xref: /netbsd-src/sys/kern/kern_sig.c (revision 27527e67bbdf8d9ec84fd58803048ed6d181ece2)
1 /*	$NetBSD: kern_sig.c,v 1.215 2006/02/04 12:09:50 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.215 2006/02/04 12:09:50 yamt Exp $");
41 
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46 
47 #define	SIGPROP		/* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 #include <sys/sysctl.h>
74 
75 #include <sys/mount.h>
76 #include <sys/syscallargs.h>
77 
78 #include <machine/cpu.h>
79 
80 #include <sys/user.h>		/* for coredump */
81 
82 #include <uvm/uvm.h>
83 #include <uvm/uvm_extern.h>
84 
85 static void	child_psignal(struct proc *, int);
86 static int	build_corename(struct proc *, char *, const char *, size_t);
87 static void	ksiginfo_exithook(struct proc *, void *);
88 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
89 static ksiginfo_t *ksiginfo_get(struct proc *, int);
90 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
91 
92 sigset_t	contsigmask, stopsigmask, sigcantmask;
93 
94 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
95 
96 /*
97  * struct sigacts memory pool allocator.
98  */
99 
100 static void *
101 sigacts_poolpage_alloc(struct pool *pp, int flags)
102 {
103 
104 	return (void *)uvm_km_alloc(kernel_map,
105 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
106 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
107 	    | UVM_KMF_WIRED);
108 }
109 
110 static void
111 sigacts_poolpage_free(struct pool *pp, void *v)
112 {
113         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
114 }
115 
116 static struct pool_allocator sigactspool_allocator = {
117         sigacts_poolpage_alloc, sigacts_poolpage_free,
118 };
119 
120 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
121     &pool_allocator_nointr);
122 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
123 
124 /*
125  * Can process p, with pcred pc, send the signal signum to process q?
126  */
127 #define	CANSIGNAL(p, pc, q, signum) \
128 	((pc)->pc_ucred->cr_uid == 0 || \
129 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
130 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
131 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
132 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
133 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
134 
135 /*
136  * Remove and return the first ksiginfo element that matches our requested
137  * signal, or return NULL if one not found.
138  */
139 static ksiginfo_t *
140 ksiginfo_get(struct proc *p, int signo)
141 {
142 	ksiginfo_t *ksi;
143 	int s;
144 
145 	s = splsoftclock();
146 	simple_lock(&p->p_sigctx.ps_silock);
147 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
148 		if (ksi->ksi_signo == signo) {
149 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
150 			goto out;
151 		}
152 	}
153 	ksi = NULL;
154 out:
155 	simple_unlock(&p->p_sigctx.ps_silock);
156 	splx(s);
157 	return ksi;
158 }
159 
160 /*
161  * Append a new ksiginfo element to the list of pending ksiginfo's, if
162  * we need to (SA_SIGINFO was requested). We replace non RT signals if
163  * they already existed in the queue and we add new entries for RT signals,
164  * or for non RT signals with non-existing entries.
165  */
166 static void
167 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
168 {
169 	ksiginfo_t *kp;
170 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
171 	int s;
172 
173 	if ((sa->sa_flags & SA_SIGINFO) == 0)
174 		return;
175 	/*
176 	 * If there's no info, don't save it.
177 	 */
178 	if (KSI_EMPTY_P(ksi))
179 		return;
180 
181 	s = splsoftclock();
182 	simple_lock(&p->p_sigctx.ps_silock);
183 #ifdef notyet	/* XXX: QUEUING */
184 	if (ksi->ksi_signo < SIGRTMIN)
185 #endif
186 	{
187 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
188 			if (kp->ksi_signo == ksi->ksi_signo) {
189 				KSI_COPY(ksi, kp);
190 				goto out;
191 			}
192 		}
193 	}
194 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
195 	if (kp == NULL) {
196 #ifdef DIAGNOSTIC
197 		printf("Out of memory allocating siginfo for pid %d\n",
198 		    p->p_pid);
199 #endif
200 		goto out;
201 	}
202 	*kp = *ksi;
203 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
204 out:
205 	simple_unlock(&p->p_sigctx.ps_silock);
206 	splx(s);
207 }
208 
209 /*
210  * free all pending ksiginfo on exit
211  */
212 static void
213 ksiginfo_exithook(struct proc *p, void *v)
214 {
215 	int s;
216 
217 	s = splsoftclock();
218 	simple_lock(&p->p_sigctx.ps_silock);
219 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
220 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
221 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
222 		pool_put(&ksiginfo_pool, ksi);
223 	}
224 	simple_unlock(&p->p_sigctx.ps_silock);
225 	splx(s);
226 }
227 
228 /*
229  * Initialize signal-related data structures.
230  */
231 void
232 signal_init(void)
233 {
234 
235 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
236 
237 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
238 	    sizeof(struct sigacts) > PAGE_SIZE ?
239 	    &sigactspool_allocator : &pool_allocator_nointr);
240 
241 	exithook_establish(ksiginfo_exithook, NULL);
242 	exechook_establish(ksiginfo_exithook, NULL);
243 }
244 
245 /*
246  * Create an initial sigctx structure, using the same signal state
247  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
248  * copy it from parent.
