xref: /netbsd-src/sys/kern/kern_sig.c (revision 2de962bd804263c16657f586aa00f1704045df8e)
1 /*	$NetBSD: kern_sig.c,v 1.284 2008/05/19 17:06:02 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.284 2008/05/19 17:06:02 ad Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 
77 #define	SIGPROP		/* include signal properties table */
78 #include <sys/param.h>
79 #include <sys/signalvar.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/wait.h>
83 #include <sys/ktrace.h>
84 #include <sys/syslog.h>
85 #include <sys/filedesc.h>
86 #include <sys/file.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/exec.h>
91 #include <sys/kauth.h>
92 #include <sys/acct.h>
93 #include <sys/callout.h>
94 #include <sys/atomic.h>
95 #include <sys/cpu.h>
96 
97 #ifdef PAX_SEGVGUARD
98 #include <sys/pax.h>
99 #endif /* PAX_SEGVGUARD */
100 
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103 
104 static void	ksiginfo_exechook(struct proc *, void *);
105 static void	proc_stop_callout(void *);
106 
107 int	sigunwait(struct proc *, const ksiginfo_t *);
108 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
109 int	sigpost(struct lwp *, sig_t, int, int);
110 int	sigchecktrace(sigpend_t **);
111 void	sigswitch(bool, int, int);
112 void	sigrealloc(ksiginfo_t *);
113 
114 sigset_t	contsigmask, stopsigmask, sigcantmask;
115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
116 static void	sigacts_poolpage_free(struct pool *, void *);
117 static void	*sigacts_poolpage_alloc(struct pool *, int);
118 static callout_t proc_stop_ch;
119 
120 static struct pool_allocator sigactspool_allocator = {
121         .pa_alloc = sigacts_poolpage_alloc,
122 	.pa_free = sigacts_poolpage_free,
123 };
124 
125 #ifdef DEBUG
126 int	kern_logsigexit = 1;
127 #else
128 int	kern_logsigexit = 0;
129 #endif
130 
131 static	const char logcoredump[] =
132     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
133 static	const char lognocoredump[] =
134     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
135 
136 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
137     &pool_allocator_nointr, IPL_NONE);
138 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
139     NULL, IPL_VM);
140 
141 /*
142  * signal_init:
143  *
144  * 	Initialize global signal-related data structures.
145  */
146 void
147 signal_init(void)
148 {
149 
150 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
151 
152 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
153 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
154 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
155 
156 	exechook_establish(ksiginfo_exechook, NULL);
157 
158 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
159 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
160 }
161 
162 /*
163  * sigacts_poolpage_alloc:
164  *
165  *	 Allocate a page for the sigacts memory pool.
166  */
167 static void *
168 sigacts_poolpage_alloc(struct pool *pp, int flags)
169 {
170 
171 	return (void *)uvm_km_alloc(kernel_map,
172 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
173 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
174 	    | UVM_KMF_WIRED);
175 }
176 
177 /*
178  * sigacts_poolpage_free:
179  *
180  *	 Free a page on behalf of the sigacts memory pool.
181  */
182 static void
183 sigacts_poolpage_free(struct pool *pp, void *v)
184 {
185 
186         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
187 }
188 
189 /*
190  * sigactsinit:
191  *
192  *	 Create an initial sigctx structure, using the same signal state as
193  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
194  *	 copy it from parent.
195  */
196 struct sigacts *
197 sigactsinit(struct proc *pp, int share)
198 {
199 	struct sigacts *ps, *ps2;
200 
201 	ps = pp->p_sigacts;
202 
203 	if (share) {
204 		atomic_inc_uint(&ps->sa_refcnt);
205 		ps2 = ps;
206 	} else {
207 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
208 		/* XXXAD get rid of this */
209 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
210 		mutex_enter(&ps->sa_mutex);
211 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
212 		    sizeof(ps2->sa_sigdesc));
213 		mutex_exit(&ps->sa_mutex);
214 		ps2->sa_refcnt = 1;
215 	}
216 
217 	return ps2;
218 }
219 
220 /*
221  * sigactsunshare:
222  *
223  *	Make this process not share its sigctx, maintaining all
224  *	signal state.
225  */
226 void
227 sigactsunshare(struct proc *p)
228 {
229 	struct sigacts *ps, *oldps;
230 
231 	oldps = p->p_sigacts;
232 	if (oldps->sa_refcnt == 1)
233 		return;
234 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
235 	/* XXXAD get rid of this */
236 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
237 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
238 	p->p_sigacts = ps;
239 	sigactsfree(oldps);
240 }
241 
242 /*
243  * sigactsfree;
244  *
245  *	Release a sigctx structure.
246  */
247 void
248 sigactsfree(struct sigacts *ps)
249 {
250 
251 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
252 		mutex_destroy(&ps->sa_mutex);
253 		pool_cache_put(sigacts_cache, ps);
254 	}
255 }
256 
257 /*
258  * siginit:
259  *
260  *	Initialize signal state for process 0; set to ignore signals that
261  *	are ignored by default and disable the signal stack.  Locking not
262  *	required as the system is still cold.
263  */
264 void
265 siginit(struct proc *p)
266 {
267 	struct lwp *l;
268 	struct sigacts *ps;
269 	int signo, prop;
270 
271 	ps = p->p_sigacts;
272 	sigemptyset(&contsigmask);
273 	sigemptyset(&stopsigmask);
274 	sigemptyset(&sigcantmask);
275 	for (signo = 1; signo < NSIG; signo++) {
276 		prop = sigprop[signo];
277 		if (prop & SA_CONT)
278 			sigaddset(&contsigmask, signo);
279 		if (prop & SA_STOP)
280 			sigaddset(&stopsigmask, signo);
281 		if (prop & SA_CANTMASK)
282 			sigaddset(&sigcantmask, signo);
283 		if (prop & SA_IGNORE && signo != SIGCONT)
284 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
285 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
286 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
287 	}
288 	sigemptyset(&p->p_sigctx.ps_sigcatch);
289 	p->p_sflag &= ~PS_NOCLDSTOP;
290 
291 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
292 	sigemptyset(&p->p_sigpend.sp_set);
293 
294 	/*
295 	 * Reset per LWP state.
296 	 */
297 	l = LIST_FIRST(&p->p_lwps);
298 	l->l_sigwaited = NULL;
299 	l->l_sigstk.ss_flags = SS_DISABLE;
300 	l->l_sigstk.ss_size = 0;
301 	l->l_sigstk.ss_sp = 0;
302 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
303 	sigemptyset(&l->l_sigpend.sp_set);
304 
305 	/* One reference. */
306 	ps->sa_refcnt = 1;
307 }
308 
309 /*
310  * execsigs:
311  *
312  *	Reset signals for an exec of the specified process.
313  */
314 void
315 execsigs(struct proc *p)
316 {
317 	struct sigacts *ps;
318 	struct lwp *l;
319 	int signo, prop;
320 	sigset_t tset;
321 	ksiginfoq_t kq;
322 
323 	KASSERT(p->p_nlwps == 1);
324 
325 	sigactsunshare(p);
326 	ps = p->p_sigacts;
327 
328 	/*
329 	 * Reset caught signals.  Held signals remain held through
330 	 * l->l_sigmask (unless they were caught, and are now ignored
331 	 * by default).
332 	 *
333 	 * No need to lock yet, the process has only one LWP and
334 	 * at this point the sigacts are private to the process.
335 	 */
336 	sigemptyset(&tset);
337 	for (signo = 1; signo < NSIG; signo++) {
338 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
339 			prop = sigprop[signo];
340 			if (prop & SA_IGNORE) {
341 				if ((prop & SA_CONT) == 0)
342 					sigaddset(&p->p_sigctx.ps_sigignore,
343 					    signo);
344 				sigaddset(&tset, signo);
345 			}
346 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
347 		}
348 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
349 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
350 	}
351 	ksiginfo_queue_init(&kq);
352 
353 	mutex_enter(p->p_lock);
354 	sigclearall(p, &tset, &kq);
355 	sigemptyset(&p->p_sigctx.ps_sigcatch);
356 
357 	/*
358 	 * Reset no zombies if child dies flag as Solaris does.
