1 /* $NetBSD: kern_sig.c,v 1.215 2006/02/04 12:09:50 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.215 2006/02/04 12:09:50 yamt Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_compat_sunos.h" 44 #include "opt_compat_netbsd.h" 45 #include "opt_compat_netbsd32.h" 46 47 #define SIGPROP /* include signal properties table */ 48 #include <sys/param.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/namei.h> 52 #include <sys/vnode.h> 53 #include <sys/proc.h> 54 #include <sys/systm.h> 55 #include <sys/timeb.h> 56 #include <sys/times.h> 57 #include <sys/buf.h> 58 #include <sys/acct.h> 59 #include <sys/file.h> 60 #include <sys/kernel.h> 61 #include <sys/wait.h> 62 #include <sys/ktrace.h> 63 #include <sys/syslog.h> 64 #include <sys/stat.h> 65 #include <sys/core.h> 66 #include <sys/filedesc.h> 67 #include <sys/malloc.h> 68 #include <sys/pool.h> 69 #include <sys/ucontext.h> 70 #include <sys/sa.h> 71 #include <sys/savar.h> 72 #include <sys/exec.h> 73 #include <sys/sysctl.h> 74 75 #include <sys/mount.h> 76 #include <sys/syscallargs.h> 77 78 #include <machine/cpu.h> 79 80 #include <sys/user.h> /* for coredump */ 81 82 #include <uvm/uvm.h> 83 #include <uvm/uvm_extern.h> 84 85 static void child_psignal(struct proc *, int); 86 static int build_corename(struct proc *, char *, const char *, size_t); 87 static void ksiginfo_exithook(struct proc *, void *); 88 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 89 static ksiginfo_t *ksiginfo_get(struct proc *, int); 90 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 91 92 sigset_t contsigmask, stopsigmask, sigcantmask; 93 94 struct pool sigacts_pool; /* memory pool for sigacts structures */ 95 96 /* 97 * struct sigacts memory pool allocator. 98 */ 99 100 static void * 101 sigacts_poolpage_alloc(struct pool *pp, int flags) 102 { 103 104 return (void *)uvm_km_alloc(kernel_map, 105 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 106 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 107 | UVM_KMF_WIRED); 108 } 109 110 static void 111 sigacts_poolpage_free(struct pool *pp, void *v) 112 { 113 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 114 } 115 116 static struct pool_allocator sigactspool_allocator = { 117 sigacts_poolpage_alloc, sigacts_poolpage_free, 118 }; 119 120 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 121 &pool_allocator_nointr); 122 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL); 123 124 /* 125 * Can process p, with pcred pc, send the signal signum to process q? 126 */ 127 #define CANSIGNAL(p, pc, q, signum) \ 128 ((pc)->pc_ucred->cr_uid == 0 || \ 129 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 130 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 131 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 132 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 133 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 134 135 /* 136 * Remove and return the first ksiginfo element that matches our requested 137 * signal, or return NULL if one not found. 138 */ 139 static ksiginfo_t * 140 ksiginfo_get(struct proc *p, int signo) 141 { 142 ksiginfo_t *ksi; 143 int s; 144 145 s = splsoftclock(); 146 simple_lock(&p->p_sigctx.ps_silock); 147 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 148 if (ksi->ksi_signo == signo) { 149 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 150 goto out; 151 } 152 } 153 ksi = NULL; 154 out: 155 simple_unlock(&p->p_sigctx.ps_silock); 156 splx(s); 157 return ksi; 158 } 159 160 /* 161 * Append a new ksiginfo element to the list of pending ksiginfo's, if 162 * we need to (SA_SIGINFO was requested). We replace non RT signals if 163 * they already existed in the queue and we add new entries for RT signals, 164 * or for non RT signals with non-existing entries. 165 */ 166 static void 167 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 168 { 169 ksiginfo_t *kp; 170 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 171 int s; 172 173 if ((sa->sa_flags & SA_SIGINFO) == 0) 174 return; 175 /* 176 * If there's no info, don't save it. 177 */ 178 if (KSI_EMPTY_P(ksi)) 179 return; 180 181 s = splsoftclock(); 182 simple_lock(&p->p_sigctx.ps_silock); 183 #ifdef notyet /* XXX: QUEUING */ 184 if (ksi->ksi_signo < SIGRTMIN) 185 #endif 186 { 187 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 188 if (kp->ksi_signo == ksi->ksi_signo) { 189 KSI_COPY(ksi, kp); 190 goto out; 191 } 192 } 193 } 194 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 195 if (kp == NULL) { 196 #ifdef DIAGNOSTIC 197 printf("Out of memory allocating siginfo for pid %d\n", 198 p->p_pid); 199 #endif 200 goto out; 201 } 202 *kp = *ksi; 203 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 204 out: 205 simple_unlock(&p->p_sigctx.ps_silock); 206 splx(s); 207 } 208 209 /* 210 * free all pending ksiginfo on exit 211 */ 212 static void 213 ksiginfo_exithook(struct proc *p, void *v) 214 { 215 int s; 216 217 s = splsoftclock(); 218 simple_lock(&p->p_sigctx.ps_silock); 219 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 220 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 221 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 222 pool_put(&ksiginfo_pool, ksi); 223 } 224 simple_unlock(&p->p_sigctx.ps_silock); 225 splx(s); 226 } 227 228 /* 229 * Initialize signal-related data structures. 230 */ 231 void 232 signal_init(void) 233 { 234 235 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 236 237 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 238 sizeof(struct sigacts) > PAGE_SIZE ? 239 &sigactspool_allocator : &pool_allocator_nointr); 240 241 exithook_establish(ksiginfo_exithook, NULL); 242 exechook_establish(ksiginfo_exithook, NULL); 243 } 244 245 /* 246 * Create an initial sigctx structure, using the same signal state 247 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 248 * copy it from parent. 249 */ 250 void 251 sigactsinit(struct proc *np, struct proc *pp, int share) 252 { 253 struct sigacts *ps; 254 255 if (share) { 256 np->p_sigacts = pp->p_sigacts; 257 pp->p_sigacts->sa_refcnt++; 258 } else { 259 ps = pool_get(&sigacts_pool, PR_WAITOK); 260 if (pp) 261 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 262 else 263 memset(ps, '\0', sizeof(struct sigacts)); 264 ps->sa_refcnt = 1; 265 np->p_sigacts = ps; 266 } 267 } 268 269 /* 270 * Make this process not share its sigctx, maintaining all 271 * signal state. 272 */ 273 void 274 sigactsunshare(struct proc *p) 275 { 276 struct sigacts *oldps; 277 278 if (p->p_sigacts->sa_refcnt == 1) 279 return; 280 281 oldps = p->p_sigacts; 282 sigactsinit(p, NULL, 0); 283 284 if (--oldps->sa_refcnt == 0) 285 pool_put(&sigacts_pool, oldps); 286 } 287 288 /* 289 * Release a sigctx structure. 290 */ 291 void 292 sigactsfree(struct sigacts *ps) 293 { 294 295 if (--ps->sa_refcnt > 0) 296 return; 297 298 pool_put(&sigacts_pool, ps); 299 } 300 301 int 302 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 303 struct sigaction *osa, const void *tramp, int vers) 304 { 305 struct sigacts *ps; 306 int prop; 307 308 ps = p->p_sigacts; 309 if (signum <= 0 || signum >= NSIG) 310 return (EINVAL); 311 312 /* 313 * Trampoline ABI version 0 is reserved for the legacy 314 * kernel-provided on-stack trampoline. Conversely, if we are 315 * using a non-0 ABI version, we must have a trampoline. Only 316 * validate the vers if a new sigaction was supplied. Emulations 317 * use legacy kernel trampolines with version 0, alternatively 318 * check for that too. 319 */ 320 if ((vers != 0 && tramp == NULL) || 321 #ifdef SIGTRAMP_VALID 322 (nsa != NULL && 323 ((vers == 0) ? 324 (p->p_emul->e_sigcode == NULL) : 325 !SIGTRAMP_VALID(vers))) || 326 #endif 327 (vers == 0 && tramp != NULL)) 328 return (EINVAL); 329 330 if (osa) 331 *osa = SIGACTION_PS(ps, signum); 332 333 if (nsa) { 334 if (nsa->sa_flags & ~SA_ALLBITS) 335 return (EINVAL); 336 337 prop = sigprop[signum]; 338 if (prop & SA_CANTMASK) 339 return (EINVAL); 340 341 (void) splsched(); /* XXXSMP */ 342 SIGACTION_PS(ps, signum) = *nsa; 343 ps->sa_sigdesc[signum].sd_tramp = tramp; 344 ps->sa_sigdesc[signum].sd_vers = vers; 345 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 346 if ((prop & SA_NORESET) != 0) 347 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 348 if (signum == SIGCHLD) { 349 if (nsa->sa_flags & SA_NOCLDSTOP) 350 p->p_flag |= P_NOCLDSTOP; 351 else 352 p->p_flag &= ~P_NOCLDSTOP; 353 if (nsa->sa_flags & SA_NOCLDWAIT) { 354 /* 355 * Paranoia: since SA_NOCLDWAIT is implemented 356 * by reparenting the dying child to PID 1 (and 357 * trust it to reap the zombie), PID 1 itself 358 * is forbidden to set SA_NOCLDWAIT. 