249  */
250 void
251 sigactsinit(struct proc *np, struct proc *pp, int share)
252 {
253 	struct sigacts *ps;
254 
255 	if (share) {
256 		np->p_sigacts = pp->p_sigacts;
257 		pp->p_sigacts->sa_refcnt++;
258 	} else {
259 		ps = pool_get(&sigacts_pool, PR_WAITOK);
260 		if (pp)
261 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
262 		else
263 			memset(ps, '\0', sizeof(struct sigacts));
264 		ps->sa_refcnt = 1;
265 		np->p_sigacts = ps;
266 	}
267 }
268 
269 /*
270  * Make this process not share its sigctx, maintaining all
271  * signal state.
272  */
273 void
274 sigactsunshare(struct proc *p)
275 {
276 	struct sigacts *oldps;
277 
278 	if (p->p_sigacts->sa_refcnt == 1)
279 		return;
280 
281 	oldps = p->p_sigacts;
282 	sigactsinit(p, NULL, 0);
283 
284 	if (--oldps->sa_refcnt == 0)
285 		pool_put(&sigacts_pool, oldps);
286 }
287 
288 /*
289  * Release a sigctx structure.
290  */
291 void
292 sigactsfree(struct sigacts *ps)
293 {
294 
295 	if (--ps->sa_refcnt > 0)
296 		return;
297 
298 	pool_put(&sigacts_pool, ps);
299 }
300 
301 int
302 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
303 	struct sigaction *osa, const void *tramp, int vers)
304 {
305 	struct sigacts	*ps;
306 	int		prop;
307 
308 	ps = p->p_sigacts;
309 	if (signum <= 0 || signum >= NSIG)
310 		return (EINVAL);
311 
312 	/*
313 	 * Trampoline ABI version 0 is reserved for the legacy
314 	 * kernel-provided on-stack trampoline.  Conversely, if we are
315 	 * using a non-0 ABI version, we must have a trampoline.  Only
316 	 * validate the vers if a new sigaction was supplied. Emulations
317 	 * use legacy kernel trampolines with version 0, alternatively
318 	 * check for that too.
319 	 */
320 	if ((vers != 0 && tramp == NULL) ||
321 #ifdef SIGTRAMP_VALID
322 	    (nsa != NULL &&
323 	    ((vers == 0) ?
324 		(p->p_emul->e_sigcode == NULL) :
325 		!SIGTRAMP_VALID(vers))) ||
326 #endif
327 	    (vers == 0 && tramp != NULL))
328 		return (EINVAL);
329 
330 	if (osa)
331 		*osa = SIGACTION_PS(ps, signum);
332 
333 	if (nsa) {
334 		if (nsa->sa_flags & ~SA_ALLBITS)
335 			return (EINVAL);
336 
337 		prop = sigprop[signum];
338 		if (prop & SA_CANTMASK)
339 			return (EINVAL);
340 
341 		(void) splsched();	/* XXXSMP */
342 		SIGACTION_PS(ps, signum) = *nsa;
343 		ps->sa_sigdesc[signum].sd_tramp = tramp;
344 		ps->sa_sigdesc[signum].sd_vers = vers;
345 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
346 		if ((prop & SA_NORESET) != 0)
347 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
348 		if (signum == SIGCHLD) {
349 			if (nsa->sa_flags & SA_NOCLDSTOP)
350 				p->p_flag |= P_NOCLDSTOP;
351 			else
352 				p->p_flag &= ~P_NOCLDSTOP;
353 			if (nsa->sa_flags & SA_NOCLDWAIT) {
354 				/*
355 				 * Paranoia: since SA_NOCLDWAIT is implemented
356 				 * by reparenting the dying child to PID 1 (and
357 				 * trust it to reap the zombie), PID 1 itself
358 				 * is forbidden to set SA_NOCLDWAIT.
359 				 */
360 				if (p->p_pid == 1)
361 					p->p_flag &= ~P_NOCLDWAIT;
362 				else
363 					p->p_flag |= P_NOCLDWAIT;
364 			} else
365 				p->p_flag &= ~P_NOCLDWAIT;
366 
367 			if (nsa->sa_handler == SIG_IGN) {
368 				/*
369 				 * Paranoia: same as above.
370 				 */
371 				if (p->p_pid == 1)
372 					p->p_flag &= ~P_CLDSIGIGN;
373 				else
374 					p->p_flag |= P_CLDSIGIGN;
375 			} else
376 				p->p_flag &= ~P_CLDSIGIGN;
377 
378 		}
379 		if ((nsa->sa_flags & SA_NODEFER) == 0)
380 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
381 		else
382 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
383 		/*
384 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
385 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
386 		 * to ignore. However, don't put SIGCONT in
387 		 * p_sigctx.ps_sigignore, as we have to restart the process.