359 	 */
360 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
361 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
362 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
363 
364 	/*
365 	 * Reset per-LWP state.
366 	 */
367 	l = LIST_FIRST(&p->p_lwps);
368 	l->l_sigwaited = NULL;
369 	l->l_sigstk.ss_flags = SS_DISABLE;
370 	l->l_sigstk.ss_size = 0;
371 	l->l_sigstk.ss_sp = 0;
372 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
373 	sigemptyset(&l->l_sigpend.sp_set);
374 	mutex_exit(p->p_lock);
375 
376 	ksiginfo_queue_drain(&kq);
377 }
378 
379 /*
380  * ksiginfo_exechook:
381  *
382  *	Free all pending ksiginfo entries from a process on exec.
383  *	Additionally, drain any unused ksiginfo structures in the
384  *	system back to the pool.
385  *
386  *	XXX This should not be a hook, every process has signals.
387  */
388 static void
389 ksiginfo_exechook(struct proc *p, void *v)
390 {
391 	ksiginfoq_t kq;
392 
393 	ksiginfo_queue_init(&kq);
394 
395 	mutex_enter(p->p_lock);
396 	sigclearall(p, NULL, &kq);
397 	mutex_exit(p->p_lock);
398 
399 	ksiginfo_queue_drain(&kq);
400 }
401 
402 /*
403  * ksiginfo_alloc:
404  *
405  *	Allocate a new ksiginfo structure from the pool, and optionally copy
406  *	an existing one.  If the existing ksiginfo_t is from the pool, and
407  *	has not been queued somewhere, then just return it.  Additionally,
408  *	if the existing ksiginfo_t does not contain any information beyond
409  *	the signal number, then just return it.
410  */
411 ksiginfo_t *
412 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
413 {
414 	ksiginfo_t *kp;
415 
416 	if (ok != NULL) {
417 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
418 		    KSI_FROMPOOL)
419 		    	return ok;
420 		if (KSI_EMPTY_P(ok))
421 			return ok;
422 	}
423 
424 	kp = pool_get(&ksiginfo_pool, flags);
425 	if (kp == NULL) {
426 #ifdef DIAGNOSTIC
427 		printf("Out of memory allocating ksiginfo for pid %d\n",
428 		    p->p_pid);
429 #endif
430 		return NULL;
431 	}
432 
433 	if (ok != NULL) {
434 		memcpy(kp, ok, sizeof(*kp));
435 		kp->ksi_flags &= ~KSI_QUEUED;
436 	} else
437 		KSI_INIT_EMPTY(kp);
438 
439 	kp->ksi_flags |= KSI_FROMPOOL;
440 
441 	return kp;
442 }
443 
444 /*
445  * ksiginfo_free:
446  *
447  *	If the given ksiginfo_t is from the pool and has not been queued,
448  *	then free it.
449  */
450 void
451 ksiginfo_free(ksiginfo_t *kp)
452 {
453 
454 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
455 		return;
456 	pool_put(&ksiginfo_pool, kp);
457 }
458 
459 /*
460  * ksiginfo_queue_drain:
461  *
462  *	Drain a non-empty ksiginfo_t queue.
463  */
464 void
465 ksiginfo_queue_drain0(ksiginfoq_t *kq)
466 {
467 	ksiginfo_t *ksi;
468 
469 	KASSERT(!CIRCLEQ_EMPTY(kq));
470 
471 	while (!CIRCLEQ_EMPTY(kq)) {
472 		ksi = CIRCLEQ_FIRST(kq);
473 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
474 		pool_put(&ksiginfo_pool, ksi);
475 	}
476 }
477 
478 /*
479  * sigget:
480  *
481  *	Fetch the first pending signal from a set.  Optionally, also fetch
482  *	or manufacture a ksiginfo element.  Returns the number of the first
483  *	pending signal, or zero.
484  */
485 int
486 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
487 {
488         ksiginfo_t *ksi;
489 	sigset_t tset;
490 
491 	/* If there's no pending set, the signal is from the debugger. */
492 	if (sp == NULL) {
493 		if (out != NULL) {
494 			KSI_INIT(out);
495 			out->ksi_info._signo = signo;
496 			out->ksi_info._code = SI_USER;
497 		}
498 		return signo;
499 	}
500 
501 	/* Construct mask from signo, and 'mask'. */
502 	if (signo == 0) {
503 		if (mask != NULL) {
504 			tset = *mask;
505 			__sigandset(&sp->sp_set, &tset);
506 		} else
507 			tset = sp->sp_set;
508 
509 		/* If there are no signals pending, that's it. */
510 		if ((signo = firstsig(&tset)) == 0)
511 			return 0;
512 	} else {
513 		KASSERT(sigismember(&sp->sp_set, signo));
514 	}
515 
516 	sigdelset(&sp->sp_set, signo);
517 
518 	/* Find siginfo and copy it out. */
519 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
520 		if (ksi->ksi_signo == signo) {
521 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
522 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
523 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
524 			ksi->ksi_flags &= ~KSI_QUEUED;
525 			if (out != NULL) {
526 				memcpy(out, ksi, sizeof(*out));
527 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
528 			}
529 			ksiginfo_free(ksi);
530 			return signo;
531 		}
532 	}
533 
534 	/* If there's no siginfo, then manufacture it. */
535 	if (out != NULL) {
536 		KSI_INIT(out);
537 		out->ksi_info._signo = signo;
538 		out->ksi_info._code = SI_USER;
539 	}
540 
541 	return signo;
542 }
543 
544 /*
545  * sigput:
546  *
547  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
548  *	we need to (e.g. SA_SIGINFO was requested).
549  */
550 void
551 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
552 {
553 	ksiginfo_t *kp;
554 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
555 
556 	KASSERT(mutex_owned(p->p_lock));
557 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
558 
559 	sigaddset(&sp->sp_set, ksi->ksi_signo);
560 
561 	/*
562 	 * If siginfo is not required, or there is none, then just mark the
563 	 * signal as pending.
564 	 */
565 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
566 		return;
567 
568 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
569 
570 #ifdef notyet	/* XXX: QUEUING */
571 	if (ksi->ksi_signo < SIGRTMIN)
572 #endif
573 	{
574 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
575 			if (kp->ksi_signo == ksi->ksi_signo) {
576 				KSI_COPY(ksi, kp);
577 				kp->ksi_flags |= KSI_QUEUED;
578 				return;
579 			}
580 		}
581 	}
582 
583 	ksi->ksi_flags |= KSI_QUEUED;
584 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
585 }
586 
587 /*
588  * sigclear:
589  *
590  *	Clear all pending signals in the specified set.
591  */
592 void
593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
594 {
595 	ksiginfo_t *ksi, *next;
596 
597 	if (mask == NULL)
598 		sigemptyset(&sp->sp_set);
599 	else
600 		sigminusset(mask, &sp->sp_set);
601 
602 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
603 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
604 		next = CIRCLEQ_NEXT(ksi, ksi_list);
605 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
606 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
607 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
608 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
609 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
610 		}
611 	}
612 }
613 
614 /*
615  * sigclearall:
616  *
617  *	Clear all pending signals in the specified set from a process and
618  *	its LWPs.
619  */
620 void
621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
622 {
623 	struct lwp *l;
624 
625 	KASSERT(mutex_owned(p->p_lock));
626 
627 	sigclear(&p->p_sigpend, mask, kq);
628 
629 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 		sigclear(&l->l_sigpend, mask, kq);
631 	}
632 }
633 
634 /*
635  * sigispending:
636  *
637  *	Return true if there are pending signals for the current LWP.  May
638  *	be called unlocked provided that LW_PENDSIG is set, and that the
639  *	signal has been posted to the appopriate queue before LW_PENDSIG is
640  *	set.