359 */ 360 if (p->p_pid == 1) 361 p->p_flag &= ~P_NOCLDWAIT; 362 else 363 p->p_flag |= P_NOCLDWAIT; 364 } else 365 p->p_flag &= ~P_NOCLDWAIT; 366 367 if (nsa->sa_handler == SIG_IGN) { 368 /* 369 * Paranoia: same as above. 370 */ 371 if (p->p_pid == 1) 372 p->p_flag &= ~P_CLDSIGIGN; 373 else 374 p->p_flag |= P_CLDSIGIGN; 375 } else 376 p->p_flag &= ~P_CLDSIGIGN; 377 378 } 379 if ((nsa->sa_flags & SA_NODEFER) == 0) 380 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 381 else 382 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 383 /* 384 * Set bit in p_sigctx.ps_sigignore for signals that are set to 385 * SIG_IGN, and for signals set to SIG_DFL where the default is 386 * to ignore. However, don't put SIGCONT in 387 * p_sigctx.ps_sigignore, as we have to restart the process. 388 */ 389 if (nsa->sa_handler == SIG_IGN || 390 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 391 /* never to be seen again */ 392 sigdelset(&p->p_sigctx.ps_siglist, signum); 393 if (signum != SIGCONT) { 394 /* easier in psignal */ 395 sigaddset(&p->p_sigctx.ps_sigignore, signum); 396 } 397 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 398 } else { 399 sigdelset(&p->p_sigctx.ps_sigignore, signum); 400 if (nsa->sa_handler == SIG_DFL) 401 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 402 else 403 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 404 } 405 (void) spl0(); 406 } 407 408 return (0); 409 } 410 411 #ifdef COMPAT_16 412 /* ARGSUSED */ 413 int 414 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 415 { 416 struct compat_16_sys___sigaction14_args /* { 417 syscallarg(int) signum; 418 syscallarg(const struct sigaction *) nsa; 419 syscallarg(struct sigaction *) osa; 420 } */ *uap = v; 421 struct proc *p; 422 struct sigaction nsa, osa; 423 int error; 424 425 if (SCARG(uap, nsa)) { 426 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 427 if (error) 428 return (error); 429 } 430 p = l->l_proc; 431 error = sigaction1(p, SCARG(uap, signum), 432 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 433 NULL, 0); 434 if (error) 435 return (error); 436 if (SCARG(uap, osa)) { 437 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 438 if (error) 439 return (error); 440 } 441 return (0); 442 } 443 #endif 444 445 /* ARGSUSED */ 446 int 447 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 448 { 449 struct sys___sigaction_sigtramp_args /* { 450 syscallarg(int) signum; 451 syscallarg(const struct sigaction *) nsa; 452 syscallarg(struct sigaction *) osa; 453 syscallarg(void *) tramp; 454 syscallarg(int) vers; 455 } */ *uap = v; 456 struct proc *p = l->l_proc; 457 struct sigaction nsa, osa; 458 int error; 459 460 if (SCARG(uap, nsa)) { 461 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 462 if (error) 463 return (error); 464 } 465 error = sigaction1(p, SCARG(uap, signum), 466 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 467 SCARG(uap, tramp), SCARG(uap, vers)); 468 if (error) 469 return (error); 470 if (SCARG(uap, osa)) { 471 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 472 if (error) 473 return (error); 474 } 475 return (0); 476 } 477 478 /* 479 * Initialize signal state for process 0; 480 * set to ignore signals that are ignored by default and disable the signal 481 * stack. 482 */ 483 void 484 siginit(struct proc *p) 485 { 486 struct sigacts *ps; 487 int signum, prop; 488 489 ps = p->p_sigacts; 490 sigemptyset(&contsigmask); 491 sigemptyset(&stopsigmask); 492 sigemptyset(&sigcantmask); 493 for (signum = 1; signum < NSIG; signum++) { 494 prop = sigprop[signum]; 495 if (prop & SA_CONT) 496 sigaddset(&contsigmask, signum); 497 if (prop & SA_STOP) 498 sigaddset(&stopsigmask, signum); 499 if (prop & SA_CANTMASK) 500 sigaddset(&sigcantmask, signum); 501 if (prop & SA_IGNORE && signum != SIGCONT) 502 sigaddset(&p->p_sigctx.ps_sigignore, signum); 503 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 504 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 505 } 506 sigemptyset(&p->p_sigctx.ps_sigcatch); 507 p->p_sigctx.ps_sigwaited = NULL; 508 p->p_flag &= ~P_NOCLDSTOP; 509 510 /* 511 * Reset stack state to the user stack. 512 */ 513 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 514 p->p_sigctx.ps_sigstk.ss_size = 0; 515 p->p_sigctx.ps_sigstk.ss_sp = 0; 516 517 /* One reference. */ 518 ps->sa_refcnt = 1; 519 } 520 521 /* 522 * Reset signals for an exec of the specified process. 523 */ 524 void 525 execsigs(struct proc *p) 526 { 527 struct sigacts *ps; 528 int signum, prop; 529 530 sigactsunshare(p); 531 532 ps = p->p_sigacts; 533 534 /* 535 * Reset caught signals. Held signals remain held 536 * through p_sigctx.ps_sigmask (unless they were caught, 537 * and are now ignored by default). 538 */ 539 for (signum = 1; signum < NSIG; signum++) { 540 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 541 prop = sigprop[signum]; 542 if (prop & SA_IGNORE) { 543 if ((prop & SA_CONT) == 0) 544 sigaddset(&p->p_sigctx.ps_sigignore, 545 signum); 546 sigdelset(&p->p_sigctx.ps_siglist, signum); 547 } 548 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 549 } 550 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 551 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 552 } 553 sigemptyset(&p->p_sigctx.ps_sigcatch); 554 p->p_sigctx.ps_sigwaited = NULL; 555 556 /* 557 * Reset no zombies if child dies flag as Solaris does. 558 */ 559 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN); 560 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 561 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 562 563 /* 564 * Reset stack state to the user stack. 565 */ 566 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 567 p->p_sigctx.ps_sigstk.ss_size = 0; 568 p->p_sigctx.ps_sigstk.ss_sp = 0; 569 } 570 571 int 572 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 573 { 574 575 if (oss) 576 *oss = p->p_sigctx.ps_sigmask; 577 578 if (nss) { 579 (void)splsched(); /* XXXSMP */ 580 switch (how) { 581 case SIG_BLOCK: 582 sigplusset(nss, &p->p_sigctx.ps_sigmask); 583 break; 584 case SIG_UNBLOCK: 585 sigminusset(nss, &p->p_sigctx.ps_sigmask); 586 CHECKSIGS(p); 587 break; 588 case SIG_SETMASK: 589 p->p_sigctx.ps_sigmask = *nss; 590 CHECKSIGS(p); 591 break; 592 default: 593 (void)spl0(); /* XXXSMP */ 594 return (EINVAL); 595 } 596 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 597 (void)spl0(); /* XXXSMP */ 598 } 599 600 return (0); 601 } 602 603 /* 604 * Manipulate signal mask. 605 * Note that we receive new mask, not pointer, 606 * and return old mask as return value; 607 * the library stub does the rest. 608 */ 609 int 610 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 611 { 612 struct sys___sigprocmask14_args /* { 613 syscallarg(int) how; 614 syscallarg(const sigset_t *) set; 615 syscallarg(sigset_t *) oset; 616 } */ *uap = v; 617 struct proc *p; 618 sigset_t nss, oss; 619 int error; 620 621 if (SCARG(uap, set)) { 622 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 623 if (error) 624 return (error); 625 } 626 p = l->l_proc; 627 error = sigprocmask1(p, SCARG(uap, how), 628 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 629 if (error) 630 return (error); 631 if (SCARG(uap, oset)) { 632 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 633 if (error) 634 return (error); 635 } 636 return (0); 637 } 638 639 void 640 sigpending1(struct proc *p, sigset_t *ss) 641 { 642 643 *ss = p->p_sigctx.ps_siglist; 644 sigminusset(&p->p_sigctx.ps_sigmask, ss); 645 } 646 647 /* ARGSUSED */ 648 int 649 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 650 { 651 struct sys___sigpending14_args /* { 652 syscallarg(sigset_t *) set; 653 } */ *uap = v; 654 struct proc *p; 655 sigset_t ss; 656 657 p = l->l_proc; 658 sigpending1(p, &ss); 659 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 660 } 661 662 int 663 sigsuspend1(struct proc *p, const sigset_t *ss) 664 { 665 struct sigacts *ps; 666 667 ps = p->p_sigacts; 668 if (ss) { 669 /* 670 * When returning from sigpause, we want 671 * the old mask to be restored after the 672 * signal handler has finished. Thus, we 673 * save it here and mark the sigctx structure 674 * to indicate this. 675 */ 676 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 677 p->p_sigctx.ps_flags |= SAS_OLDMASK; 678 (void) splsched(); /* XXXSMP */ 679 p->p_sigctx.ps_sigmask = *ss; 680 CHECKSIGS(p); 681 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 682 (void) spl0(); /* XXXSMP */ 683 } 684 685 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 686 /* void */; 687 688 /* always return EINTR rather than ERESTART... */ 689 return (EINTR); 690 } 691 692 /* 693 * Suspend process until signal, providing mask to be set 694 * in the meantime. Note nonstandard calling convention: 695 * libc stub passes mask, not pointer, to save a copyin. 