388 	 	 */
389 		if (nsa->sa_handler == SIG_IGN ||
390 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
391 						/* never to be seen again */
392 			sigdelset(&p->p_sigctx.ps_siglist, signum);
393 			if (signum != SIGCONT) {
394 						/* easier in psignal */
395 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
396 			}
397 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
398 		} else {
399 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
400 			if (nsa->sa_handler == SIG_DFL)
401 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
402 			else
403 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
404 		}
405 		(void) spl0();
406 	}
407 
408 	return (0);
409 }
410 
411 #ifdef COMPAT_16
412 /* ARGSUSED */
413 int
414 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
415 {
416 	struct compat_16_sys___sigaction14_args /* {
417 		syscallarg(int)				signum;
418 		syscallarg(const struct sigaction *)	nsa;
419 		syscallarg(struct sigaction *)		osa;
420 	} */ *uap = v;
421 	struct proc		*p;
422 	struct sigaction	nsa, osa;
423 	int			error;
424 
425 	if (SCARG(uap, nsa)) {
426 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
427 		if (error)
428 			return (error);
429 	}
430 	p = l->l_proc;
431 	error = sigaction1(p, SCARG(uap, signum),
432 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
433 	    NULL, 0);
434 	if (error)
435 		return (error);
436 	if (SCARG(uap, osa)) {
437 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
438 		if (error)
439 			return (error);
440 	}
441 	return (0);
442 }
443 #endif
444 
445 /* ARGSUSED */
446 int
447 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
448 {
449 	struct sys___sigaction_sigtramp_args /* {
450 		syscallarg(int)				signum;
451 		syscallarg(const struct sigaction *)	nsa;
452 		syscallarg(struct sigaction *)		osa;
453 		syscallarg(void *)			tramp;
454 		syscallarg(int)				vers;
455 	} */ *uap = v;
456 	struct proc *p = l->l_proc;
457 	struct sigaction nsa, osa;
458 	int error;
459 
460 	if (SCARG(uap, nsa)) {
461 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
462 		if (error)
463 			return (error);
464 	}
465 	error = sigaction1(p, SCARG(uap, signum),
466 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
467 	    SCARG(uap, tramp), SCARG(uap, vers));
468 	if (error)
469 		return (error);
470 	if (SCARG(uap, osa)) {
471 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
472 		if (error)
473 			return (error);
474 	}
475 	return (0);
476 }
477 
478 /*
479  * Initialize signal state for process 0;
480  * set to ignore signals that are ignored by default and disable the signal
481  * stack.
482  */
483 void
484 siginit(struct proc *p)
485 {
486 	struct sigacts	*ps;
487 	int		signum, prop;
488 
489 	ps = p->p_sigacts;
490 	sigemptyset(&contsigmask);
491 	sigemptyset(&stopsigmask);
492 	sigemptyset(&sigcantmask);
493 	for (signum = 1; signum < NSIG; signum++) {
494 		prop = sigprop[signum];
495 		if (prop & SA_CONT)
496 			sigaddset(&contsigmask, signum);
497 		if (prop & SA_STOP)
498 			sigaddset(&stopsigmask, signum);
499 		if (prop & SA_CANTMASK)
500 			sigaddset(&sigcantmask, signum);
501 		if (prop & SA_IGNORE && signum != SIGCONT)
502 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
503 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
504 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
505 	}
506 	sigemptyset(&p->p_sigctx.ps_sigcatch);
507 	p->p_sigctx.ps_sigwaited = NULL;
508 	p->p_flag &= ~P_NOCLDSTOP;
509 
510 	/*
511 	 * Reset stack state to the user stack.
512 	 */
513 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
514 	p->p_sigctx.ps_sigstk.ss_size = 0;
515 	p->p_sigctx.ps_sigstk.ss_sp = 0;
516 
517 	/* One reference. */
518 	ps->sa_refcnt = 1;
519 }
520 
521 /*
522  * Reset signals for an exec of the specified process.
523  */
524 void
525 execsigs(struct proc *p)
526 {
527 	struct sigacts	*ps;
528 	int		signum, prop;
529 
530 	sigactsunshare(p);
531 
532 	ps = p->p_sigacts;
533 
534 	/*
535 	 * Reset caught signals.  Held signals remain held
536 	 * through p_sigctx.ps_sigmask (unless they were caught,
537 	 * and are now ignored by default).
538 	 */
539 	for (signum = 1; signum < NSIG; signum++) {
540 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
541 			prop = sigprop[signum];
542 			if (prop & SA_IGNORE) {
543 				if ((prop & SA_CONT) == 0)
544 					sigaddset(&p->p_sigctx.ps_sigignore,
545 					    signum);
546 				sigdelset(&p->p_sigctx.ps_siglist, signum);
547 			}
548 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
549 		}
550 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
551 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
552 	}
553 	sigemptyset(&p->p_sigctx.ps_sigcatch);
554 	p->p_sigctx.ps_sigwaited = NULL;
555 
556 	/*
557 	 * Reset no zombies if child dies flag as Solaris does.
558 	 */
559 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
560 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
561 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
562 
563 	/*
564 	 * Reset stack state to the user stack.