641  */
642 int
643 sigispending(struct lwp *l, int signo)
644 {
645 	struct proc *p = l->l_proc;
646 	sigset_t tset;
647 
648 	membar_consumer();
649 
650 	tset = l->l_sigpend.sp_set;
651 	sigplusset(&p->p_sigpend.sp_set, &tset);
652 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
653 	sigminusset(&l->l_sigmask, &tset);
654 
655 	if (signo == 0) {
656 		if (firstsig(&tset) != 0)
657 			return EINTR;
658 	} else if (sigismember(&tset, signo))
659 		return EINTR;
660 
661 	return 0;
662 }
663 
664 /*
665  * siginfo_alloc:
666  *
667  *	 Allocate a new siginfo_t structure from the pool.
668  */
669 siginfo_t *
670 siginfo_alloc(int flags)
671 {
672 
673 	return pool_get(&siginfo_pool, flags);
674 }
675 
676 /*
677  * siginfo_free:
678  *
679  *	 Return a siginfo_t structure to the pool.
680  */
681 void
682 siginfo_free(void *arg)
683 {
684 
685 	pool_put(&siginfo_pool, arg);
686 }
687 
688 void
689 getucontext(struct lwp *l, ucontext_t *ucp)
690 {
691 	struct proc *p = l->l_proc;
692 
693 	KASSERT(mutex_owned(p->p_lock));
694 
695 	ucp->uc_flags = 0;
696 	ucp->uc_link = l->l_ctxlink;
697 
698 	ucp->uc_sigmask = l->l_sigmask;
699 	ucp->uc_flags |= _UC_SIGMASK;
700 
701 	/*
702 	 * The (unsupplied) definition of the `current execution stack'
703 	 * in the System V Interface Definition appears to allow returning
704 	 * the main context stack.
705 	 */
706 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
707 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
708 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
709 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
710 	} else {
711 		/* Simply copy alternate signal execution stack. */
712 		ucp->uc_stack = l->l_sigstk;
713 	}
714 	ucp->uc_flags |= _UC_STACK;
715 	mutex_exit(p->p_lock);
716 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
717 	mutex_enter(p->p_lock);
718 }
719 
720 int
721 setucontext(struct lwp *l, const ucontext_t *ucp)
722 {
723 	struct proc *p = l->l_proc;
724 	int error;
725 
726 	KASSERT(mutex_owned(p->p_lock));
727 
728 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
729 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
730 		if (error != 0)
731 			return error;
732 	}
733 
734 	mutex_exit(p->p_lock);
735 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
736 	mutex_enter(p->p_lock);
737 	if (error != 0)
738 		return (error);
739 
740 	l->l_ctxlink = ucp->uc_link;
741 
742 	/*
743 	 * If there was stack information, update whether or not we are
744 	 * still running on an alternate signal stack.
745 	 */
746 	if ((ucp->uc_flags & _UC_STACK) != 0) {
747 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
748 			l->l_sigstk.ss_flags |= SS_ONSTACK;
749 		else
750 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
751 	}
752 
753 	return 0;
754 }
755 
756 /*
757  * Common code for kill process group/broadcast kill.  cp is calling
758  * process.
759  */
760 int
761 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
762 {
763 	struct proc	*p, *cp;
764 	kauth_cred_t	pc;
765 	struct pgrp	*pgrp;
766 	int		nfound;
767 	int		signo = ksi->ksi_signo;
768 
769 	cp = l->l_proc;
770 	pc = l->l_cred;
771 	nfound = 0;
772 
773 	mutex_enter(proc_lock);
774 	if (all) {
775 		/*
776 		 * broadcast
777 		 */
778 		PROCLIST_FOREACH(p, &allproc) {
779 			if (p->p_pid <= 1 || p == cp ||
780 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
781 				continue;
782 			mutex_enter(p->p_lock);
783 			if (kauth_authorize_process(pc,
784 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
785 			    NULL) == 0) {
786 				nfound++;
787 				if (signo)
788 					kpsignal2(p, ksi);
789 			}
790 			mutex_exit(p->p_lock);
791 		}
792 	} else {
793 		if (pgid == 0)
794 			/*
795 			 * zero pgid means send to my process group.
796 			 */
797 			pgrp = cp->p_pgrp;
798 		else {
799 			pgrp = pg_find(pgid, PFIND_LOCKED);
800 			if (pgrp == NULL)
801 				goto out;
802 		}
803 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
804 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
805 				continue;
806 			mutex_enter(p->p_lock);
807 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
808 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
809 				nfound++;
810 				if (signo && P_ZOMBIE(p) == 0)
811 					kpsignal2(p, ksi);
812 			}
813 			mutex_exit(p->p_lock);
814 		}
815 	}
816   out:
817 	mutex_exit(proc_lock);
818 	return (nfound ? 0 : ESRCH);
819 }
820 
821 /*
822  * Send a signal to a process group. If checktty is 1, limit to members
823  * which have a controlling terminal.
824  */
825 void
826 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
827 {
828 	ksiginfo_t ksi;
829 
830 	KASSERT(!cpu_intr_p());
831 	KASSERT(mutex_owned(proc_lock));
832 
833 	KSI_INIT_EMPTY(&ksi);
834 	ksi.ksi_signo = sig;
835 	kpgsignal(pgrp, &ksi, NULL, checkctty);
836 }
837 
838 void
839 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
840 {
841 	struct proc *p;
842 
843 	KASSERT(!cpu_intr_p());
844 	KASSERT(mutex_owned(proc_lock));
845 
846 	if (pgrp)
847 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
848 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
849 				kpsignal(p, ksi, data);
850 }
851 
852 /*
853  * Send a signal caused by a trap to the current LWP.  If it will be caught
854  * immediately, deliver it with correct code.  Otherwise, post it normally.
855  */
856 void
857 trapsignal(struct lwp *l, ksiginfo_t *ksi)
858 {
859 	struct proc	*p;
860 	struct sigacts	*ps;
861 	int signo = ksi->ksi_signo;
862 
863 	KASSERT(KSI_TRAP_P(ksi));
864 
865 	ksi->ksi_lid = l->l_lid;
866 	p = l->l_proc;
867 
868 	KASSERT(!cpu_intr_p());
869 	mutex_enter(proc_lock);
870 	mutex_enter(p->p_lock);
871 	ps = p->p_sigacts;
872 	if ((p->p_slflag & PSL_TRACED) == 0 &&
873 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
874 	    !sigismember(&l->l_sigmask, signo)) {
875 		mutex_exit(proc_lock);
876 		l->l_ru.ru_nsignals++;
877 		kpsendsig(l, ksi, &l->l_sigmask);
878 		mutex_exit(p->p_lock);
879 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
880 		    &l->l_sigmask, ksi);
881 	} else {
882 		/* XXX for core dump/debugger */
883 		p->p_sigctx.ps_lwp = l->l_lid;
884 		p->p_sigctx.ps_signo = ksi->ksi_signo;
885 		p->p_sigctx.ps_code = ksi->ksi_trap;
886 		kpsignal2(p, ksi);
887 		mutex_exit(p->p_lock);
888 		mutex_exit(proc_lock);
889 	}
890 }
891 
892 /*
893  * Fill in signal information and signal the parent for a child status change.