696 */ 697 /* ARGSUSED */ 698 int 699 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 700 { 701 struct sys___sigsuspend14_args /* { 702 syscallarg(const sigset_t *) set; 703 } */ *uap = v; 704 struct proc *p; 705 sigset_t ss; 706 int error; 707 708 if (SCARG(uap, set)) { 709 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 710 if (error) 711 return (error); 712 } 713 714 p = l->l_proc; 715 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 716 } 717 718 int 719 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 720 struct sigaltstack *oss) 721 { 722 723 if (oss) 724 *oss = p->p_sigctx.ps_sigstk; 725 726 if (nss) { 727 if (nss->ss_flags & ~SS_ALLBITS) 728 return (EINVAL); 729 730 if (nss->ss_flags & SS_DISABLE) { 731 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 732 return (EINVAL); 733 } else { 734 if (nss->ss_size < MINSIGSTKSZ) 735 return (ENOMEM); 736 } 737 p->p_sigctx.ps_sigstk = *nss; 738 } 739 740 return (0); 741 } 742 743 /* ARGSUSED */ 744 int 745 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 746 { 747 struct sys___sigaltstack14_args /* { 748 syscallarg(const struct sigaltstack *) nss; 749 syscallarg(struct sigaltstack *) oss; 750 } */ *uap = v; 751 struct proc *p; 752 struct sigaltstack nss, oss; 753 int error; 754 755 if (SCARG(uap, nss)) { 756 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 757 if (error) 758 return (error); 759 } 760 p = l->l_proc; 761 error = sigaltstack1(p, 762 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 763 if (error) 764 return (error); 765 if (SCARG(uap, oss)) { 766 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 767 if (error) 768 return (error); 769 } 770 return (0); 771 } 772 773 /* ARGSUSED */ 774 int 775 sys_kill(struct lwp *l, void *v, register_t *retval) 776 { 777 struct sys_kill_args /* { 778 syscallarg(int) pid; 779 syscallarg(int) signum; 780 } */ *uap = v; 781 struct proc *cp, *p; 782 struct pcred *pc; 783 ksiginfo_t ksi; 784 785 cp = l->l_proc; 786 pc = cp->p_cred; 787 if ((u_int)SCARG(uap, signum) >= NSIG) 788 return (EINVAL); 789 KSI_INIT(&ksi); 790 ksi.ksi_signo = SCARG(uap, signum); 791 ksi.ksi_code = SI_USER; 792 ksi.ksi_pid = cp->p_pid; 793 ksi.ksi_uid = cp->p_ucred->cr_uid; 794 if (SCARG(uap, pid) > 0) { 795 /* kill single process */ 796 if ((p = pfind(SCARG(uap, pid))) == NULL) 797 return (ESRCH); 798 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 799 return (EPERM); 800 if (SCARG(uap, signum)) 801 kpsignal2(p, &ksi, 1); 802 return (0); 803 } 804 switch (SCARG(uap, pid)) { 805 case -1: /* broadcast signal */ 806 return (killpg1(cp, &ksi, 0, 1)); 807 case 0: /* signal own process group */ 808 return (killpg1(cp, &ksi, 0, 0)); 809 default: /* negative explicit process group */ 810 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 811 } 812 /* NOTREACHED */ 813 } 814 815 /* 816 * Common code for kill process group/broadcast kill. 817 * cp is calling process. 818 */ 819 int 820 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 821 { 822 struct proc *p; 823 struct pcred *pc; 824 struct pgrp *pgrp; 825 int nfound; 826 int signum = ksi->ksi_signo; 827 828 pc = cp->p_cred; 829 nfound = 0; 830 if (all) { 831 /* 832 * broadcast 833 */ 834 proclist_lock_read(); 835 PROCLIST_FOREACH(p, &allproc) { 836 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 837 p == cp || !CANSIGNAL(cp, pc, p, signum)) 838 continue; 839 nfound++; 840 if (signum) 841 kpsignal2(p, ksi, 1); 842 } 843 proclist_unlock_read(); 844 } else { 845 if (pgid == 0) 846 /* 847 * zero pgid means send to my process group. 848 */ 849 pgrp = cp->p_pgrp; 850 else { 851 pgrp = pgfind(pgid); 852 if (pgrp == NULL) 853 return (ESRCH); 854 } 855 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 856 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 857 !CANSIGNAL(cp, pc, p, signum)) 858 continue; 859 nfound++; 860 if (signum && P_ZOMBIE(p) == 0) 861 kpsignal2(p, ksi, 1); 862 } 863 } 864 return (nfound ? 0 : ESRCH); 865 } 866 867 /* 868 * Send a signal to a process group. 869 */ 870 void 871 gsignal(int pgid, int signum) 872 { 873 ksiginfo_t ksi; 874 KSI_INIT_EMPTY(&ksi); 875 ksi.ksi_signo = signum; 876 kgsignal(pgid, &ksi, NULL); 877 } 878 879 void 880 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 881 { 882 struct pgrp *pgrp; 883 884 if (pgid && (pgrp = pgfind(pgid))) 885 kpgsignal(pgrp, ksi, data, 0); 886 } 887 888 /* 889 * Send a signal to a process group. If checktty is 1, 890 * limit to members which have a controlling terminal. 891 */ 892 void 893 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 894 { 895 ksiginfo_t ksi; 896 KSI_INIT_EMPTY(&ksi); 897 ksi.ksi_signo = sig; 898 kpgsignal(pgrp, &ksi, NULL, checkctty); 899 } 900 901 void 902 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 903 { 904 struct proc *p; 905 906 if (pgrp) 907 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 908 if (checkctty == 0 || p->p_flag & P_CONTROLT) 909 kpsignal(p, ksi, data); 910 } 911 912 /* 913 * Send a signal caused by a trap to the current process. 914 * If it will be caught immediately, deliver it with correct code. 915 * Otherwise, post it normally. 916 */ 917 void 918 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 919 { 920 struct proc *p; 921 struct sigacts *ps; 922 int signum = ksi->ksi_signo; 923 924 KASSERT(KSI_TRAP_P(ksi)); 925 926 p = l->l_proc; 927 ps = p->p_sigacts; 928 if ((p->p_flag & P_TRACED) == 0 && 929 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 930 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 931 p->p_stats->p_ru.ru_nsignals++; 932 #ifdef KTRACE 933 if (KTRPOINT(p, KTR_PSIG)) 934 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler, 935 &p->p_sigctx.ps_sigmask, ksi); 936 #endif 937 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 938 (void) splsched(); /* XXXSMP */ 939 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 940 &p->p_sigctx.ps_sigmask); 941 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 942 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 943 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 944 sigaddset(&p->p_sigctx.ps_sigignore, signum); 945 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 946 } 947 (void) spl0(); /* XXXSMP */ 948 } else { 949 p->p_sigctx.ps_lwp = l->l_lid; 950 /* XXX for core dump/debugger */ 951 p->p_sigctx.ps_signo = ksi->ksi_signo; 952 p->p_sigctx.ps_code = ksi->ksi_trap; 953 kpsignal2(p, ksi, 1); 954 } 955 } 956 957 /* 958 * Fill in signal information and signal the parent for a child status change. 959 */ 960 static void 961 child_psignal(struct proc *p, int dolock) 962 { 963 ksiginfo_t ksi; 964 965 KSI_INIT(&ksi); 966 ksi.ksi_signo = SIGCHLD; 967 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 968 ksi.ksi_pid = p->p_pid; 969 ksi.ksi_uid = p->p_ucred->cr_uid; 970 ksi.ksi_status = p->p_xstat; 971 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 972 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 973 kpsignal2(p->p_pptr, &ksi, dolock); 974 } 975 976 /* 977 * Send the signal to the process. If the signal has an action, the action 978 * is usually performed by the target process rather than the caller; we add 979 * the signal to the set of pending signals for the process. 980 * 981 * Exceptions: 982 * o When a stop signal is sent to a sleeping process that takes the 983 * default action, the process is stopped without awakening it. 984 * o SIGCONT restarts stopped processes (or puts them back to sleep) 985 * regardless of the signal action (eg, blocked or ignored). 986 * 987 * Other ignored signals are discarded immediately. 988 * 989 * XXXSMP: Invoked as psignal() or sched_psignal(). 