid <= 1) { 1971 #ifdef DIAGNOSTIC 1972 /* 1973 * Are you sure you want to ignore SIGSEGV 1974 * in init? XXX 1975 */ 1976 printf_nolog("Process (pid %d) got sig %d\n", 1977 p->p_pid, signo); 1978 #endif 1979 continue; 1980 } 1981 1982 /* 1983 * If there is a pending stop signal to process with 1984 * default action, stop here, then clear the signal. 1985 * However, if process is member of an orphaned 1986 * process group, ignore tty stop signals. 1987 */ 1988 if (prop & SA_STOP) { 1989 /* 1990 * XXX Don't hold proc_lock for p_lflag, 1991 * but it's not a big deal. 1992 */ 1993 if ((ISSET(p->p_slflag, PSL_TRACED) && 1994 !(ISSET(p->p_lflag, PL_PPWAIT) && 1995 (p->p_pptr == p->p_opptr))) || 1996 ((p->p_lflag & PL_ORPHANPG) != 0 && 1997 prop & SA_TTYSTOP)) { 1998 /* Ignore the signal. */ 1999 continue; 2000 } 2001 /* Take the signal. */ 2002 (void)sigget(sp, NULL, signo, NULL); 2003 p->p_xsig = signo; 2004 p->p_sflag &= ~PS_CONTINUED; 2005 signo = 0; 2006 sigswitch(PS_NOCLDSTOP, p->p_xsig, false); 2007 mutex_enter(p->p_lock); 2008 } else if (prop & SA_IGNORE) { 2009 /* 2010 * Except for SIGCONT, shouldn't get here. 2011 * Default action is to ignore; drop it. 2012 */ 2013 continue; 2014 } 2015 break; 2016 2017 case (long)SIG_IGN: 2018 #ifdef DEBUG_ISSIGNAL 2019 /* 2020 * Masking above should prevent us ever trying 2021 * to take action on an ignored signal other 2022 * than SIGCONT, unless process is traced. 2023 */ 2024 if ((prop & SA_CONT) == 0 && 2025 (p->p_slflag & PSL_TRACED) == 0) 2026 printf_nolog("issignal\n"); 2027 #endif 2028 continue; 2029 2030 default: 2031 /* 2032 * This signal has an action, let postsig() process 2033 * it. 2034 */ 2035 break; 2036 } 2037 2038 break; 2039 } 2040 2041 l->l_sigpendset = sp; 2042 return signo; 2043 } 2044 2045 /* 2046 * Take the action for the specified signal 2047 * from the current set of pending signals. 2048 */ 2049 void 2050 postsig(int signo) 2051 { 2052 struct lwp *l; 2053 struct proc *p; 2054 struct sigacts *ps; 2055 sig_t action; 2056 sigset_t *returnmask; 2057 ksiginfo_t ksi; 2058 2059 l = curlwp; 2060 p = l->l_proc; 2061 ps = p->p_sigacts; 2062 2063 KASSERT(mutex_owned(p->p_lock)); 2064 KASSERT(signo > 0); 2065 2066 /* 2067 * Set the new mask value and also defer further occurrences of this 2068 * signal. 2069 * 2070 * Special case: user has done a sigsuspend. Here the current mask is 2071 * not of interest, but rather the mask from before the sigsuspend is 2072 * what we want restored after the signal processing is completed. 2073 */ 2074 if (l->l_sigrestore) { 2075 returnmask = &l->l_sigoldmask; 2076 l->l_sigrestore = 0; 2077 } else 2078 returnmask = &l->l_sigmask; 2079 2080 /* 2081 * Commit to taking the signal before releasing the mutex. 2082 */ 2083 action = SIGACTION_PS(ps, signo).sa_handler; 2084 l->l_ru.ru_nsignals++; 2085 if (l->l_sigpendset == NULL) { 2086 /* From the debugger */ 2087 if (p->p_sigctx.ps_faked && 2088 signo == p->p_sigctx.ps_info._signo) { 2089 KSI_INIT(&ksi); 2090 ksi.ksi_info = p->p_sigctx.ps_info; 2091 ksi.ksi_lid = p->p_sigctx.ps_lwp; 2092 p->p_sigctx.ps_faked = false; 2093 } else { 2094 if (!siggetinfo(&l->l_sigpend, &ksi, signo)) 2095 (void)siggetinfo(&p->p_sigpend, &ksi, signo); 2096 } 2097 } else 2098 sigget(l->l_sigpendset, &ksi, signo, NULL); 2099 2100 if (ktrpoint(KTR_PSIG)) { 2101 mutex_exit(p->p_lock); 2102 if (p->p_emul->e_ktrpsig) 2103 p->p_emul->e_ktrpsig(signo, action, 2104 returnmask, &ksi); 2105 else 2106 ktrpsig(signo, action, returnmask, &ksi); 2107 mutex_enter(p->p_lock); 2108 } 2109 2110 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0); 2111 2112 if (action == SIG_DFL) { 2113 /* 2114 * Default action, where the default is to kill 2115 * the process. (Other cases were ignored above.) 