894  */
895 void
896 child_psignal(struct proc *p, int mask)
897 {
898 	ksiginfo_t ksi;
899 	struct proc *q;
900 	int xstat;
901 
902 	KASSERT(mutex_owned(proc_lock));
903 	KASSERT(mutex_owned(p->p_lock));
904 
905 	xstat = p->p_xstat;
906 
907 	KSI_INIT(&ksi);
908 	ksi.ksi_signo = SIGCHLD;
909 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
910 	ksi.ksi_pid = p->p_pid;
911 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
912 	ksi.ksi_status = xstat;
913 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
914 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
915 
916 	q = p->p_pptr;
917 
918 	mutex_exit(p->p_lock);
919 	mutex_enter(q->p_lock);
920 
921 	if ((q->p_sflag & mask) == 0)
922 		kpsignal2(q, &ksi);
923 
924 	mutex_exit(q->p_lock);
925 	mutex_enter(p->p_lock);
926 }
927 
928 void
929 psignal(struct proc *p, int signo)
930 {
931 	ksiginfo_t ksi;
932 
933 	KASSERT(!cpu_intr_p());
934 	KASSERT(mutex_owned(proc_lock));
935 
936 	KSI_INIT_EMPTY(&ksi);
937 	ksi.ksi_signo = signo;
938 	mutex_enter(p->p_lock);
939 	kpsignal2(p, &ksi);
940 	mutex_exit(p->p_lock);
941 }
942 
943 void
944 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
945 {
946 	fdfile_t *ff;
947 	file_t *fp;
948 
949 	KASSERT(!cpu_intr_p());
950 	KASSERT(mutex_owned(proc_lock));
951 
952 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
953 		size_t fd;
954 		filedesc_t *fdp = p->p_fd;
955 
956 		/* XXXSMP locking */
957 		ksi->ksi_fd = -1;
958 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
959 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
960 				continue;
961 			if ((fp = ff->ff_file) == NULL)
962 				continue;
963 			if (fp->f_data == data) {
964 				ksi->ksi_fd = fd;
965 				break;
966 			}
967 		}
968 	}
969 	mutex_enter(p->p_lock);
970 	kpsignal2(p, ksi);
971 	mutex_exit(p->p_lock);
972 }
973 
974 /*
975  * sigismasked:
976  *
977  *	 Returns true if signal is ignored or masked for the specified LWP.
978  */
979 int
980 sigismasked(struct lwp *l, int sig)
981 {
982 	struct proc *p = l->l_proc;
983 
984 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
985 	    sigismember(&l->l_sigmask, sig));
986 }
987 
988 /*
989  * sigpost:
990  *
991  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
992  *	 able to take the signal.
993  */
994 int
995 sigpost(struct lwp *l, sig_t action, int prop, int sig)
996 {
997 	int rv, masked;
998 
999 	KASSERT(mutex_owned(l->l_proc->p_lock));
1000 
1001 	/*
1002 	 * If the LWP is on the way out, sigclear() will be busy draining all
1003 	 * pending signals.  Don't give it more.
1004 	 */
1005 	if (l->l_refcnt == 0)
1006 		return 0;
1007 
1008 	lwp_lock(l);
1009 
1010 	/*
1011 	 * Have the LWP check for signals.  This ensures that even if no LWP
1012 	 * is found to take the signal immediately, it should be taken soon.
1013 	 */
1014 	l->l_flag |= LW_PENDSIG;
1015 
1016 	/*
1017 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1018 	 */
1019 	masked = sigismember(&l->l_sigmask, sig);
1020 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1021 		lwp_unlock(l);
1022 		return 0;
1023 	}
1024 
1025 	/*
1026 	 * If killing the process, make it run fast.
1027 	 */
1028 	if (__predict_false((prop & SA_KILL) != 0) &&
1029 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1030 		KASSERT(l->l_class == SCHED_OTHER);
1031 		lwp_changepri(l, MAXPRI_USER);
1032 	}
1033 
1034 	/*
1035 	 * If the LWP is running or on a run queue, then we win.  If it's
1036 	 * sleeping interruptably, wake it and make it take the signal.  If
1037 	 * the sleep isn't interruptable, then the chances are it will get
1038 	 * to see the signal soon anyhow.  If suspended, it can't take the
1039 	 * signal right now.  If it's LWP private or for all LWPs, save it
1040 	 * for later; otherwise punt.
1041 	 */
1042 	rv = 0;
1043 
1044 	switch (l->l_stat) {
1045 	case LSRUN:
1046 	case LSONPROC:
1047 		lwp_need_userret(l);
1048 		rv = 1;
1049 		break;
1050 
1051 	case LSSLEEP:
1052 		if ((l->l_flag & LW_SINTR) != 0) {
1053 			/* setrunnable() will release the lock. */
1054 			setrunnable(l);
1055 			return 1;
1056 		}
1057 		break;
1058 
1059 	case LSSUSPENDED:
1060 		if ((prop & SA_KILL) != 0) {
1061 			/* lwp_continue() will release the lock. */
1062 			lwp_continue(l);
1063 			return 1;
1064 		}
1065 		break;
1066 
1067 	case LSSTOP:
1068 		if ((prop & SA_STOP) != 0)
1069 			break;
1070 
1071 		/*
1072 		 * If the LWP is stopped and we are sending a continue
1073 		 * signal, then start it again.
1074 		 */
1075 		if ((prop & SA_CONT) != 0) {
1076 			if (l->l_wchan != NULL) {
1077 				l->l_stat = LSSLEEP;
1078 				l->l_proc->p_nrlwps++;
1079 				rv = 1;
1080 				break;
1081 			}
1082 			/* setrunnable() will release the lock. */
1083 			setrunnable(l);
1084 			return 1;
1085 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1086 			/* setrunnable() will release the lock. */
1087 			setrunnable(l);
1088 			return 1;
1089 		}
1090 		break;
1091 
1092 	default:
1093 		break;
1094 	}
1095 
1096 	lwp_unlock(l);
1097 	return rv;
1098 }
1099 
1100 /*
1101  * Notify an LWP that it has a pending signal.
1102  */
1103 void
1104 signotify(struct lwp *l)
1105 {
1106 	KASSERT(lwp_locked(l, NULL));
1107 
1108 	l->l_flag |= LW_PENDSIG;
1109 	lwp_need_userret(l);
1110 }
1111 
1112 /*
1113  * Find an LWP within process p that is waiting on signal ksi, and hand
1114  * it on.
1115  */
1116 int
1117 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1118 {
1119 	struct lwp *l;
1120 	int signo;
1121 
1122 	KASSERT(mutex_owned(p->p_lock));
1123 
1124 	signo = ksi->ksi_signo;
1125 
1126 	if (ksi->ksi_lid != 0) {
1127 		/*
1128 		 * Signal came via _lwp_kill().  Find the LWP and see if
1129 		 * it's interested.
1130 		 */
1131 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1132 			return 0;
1133 		if (l->l_sigwaited == NULL ||
1134 		    !sigismember(&l->l_sigwaitset, signo))
1135 			return 0;
1136 	} else {
1137 		/*
1138 		 * Look for any LWP that may be interested.
1139 		 */
1140 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1141 			KASSERT(l->l_sigwaited != NULL);
1142 			if (sigismember(&l->l_sigwaitset, signo))
1143 				break;
1144 		}
1145 	}
1146 
1147 	if (l != NULL) {
1148 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1149 		l->l_sigwaited = NULL;
1150 		LIST_REMOVE(l, l_sigwaiter);
1151 		cv_signal(&l->l_sigcv);
1152 		return 1;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Send the signal to the process.  If the signal has an action, the action
1160  * is usually performed by the target process rather than the caller; we add
1161  * the signal to the set of pending signals for the process.
1162  *
1163  * Exceptions:
1164  *   o When a stop signal is sent to a sleeping process that takes the
1165  *     default action, the process is stopped without awakening it.
1166  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1167  *     regardless of the signal action (eg, blocked or ignored).
1168  *
1169  * Other ignored signals are discarded immediately.
1170  */
1171 void
1172 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1173 {
1174 	int prop, lid, toall, signo = ksi->ksi_signo;
1175 	struct sigacts *sa;
1176 	struct lwp *l;
1177 	ksiginfo_t *kp;
1178 	ksiginfoq_t kq;
1179 	sig_t action;
1180 
1181 	KASSERT(!cpu_intr_p());
1182 	KASSERT(mutex_owned(proc_lock));
1183 	KASSERT(mutex_owned(p->p_lock));
1184 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1185 	KASSERT(signo > 0 && signo < NSIG);
1186 
1187 	/*
1188 	 * If the process is being created by fork, is a zombie or is
1189 	 * exiting, then just drop the signal here and bail out.