990 */ 991 void 992 psignal1(struct proc *p, int signum, int dolock) 993 { 994 ksiginfo_t ksi; 995 996 KSI_INIT_EMPTY(&ksi); 997 ksi.ksi_signo = signum; 998 kpsignal2(p, &ksi, dolock); 999 } 1000 1001 void 1002 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 1003 { 1004 1005 if ((p->p_flag & P_WEXIT) == 0 && data) { 1006 size_t fd; 1007 struct filedesc *fdp = p->p_fd; 1008 1009 ksi->ksi_fd = -1; 1010 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 1011 struct file *fp = fdp->fd_ofiles[fd]; 1012 /* XXX: lock? */ 1013 if (fp && fp->f_data == data) { 1014 ksi->ksi_fd = fd; 1015 break; 1016 } 1017 } 1018 } 1019 kpsignal2(p, ksi, dolock); 1020 } 1021 1022 static void 1023 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 1024 { 1025 struct lwp *l, *suspended = NULL; 1026 struct sadata_vp *vp; 1027 int s = 0, prop, allsusp; 1028 sig_t action; 1029 int signum = ksi->ksi_signo; 1030 1031 #ifdef DIAGNOSTIC 1032 if (signum <= 0 || signum >= NSIG) 1033 panic("psignal signal number %d", signum); 1034 1035 /* XXXSMP: works, but icky */ 1036 if (dolock) 1037 SCHED_ASSERT_UNLOCKED(); 1038 else 1039 SCHED_ASSERT_LOCKED(); 1040 #endif 1041 1042 /* 1043 * Notify any interested parties in the signal. 1044 */ 1045 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1046 1047 prop = sigprop[signum]; 1048 1049 /* 1050 * If proc is traced, always give parent a chance. 1051 */ 1052 if (p->p_flag & P_TRACED) { 1053 action = SIG_DFL; 1054 1055 /* 1056 * If the process is being traced and the signal is being 1057 * caught, make sure to save any ksiginfo. 1058 */ 1059 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1060 ksiginfo_put(p, ksi); 1061 } else { 1062 /* 1063 * If the signal was the result of a trap, reset it 1064 * to default action if it's currently masked, so that it would 1065 * coredump immediatelly instead of spinning repeatedly 1066 * taking the signal. 1067 */ 1068 if (KSI_TRAP_P(ksi) 1069 && sigismember(&p->p_sigctx.ps_sigmask, signum) 1070 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 1071 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1072 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1073 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1074 SIGACTION(p, signum).sa_handler = SIG_DFL; 1075 } 1076 1077 /* 1078 * If the signal is being ignored, 1079 * then we forget about it immediately. 1080 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1081 * and if it is set to SIG_IGN, 1082 * action will be SIG_DFL here.) 1083 */ 1084 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1085 return; 1086 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1087 action = SIG_HOLD; 1088 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1089 action = SIG_CATCH; 1090 else { 1091 action = SIG_DFL; 1092 1093 if (prop & SA_KILL && p->p_nice > NZERO) 1094 p->p_nice = NZERO; 1095 1096 /* 1097 * If sending a tty stop signal to a member of an 1098 * orphaned process group, discard the signal here if 1099 * the action is default; don't stop the process below 1100 * if sleeping, and don't clear any pending SIGCONT. 1101 */ 1102 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1103 return; 1104 } 1105 } 1106 1107 if (prop & SA_CONT) 1108 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1109 1110 if (prop & SA_STOP) 1111 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1112 1113 /* 1114 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1115 * please!), check if anything waits on it. If yes, save the 1116 * info into provided ps_sigwaited, and wake-up the waiter. 1117 * The signal won't be processed further here. 1118 */ 1119 if ((prop & SA_CANTMASK) == 0 1120 && p->p_sigctx.ps_sigwaited 1121 && sigismember(p->p_sigctx.ps_sigwait, signum) 1122 && p->p_stat != SSTOP) { 1123 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1124 p->p_sigctx.ps_sigwaited = NULL; 1125 if (dolock) 1126 wakeup_one(&p->p_sigctx.ps_sigwait); 1127 else 1128 sched_wakeup(&p->p_sigctx.ps_sigwait); 1129 return; 1130 } 1131 1132 sigaddset(&p->p_sigctx.ps_siglist, signum); 1133 1134 /* CHECKSIGS() is "inlined" here. */ 1135 p->p_sigctx.ps_sigcheck = 1; 1136 1137 /* 1138 * Defer further processing for signals which are held, 1139 * except that stopped processes must be continued by SIGCONT. 1140 */ 1141 if (action == SIG_HOLD && 1142 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1143 ksiginfo_put(p, ksi); 1144 return; 1145 } 1146 /* XXXSMP: works, but icky */ 1147 if (dolock) 1148 SCHED_LOCK(s); 1149 1150 if (p->p_flag & P_SA) { 1151 allsusp = 0; 1152 l = NULL; 1153 if (p->p_stat == SACTIVE) { 1154 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1155 l = vp->savp_lwp; 1156 KDASSERT(l != NULL); 1157 if (l->l_flag & L_SA_IDLE) { 1158 /* wakeup idle LWP */ 1159 goto found; 1160 /*NOTREACHED*/ 1161 } else if (l->l_flag & L_SA_YIELD) { 1162 /* idle LWP is already waking up */ 1163 goto out; 1164 /*NOTREACHED*/ 1165 } 1166 } 1167 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1168 l = vp->savp_lwp; 1169 if (l->l_stat == LSRUN || 1170 l->l_stat == LSONPROC) { 1171 signotify(p); 1172 goto out; 1173 /*NOTREACHED*/ 1174 } 1175 if (l->l_stat == LSSLEEP && 1176 l->l_flag & L_SINTR) { 1177 /* ok to signal vp lwp */ 1178 break; 1179 } else 1180 l = NULL; 1181 } 1182 } else if (p->p_stat == SSTOP) { 1183 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1184 l = vp->savp_lwp; 1185 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1186 break; 1187 l = NULL; 1188 } 1189 } 1190 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1191 /* 1192 * At least one LWP is running or on a run queue. 1193 * The signal will be noticed when one of them returns 1194 * to userspace. 1195 */ 1196 signotify(p); 1197 /* 1198 * The signal will be noticed very soon. 1199 */ 1200 goto out; 1201 /*NOTREACHED*/ 1202 } else { 1203 /* 1204 * Find out if any of the sleeps are interruptable, 1205 * and if all the live LWPs remaining are suspended. 1206 */ 1207 allsusp = 1; 1208 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1209 if (l->l_stat == LSSLEEP && 1210 l->l_flag & L_SINTR) 1211 break; 1212 if (l->l_stat == LSSUSPENDED) 1213 suspended = l; 1214 else if ((l->l_stat != LSZOMB) && 1215 (l->l_stat != LSDEAD)) 1216 allsusp = 0; 1217 } 1218 } 1219 1220 found: 1221 switch (p->p_stat) { 1222 case SACTIVE: 1223 1224 if (l != NULL && (p->p_flag & P_TRACED)) 1225 goto run; 1226 1227 /* 1228 * If SIGCONT is default (or ignored) and process is 1229 * asleep, we are finished; the process should not 1230 * be awakened. 1231 */ 1232 if ((prop & SA_CONT) && action == SIG_DFL) { 1233 sigdelset(&p->p_sigctx.ps_siglist, signum); 1234 goto done; 1235 } 1236 1237 /* 1238 * When a sleeping process receives a stop 1239 * signal, process immediately if possible. 1240 */ 1241 if ((prop & SA_STOP) && action == SIG_DFL) { 1242 /* 1243 * If a child holding parent blocked, 1244 * stopping could cause deadlock. 1245 */ 1246 if (p->p_flag & P_PPWAIT) { 1247 goto out; 1248 } 1249 sigdelset(&p->p_sigctx.ps_siglist, signum); 1250 p->p_xstat = signum; 1251 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1252 /* 1253 * XXXSMP: recursive call; don't lock 1254 * the second time around. 1255 */ 1256 child_psignal(p, 0); 1257 } 1258 proc_stop(p, 1); /* XXXSMP: recurse? */ 1259 goto done; 1260 } 1261 1262 if (l == NULL) { 1263 /* 1264 * Special case: SIGKILL of a process 1265 * which is entirely composed of 1266 * suspended LWPs should succeed. We 1267 * make this happen by unsuspending one of 1268 * them. 1269 */ 1270 if (allsusp && (signum == SIGKILL)) { 1271 lwp_continue(suspended); 1272 } 1273 goto done; 1274 } 1275 /* 1276 * All other (caught or default) signals 1277 * cause the process to run. 1278 */ 1279 goto runfast; 1280 /*NOTREACHED*/ 1281 case SSTOP: 1282 /* Process is stopped */ 1283 /* 1284 * If traced process is already stopped, 1285 * then no further action is necessary. 1286 */ 1287 if (p->p_flag & P_TRACED) 1288 goto done; 1289 1290 /* 1291 * Kill signal always sets processes running, 1292 * if possible. 1293 */ 1294 if (signum == SIGKILL) { 1295 l = proc_unstop(p); 1296 if (l) 1297 goto runfast; 1298 goto done; 1299 } 1300 1301 if (prop & SA_CONT) { 1302 /* 1303 * If SIGCONT is default (or ignored), 1304 * we continue the process but don't 1305 * leave the signal in ps_siglist, as 1306 * it has no further action. If 1307 * SIGCONT is held, we continue the 1308 * process and leave the signal in 1309 * ps_siglist. If the process catches 1310 * SIGCONT, let it handle the signal 1311 * itself. If it isn't waiting on an 1312 * event, then it goes back to run 1313 * state. Otherwise, process goes 1314 * back to sleep state. 