2116 */ 2117 sigexit(l, signo); 2118 return; 2119 } 2120 2121 /* 2122 * If we get here, the signal must be caught. 2123 */ 2124 #ifdef DIAGNOSTIC 2125 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 2126 panic("postsig action"); 2127 #endif 2128 2129 kpsendsig(l, &ksi, returnmask); 2130 } 2131 2132 /* 2133 * sendsig: 2134 * 2135 * Default signal delivery method for NetBSD. 2136 */ 2137 void 2138 sendsig(const struct ksiginfo *ksi, const sigset_t *mask) 2139 { 2140 struct sigacts *sa; 2141 int sig; 2142 2143 sig = ksi->ksi_signo; 2144 sa = curproc->p_sigacts; 2145 2146 switch (sa->sa_sigdesc[sig].sd_vers) { 2147 case 0: 2148 case 1: 2149 /* Compat for 1.6 and earlier. */ 2150 MODULE_HOOK_CALL_VOID(sendsig_sigcontext_16_hook, (ksi, mask), 2151 break); 2152 return; 2153 case 2: 2154 case 3: 2155 sendsig_siginfo(ksi, mask); 2156 return; 2157 default: 2158 break; 2159 } 2160 2161 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers); 2162 sigexit(curlwp, SIGILL); 2163 } 2164 2165 /* 2166 * sendsig_reset: 2167 * 2168 * Reset the signal action. Called from emulation specific sendsig() 2169 * before unlocking to deliver the signal. 2170 */ 2171 void 2172 sendsig_reset(struct lwp *l, int signo) 2173 { 2174 struct proc *p = l->l_proc; 2175 struct sigacts *ps = p->p_sigacts; 2176 2177 KASSERT(mutex_owned(p->p_lock)); 2178 2179 p->p_sigctx.ps_lwp = 0; 2180 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2181 2182 mutex_enter(&ps->sa_mutex); 2183 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 2184 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 2185 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 2186 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 2187 sigaddset(&p->p_sigctx.ps_sigignore, signo); 2188 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 2189 } 2190 mutex_exit(&ps->sa_mutex); 2191 } 2192 2193 /* 2194 * Kill the current process for stated reason. 2195 */ 2196 void 2197 killproc(struct proc *p, const char *why) 2198 { 2199 2200 KASSERT(mutex_owned(proc_lock)); 2201 2202 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 2203 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 2204 psignal(p, SIGKILL); 2205 } 2206 2207 /* 2208 * Force the current process to exit with the specified signal, dumping core 2209 * if appropriate. We bypass the normal tests for masked and caught 2210 * signals, allowing unrecoverable failures to terminate the process without 2211 * changing signal state. Mark the accounting record with the signal 2212 * termination. If dumping core, save the signal number for the debugger. 2213 * Calls exit and does not return. 2214 */ 2215 void 2216 sigexit(struct lwp *l, int signo) 2217 { 2218 int exitsig, error, docore; 2219 struct proc *p; 2220 struct lwp *t; 2221 2222 p = l->l_proc; 2223 2224 KASSERT(mutex_owned(p->p_lock)); 2225 KERNEL_UNLOCK_ALL(l, NULL); 2226 2227 /* 2228 * Don't permit coredump() multiple times in the same process. 2229 * Call back into sigexit, where we will be suspended until 2230 * the deed is done. Note that this is a recursive call, but 2231 * LW_WCORE will prevent us from coming back this way. 2232 */ 2233 if ((p->p_sflag & PS_WCORE) != 0) { 2234 lwp_lock(l); 2235 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 2236 lwp_unlock(l); 2237 mutex_exit(p->p_lock); 2238 lwp_userret(l); 2239 panic("sigexit 1"); 2240 /* NOTREACHED */ 2241 } 2242 2243 /* If process is already on the way out, then bail now. */ 2244 if ((p->p_sflag & PS_WEXIT) != 0) { 2245 mutex_exit(p->p_lock); 2246 lwp_exit(l); 2247 panic("sigexit 2"); 2248 /* NOTREACHED */ 2249 } 2250 2251 /* 2252 * Prepare all other LWPs for exit. If dumping core, suspend them 2253 * so that their registers are available long enough to be dumped. 