1190 	 */
1191 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1192 		return;
1193 
1194 	/*
1195 	 * Notify any interested parties of the signal.
1196 	 */
1197 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1198 
1199 	/*
1200 	 * Some signals including SIGKILL must act on the entire process.
1201 	 */
1202 	kp = NULL;
1203 	prop = sigprop[signo];
1204 	toall = ((prop & SA_TOALL) != 0);
1205 
1206 	if (toall)
1207 		lid = 0;
1208 	else
1209 		lid = ksi->ksi_lid;
1210 
1211 	/*
1212 	 * If proc is traced, always give parent a chance.
1213 	 */
1214 	if (p->p_slflag & PSL_TRACED) {
1215 		action = SIG_DFL;
1216 
1217 		if (lid == 0) {
1218 			/*
1219 			 * If the process is being traced and the signal
1220 			 * is being caught, make sure to save any ksiginfo.
1221 			 */
1222 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1223 				return;
1224 			sigput(&p->p_sigpend, p, kp);
1225 		}
1226 	} else {
1227 		/*
1228 		 * If the signal was the result of a trap and is not being
1229 		 * caught, then reset it to default action so that the
1230 		 * process dumps core immediately.
1231 		 */
1232 		if (KSI_TRAP_P(ksi)) {
1233 			sa = p->p_sigacts;
1234 			mutex_enter(&sa->sa_mutex);
1235 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1236 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1237 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1238 			}
1239 			mutex_exit(&sa->sa_mutex);
1240 		}
1241 
1242 		/*
1243 		 * If the signal is being ignored, then drop it.  Note: we
1244 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1245 		 * SIG_IGN, action will be SIG_DFL here.
1246 		 */
1247 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1248 			return;
1249 
1250 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1251 			action = SIG_CATCH;
1252 		else {
1253 			action = SIG_DFL;
1254 
1255 			/*
1256 			 * If sending a tty stop signal to a member of an
1257 			 * orphaned process group, discard the signal here if
1258 			 * the action is default; don't stop the process below
1259 			 * if sleeping, and don't clear any pending SIGCONT.
1260 			 */
1261 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1262 				return;
1263 
1264 			if (prop & SA_KILL && p->p_nice > NZERO)
1265 				p->p_nice = NZERO;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * If stopping or continuing a process, discard any pending
1271 	 * signals that would do the inverse.
1272 	 */
1273 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1274 		ksiginfo_queue_init(&kq);
1275 		if ((prop & SA_CONT) != 0)
1276 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1277 		if ((prop & SA_STOP) != 0)
1278 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1279 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1280 	}
1281 
1282 	/*
1283 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1284 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1285 	 * the signal info.  The signal won't be processed further here.
1286 	 */
1287 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1288 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1289 	    sigunwait(p, ksi))
1290 		return;
1291 
1292 	/*
1293 	 * XXXSMP Should be allocated by the caller, we're holding locks
1294 	 * here.
1295 	 */
1296 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1297 		return;
1298 
1299 	/*
1300 	 * LWP private signals are easy - just find the LWP and post
1301 	 * the signal to it.
1302 	 */
1303 	if (lid != 0) {
1304 		l = lwp_find(p, lid);
1305 		if (l != NULL) {
1306 			sigput(&l->l_sigpend, p, kp);
1307 			membar_producer();
1308 			(void)sigpost(l, action, prop, kp->ksi_signo);
1309 		}
1310 		goto out;
1311 	}
1312 
1313 	/*
1314 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
1315 	 */
1316 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1317 		if ((p->p_slflag & PSL_TRACED) != 0)
1318 			goto deliver;
1319 
1320 		/*
1321 		 * If SIGCONT is default (or ignored) and process is
1322 		 * asleep, we are finished; the process should not
1323 		 * be awakened.
1324 		 */
1325 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1326 			goto out;
1327 
1328 		sigput(&p->p_sigpend, p, kp);
1329 	} else {
1330 		/*
1331 		 * Process is stopped or stopping.  If traced, then no
1332 		 * further action is necessary.
1333 		 */
1334 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1335 			goto out;
1336 
1337 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1338 			/*
1339 			 * Re-adjust p_nstopchild if the process wasn't
1340 			 * collected by its parent.
1341 			 */
1342 			p->p_stat = SACTIVE;
1343 			p->p_sflag &= ~PS_STOPPING;
1344 			if (!p->p_waited)
1345 				p->p_pptr->p_nstopchild--;
1346 
1347 			/*
1348 			 * If SIGCONT is default (or ignored), we continue
1349 			 * the process but don't leave the signal in
1350 			 * ps_siglist, as it has no further action.  If
1351 			 * SIGCONT is held, we continue the process and
1352 			 * leave the signal in ps_siglist.  If the process
1353 			 * catches SIGCONT, let it handle the signal itself.
1354 			 * If it isn't waiting on an event, then it goes
1355 			 * back to run state.  Otherwise, process goes back
1356 			 * to sleep state.
1357 			 */
1358 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1359 				sigput(&p->p_sigpend, p, kp);
1360 		} else if ((prop & SA_STOP) != 0) {
1361 			/*
1362 			 * Already stopped, don't need to stop again.
1363 			 * (If we did the shell could get confused.)
1364 			 */
1365 			goto out;
1366 		} else
1367 			sigput(&p->p_sigpend, p, kp);
1368 	}
1369 
1370  deliver:
1371 	/*
1372 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1373 	 * visible on the per process list (for sigispending()).  This
1374 	 * is unlikely to be needed in practice, but...
1375 	 */
1376 	membar_producer();
1377 
1378 	/*
1379 	 * Try to find an LWP that can take the signal.
1380 	 */
1381 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1382 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1383 			break;
1384 
1385  out:
1386  	/*
1387  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1388  	 * with locks held.  The caller should take care of this.
1389  	 */
1390  	ksiginfo_free(kp);
1391 }
1392 
1393 void
1394 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1395 {
1396 	struct proc *p = l->l_proc;
1397 
1398 	KASSERT(mutex_owned(p->p_lock));
1399 
1400 	(*p->p_emul->e_sendsig)(ksi, mask);
1401 }
1402 
1403 /*
1404  * Stop any LWPs sleeping interruptably.
1405  */
1406 static void
1407 proc_stop_lwps(struct proc *p)
1408 {
1409 	struct lwp *l;
1410 
1411 	KASSERT(mutex_owned(p->p_lock));
1412 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1413 
1414 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1415 		lwp_lock(l);
1416 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1417 			l->l_stat = LSSTOP;
1418 			p->p_nrlwps--;
1419 		}
1420 		lwp_unlock(l);
1421 	}
1422 }
1423 
1424 /*
1425  * Finish stopping of a process.  Mark it stopped and notify the parent.
1426  *
1427  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1428  */
1429 static void
1430 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1431 {
1432 
1433 	KASSERT(mutex_owned(proc_lock));
1434 	KASSERT(mutex_owned(p->p_lock));
1435 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1436 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1437 
1438 	p->p_sflag &= ~PS_STOPPING;
1439 	p->p_stat = SSTOP;
1440 	p->p_waited = 0;
1441 	p->p_pptr->p_nstopchild++;
1442 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1443 		if (ppsig) {
1444 			/* child_psignal drops p_lock briefly. */
1445 			child_psignal(p, ppmask);
1446 		}
1447 		cv_broadcast(&p->p_pptr->p_waitcv);
1448 	}
1449 }
1450 
1451 /*
1452  * Stop the current process and switch away when being stopped or traced.