1315 */ 1316 if (action == SIG_DFL) 1317 sigdelset(&p->p_sigctx.ps_siglist, 1318 signum); 1319 l = proc_unstop(p); 1320 if (l && (action == SIG_CATCH)) 1321 goto runfast; 1322 goto out; 1323 } 1324 1325 if (prop & SA_STOP) { 1326 /* 1327 * Already stopped, don't need to stop again. 1328 * (If we did the shell could get confused.) 1329 */ 1330 sigdelset(&p->p_sigctx.ps_siglist, signum); 1331 goto done; 1332 } 1333 1334 /* 1335 * If a lwp is sleeping interruptibly, then 1336 * wake it up; it will run until the kernel 1337 * boundary, where it will stop in issignal(), 1338 * since p->p_stat is still SSTOP. When the 1339 * process is continued, it will be made 1340 * runnable and can look at the signal. 1341 */ 1342 if (l) 1343 goto run; 1344 goto out; 1345 case SIDL: 1346 /* Process is being created by fork */ 1347 /* XXX: We are not ready to receive signals yet */ 1348 goto done; 1349 default: 1350 /* Else what? */ 1351 panic("psignal: Invalid process state %d.", p->p_stat); 1352 } 1353 /*NOTREACHED*/ 1354 1355 runfast: 1356 if (action == SIG_CATCH) { 1357 ksiginfo_put(p, ksi); 1358 action = SIG_HOLD; 1359 } 1360 /* 1361 * Raise priority to at least PUSER. 1362 */ 1363 if (l->l_priority > PUSER) 1364 l->l_priority = PUSER; 1365 run: 1366 if (action == SIG_CATCH) { 1367 ksiginfo_put(p, ksi); 1368 action = SIG_HOLD; 1369 } 1370 1371 setrunnable(l); /* XXXSMP: recurse? */ 1372 out: 1373 if (action == SIG_CATCH) 1374 ksiginfo_put(p, ksi); 1375 done: 1376 /* XXXSMP: works, but icky */ 1377 if (dolock) 1378 SCHED_UNLOCK(s); 1379 } 1380 1381 siginfo_t * 1382 siginfo_alloc(int flags) 1383 { 1384 1385 return pool_get(&siginfo_pool, flags); 1386 } 1387 1388 void 1389 siginfo_free(void *arg) 1390 { 1391 1392 pool_put(&siginfo_pool, arg); 1393 } 1394 1395 void 1396 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1397 { 1398 struct proc *p = l->l_proc; 1399 struct lwp *le, *li; 1400 siginfo_t *si; 1401 int f; 1402 1403 if (p->p_flag & P_SA) { 1404 1405 /* XXXUPSXXX What if not on sa_vp ? */ 1406 1407 f = l->l_flag & L_SA; 1408 l->l_flag &= ~L_SA; 1409 si = siginfo_alloc(PR_WAITOK); 1410 si->_info = ksi->ksi_info; 1411 le = li = NULL; 1412 if (KSI_TRAP_P(ksi)) 1413 le = l; 1414 else 1415 li = l; 1416 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1417 sizeof(*si), si, siginfo_free) != 0) { 1418 siginfo_free(si); 1419 if (KSI_TRAP_P(ksi)) 1420 /* XXX What do we do here?? */; 1421 } 1422 l->l_flag |= f; 1423 return; 1424 } 1425 1426 (*p->p_emul->e_sendsig)(ksi, mask); 1427 } 1428 1429 static inline int firstsig(const sigset_t *); 1430 1431 static inline int 1432 firstsig(const sigset_t *ss) 1433 { 1434 int sig; 1435 1436 sig = ffs(ss->__bits[0]); 1437 if (sig != 0) 1438 return (sig); 1439 #if NSIG > 33 1440 sig = ffs(ss->__bits[1]); 1441 if (sig != 0) 1442 return (sig + 32); 1443 #endif 1444 #if NSIG > 65 1445 sig = ffs(ss->__bits[2]); 1446 if (sig != 0) 1447 return (sig + 64); 1448 #endif 1449 #if NSIG > 97 1450 sig = ffs(ss->__bits[3]); 1451 if (sig != 0) 1452 return (sig + 96); 1453 #endif 1454 return (0); 1455 } 1456 1457 /* 1458 * If the current process has received a signal (should be caught or cause 1459 * termination, should interrupt current syscall), return the signal number. 1460 * Stop signals with default action are processed immediately, then cleared; 1461 * they aren't returned. This is checked after each entry to the system for 1462 * a syscall or trap (though this can usually be done without calling issignal 1463 * by checking the pending signal masks in the CURSIG macro.) The normal call 1464 * sequence is 1465 * 1466 * while (signum = CURSIG(curlwp)) 1467 * postsig(signum); 1468 */ 1469 int 1470 issignal(struct lwp *l) 1471 { 1472 struct proc *p = l->l_proc; 1473 int s = 0, signum, prop; 1474 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1475 sigset_t ss; 1476 1477 /* Bail out if we do not own the virtual processor */ 1478 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1479 return 0; 1480 1481 if (p->p_stat == SSTOP) { 1482 /* 1483 * The process is stopped/stopping. Stop ourselves now that 1484 * we're on the kernel/userspace boundary. 1485 */ 1486 if (dolock) 1487 SCHED_LOCK(s); 1488 l->l_stat = LSSTOP; 1489 p->p_nrlwps--; 1490 if (p->p_flag & P_TRACED) 1491 goto sigtraceswitch; 1492 else 1493 goto sigswitch; 1494 } 1495 for (;;) { 1496 sigpending1(p, &ss); 1497 if (p->p_flag & P_PPWAIT) 1498 sigminusset(&stopsigmask, &ss); 1499 signum = firstsig(&ss); 1500 if (signum == 0) { /* no signal to send */ 1501 p->p_sigctx.ps_sigcheck = 0; 1502 if (locked && dolock) 1503 SCHED_LOCK(s); 1504 return (0); 1505 } 1506 /* take the signal! */ 1507 sigdelset(&p->p_sigctx.ps_siglist, signum); 1508 1509 /* 1510 * We should see pending but ignored signals 1511 * only if P_TRACED was on when they were posted. 1512 */ 1513 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1514 (p->p_flag & P_TRACED) == 0) 1515 continue; 1516 1517 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1518 /* 1519 * If traced, always stop, and stay 1520 * stopped until released by the debugger. 1521 */ 1522 p->p_xstat = signum; 1523 1524 /* Emulation-specific handling of signal trace */ 1525 if ((p->p_emul->e_tracesig != NULL) && 1526 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1527 goto childresumed; 1528 1529 if ((p->p_flag & P_FSTRACE) == 0) 1530 child_psignal(p, dolock); 1531 if (dolock) 1532 SCHED_LOCK(s); 1533 proc_stop(p, 1); 1534 sigtraceswitch: 1535 mi_switch(l, NULL); 1536 SCHED_ASSERT_UNLOCKED(); 1537 if (dolock) 1538 splx(s); 1539 else 1540 dolock = 1; 1541 1542 childresumed: 1543 /* 1544 * If we are no longer being traced, or the parent 1545 * didn't give us a signal, look for more signals. 1546 */ 1547 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1548 continue; 1549 1550 /* 1551 * If the new signal is being masked, look for other 1552 * signals. 1553 */ 1554 signum = p->p_xstat; 1555 p->p_xstat = 0; 1556 /* 1557 * `p->p_sigctx.ps_siglist |= mask' is done 1558 * in setrunnable(). 1559 */ 1560 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1561 continue; 1562 /* take the signal! */ 1563 sigdelset(&p->p_sigctx.ps_siglist, signum); 1564 } 1565 1566 prop = sigprop[signum]; 1567 1568 /* 1569 * Decide whether the signal should be returned. 1570 * Return the signal's number, or fall through 1571 * to clear it from the pending mask. 1572 */ 1573 switch ((long)SIGACTION(p, signum).sa_handler) { 1574 1575 case (long)SIG_DFL: 1576 /* 1577 * Don't take default actions on system processes. 1578 */ 1579 if (p->p_pid <= 1) { 1580 #ifdef DIAGNOSTIC 1581 /* 1582 * Are you sure you want to ignore SIGSEGV 1583 * in init? XXX 1584 */ 1585 printf("Process (pid %d) got signal %d\n", 1586 p->p_pid, signum); 1587 #endif 1588 break; /* == ignore */ 1589 } 1590 /* 1591 * If there is a pending stop signal to process 1592 * with default action, stop here, 1593 * then clear the signal. However, 1594 * if process is member of an orphaned 1595 * process group, ignore tty stop signals. 1596 */ 1597 if (prop & SA_STOP) { 1598 if (p->p_flag & P_TRACED || 1599 (p->p_pgrp->pg_jobc == 0 && 1600 prop & SA_TTYSTOP)) 1601 break; /* == ignore */ 1602 p->p_xstat = signum; 1603 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1604 child_psignal(p, dolock); 1605 if (dolock) 1606 SCHED_LOCK(s); 1607 proc_stop(p, 1); 1608 sigswitch: 1609 mi_switch(l, NULL); 1610 SCHED_ASSERT_UNLOCKED(); 1611 if (dolock) 1612 splx(s); 1613 else 1614 dolock = 1; 1615 break; 1616 } else if (prop & SA_IGNORE) { 1617 /* 1618 * Except for SIGCONT, shouldn't get here. 1619 * Default action is to ignore; drop it. 1620 */ 1621 break; /* == ignore */ 1622 } else 1623 goto keep; 1624 /*NOTREACHED*/ 1625 1626 case (long)SIG_IGN: 1627 /* 1628 * Masking above should prevent us ever trying 1629 * to take action on an ignored signal other 1630 * than SIGCONT, unless process is traced. 1631 */ 1632 #ifdef DEBUG_ISSIGNAL 1633 if ((prop & SA_CONT) == 0 && 1634 (p->p_flag & P_TRACED) == 0) 1635 printf("issignal\n"); 1636 #endif 1637 break; /* == ignore */ 1638 1639 default: 1640 /* 1641 * This signal has an action, let 1642 * postsig() process it. 1643 */ 1644 goto keep; 1645 } 1646 } 1647 /* NOTREACHED */ 1648 1649 keep: 1650 /* leave the signal for later */ 1651 sigaddset(&p->p_sigctx.ps_siglist, signum); 1652 CHECKSIGS(p); 1653 if (locked && dolock) 1654 SCHED_LOCK(s); 1655 return (signum); 1656 } 1657 1658 /* 1659 * Put the argument process into the stopped state and notify the parent 1660 * via wakeup. Signals are handled elsewhere. The process must not be 1661 * on the run queue. 