565 	 */
566 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
567 	p->p_sigctx.ps_sigstk.ss_size = 0;
568 	p->p_sigctx.ps_sigstk.ss_sp = 0;
569 }
570 
571 int
572 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
573 {
574 
575 	if (oss)
576 		*oss = p->p_sigctx.ps_sigmask;
577 
578 	if (nss) {
579 		(void)splsched();	/* XXXSMP */
580 		switch (how) {
581 		case SIG_BLOCK:
582 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
583 			break;
584 		case SIG_UNBLOCK:
585 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
586 			CHECKSIGS(p);
587 			break;
588 		case SIG_SETMASK:
589 			p->p_sigctx.ps_sigmask = *nss;
590 			CHECKSIGS(p);
591 			break;
592 		default:
593 			(void)spl0();	/* XXXSMP */
594 			return (EINVAL);
595 		}
596 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
597 		(void)spl0();		/* XXXSMP */
598 	}
599 
600 	return (0);
601 }
602 
603 /*
604  * Manipulate signal mask.
605  * Note that we receive new mask, not pointer,
606  * and return old mask as return value;
607  * the library stub does the rest.
608  */
609 int
610 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
611 {
612 	struct sys___sigprocmask14_args /* {
613 		syscallarg(int)			how;
614 		syscallarg(const sigset_t *)	set;
615 		syscallarg(sigset_t *)		oset;
616 	} */ *uap = v;
617 	struct proc	*p;
618 	sigset_t	nss, oss;
619 	int		error;
620 
621 	if (SCARG(uap, set)) {
622 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
623 		if (error)
624 			return (error);
625 	}
626 	p = l->l_proc;
627 	error = sigprocmask1(p, SCARG(uap, how),
628 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
629 	if (error)
630 		return (error);
631 	if (SCARG(uap, oset)) {
632 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
633 		if (error)
634 			return (error);
635 	}
636 	return (0);
637 }
638 
639 void
640 sigpending1(struct proc *p, sigset_t *ss)
641 {
642 
643 	*ss = p->p_sigctx.ps_siglist;
644 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
645 }
646 
647 /* ARGSUSED */
648 int
649 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
650 {
651 	struct sys___sigpending14_args /* {
652 		syscallarg(sigset_t *)	set;
653 	} */ *uap = v;
654 	struct proc	*p;
655 	sigset_t	ss;
656 
657 	p = l->l_proc;
658 	sigpending1(p, &ss);
659 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
660 }
661 
662 int
663 sigsuspend1(struct proc *p, const sigset_t *ss)
664 {
665 	struct sigacts *ps;
666 
667 	ps = p->p_sigacts;
668 	if (ss) {
669 		/*
670 		 * When returning from sigpause, we want
671 		 * the old mask to be restored after the
672 		 * signal handler has finished.  Thus, we
673 		 * save it here and mark the sigctx structure
674 		 * to indicate this.
675 		 */
676 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
677 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
678 		(void) splsched();	/* XXXSMP */
679 		p->p_sigctx.ps_sigmask = *ss;
680 		CHECKSIGS(p);
681 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
682 		(void) spl0();		/* XXXSMP */
683 	}
684 
685 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
686 		/* void */;
687 
688 	/* always return EINTR rather than ERESTART... */
689 	return (EINTR);
690 }
691 
692 /*
693  * Suspend process until signal, providing mask to be set
694  * in the meantime.  Note nonstandard calling convention:
695  * libc stub passes mask, not pointer, to save a copyin.
696  */
697 /* ARGSUSED */
698 int
699 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
700 {
701 	struct sys___sigsuspend14_args /* {
702 		syscallarg(const sigset_t *)	set;
703 	} */ *uap = v;
704 	struct proc	*p;
705 	sigset_t	ss;
706 	int		error;
707 
708 	if (SCARG(uap, set)) {
709 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
710 		if (error)
711 			return (error);
712 	}
713 
714 	p = l->l_proc;
715 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
716 }
717 
718 int
719 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
720 	struct sigaltstack *oss)
721 {
722 
723 	if (oss)
724 		*oss = p->p_sigctx.ps_sigstk;
725 
726 	if (nss) {
727 		if (nss->ss_flags & ~SS_ALLBITS)
728 			return (EINVAL);
729 
730 		if (nss->ss_flags & SS_DISABLE) {
731 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
732 				return (EINVAL);
733 		} else {
734 			if (nss->ss_size < MINSIGSTKSZ)
735 				return (ENOMEM);
736 		}
737 		p->p_sigctx.ps_sigstk = *nss;
738 	}
739 
740 	return (0);
741 }
742 
743 /* ARGSUSED */
744 int
745 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
746 {
747 	struct sys___sigaltstack14_args /* {
748 		syscallarg(const struct sigaltstack *)	nss;
749 		syscallarg(struct sigaltstack *)	oss;
750 	} */ *uap = v;
751 	struct proc		*p;
752 	struct sigaltstack	nss, oss;
753 	int			error;
754 
755 	if (SCARG(uap, nss)) {
756 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
757 		if (error)
758 			return (error);
759 	}
760 	p = l->l_proc;
761 	error = sigaltstack1(p,
762 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
763 	if (error)
764 		return (error);
765 	if (SCARG(uap, oss)) {
766 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
767 		if (error)