1453  */
1454 void
1455 sigswitch(bool ppsig, int ppmask, int signo)
1456 {
1457 	struct lwp *l = curlwp;
1458 	struct proc *p = l->l_proc;
1459 	int biglocks;
1460 
1461 	KASSERT(mutex_owned(p->p_lock));
1462 	KASSERT(l->l_stat == LSONPROC);
1463 	KASSERT(p->p_nrlwps > 0);
1464 
1465 	/*
1466 	 * On entry we know that the process needs to stop.  If it's
1467 	 * the result of a 'sideways' stop signal that has been sourced
1468 	 * through issignal(), then stop other LWPs in the process too.
1469 	 */
1470 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1471 		KASSERT(signo != 0);
1472 		proc_stop(p, 1, signo);
1473 		KASSERT(p->p_nrlwps > 0);
1474 	}
1475 
1476 	/*
1477 	 * If we are the last live LWP, and the stop was a result of
1478 	 * a new signal, then signal the parent.
1479 	 */
1480 	if ((p->p_sflag & PS_STOPPING) != 0) {
1481 		if (!mutex_tryenter(proc_lock)) {
1482 			mutex_exit(p->p_lock);
1483 			mutex_enter(proc_lock);
1484 			mutex_enter(p->p_lock);
1485 		}
1486 
1487 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1488 			/*
1489 			 * Note that proc_stop_done() can drop
1490 			 * p->p_lock briefly.
1491 			 */
1492 			proc_stop_done(p, ppsig, ppmask);
1493 		}
1494 
1495 		mutex_exit(proc_lock);
1496 	}
1497 
1498 	/*
1499 	 * Unlock and switch away.
1500 	 */
1501 	KERNEL_UNLOCK_ALL(l, &biglocks);
1502 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1503 		p->p_nrlwps--;
1504 		lwp_lock(l);
1505 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1506 		l->l_stat = LSSTOP;
1507 		lwp_unlock(l);
1508 	}
1509 
1510 	mutex_exit(p->p_lock);
1511 	lwp_lock(l);
1512 	mi_switch(l);
1513 	KERNEL_LOCK(biglocks, l);
1514 	mutex_enter(p->p_lock);
1515 }
1516 
1517 /*
1518  * Check for a signal from the debugger.
1519  */
1520 int
1521 sigchecktrace(sigpend_t **spp)
1522 {
1523 	struct lwp *l = curlwp;
1524 	struct proc *p = l->l_proc;
1525 	int signo;
1526 
1527 	KASSERT(mutex_owned(p->p_lock));
1528 
1529 	/*
1530 	 * If we are no longer being traced, or the parent didn't
1531 	 * give us a signal, look for more signals.
1532 	 */
1533 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1534 		return 0;
1535 
1536 	/* If there's a pending SIGKILL, process it immediately. */
1537 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1538 		return 0;
1539 
1540 	/*
1541 	 * If the new signal is being masked, look for other signals.
1542 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1543 	 */
1544 	signo = p->p_xstat;
1545 	p->p_xstat = 0;
1546 	if ((sigprop[signo] & SA_TOLWP) != 0)
1547 		*spp = &l->l_sigpend;
1548 	else
1549 		*spp = &p->p_sigpend;
1550 	if (sigismember(&l->l_sigmask, signo))
1551 		signo = 0;
1552 
1553 	return signo;
1554 }
1555 
1556 /*
1557  * If the current process has received a signal (should be caught or cause
1558  * termination, should interrupt current syscall), return the signal number.
1559  *
1560  * Stop signals with default action are processed immediately, then cleared;
1561  * they aren't returned.  This is checked after each entry to the system for
1562  * a syscall or trap.
1563  *
1564  * We will also return -1 if the process is exiting and the current LWP must
1565  * follow suit.
1566  *
1567  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1568  * can switch away, though.
1569  */
1570 int
1571 issignal(struct lwp *l)
1572 {
1573 	struct proc *p = l->l_proc;
1574 	int signo = 0, prop;
1575 	sigpend_t *sp = NULL;
1576 	sigset_t ss;
1577 
1578 	KASSERT(mutex_owned(p->p_lock));
1579 
1580 	for (;;) {
1581 		/* Discard any signals that we have decided not to take. */
1582 		if (signo != 0)
1583 			(void)sigget(sp, NULL, signo, NULL);
1584 
1585 		/*
1586 		 * If the process is stopped/stopping, then stop ourselves
1587 		 * now that we're on the kernel/userspace boundary.  When
1588 		 * we awaken, check for a signal from the debugger.
1589 		 */
1590 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1591 			sigswitch(true, PS_NOCLDSTOP, 0);
1592 			signo = sigchecktrace(&sp);
1593 		} else
1594 			signo = 0;
1595 
1596 		/*
1597 		 * If the debugger didn't provide a signal, find a pending
1598 		 * signal from our set.  Check per-LWP signals first, and
1599 		 * then per-process.
1600 		 */
1601 		if (signo == 0) {
1602 			sp = &l->l_sigpend;
1603 			ss = sp->sp_set;
1604 			if ((p->p_sflag & PS_PPWAIT) != 0)
1605 				sigminusset(&stopsigmask, &ss);
1606 			sigminusset(&l->l_sigmask, &ss);
1607 
1608 			if ((signo = firstsig(&ss)) == 0) {
1609 				sp = &p->p_sigpend;
1610 				ss = sp->sp_set;
1611 				if ((p->p_sflag & PS_PPWAIT) != 0)
1612 					sigminusset(&stopsigmask, &ss);
1613 				sigminusset(&l->l_sigmask, &ss);
1614 
1615 				if ((signo = firstsig(&ss)) == 0) {
1616 					/*
1617 					 * No signal pending - clear the
1618 					 * indicator and bail out.
1619 					 */
1620 					lwp_lock(l);
1621 					l->l_flag &= ~LW_PENDSIG;
1622 					lwp_unlock(l);
1623 					sp = NULL;
1624 					break;
1625 				}
1626 			}
1627 		}
1628 
1629 		/*
1630 		 * We should see pending but ignored signals only if
1631 		 * we are being traced.
1632 		 */
1633 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1634 		    (p->p_slflag & PSL_TRACED) == 0) {
1635 			/* Discard the signal. */
1636 			continue;
1637 		}
1638 
1639 		/*
1640 		 * If traced, always stop, and stay stopped until released
1641 		 * by the debugger.  If the our parent process is waiting
1642 		 * for us, don't hang as we could deadlock.
1643 		 */
1644 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1645 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1646 			/* Take the signal. */
1647 			(void)sigget(sp, NULL, signo, NULL);
1648 			p->p_xstat = signo;
1649 
1650 			/* Emulation-specific handling of signal trace */
1651 			if (p->p_emul->e_tracesig == NULL ||
1652 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1653 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1654 				    signo);
1655 
1656 			/* Check for a signal from the debugger. */
1657 			if ((signo = sigchecktrace(&sp)) == 0)
1658 				continue;
1659 		}
1660 
1661 		prop = sigprop[signo];
1662 
1663 		/*
1664 		 * Decide whether the signal should be returned.
1665 		 */
1666 		switch ((long)SIGACTION(p, signo).sa_handler) {
1667 		case (long)SIG_DFL:
1668 			/*
1669 			 * Don't take default actions on system processes.
1670 			 */
1671 			if (p->p_pid <= 1) {
1672 #ifdef DIAGNOSTIC
1673 				/*
1674 				 * Are you sure you want to ignore SIGSEGV
1675 				 * in init? XXX
1676 				 */
1677 				printf_nolog("Process (pid %d) got sig %d\n",
1678 				    p->p_pid, signo);
1679 #endif
1680 				continue;
1681 			}
1682 
1683 			/*
1684 			 * If there is a pending stop signal to process with
1685 			 * default action, stop here, then clear the signal.
1686 			 * However, if process is member of an orphaned
1687 			 * process group, ignore tty stop signals.