1662 */ 1663 void 1664 proc_stop(struct proc *p, int dowakeup) 1665 { 1666 struct lwp *l; 1667 struct proc *parent; 1668 struct sadata_vp *vp; 1669 1670 SCHED_ASSERT_LOCKED(); 1671 1672 /* XXX lock process LWP state */ 1673 p->p_flag &= ~P_WAITED; 1674 p->p_stat = SSTOP; 1675 parent = p->p_pptr; 1676 parent->p_nstopchild++; 1677 1678 if (p->p_flag & P_SA) { 1679 /* 1680 * Only (try to) put the LWP on the VP in stopped 1681 * state. 1682 * All other LWPs will suspend in sa_setwoken() 1683 * because the VP-LWP in stopped state cannot be 1684 * repossessed. 1685 */ 1686 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1687 l = vp->savp_lwp; 1688 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1689 l->l_stat = LSSTOP; 1690 p->p_nrlwps--; 1691 } else if (l->l_stat == LSRUN) { 1692 /* Remove LWP from the run queue */ 1693 remrunqueue(l); 1694 l->l_stat = LSSTOP; 1695 p->p_nrlwps--; 1696 } else if (l->l_stat == LSSLEEP && 1697 l->l_flag & L_SA_IDLE) { 1698 l->l_flag &= ~L_SA_IDLE; 1699 l->l_stat = LSSTOP; 1700 } 1701 } 1702 goto out; 1703 } 1704 1705 /* 1706 * Put as many LWP's as possible in stopped state. 1707 * Sleeping ones will notice the stopped state as they try to 1708 * return to userspace. 1709 */ 1710 1711 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1712 if (l->l_stat == LSONPROC) { 1713 /* XXX SMP this assumes that a LWP that is LSONPROC 1714 * is curlwp and hence is about to be mi_switched 1715 * away; the only callers of proc_stop() are: 1716 * - psignal 1717 * - issignal() 1718 * For the former, proc_stop() is only called when 1719 * no processes are running, so we don't worry. 1720 * For the latter, proc_stop() is called right 1721 * before mi_switch(). 1722 */ 1723 l->l_stat = LSSTOP; 1724 p->p_nrlwps--; 1725 } else if (l->l_stat == LSRUN) { 1726 /* Remove LWP from the run queue */ 1727 remrunqueue(l); 1728 l->l_stat = LSSTOP; 1729 p->p_nrlwps--; 1730 } else if ((l->l_stat == LSSLEEP) || 1731 (l->l_stat == LSSUSPENDED) || 1732 (l->l_stat == LSZOMB) || 1733 (l->l_stat == LSDEAD)) { 1734 /* 1735 * Don't do anything; let sleeping LWPs 1736 * discover the stopped state of the process 1737 * on their way out of the kernel; otherwise, 1738 * things like NFS threads that sleep with 1739 * locks will block the rest of the system 1740 * from getting any work done. 1741 * 1742 * Suspended/dead/zombie LWPs aren't going 1743 * anywhere, so we don't need to touch them. 1744 */ 1745 } 1746 #ifdef DIAGNOSTIC 1747 else { 1748 panic("proc_stop: process %d lwp %d " 1749 "in unstoppable state %d.\n", 1750 p->p_pid, l->l_lid, l->l_stat); 1751 } 1752 #endif 1753 } 1754 1755 out: 1756 /* XXX unlock process LWP state */ 1757 1758 if (dowakeup) 1759 sched_wakeup((caddr_t)p->p_pptr); 1760 } 1761 1762 /* 1763 * Given a process in state SSTOP, set the state back to SACTIVE and 1764 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1765 * 1766 * If no LWPs ended up runnable (and therefore able to take a signal), 1767 * return a LWP that is sleeping interruptably. The caller can wake 1768 * that LWP up to take a signal. 1769 */ 1770 struct lwp * 1771 proc_unstop(struct proc *p) 1772 { 1773 struct lwp *l, *lr = NULL; 1774 struct sadata_vp *vp; 1775 int cantake = 0; 1776 1777 SCHED_ASSERT_LOCKED(); 1778 1779 /* 1780 * Our caller wants to be informed if there are only sleeping 1781 * and interruptable LWPs left after we have run so that it 1782 * can invoke setrunnable() if required - return one of the 1783 * interruptable LWPs if this is the case. 1784 */ 1785 1786 if (!(p->p_flag & P_WAITED)) 1787 p->p_pptr->p_nstopchild--; 1788 p->p_stat = SACTIVE; 1789 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1790 if (l->l_stat == LSRUN) { 1791 lr = NULL; 1792 cantake = 1; 1793 } 1794 if (l->l_stat != LSSTOP) 1795 continue; 1796 1797 if (l->l_wchan != NULL) { 1798 l->l_stat = LSSLEEP; 1799 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1800 lr = l; 1801 cantake = 1; 1802 } 1803 } else { 1804 setrunnable(l); 1805 lr = NULL; 1806 cantake = 1; 1807 } 1808 } 1809 if (p->p_flag & P_SA) { 1810 /* Only consider returning the LWP on the VP. */ 1811 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1812 lr = vp->savp_lwp; 1813 if (lr->l_stat == LSSLEEP) { 1814 if (lr->l_flag & L_SA_YIELD) { 1815 setrunnable(lr); 1816 break; 1817 } else if (lr->l_flag & L_SINTR) 1818 return lr; 1819 } 1820 } 1821 return NULL; 1822 } 1823 return lr; 1824 } 1825 1826 /* 1827 * Take the action for the specified signal 1828 * from the current set of pending signals. 1829 */ 1830 void 1831 postsig(int signum) 1832 { 1833 struct lwp *l; 1834 struct proc *p; 1835 struct sigacts *ps; 1836 sig_t action; 1837 sigset_t *returnmask; 1838 1839 l = curlwp; 1840 p = l->l_proc; 1841 ps = p->p_sigacts; 1842 #ifdef DIAGNOSTIC 1843 if (signum == 0) 1844 panic("postsig"); 1845 #endif 1846 1847 KERNEL_PROC_LOCK(l); 1848 1849 #ifdef MULTIPROCESSOR 1850 /* 1851 * On MP, issignal() can return the same signal to multiple 1852 * LWPs. The LWPs will block above waiting for the kernel 1853 * lock and the first LWP which gets through will then remove 1854 * the signal from ps_siglist. All other LWPs exit here. 1855 */ 1856 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1857 KERNEL_PROC_UNLOCK(l); 1858 return; 1859 } 1860 #endif 1861 sigdelset(&p->p_sigctx.ps_siglist, signum); 1862 action = SIGACTION_PS(ps, signum).sa_handler; 1863 if (action == SIG_DFL) { 1864 #ifdef KTRACE 1865 if (KTRPOINT(p, KTR_PSIG)) 1866 ktrpsig(l, signum, action, 1867 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1868 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1869 NULL); 1870 #endif 1871 /* 1872 * Default action, where the default is to kill 1873 * the process. (Other cases were ignored above.) 1874 */ 1875 sigexit(l, signum); 1876 /* NOTREACHED */ 1877 } else { 1878 ksiginfo_t *ksi; 1879 /* 1880 * If we get here, the signal must be caught. 1881 */ 1882 #ifdef DIAGNOSTIC 1883 if (action == SIG_IGN || 1884 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1885 panic("postsig action"); 1886 #endif 1887 /* 1888 * Set the new mask value and also defer further 1889 * occurrences of this signal. 1890 * 1891 * Special case: user has done a sigpause. Here the 1892 * current mask is not of interest, but rather the 1893 * mask from before the sigpause is what we want 1894 * restored after the signal processing is completed. 1895 */ 1896 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1897 returnmask = &p->p_sigctx.ps_oldmask; 1898 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1899 } else 1900 returnmask = &p->p_sigctx.ps_sigmask; 1901 p->p_stats->p_ru.ru_nsignals++; 1902 ksi = ksiginfo_get(p, signum); 1903 #ifdef KTRACE 1904 if (KTRPOINT(p, KTR_PSIG)) 1905 ktrpsig(l, signum, action, 1906 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1907 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1908 ksi); 1909 #endif 1910 if (ksi == NULL) { 1911 ksiginfo_t ksi1; 1912 /* 1913 * we did not save any siginfo for this, either 1914 * because the signal was not caught, or because the 1915 * user did not request SA_SIGINFO 1916 */ 1917 KSI_INIT_EMPTY(&ksi1); 1918 ksi1.ksi_signo = signum; 1919 kpsendsig(l, &ksi1, returnmask); 1920 } else { 1921 kpsendsig(l, ksi, returnmask); 1922 pool_put(&ksiginfo_pool, ksi); 1923 } 1924 p->p_sigctx.ps_lwp = 0; 1925 p->p_sigctx.ps_code = 0; 1926 p->p_sigctx.ps_signo = 0; 1927 (void) splsched(); /* XXXSMP */ 1928 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1929 &p->p_sigctx.ps_sigmask); 1930 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1931 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1932 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1933 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1934 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1935 } 1936 (void) spl0(); /* XXXSMP */ 1937 } 1938 1939 KERNEL_PROC_UNLOCK(l); 1940 } 1941 1942 /* 1943 * Kill the current process for stated reason. 1944 */ 1945 void 1946 killproc(struct proc *p, const char *why) 1947 { 1948 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1949 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1950 psignal(p, SIGKILL); 1951 } 1952 1953 /* 1954 * Force the current process to exit with the specified signal, dumping core 1955 * if appropriate. We bypass the normal tests for masked and caught signals, 1956 * allowing unrecoverable failures to terminate the process without changing 1957 * signal state. Mark the accounting record with the signal termination. 