2254 */ 2255 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 2256 p->p_sflag |= PS_WCORE; 2257 for (;;) { 2258 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 2259 lwp_lock(t); 2260 if (t == l) { 2261 t->l_flag &= 2262 ~(LW_WSUSPEND | LW_DBGSUSPEND); 2263 lwp_unlock(t); 2264 continue; 2265 } 2266 t->l_flag |= (LW_WCORE | LW_WEXIT); 2267 lwp_suspend(l, t); 2268 } 2269 2270 if (p->p_nrlwps == 1) 2271 break; 2272 2273 /* 2274 * Kick any LWPs sitting in lwp_wait1(), and wait 2275 * for everyone else to stop before proceeding. 2276 */ 2277 p->p_nlwpwait++; 2278 cv_broadcast(&p->p_lwpcv); 2279 cv_wait(&p->p_lwpcv, p->p_lock); 2280 p->p_nlwpwait--; 2281 } 2282 } 2283 2284 exitsig = signo; 2285 p->p_acflag |= AXSIG; 2286 memset(&p->p_sigctx.ps_info, 0, sizeof(p->p_sigctx.ps_info)); 2287 p->p_sigctx.ps_info._signo = signo; 2288 p->p_sigctx.ps_info._code = SI_NOINFO; 2289 2290 if (docore) { 2291 mutex_exit(p->p_lock); 2292 MODULE_HOOK_CALL(coredump_hook, (l, NULL), enosys(), error); 2293 2294 if (kern_logsigexit) { 2295 int uid = l->l_cred ? 2296 (int)kauth_cred_geteuid(l->l_cred) : -1; 2297 2298 if (error) 2299 log(LOG_INFO, lognocoredump, p->p_pid, 2300 p->p_comm, uid, signo, error); 2301 else 2302 log(LOG_INFO, logcoredump, p->p_pid, 2303 p->p_comm, uid, signo); 2304 } 2305 2306 #ifdef PAX_SEGVGUARD 2307 rw_enter(&exec_lock, RW_WRITER); 2308 pax_segvguard(l, p->p_textvp, p->p_comm, true); 2309 rw_exit(&exec_lock); 2310 #endif /* PAX_SEGVGUARD */ 2311 2312 /* Acquire the sched state mutex. exit1() will release it. */ 2313 mutex_enter(p->p_lock); 2314 if (error == 0) 2315 p->p_sflag |= PS_COREDUMP; 2316 } 2317 2318 /* No longer dumping core. */ 2319 p->p_sflag &= ~PS_WCORE; 2320 2321 exit1(l, 0, exitsig); 2322 /* NOTREACHED */ 2323 } 2324 2325 /* 2326 * Many emulations have a common coredump_netbsd() established as their 2327 * dump routine. Since the "real" code may (or may not) be present in 2328 * loadable module, we provide a routine here which calls the module 2329 * hook. 2330 */ 2331 2332 int 2333 coredump_netbsd(struct lwp *l, struct coredump_iostate *iocookie) 2334 { 2335 int retval; 2336 2337 MODULE_HOOK_CALL(coredump_netbsd_hook, (l, iocookie), ENOSYS, retval); 2338 return retval; 2339 } 2340 2341 /* 2342 * Put process 'p' into the stopped state and optionally, notify the parent. 2343 */ 2344 void 2345 proc_stop(struct proc *p, int signo) 2346 { 2347 struct lwp *l; 2348 2349 KASSERT(mutex_owned(p->p_lock)); 2350 2351 /* 2352 * First off, set the stopping indicator and bring all sleeping 2353 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 2354 * unlock between here and the p->p_nrlwps check below. 2355 */ 2356 p->p_sflag |= PS_STOPPING; 2357 membar_producer(); 2358 2359 proc_stop_lwps(p); 2360 2361 /* 2362 * If there are no LWPs available to take the signal, then we 2363 * signal the parent process immediately. Otherwise, the last 2364 * LWP to stop will take care of it. 2365 */ 2366 2367 if (p->p_nrlwps == 0) { 2368 proc_stop_done(p, PS_NOCLDSTOP); 2369 } else { 2370 /* 2371 * Have the remaining LWPs come to a halt, and trigger 2372 * proc_stop_callout() to ensure that they do. 2373 */ 2374 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2375 sigpost(l, SIG_DFL, SA_STOP, signo); 2376 } 2377 callout_schedule(&proc_stop_ch, 1); 2378 } 2379 } 2380 2381 /* 2382 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2383 * but wait for them to come to a halt at the kernel-user boundary. This is 2384 * to allow LWPs to release any locks that they may hold before stopping. 