1688 			 */
1689 			if (prop & SA_STOP) {
1690 				/*
1691 				 * XXX Don't hold proc_lock for p_lflag,
1692 				 * but it's not a big deal.
1693 				 */
1694 				if (p->p_slflag & PSL_TRACED ||
1695 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1696 				    prop & SA_TTYSTOP)) {
1697 				    	/* Ignore the signal. */
1698 					continue;
1699 				}
1700 				/* Take the signal. */
1701 				(void)sigget(sp, NULL, signo, NULL);
1702 				p->p_xstat = signo;
1703 				signo = 0;
1704 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1705 			} else if (prop & SA_IGNORE) {
1706 				/*
1707 				 * Except for SIGCONT, shouldn't get here.
1708 				 * Default action is to ignore; drop it.
1709 				 */
1710 				continue;
1711 			}
1712 			break;
1713 
1714 		case (long)SIG_IGN:
1715 #ifdef DEBUG_ISSIGNAL
1716 			/*
1717 			 * Masking above should prevent us ever trying
1718 			 * to take action on an ignored signal other
1719 			 * than SIGCONT, unless process is traced.
1720 			 */
1721 			if ((prop & SA_CONT) == 0 &&
1722 			    (p->p_slflag & PSL_TRACED) == 0)
1723 				printf_nolog("issignal\n");
1724 #endif
1725 			continue;
1726 
1727 		default:
1728 			/*
1729 			 * This signal has an action, let postsig() process
1730 			 * it.
1731 			 */
1732 			break;
1733 		}
1734 
1735 		break;
1736 	}
1737 
1738 	l->l_sigpendset = sp;
1739 	return signo;
1740 }
1741 
1742 /*
1743  * Take the action for the specified signal
1744  * from the current set of pending signals.
1745  */
1746 void
1747 postsig(int signo)
1748 {
1749 	struct lwp	*l;
1750 	struct proc	*p;
1751 	struct sigacts	*ps;
1752 	sig_t		action;
1753 	sigset_t	*returnmask;
1754 	ksiginfo_t	ksi;
1755 
1756 	l = curlwp;
1757 	p = l->l_proc;
1758 	ps = p->p_sigacts;
1759 
1760 	KASSERT(mutex_owned(p->p_lock));
1761 	KASSERT(signo > 0);
1762 
1763 	/*
1764 	 * Set the new mask value and also defer further occurrences of this
1765 	 * signal.
1766 	 *
1767 	 * Special case: user has done a sigsuspend.  Here the current mask is
1768 	 * not of interest, but rather the mask from before the sigsuspen is
1769 	 * what we want restored after the signal processing is completed.
1770 	 */
1771 	if (l->l_sigrestore) {
1772 		returnmask = &l->l_sigoldmask;
1773 		l->l_sigrestore = 0;
1774 	} else
1775 		returnmask = &l->l_sigmask;
1776 
1777 	/*
1778 	 * Commit to taking the signal before releasing the mutex.
1779 	 */
1780 	action = SIGACTION_PS(ps, signo).sa_handler;
1781 	l->l_ru.ru_nsignals++;
1782 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1783 
1784 	if (ktrpoint(KTR_PSIG)) {
1785 		mutex_exit(p->p_lock);
1786 		ktrpsig(signo, action, returnmask, NULL);
1787 		mutex_enter(p->p_lock);
1788 	}
1789 
1790 	if (action == SIG_DFL) {
1791 		/*
1792 		 * Default action, where the default is to kill
1793 		 * the process.  (Other cases were ignored above.)
1794 		 */
1795 		sigexit(l, signo);
1796 		return;
1797 	}
1798 
1799 	/*
1800 	 * If we get here, the signal must be caught.
1801 	 */
1802 #ifdef DIAGNOSTIC
1803 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1804 		panic("postsig action");
1805 #endif
1806 
1807 	kpsendsig(l, &ksi, returnmask);
1808 }
1809 
1810 /*
1811  * sendsig_reset:
1812  *
1813  *	Reset the signal action.  Called from emulation specific sendsig()
1814  *	before unlocking to deliver the signal.
1815  */
1816 void
1817 sendsig_reset(struct lwp *l, int signo)
1818 {
1819 	struct proc *p = l->l_proc;
1820 	struct sigacts *ps = p->p_sigacts;
1821 
1822 	KASSERT(mutex_owned(p->p_lock));
1823 
1824 	p->p_sigctx.ps_lwp = 0;
1825 	p->p_sigctx.ps_code = 0;
1826 	p->p_sigctx.ps_signo = 0;
1827 
1828 	mutex_enter(&ps->sa_mutex);
1829 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1830 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1831 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1832 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1833 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1834 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1835 	}
1836 	mutex_exit(&ps->sa_mutex);
1837 }
1838 
1839 /*
1840  * Kill the current process for stated reason.
1841  */
1842 void
1843 killproc(struct proc *p, const char *why)
1844 {
1845 
1846 	KASSERT(mutex_owned(proc_lock));
1847 
1848 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1849 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1850 	psignal(p, SIGKILL);
1851 }
1852 
1853 /*
1854  * Force the current process to exit with the specified signal, dumping core
1855  * if appropriate.  We bypass the normal tests for masked and caught
1856  * signals, allowing unrecoverable failures to terminate the process without
1857  * changing signal state.  Mark the accounting record with the signal
1858  * termination.  If dumping core, save the signal number for the debugger.
1859  * Calls exit and does not return.
1860  */
1861 void
1862 sigexit(struct lwp *l, int signo)
1863 {
1864 	int exitsig, error, docore;
1865 	struct proc *p;
1866 	struct lwp *t;
1867 
1868 	p = l->l_proc;
1869 
1870 	KASSERT(mutex_owned(p->p_lock));
1871 	KERNEL_UNLOCK_ALL(l, NULL);
1872 
1873 	/*
1874 	 * Don't permit coredump() multiple times in the same process.
1875 	 * Call back into sigexit, where we will be suspended until
1876 	 * the deed is done.  Note that this is a recursive call, but
1877 	 * LW_WCORE will prevent us from coming back this way.
1878 	 */
1879 	if ((p->p_sflag & PS_WCORE) != 0) {
1880 		lwp_lock(l);
1881 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1882 		lwp_unlock(l);
1883 		mutex_exit(p->p_lock);
1884 		lwp_userret(l);
1885 		panic("sigexit 1");
1886 		/* NOTREACHED */
1887 	}
1888 
1889 	/* If process is already on the way out, then bail now. */
1890 	if ((p->p_sflag & PS_WEXIT) != 0) {
1891 		mutex_exit(p->p_lock);
1892 		lwp_exit(l);
1893 		panic("sigexit 2");
1894 		/* NOTREACHED */
1895 	}
1896 
1897 	/*
1898 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
1899 	 * so that their registers are available long enough to be dumped.
1900  	 */
1901 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1902 		p->p_sflag |= PS_WCORE;
1903 		for (;;) {
1904 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1905 				lwp_lock(t);
1906 				if (t == l) {
1907 					t->l_flag &= ~LW_WSUSPEND;
1908 					lwp_unlock(t);
1909 					continue;
1910 				}
1911 				t->l_flag |= (LW_WCORE | LW_WEXIT);
1912 				lwp_suspend(l, t);
1913 			}
1914 
1915 			if (p->p_nrlwps == 1)
1916 				break;
1917 
1918 			/*
1919 			 * Kick any LWPs sitting in lwp_wait1(), and wait
1920 			 * for everyone else to stop before proceeding.
1921 			 */
1922 			p->p_nlwpwait++;
1923 			cv_broadcast(&p->p_lwpcv);
1924 			cv_wait(&p->p_lwpcv, p->p_lock);
1925 			p->p_nlwpwait--;
1926 		}
1927 	}
1928 
1929 	exitsig = signo;
1930 	p->p_acflag |= AXSIG;
1931 	p->p_sigctx.ps_signo = signo;
1932 
1933 	if (docore) {
1934 		mutex_exit(p->p_lock);
1935 		if ((error = coredump(l, NULL)) == 0)
1936 			exitsig |= WCOREFLAG;
1937 
1938 		if (kern_logsigexit) {
1939 			int uid = l->l_cred ?