768 			return (error);
769 	}
770 	return (0);
771 }
772 
773 /* ARGSUSED */
774 int
775 sys_kill(struct lwp *l, void *v, register_t *retval)
776 {
777 	struct sys_kill_args /* {
778 		syscallarg(int)	pid;
779 		syscallarg(int)	signum;
780 	} */ *uap = v;
781 	struct proc	*cp, *p;
782 	struct pcred	*pc;
783 	ksiginfo_t	ksi;
784 
785 	cp = l->l_proc;
786 	pc = cp->p_cred;
787 	if ((u_int)SCARG(uap, signum) >= NSIG)
788 		return (EINVAL);
789 	KSI_INIT(&ksi);
790 	ksi.ksi_signo = SCARG(uap, signum);
791 	ksi.ksi_code = SI_USER;
792 	ksi.ksi_pid = cp->p_pid;
793 	ksi.ksi_uid = cp->p_ucred->cr_uid;
794 	if (SCARG(uap, pid) > 0) {
795 		/* kill single process */
796 		if ((p = pfind(SCARG(uap, pid))) == NULL)
797 			return (ESRCH);
798 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
799 			return (EPERM);
800 		if (SCARG(uap, signum))
801 			kpsignal2(p, &ksi, 1);
802 		return (0);
803 	}
804 	switch (SCARG(uap, pid)) {
805 	case -1:		/* broadcast signal */
806 		return (killpg1(cp, &ksi, 0, 1));
807 	case 0:			/* signal own process group */
808 		return (killpg1(cp, &ksi, 0, 0));
809 	default:		/* negative explicit process group */
810 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
811 	}
812 	/* NOTREACHED */
813 }
814 
815 /*
816  * Common code for kill process group/broadcast kill.
817  * cp is calling process.
818  */
819 int
820 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
821 {
822 	struct proc	*p;
823 	struct pcred	*pc;
824 	struct pgrp	*pgrp;
825 	int		nfound;
826 	int		signum = ksi->ksi_signo;
827 
828 	pc = cp->p_cred;
829 	nfound = 0;
830 	if (all) {
831 		/*
832 		 * broadcast
833 		 */
834 		proclist_lock_read();
835 		PROCLIST_FOREACH(p, &allproc) {
836 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
837 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
838 				continue;
839 			nfound++;
840 			if (signum)
841 				kpsignal2(p, ksi, 1);
842 		}
843 		proclist_unlock_read();
844 	} else {
845 		if (pgid == 0)
846 			/*
847 			 * zero pgid means send to my process group.
848 			 */
849 			pgrp = cp->p_pgrp;
850 		else {
851 			pgrp = pgfind(pgid);
852 			if (pgrp == NULL)
853 				return (ESRCH);
854 		}
855 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
856 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
857 			    !CANSIGNAL(cp, pc, p, signum))
858 				continue;
859 			nfound++;
860 			if (signum && P_ZOMBIE(p) == 0)
861 				kpsignal2(p, ksi, 1);
862 		}
863 	}
864 	return (nfound ? 0 : ESRCH);
865 }
866 
867 /*
868  * Send a signal to a process group.
869  */
870 void
871 gsignal(int pgid, int signum)
872 {
873 	ksiginfo_t ksi;
874 	KSI_INIT_EMPTY(&ksi);
875 	ksi.ksi_signo = signum;
876 	kgsignal(pgid, &ksi, NULL);
877 }
878 
879 void
880 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
881 {
882 	struct pgrp *pgrp;
883 
884 	if (pgid && (pgrp = pgfind(pgid)))
885 		kpgsignal(pgrp, ksi, data, 0);
886 }
887 
888 /*
889  * Send a signal to a process group. If checktty is 1,
890  * limit to members which have a controlling terminal.
891  */
892 void
893 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
894 {
895 	ksiginfo_t ksi;
896 	KSI_INIT_EMPTY(&ksi);
897 	ksi.ksi_signo = sig;
898 	kpgsignal(pgrp, &ksi, NULL, checkctty);
899 }
900 
901 void
902 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
903 {
904 	struct proc *p;
905 
906 	if (pgrp)
907 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
908 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
909 				kpsignal(p, ksi, data);
910 }
911 
912 /*
913  * Send a signal caused by a trap to the current process.
914  * If it will be caught immediately, deliver it with correct code.
915  * Otherwise, post it normally.
916  */
917 void
918 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
919 {
920 	struct proc	*p;
921 	struct sigacts	*ps;
922 	int signum = ksi->ksi_signo;
923 
924 	KASSERT(KSI_TRAP_P(ksi));
925 
926 	p = l->l_proc;
927 	ps = p->p_sigacts;
928 	if ((p->p_flag & P_TRACED) == 0 &&
929 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
930 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
931 		p->p_stats->p_ru.ru_nsignals++;
932 #ifdef KTRACE
933 		if (KTRPOINT(p, KTR_PSIG))
934 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
935 			    &p->p_sigctx.ps_sigmask, ksi);
936 #endif
937 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
938 		(void) splsched();	/* XXXSMP */
939 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
940 		    &p->p_sigctx.ps_sigmask);
941 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
942 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
943 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
944 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
945 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
946 		}
947 		(void) spl0();		/* XXXSMP */
948 	} else {
949 		p->p_sigctx.ps_lwp = l->l_lid;
950 		/* XXX for core dump/debugger */
951 		p->p_sigctx.ps_signo = ksi->ksi_signo;
952 		p->p_sigctx.ps_code = ksi->ksi_trap;
953 		kpsignal2(p, ksi, 1);
954 	}
955 }
956 
957 /*
958  * Fill in signal information and signal the parent for a child status change.