2385 * 2386 * Non-interruptable sleeps can be long, and there is the potential for an 2387 * LWP to begin sleeping interruptably soon after the process has been set 2388 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2389 * stopping, and so complete halt of the process and the return of status 2390 * information to the parent could be delayed indefinitely. 2391 * 2392 * To handle this race, proc_stop_callout() runs once per tick while there 2393 * are stopping processes in the system. It sets LWPs that are sleeping 2394 * interruptably into the LSSTOP state. 2395 * 2396 * Note that we are not concerned about keeping all LWPs stopped while the 2397 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2398 * What we do need to ensure is that all LWPs in a stopping process have 2399 * stopped at least once, so that notification can be sent to the parent 2400 * process. 2401 */ 2402 static void 2403 proc_stop_callout(void *cookie) 2404 { 2405 bool more, restart; 2406 struct proc *p; 2407 2408 (void)cookie; 2409 2410 do { 2411 restart = false; 2412 more = false; 2413 2414 mutex_enter(proc_lock); 2415 PROCLIST_FOREACH(p, &allproc) { 2416 mutex_enter(p->p_lock); 2417 2418 if ((p->p_sflag & PS_STOPPING) == 0) { 2419 mutex_exit(p->p_lock); 2420 continue; 2421 } 2422 2423 /* Stop any LWPs sleeping interruptably. */ 2424 proc_stop_lwps(p); 2425 if (p->p_nrlwps == 0) { 2426 /* 2427 * We brought the process to a halt. 2428 * Mark it as stopped and notify the 2429 * parent. 2430 * 2431 * Note that proc_stop_done() will 2432 * drop p->p_lock briefly. 2433 * Arrange to restart and check 2434 * all processes again. 2435 */ 2436 restart = true; 2437 proc_stop_done(p, PS_NOCLDSTOP); 2438 } else 2439 more = true; 2440 2441 mutex_exit(p->p_lock); 2442 if (restart) 2443 break; 2444 } 2445 mutex_exit(proc_lock); 2446 } while (restart); 2447 2448 /* 2449 * If we noted processes that are stopping but still have 2450 * running LWPs, then arrange to check again in 1 tick. 2451 */ 2452 if (more) 2453 callout_schedule(&proc_stop_ch, 1); 2454 } 2455 2456 /* 2457 * Given a process in state SSTOP, set the state back to SACTIVE and 2458 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2459 */ 2460 void 2461 proc_unstop(struct proc *p) 2462 { 2463 struct lwp *l; 2464 int sig; 2465 2466 KASSERT(mutex_owned(proc_lock)); 2467 KASSERT(mutex_owned(p->p_lock)); 2468 2469 p->p_stat = SACTIVE; 2470 p->p_sflag &= ~PS_STOPPING; 2471 sig = p->p_xsig; 2472 2473 if (!p->p_waited) 2474 p->p_pptr->p_nstopchild--; 2475 2476 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2477 lwp_lock(l); 2478 if (l->l_stat != LSSTOP || (l->l_flag & LW_DBGSUSPEND) != 0) { 2479 lwp_unlock(l); 2480 continue; 2481 } 2482 if (l->l_wchan == NULL) { 2483 setrunnable(l); 2484 continue; 2485 } 2486 if (sig && (l->l_flag & LW_SINTR) != 0) { 2487 setrunnable(l); 2488 sig = 0; 2489 } else { 2490 l->l_stat = LSSLEEP; 2491 p->p_nrlwps++; 2492 lwp_unlock(l); 2493 } 2494 } 2495 } 2496 2497 void 2498 proc_stoptrace(int trapno, int sysnum, const register_t args[], 2499 const register_t *ret, int error) 2500 { 2501 struct lwp *l = curlwp; 2502 struct proc *p = l->l_proc; 2503 struct sigacts *ps; 2504 sigset_t *mask; 2505 sig_t action; 2506 ksiginfo_t ksi; 2507 size_t i, sy_narg; 2508 const int signo = SIGTRAP; 2509 2510 KASSERT((trapno == TRAP_SCE) || (trapno == TRAP_SCX)); 2511 KASSERT(p->p_pptr != initproc); 2512 KASSERT(ISSET(p->p_slflag, PSL_TRACED)); 2513 KASSERT(ISSET(p->p_slflag, PSL_SYSCALL)); 2514 2515 sy_narg = p->p_emul->e_sysent[sysnum].sy_narg; 2516 2517 KSI_INIT_TRAP(&ksi); 2518 ksi.ksi_lid = l->l_lid; 2519 ksi.ksi_signo = signo; 2520 ksi.ksi_code = trapno; 2521 2522 ksi.ksi_sysnum = sysnum; 2523 if (trapno == TRAP_SCE) { 2524 ksi.ksi_retval[0] = 0; 2525 ksi.ksi_retval[1] = 0; 2526 ksi.ksi_error = 0; 2527 } else { 2528 ksi.ksi_retval[0] = ret[0]; 2529 ksi.ksi_retval[1] = ret[1]; 2530 ksi.ksi_error = error; 2531 } 2532 2533 memset(ksi.ksi_args, 0, sizeof(ksi.ksi_args)); 2534 2535 for (i = 0; i < sy_narg; i++) 2536 ksi.ksi_args[i] = args[i]; 2537 2538 mutex_enter(p->p_lock); 2539 2540 repeat: 2541 /* 2542 * If we are exiting, demise now. 2543 * 2544 * This avoids notifying tracer and deadlocking. 2545 */ 2546 if (__predict_false(ISSET(p->p_sflag, PS_WEXIT))) { 2547 mutex_exit(p->p_lock); 2548 lwp_exit(l); 2549 panic("proc_stoptrace"); 2550 /* NOTREACHED */ 2551 } 2552 2553 /* 2554 * If there's a pending SIGKILL process it immediately. 2555 */ 2556 if (p->p_xsig == SIGKILL || 2557 sigismember(&p->p_sigpend.sp_set, SIGKILL)) { 2558 mutex_exit(p->p_lock); 2559 return; 2560 } 2561 2562 /* 2563 * If we are no longer traced, abandon this event signal. 2564 * 2565 * This avoids killing a process after detaching the debugger. 2566 */ 2567 if (__predict_false(!ISSET(p->p_slflag, PSL_TRACED))) { 2568 mutex_exit(p->p_lock); 2569 return; 2570 } 2571 2572 /* 2573 * The process is already stopping. 2574 */ 2575 if ((p->p_sflag & PS_STOPPING) != 0) { 2576 sigswitch_unlock_and_switch_away(l); 2577 mutex_enter(p->p_lock); 2578 goto repeat; 2579 } 2580 2581 /* Needed for ktrace */ 2582 ps = p->p_sigacts; 2583 action = SIGACTION_PS(ps, signo).sa_handler; 2584 mask = &l->l_sigmask; 2585 2586 p->p_xsig = signo; 2587 p->p_sigctx.ps_lwp = ksi.ksi_lid; 2588 p->p_sigctx.ps_info = ksi.ksi_info; 2589 sigswitch(0, signo, false); 2590 2591 if (ktrpoint(KTR_PSIG)) { 2592 if (p->p_emul->e_ktrpsig) 2593 p->p_emul->e_ktrpsig(signo, action, mask, &ksi); 2594 else 2595 ktrpsig(signo, action, mask, &ksi); 2596 } 2597 } 2598 2599 static int 2600 filt_sigattach(struct knote *kn) 2601 { 2602 struct proc *p = curproc; 2603 2604 kn->kn_obj = p; 2605 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2606 2607 mutex_enter(p->p_lock); 2608 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2609 mutex_exit(p->p_lock); 2610 2611 return 0; 2612 } 2613 2614 static void 2615 filt_sigdetach(struct knote *kn) 2616 { 2617 struct proc *p = kn->kn_obj; 2618 2619 mutex_enter(p->p_lock); 2620 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2621 mutex_exit(p->p_lock); 2622 } 2623 2624 /* 2625 * Signal knotes are shared with proc knotes, so we apply a mask to 2626 * the hint in order to differentiate them from process hints. This 2627 * could be avoided by using a signal-specific knote list, but probably 2628 * isn't worth the trouble. 2629 */ 2630 static int 2631 filt_signal(struct knote *kn, long hint) 2632 { 2633 2634 if (hint & NOTE_SIGNAL) { 2635 hint &= ~NOTE_SIGNAL; 2636 2637 if (kn->kn_id == hint) 2638 kn->kn_data++; 2639 } 2640 return (kn->kn_data != 0); 2641 } 2642 2643 const struct filterops sig_filtops = { 2644 .f_isfd = 0, 2645 .f_attach = filt_sigattach, 2646 .f_detach = filt_sigdetach, 2647 .f_event = filt_signal, 2648 }; 2649