1940 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
1941 
1942 			if (error)
1943 				log(LOG_INFO, lognocoredump, p->p_pid,
1944 				    p->p_comm, uid, signo, error);
1945 			else
1946 				log(LOG_INFO, logcoredump, p->p_pid,
1947 				    p->p_comm, uid, signo);
1948 		}
1949 
1950 #ifdef PAX_SEGVGUARD
1951 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
1952 #endif /* PAX_SEGVGUARD */
1953 		/* Acquire the sched state mutex.  exit1() will release it. */
1954 		mutex_enter(p->p_lock);
1955 	}
1956 
1957 	/* No longer dumping core. */
1958 	p->p_sflag &= ~PS_WCORE;
1959 
1960 	exit1(l, W_EXITCODE(0, exitsig));
1961 	/* NOTREACHED */
1962 }
1963 
1964 /*
1965  * Put process 'p' into the stopped state and optionally, notify the parent.
1966  */
1967 void
1968 proc_stop(struct proc *p, int notify, int signo)
1969 {
1970 	struct lwp *l;
1971 
1972 	KASSERT(mutex_owned(p->p_lock));
1973 
1974 	/*
1975 	 * First off, set the stopping indicator and bring all sleeping
1976 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
1977 	 * unlock between here and the p->p_nrlwps check below.
1978 	 */
1979 	p->p_sflag |= PS_STOPPING;
1980 	if (notify)
1981 		p->p_sflag |= PS_NOTIFYSTOP;
1982 	else
1983 		p->p_sflag &= ~PS_NOTIFYSTOP;
1984 	membar_producer();
1985 
1986 	proc_stop_lwps(p);
1987 
1988 	/*
1989 	 * If there are no LWPs available to take the signal, then we
1990 	 * signal the parent process immediately.  Otherwise, the last
1991 	 * LWP to stop will take care of it.
1992 	 */
1993 
1994 	if (p->p_nrlwps == 0) {
1995 		proc_stop_done(p, true, PS_NOCLDSTOP);
1996 	} else {
1997 		/*
1998 		 * Have the remaining LWPs come to a halt, and trigger
1999 		 * proc_stop_callout() to ensure that they do.
2000 		 */
2001 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2002 			sigpost(l, SIG_DFL, SA_STOP, signo);
2003 		callout_schedule(&proc_stop_ch, 1);
2004 	}
2005 }
2006 
2007 /*
2008  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2009  * but wait for them to come to a halt at the kernel-user boundary.  This is
2010  * to allow LWPs to release any locks that they may hold before stopping.
2011  *
2012  * Non-interruptable sleeps can be long, and there is the potential for an
2013  * LWP to begin sleeping interruptably soon after the process has been set
2014  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2015  * stopping, and so complete halt of the process and the return of status
2016  * information to the parent could be delayed indefinitely.
2017  *
2018  * To handle this race, proc_stop_callout() runs once per tick while there
2019  * are stopping processes in the system.  It sets LWPs that are sleeping
2020  * interruptably into the LSSTOP state.
2021  *
2022  * Note that we are not concerned about keeping all LWPs stopped while the
2023  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2024  * What we do need to ensure is that all LWPs in a stopping process have
2025  * stopped at least once, so that notification can be sent to the parent
2026  * process.
2027  */
2028 static void
2029 proc_stop_callout(void *cookie)
2030 {
2031 	bool more, restart;
2032 	struct proc *p;
2033 
2034 	(void)cookie;
2035 
2036 	do {
2037 		restart = false;
2038 		more = false;
2039 
2040 		mutex_enter(proc_lock);
2041 		PROCLIST_FOREACH(p, &allproc) {
2042 			if ((p->p_flag & PK_MARKER) != 0)
2043 				continue;
2044 			mutex_enter(p->p_lock);
2045 
2046 			if ((p->p_sflag & PS_STOPPING) == 0) {
2047 				mutex_exit(p->p_lock);
2048 				continue;
2049 			}
2050 
2051 			/* Stop any LWPs sleeping interruptably. */
2052 			proc_stop_lwps(p);
2053 			if (p->p_nrlwps == 0) {
2054 				/*
2055 				 * We brought the process to a halt.
2056 				 * Mark it as stopped and notify the
2057 				 * parent.
2058 				 */
2059 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2060 					/*
2061 					 * Note that proc_stop_done() will
2062 					 * drop p->p_lock briefly.
2063 					 * Arrange to restart and check
2064 					 * all processes again.
2065 					 */
2066 					restart = true;
2067 				}
2068 				proc_stop_done(p, true, PS_NOCLDSTOP);
2069 			} else
2070 				more = true;
2071 
2072 			mutex_exit(p->p_lock);
2073 			if (restart)
2074 				break;
2075 		}
2076 		mutex_exit(proc_lock);
2077 	} while (restart);
2078 
2079 	/*
2080 	 * If we noted processes that are stopping but still have
2081 	 * running LWPs, then arrange to check again in 1 tick.
2082 	 */
2083 	if (more)
2084 		callout_schedule(&proc_stop_ch, 1);
2085 }
2086 
2087 /*
2088  * Given a process in state SSTOP, set the state back to SACTIVE and
2089  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2090  */
2091 void
2092 proc_unstop(struct proc *p)
2093 {
2094 	struct lwp *l;
2095 	int sig;
2096 
2097 	KASSERT(mutex_owned(proc_lock));
2098 	KASSERT(mutex_owned(p->p_lock));
2099 
2100 	p->p_stat = SACTIVE;
2101 	p->p_sflag &= ~PS_STOPPING;
2102 	sig = p->p_xstat;
2103 
2104 	if (!p->p_waited)
2105 		p->p_pptr->p_nstopchild--;
2106 
2107 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2108 		lwp_lock(l);
2109 		if (l->l_stat != LSSTOP) {
2110 			lwp_unlock(l);
2111 			continue;
2112 		}
2113 		if (l->l_wchan == NULL) {
2114 			setrunnable(l);
2115 			continue;
2116 		}
2117 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2118 		        setrunnable(l);
2119 		        sig = 0;
2120 		} else {
2121 			l->l_stat = LSSLEEP;
2122 			p->p_nrlwps++;
2123 			lwp_unlock(l);
2124 		}
2125 	}
2126 }
2127 
2128 static int
2129 filt_sigattach(struct knote *kn)
2130 {
2131 	struct proc *p = curproc;
2132 
2133 	kn->kn_obj = p;
2134 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2135 
2136 	mutex_enter(p->p_lock);
2137 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2138 	mutex_exit(p->p_lock);
2139 
2140 	return (0);
2141 }
2142 
2143 static void
2144 filt_sigdetach(struct knote *kn)
2145 {
2146 	struct proc *p = kn->kn_obj;
2147 
2148 	mutex_enter(p->p_lock);
2149 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2150 	mutex_exit(p->p_lock);
2151 }
2152 
2153 /*
2154  * signal knotes are shared with proc knotes, so we apply a mask to
2155  * the hint in order to differentiate them from process hints.  This
2156  * could be avoided by using a signal-specific knote list, but probably
2157  * isn't worth the trouble.
2158  */
2159 static int
2160 filt_signal(struct knote *kn, long hint)
2161 {
2162 
2163 	if (hint & NOTE_SIGNAL) {
2164 		hint &= ~NOTE_SIGNAL;
2165 
2166 		if (kn->kn_id == hint)
2167 			kn->kn_data++;
2168 	}
2169 	return (kn->kn_data != 0);
2170 }
2171 
2172 const struct filterops sig_filtops = {
2173 	0, filt_sigattach, filt_sigdetach, filt_signal
2174 };
2175