959  */
960 static void
961 child_psignal(struct proc *p, int dolock)
962 {
963 	ksiginfo_t ksi;
964 
965 	KSI_INIT(&ksi);
966 	ksi.ksi_signo = SIGCHLD;
967 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
968 	ksi.ksi_pid = p->p_pid;
969 	ksi.ksi_uid = p->p_ucred->cr_uid;
970 	ksi.ksi_status = p->p_xstat;
971 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
972 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
973 	kpsignal2(p->p_pptr, &ksi, dolock);
974 }
975 
976 /*
977  * Send the signal to the process.  If the signal has an action, the action
978  * is usually performed by the target process rather than the caller; we add
979  * the signal to the set of pending signals for the process.
980  *
981  * Exceptions:
982  *   o When a stop signal is sent to a sleeping process that takes the
983  *     default action, the process is stopped without awakening it.
984  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
985  *     regardless of the signal action (eg, blocked or ignored).
986  *
987  * Other ignored signals are discarded immediately.
988  *
989  * XXXSMP: Invoked as psignal() or sched_psignal().
990  */
991 void
992 psignal1(struct proc *p, int signum, int dolock)
993 {
994 	ksiginfo_t ksi;
995 
996 	KSI_INIT_EMPTY(&ksi);
997 	ksi.ksi_signo = signum;
998 	kpsignal2(p, &ksi, dolock);
999 }
1000 
1001 void
1002 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1003 {
1004 
1005 	if ((p->p_flag & P_WEXIT) == 0 && data) {
1006 		size_t fd;
1007 		struct filedesc *fdp = p->p_fd;
1008 
1009 		ksi->ksi_fd = -1;
1010 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1011 			struct file *fp = fdp->fd_ofiles[fd];
1012 			/* XXX: lock? */
1013 			if (fp && fp->f_data == data) {
1014 				ksi->ksi_fd = fd;
1015 				break;
1016 			}
1017 		}
1018 	}
1019 	kpsignal2(p, ksi, dolock);
1020 }
1021 
1022 static void
1023 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1024 {
1025 	struct lwp *l, *suspended = NULL;
1026 	struct sadata_vp *vp;
1027 	int	s = 0, prop, allsusp;
1028 	sig_t	action;
1029 	int	signum = ksi->ksi_signo;
1030 
1031 #ifdef DIAGNOSTIC
1032 	if (signum <= 0 || signum >= NSIG)
1033 		panic("psignal signal number %d", signum);
1034 
1035 	/* XXXSMP: works, but icky */
1036 	if (dolock)
1037 		SCHED_ASSERT_UNLOCKED();
1038 	else
1039 		SCHED_ASSERT_LOCKED();
1040 #endif
1041 
1042 	/*
1043 	 * Notify any interested parties in the signal.
1044 	 */
1045 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1046 
1047 	prop = sigprop[signum];
1048 
1049 	/*
1050 	 * If proc is traced, always give parent a chance.
1051 	 */
1052 	if (p->p_flag & P_TRACED) {
1053 		action = SIG_DFL;
1054 
1055 		/*
1056 		 * If the process is being traced and the signal is being
1057 		 * caught, make sure to save any ksiginfo.
1058 		 */
1059 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1060 			ksiginfo_put(p, ksi);
1061 	} else {
1062 		/*
1063 		 * If the signal was the result of a trap, reset it
1064 		 * to default action if it's currently masked, so that it would
1065 		 * coredump immediatelly instead of spinning repeatedly
1066 		 * taking the signal.
1067 		 */
1068 		if (KSI_TRAP_P(ksi)
1069 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
1070 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1071 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
1072 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1073 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
1074 			SIGACTION(p, signum).sa_handler = SIG_DFL;
1075 		}
1076 
1077 		/*
1078 		 * If the signal is being ignored,
1079 		 * then we forget about it immediately.
1080 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1081 		 * and if it is set to SIG_IGN,
1082 		 * action will be SIG_DFL here.)
1083 		 */
1084 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1085 			return;
1086 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1087 			action = SIG_HOLD;
1088 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1089 			action = SIG_CATCH;
1090 		else {
1091 			action = SIG_DFL;
1092 
1093 			if (prop & SA_KILL && p->p_nice > NZERO)
1094 				p->p_nice = NZERO;
1095 
1096 			/*
1097 			 * If sending a tty stop signal to a member of an
1098 			 * orphaned process group, discard the signal here if
1099 			 * the action is default; don't stop the process below
1100 			 * if sleeping, and don't clear any pending SIGCONT.