1958 * If dumping core, save the signal number for the debugger. Calls exit and 1959 * does not return. 1960 */ 1961 1962 #if defined(DEBUG) 1963 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1964 #else 1965 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1966 #endif 1967 1968 static const char logcoredump[] = 1969 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1970 static const char lognocoredump[] = 1971 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1972 1973 /* Wrapper function for use in p_userret */ 1974 static void 1975 lwp_coredump_hook(struct lwp *l, void *arg) 1976 { 1977 int s; 1978 1979 /* 1980 * Suspend ourselves, so that the kernel stack and therefore 1981 * the userland registers saved in the trapframe are around 1982 * for coredump() to write them out. 1983 */ 1984 KERNEL_PROC_LOCK(l); 1985 l->l_flag &= ~L_DETACHED; 1986 SCHED_LOCK(s); 1987 l->l_stat = LSSUSPENDED; 1988 l->l_proc->p_nrlwps--; 1989 /* XXX NJWLWP check if this makes sense here: */ 1990 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1991 mi_switch(l, NULL); 1992 SCHED_ASSERT_UNLOCKED(); 1993 splx(s); 1994 1995 lwp_exit(l); 1996 } 1997 1998 void 1999 sigexit(struct lwp *l, int signum) 2000 { 2001 struct proc *p; 2002 #if 0 2003 struct lwp *l2; 2004 #endif 2005 int error, exitsig; 2006 2007 p = l->l_proc; 2008 2009 /* 2010 * Don't permit coredump() or exit1() multiple times 2011 * in the same process. 2012 */ 2013 if (p->p_flag & P_WEXIT) { 2014 KERNEL_PROC_UNLOCK(l); 2015 (*p->p_userret)(l, p->p_userret_arg); 2016 } 2017 p->p_flag |= P_WEXIT; 2018 /* We don't want to switch away from exiting. */ 2019 /* XXX multiprocessor: stop LWPs on other processors. */ 2020 #if 0 2021 if (p->p_flag & P_SA) { 2022 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 2023 l2->l_flag &= ~L_SA; 2024 p->p_flag &= ~P_SA; 2025 } 2026 #endif 2027 2028 /* Make other LWPs stick around long enough to be dumped */ 2029 p->p_userret = lwp_coredump_hook; 2030 p->p_userret_arg = NULL; 2031 2032 exitsig = signum; 2033 p->p_acflag |= AXSIG; 2034 if (sigprop[signum] & SA_CORE) { 2035 p->p_sigctx.ps_signo = signum; 2036 if ((error = coredump(l, NULL)) == 0) 2037 exitsig |= WCOREFLAG; 2038 2039 if (kern_logsigexit) { 2040 /* XXX What if we ever have really large UIDs? */ 2041 int uid = p->p_cred && p->p_ucred ? 2042 (int) p->p_ucred->cr_uid : -1; 2043 2044 if (error) 2045 log(LOG_INFO, lognocoredump, p->p_pid, 2046 p->p_comm, uid, signum, error); 2047 else 2048 log(LOG_INFO, logcoredump, p->p_pid, 2049 p->p_comm, uid, signum); 2050 } 2051 2052 } 2053 2054 exit1(l, W_EXITCODE(0, exitsig)); 2055 /* NOTREACHED */ 2056 } 2057 2058 struct coredump_iostate { 2059 struct lwp *io_lwp; 2060 struct vnode *io_vp; 2061 struct ucred *io_cred; 2062 off_t io_offset; 2063 }; 2064 2065 int 2066 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len) 2067 { 2068 struct coredump_iostate *io = cookie; 2069 int error; 2070 2071 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len, 2072 io->io_offset, segflg, 2073 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL, 2074 segflg == UIO_USERSPACE ? io->io_lwp : NULL); 2075 if (error) 2076 return (error); 2077 2078 io->io_offset += len; 2079 return (0); 2080 } 2081 2082 /* 2083 * Dump core, into a file named "progname.core" or "core" (depending on the 2084 * value of shortcorename), unless the process was setuid/setgid. 2085 */ 2086 int 2087 coredump(struct lwp *l, const char *pattern) 2088 { 2089 struct vnode *vp; 2090 struct proc *p; 2091 struct vmspace *vm; 2092 struct ucred *cred; 2093 struct nameidata nd; 2094 struct vattr vattr; 2095 struct mount *mp; 2096 struct coredump_iostate io; 2097 int error, error1; 2098 char *name = NULL; 2099 2100 p = l->l_proc; 2101 vm = p->p_vmspace; 2102 cred = p->p_cred->pc_ucred; 2103 2104 /* 2105 * Make sure the process has not set-id, to prevent data leaks, 2106 * unless it was specifically requested to allow set-id coredumps. 2107 */ 2108 if ((p->p_flag & P_SUGID) && !security_setidcore_dump) 2109 return (EPERM); 2110 2111 /* 2112 * Refuse to core if the data + stack + user size is larger than 2113 * the core dump limit. XXX THIS IS WRONG, because of mapped 2114 * data. 2115 */ 2116 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2117 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2118 return (EFBIG); /* better error code? */ 2119 2120 restart: 2121 /* 2122 * The core dump will go in the current working directory. Make 2123 * sure that the directory is still there and that the mount flags 2124 * allow us to write core dumps there. 2125 */ 2126 vp = p->p_cwdi->cwdi_cdir; 2127 if (vp->v_mount == NULL || 2128 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) { 2129 error = EPERM; 2130 goto done; 2131 } 2132 2133 if (p->p_flag & P_SUGID && security_setidcore_dump) 2134 pattern = security_setidcore_path; 2135 2136 if (pattern == NULL) 2137 pattern = p->p_limit->pl_corename; 2138 if (name == NULL) { 2139 name = PNBUF_GET(); 2140 } 2141 error = build_corename(p, name, pattern, MAXPATHLEN); 2142 if (error != 0) { 2143 goto done; 2144 } 2145 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l); 2146 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 2147 if (error) { 2148 goto done; 2149 } 2150 vp = nd.ni_vp; 2151 2152 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2153 VOP_UNLOCK(vp, 0); 2154 if ((error = vn_close(vp, FWRITE, cred, l)) != 0) { 2155 goto done; 2156 } 2157 if ((error = vn_start_write(NULL, &mp, 2158 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) { 2159 goto done; 2160 } 2161 goto restart; 2162 } 2163 2164 /* Don't dump to non-regular files or files with links. */ 2165 if (vp->v_type != VREG || 2166 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) { 2167 error = EINVAL; 2168 goto out; 2169 } 2170 VATTR_NULL(&vattr); 2171 vattr.va_size = 0; 2172 2173 if (p->p_flag & P_SUGID && security_setidcore_dump) { 2174 vattr.va_uid = security_setidcore_owner; 2175 vattr.va_gid = security_setidcore_group; 2176 vattr.va_mode = security_setidcore_mode; 2177 } 2178 2179 VOP_LEASE(vp, l, cred, LEASE_WRITE); 2180 VOP_SETATTR(vp, &vattr, cred, l); 2181 p->p_acflag |= ACORE; 2182 2183 io.io_lwp = l; 2184 io.io_vp = vp; 2185 io.io_cred = cred; 2186 io.io_offset = 0; 2187 2188 /* Now dump the actual core file. */ 2189 error = (*p->p_execsw->es_coredump)(l, &io); 2190 out: 2191 VOP_UNLOCK(vp, 0); 2192 vn_finished_write(mp, 0); 2193 error1 = vn_close(vp, FWRITE, cred, l); 2194 if (error == 0) 2195 error = error1; 2196 done: 2197 if (name != NULL) { 2198 PNBUF_PUT(name); 2199 } 2200 return (error); 2201 } 2202 2203 /* 2204 * Nonexistent system call-- signal process (may want to handle it). 2205 * Flag error in case process won't see signal immediately (blocked or ignored). 2206 */ 2207 /* ARGSUSED */ 2208 int 2209 sys_nosys(struct lwp *l, void *v, register_t *retval) 2210 { 2211 struct proc *p; 2212 2213 p = l->l_proc; 2214 psignal(p, SIGSYS); 2215 return (ENOSYS); 2216 } 2217 2218 static int 2219 build_corename(struct proc *p, char *dst, const char *src, size_t len) 2220 { 2221 const char *s; 2222 char *d, *end; 2223 int i; 2224 2225 for (s = src, d = dst, end = d + len; *s != '\0'; s++) { 2226 if (*s == '%') { 2227 switch (*(s + 1)) { 2228 case 'n': 2229 i = snprintf(d, end - d, "%s", p->p_comm); 2230 break; 2231 case 'p': 2232 i = snprintf(d, end - d, "%d", p->p_pid); 2233 break; 2234 case 'u': 2235 i = snprintf(d, end - d, "%.*s", 2236 (int)sizeof p->p_pgrp->pg_session->s_login, 2237 p->p_pgrp->pg_session->s_login); 2238 break; 2239 case 't': 2240 i = snprintf(d, end - d, "%ld", 2241 p->p_stats->p_start.tv_sec); 2242 break; 2243 default: 2244 goto copy; 2245 } 2246 d += i; 2247 s++; 2248 } else { 2249 copy: *d = *s; 2250 d++; 2251 } 2252 if (d >= end) 2253 return (ENAMETOOLONG); 2254 } 2255 *d = '\0'; 2256 return 0; 2257 } 2258 2259 void 2260 getucontext(struct lwp *l, ucontext_t *ucp) 2261 { 2262 struct proc *p; 2263 2264 p = l->l_proc; 2265 2266 ucp->uc_flags = 0; 2267 ucp->uc_link = l->l_ctxlink; 2268 2269 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2270 ucp->uc_flags |= _UC_SIGMASK; 2271 2272 /* 2273 * The (unsupplied) definition of the `current execution stack' 2274 * in the System V Interface Definition appears to allow returning 2275 * the main context stack. 