1101 			 */
1102 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1103 				return;
1104 		}
1105 	}
1106 
1107 	if (prop & SA_CONT)
1108 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1109 
1110 	if (prop & SA_STOP)
1111 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1112 
1113 	/*
1114 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1115 	 * please!), check if anything waits on it. If yes, save the
1116 	 * info into provided ps_sigwaited, and wake-up the waiter.
1117 	 * The signal won't be processed further here.
1118 	 */
1119 	if ((prop & SA_CANTMASK) == 0
1120 	    && p->p_sigctx.ps_sigwaited
1121 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1122 	    && p->p_stat != SSTOP) {
1123 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1124 		p->p_sigctx.ps_sigwaited = NULL;
1125 		if (dolock)
1126 			wakeup_one(&p->p_sigctx.ps_sigwait);
1127 		else
1128 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1129 		return;
1130 	}
1131 
1132 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1133 
1134 	/* CHECKSIGS() is "inlined" here. */
1135 	p->p_sigctx.ps_sigcheck = 1;
1136 
1137 	/*
1138 	 * Defer further processing for signals which are held,
1139 	 * except that stopped processes must be continued by SIGCONT.
1140 	 */
1141 	if (action == SIG_HOLD &&
1142 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1143 		ksiginfo_put(p, ksi);
1144 		return;
1145 	}
1146 	/* XXXSMP: works, but icky */
1147 	if (dolock)
1148 		SCHED_LOCK(s);
1149 
1150 	if (p->p_flag & P_SA) {
1151 		allsusp = 0;
1152 		l = NULL;
1153 		if (p->p_stat == SACTIVE) {
1154 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1155 				l = vp->savp_lwp;
1156 				KDASSERT(l != NULL);
1157 				if (l->l_flag & L_SA_IDLE) {
1158 					/* wakeup idle LWP */
1159 					goto found;
1160 					/*NOTREACHED*/
1161 				} else if (l->l_flag & L_SA_YIELD) {
1162 					/* idle LWP is already waking up */
1163 					goto out;
1164 					/*NOTREACHED*/
1165 				}
1166 			}
1167 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1168 				l = vp->savp_lwp;
1169 				if (l->l_stat == LSRUN ||
1170 				    l->l_stat == LSONPROC) {
1171 					signotify(p);
1172 					goto out;
1173 					/*NOTREACHED*/
1174 				}
1175 				if (l->l_stat == LSSLEEP &&
1176 				    l->l_flag & L_SINTR) {
1177 					/* ok to signal vp lwp */
1178 					break;
1179 				} else
1180 					l = NULL;
1181 			}
1182 		} else if (p->p_stat == SSTOP) {
1183 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1184 				l = vp->savp_lwp;
1185 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1186 					break;
1187 				l = NULL;
1188 			}
1189 		}
1190 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1191 		/*
1192 		 * At least one LWP is running or on a run queue.
1193 		 * The signal will be noticed when one of them returns
1194 		 * to userspace.
1195 		 */
1196 		signotify(p);
1197 		/*
1198 		 * The signal will be noticed very soon.
1199 		 */
1200 		goto out;
1201 		/*NOTREACHED*/
1202 	} else {
1203 		/*
1204 		 * Find out if any of the sleeps are interruptable,
1205 		 * and if all the live LWPs remaining are suspended.
1206 		 */
1207 		allsusp = 1;
1208 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1209 			if (l->l_stat == LSSLEEP &&
1210 			    l->l_flag & L_SINTR)
1211 				break;
1212 			if (l->l_stat == LSSUSPENDED)
1213 				suspended = l;
1214 			else if ((l->l_stat != LSZOMB) &&
1215 			    (l->l_stat != LSDEAD))
1216 				allsusp = 0;
1217 		}
1218 	}
1219 
1220  found:
1221 	switch (p->p_stat) {
1222 	case SACTIVE:
1223 
1224 		if (l != NULL && (p->p_flag & P_TRACED))
1225 			goto run;
1226 
1227 		/*
1228 		 * If SIGCONT is default (or ignored) and process is
1229 		 * asleep, we are finished; the process should not
1230 		 * be awakened.
1231 		 */
1232 		if ((prop & SA_CONT) && action == SIG_DFL) {
1233 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1234 			goto done;
1235 		}
1236 
1237 		/*
1238 		 * When a sleeping process receives a stop
1239 		 * signal, process immediately if possible.
1240 		 */
1241 		if ((prop & SA_STOP) && action == SIG_DFL) {
1242 			/*
1243 			 * If a child holding parent blocked,
1244 			 * stopping could cause deadlock.
1245 			 */
1246 			if (p->p_flag & P_PPWAIT) {
1247 				goto out;
1248 			}
1249 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1250 			p->p_xstat = signum;
1251 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1252 				/*
1253 				 * XXXSMP: recursive call; don't lock
1254 				 * the second time around.