2276 */ 2277 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2278 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2279 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2280 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2281 } else { 2282 /* Simply copy alternate signal execution stack. */ 2283 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2284 } 2285 ucp->uc_flags |= _UC_STACK; 2286 2287 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2288 } 2289 2290 /* ARGSUSED */ 2291 int 2292 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2293 { 2294 struct sys_getcontext_args /* { 2295 syscallarg(struct __ucontext *) ucp; 2296 } */ *uap = v; 2297 ucontext_t uc; 2298 2299 getucontext(l, &uc); 2300 2301 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2302 } 2303 2304 int 2305 setucontext(struct lwp *l, const ucontext_t *ucp) 2306 { 2307 struct proc *p; 2308 int error; 2309 2310 p = l->l_proc; 2311 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2312 return (error); 2313 l->l_ctxlink = ucp->uc_link; 2314 2315 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2316 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2317 2318 /* 2319 * If there was stack information, update whether or not we are 2320 * still running on an alternate signal stack. 2321 */ 2322 if ((ucp->uc_flags & _UC_STACK) != 0) { 2323 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2324 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2325 else 2326 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2327 } 2328 2329 return 0; 2330 } 2331 2332 /* ARGSUSED */ 2333 int 2334 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2335 { 2336 struct sys_setcontext_args /* { 2337 syscallarg(const ucontext_t *) ucp; 2338 } */ *uap = v; 2339 ucontext_t uc; 2340 int error; 2341 2342 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2343 exit1(l, W_EXITCODE(0, 0)); 2344 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2345 (error = setucontext(l, &uc)) != 0) 2346 return (error); 2347 2348 return (EJUSTRETURN); 2349 } 2350 2351 /* 2352 * sigtimedwait(2) system call, used also for implementation 2353 * of sigwaitinfo() and sigwait(). 2354 * 2355 * This only handles single LWP in signal wait. libpthread provides 2356 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2357 */ 2358 int 2359 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2360 { 2361 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout); 2362 } 2363 2364 int 2365 __sigtimedwait1(struct lwp *l, void *v, register_t *retval, 2366 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout) 2367 { 2368 struct sys___sigtimedwait_args /* { 2369 syscallarg(const sigset_t *) set; 2370 syscallarg(siginfo_t *) info; 2371 syscallarg(struct timespec *) timeout; 2372 } */ *uap = v; 2373 sigset_t *waitset, twaitset; 2374 struct proc *p = l->l_proc; 2375 int error, signum, s; 2376 int timo = 0; 2377 struct timeval tvstart; 2378 struct timespec ts; 2379 ksiginfo_t *ksi; 2380 2381 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2382 2383 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2384 FREE(waitset, M_TEMP); 2385 return (error); 2386 } 2387 2388 /* 2389 * Silently ignore SA_CANTMASK signals. psignal1() would 2390 * ignore SA_CANTMASK signals in waitset, we do this 2391 * only for the below siglist check. 2392 */ 2393 sigminusset(&sigcantmask, waitset); 2394 2395 /* 2396 * First scan siglist and check if there is signal from 2397 * our waitset already pending. 2398 */ 2399 twaitset = *waitset; 2400 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2401 if ((signum = firstsig(&twaitset))) { 2402 /* found pending signal */ 2403 sigdelset(&p->p_sigctx.ps_siglist, signum); 2404 ksi = ksiginfo_get(p, signum); 2405 if (!ksi) { 2406 /* No queued siginfo, manufacture one */ 2407 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2408 KSI_INIT(ksi); 2409 ksi->ksi_info._signo = signum; 2410 ksi->ksi_info._code = SI_USER; 2411 } 2412 2413 goto sig; 2414 } 2415 2416 /* 2417 * Calculate timeout, if it was specified. 2418 */ 2419 if (SCARG(uap, timeout)) { 2420 uint64_t ms; 2421 2422 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts)))) 2423 return (error); 2424 2425 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2426 timo = mstohz(ms); 2427 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2428 timo = 1; 2429 if (timo <= 0) 2430 return (EAGAIN); 2431 2432 /* 2433 * Remember current mono_time, it would be used in 2434 * ECANCELED/ERESTART case. 2435 */ 2436 s = splclock(); 2437 tvstart = mono_time; 2438 splx(s); 2439 } 2440 2441 /* 2442 * Setup ps_sigwait list. Pass pointer to malloced memory 2443 * here; it's not possible to pass pointer to a structure 2444 * on current process's stack, the current process might 2445 * be swapped out at the time the signal would get delivered. 2446 */ 2447 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2448 p->p_sigctx.ps_sigwaited = ksi; 2449 p->p_sigctx.ps_sigwait = waitset; 2450 2451 /* 2452 * Wait for signal to arrive. We can either be woken up or 2453 * time out. 2454 */ 2455 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2456 2457 /* 2458 * Need to find out if we woke as a result of lwp_wakeup() 2459 * or a signal outside our wait set. 2460 */ 2461 if (error == EINTR && p->p_sigctx.ps_sigwaited 2462 && !firstsig(&p->p_sigctx.ps_siglist)) { 2463 /* wakeup via _lwp_wakeup() */ 2464 error = ECANCELED; 2465 } else if (!error && p->p_sigctx.ps_sigwaited) { 2466 /* spurious wakeup - arrange for syscall restart */ 2467 error = ERESTART; 2468 goto fail; 2469 } 2470 2471 /* 2472 * On error, clear sigwait indication. psignal1() clears it 2473 * in !error case. 2474 */ 2475 if (error) { 2476 p->p_sigctx.ps_sigwaited = NULL; 2477 2478 /* 2479 * If the sleep was interrupted (either by signal or wakeup), 2480 * update the timeout and copyout new value back. 2481 * It would be used when the syscall would be restarted 2482 * or called again. 2483 */ 2484 if (timo && (error == ERESTART || error == ECANCELED)) { 2485 struct timeval tvnow, tvtimo; 2486 int err; 2487 2488 s = splclock(); 2489 tvnow = mono_time; 2490 splx(s); 2491 2492 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 2493 2494 /* compute how much time has passed since start */ 2495 timersub(&tvnow, &tvstart, &tvnow); 2496 /* substract passed time from timeout */ 2497 timersub(&tvtimo, &tvnow, &tvtimo); 2498 2499 if (tvtimo.tv_sec < 0) { 2500 error = EAGAIN; 2501 goto fail; 2502 } 2503 2504 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 2505 2506 /* copy updated timeout to userland */ 2507 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout), 2508 sizeof(ts)))) { 2509 error = err; 2510 goto fail; 2511 } 2512 } 2513 2514 goto fail; 2515 } 2516 2517 /* 2518 * If a signal from the wait set arrived, copy it to userland. 2519 * Copy only the used part of siginfo, the padding part is 2520 * left unchanged (userland is not supposed to touch it anyway). 2521 */ 2522 sig: 2523 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2524 2525 fail: 2526 FREE(waitset, M_TEMP); 2527 pool_put(&ksiginfo_pool, ksi); 2528 p->p_sigctx.ps_sigwait = NULL; 2529 2530 return (error); 2531 } 2532 2533 /* 2534 * Returns true if signal is ignored or masked for passed process. 2535 */ 2536 int 2537 sigismasked(struct proc *p, int sig) 2538 { 2539 2540 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2541 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2542 } 2543 2544 static int 2545 filt_sigattach(struct knote *kn) 2546 { 2547 struct proc *p = curproc; 2548 2549 kn->kn_ptr.p_proc = p; 2550 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2551 2552 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2553 2554 return (0); 2555 } 2556 2557 static void 2558 filt_sigdetach(struct knote *kn) 2559 { 2560 struct proc *p = kn->kn_ptr.p_proc; 2561 2562 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2563 } 2564 2565 /* 2566 * signal knotes are shared with proc knotes, so we apply a mask to 2567 * the hint in order to differentiate them from process hints. This 2568 * could be avoided by using a signal-specific knote list, but probably 2569 * isn't worth the trouble. 2570 */ 2571 static int 2572 filt_signal(struct knote *kn, long hint) 2573 { 2574 2575 if (hint & NOTE_SIGNAL) { 2576 hint &= ~NOTE_SIGNAL; 2577 2578 if (kn->kn_id == hint) 2579 kn->kn_data++; 2580 } 2581 return (kn->kn_data != 0); 2582 } 2583 2584 const struct filterops sig_filtops = { 2585 0, filt_sigattach, filt_sigdetach, filt_signal 2586 }; 2587