1255 				 */
1256 				child_psignal(p, 0);
1257 			}
1258 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1259 			goto done;
1260 		}
1261 
1262 		if (l == NULL) {
1263 			/*
1264 			 * Special case: SIGKILL of a process
1265 			 * which is entirely composed of
1266 			 * suspended LWPs should succeed. We
1267 			 * make this happen by unsuspending one of
1268 			 * them.
1269 			 */
1270 			if (allsusp && (signum == SIGKILL)) {
1271 				lwp_continue(suspended);
1272 			}
1273 			goto done;
1274 		}
1275 		/*
1276 		 * All other (caught or default) signals
1277 		 * cause the process to run.
1278 		 */
1279 		goto runfast;
1280 		/*NOTREACHED*/
1281 	case SSTOP:
1282 		/* Process is stopped */
1283 		/*
1284 		 * If traced process is already stopped,
1285 		 * then no further action is necessary.
1286 		 */
1287 		if (p->p_flag & P_TRACED)
1288 			goto done;
1289 
1290 		/*
1291 		 * Kill signal always sets processes running,
1292 		 * if possible.
1293 		 */
1294 		if (signum == SIGKILL) {
1295 			l = proc_unstop(p);
1296 			if (l)
1297 				goto runfast;
1298 			goto done;
1299 		}
1300 
1301 		if (prop & SA_CONT) {
1302 			/*
1303 			 * If SIGCONT is default (or ignored),
1304 			 * we continue the process but don't
1305 			 * leave the signal in ps_siglist, as
1306 			 * it has no further action.  If
1307 			 * SIGCONT is held, we continue the
1308 			 * process and leave the signal in
1309 			 * ps_siglist.  If the process catches
1310 			 * SIGCONT, let it handle the signal
1311 			 * itself.  If it isn't waiting on an
1312 			 * event, then it goes back to run
1313 			 * state.  Otherwise, process goes
1314 			 * back to sleep state.
1315 			 */
1316 			if (action == SIG_DFL)
1317 				sigdelset(&p->p_sigctx.ps_siglist,
1318 				    signum);
1319 			l = proc_unstop(p);
1320 			if (l && (action == SIG_CATCH))
1321 				goto runfast;
1322 			goto out;
1323 		}
1324 
1325 		if (prop & SA_STOP) {
1326 			/*
1327 			 * Already stopped, don't need to stop again.
1328 			 * (If we did the shell could get confused.)
1329 			 */
1330 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1331 			goto done;
1332 		}
1333 
1334 		/*
1335 		 * If a lwp is sleeping interruptibly, then
1336 		 * wake it up; it will run until the kernel
1337 		 * boundary, where it will stop in issignal(),
1338 		 * since p->p_stat is still SSTOP. When the
1339 		 * process is continued, it will be made
1340 		 * runnable and can look at the signal.
1341 		 */
1342 		if (l)
1343 			goto run;
1344 		goto out;
1345 	case SIDL:
1346 		/* Process is being created by fork */
1347 		/* XXX: We are not ready to receive signals yet */
1348 		goto done;
1349 	default:
1350 		/* Else what? */
1351 		panic("psignal: Invalid process state %d.", p->p_stat);
1352 	}
1353 	/*NOTREACHED*/
1354 
1355  runfast:
1356 	if (action == SIG_CATCH) {
1357 		ksiginfo_put(p, ksi);
1358 		action = SIG_HOLD;
1359 	}
1360 	/*
1361 	 * Raise priority to at least PUSER.
1362 	 */
1363 	if (l->l_priority > PUSER)
1364 		l->l_priority = PUSER;
1365  run:
1366 	if (action == SIG_CATCH) {
1367 		ksiginfo_put(p, ksi);
1368 		action = SIG_HOLD;
1369 	}
1370 
1371 	setrunnable(l);		/* XXXSMP: recurse? */
1372  out:
1373 	if (action == SIG_CATCH)
1374 		ksiginfo_put(p, ksi);
1375  done:
1376 	/* XXXSMP: works, but icky */
1377 	if (dolock)
1378 		SCHED_UNLOCK(s);
1379 }
1380 
1381 siginfo_t *
1382 siginfo_alloc(int flags)
1383 {
1384 
1385 	return pool_get(&siginfo_pool, flags);
1386 }
1387 
1388 void
1389 siginfo_free(void *arg)
1390 {
1391 
1392 	pool_put(&siginfo_pool, arg);
1393 }
1394 
1395 void
1396 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1397 {
1398 	struct proc *p = l->l_proc;
1399 	struct lwp *le, *li;
1400 	siginfo_t *si;
1401 	int f;
1402 
1403 	if (p->p_flag & P_SA) {
1404 
1405 		/* XXXUPSXXX What if not on sa_vp ? */
1406 
1407 		f = l->l_flag & L_SA;
1408 		l->l_flag &= ~L_SA;
1409 		si = siginfo_alloc(PR_WAITOK);
1410 		si->_info = ksi->ksi_info;
1411 		le = li = NULL;
1412 		if (KSI_TRAP_P(ksi))
1413 			le = l;
1414 		else
1415 			li = l;
1416 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1417 		    sizeof(*si), si, siginfo_free) != 0) {
1418 			siginfo_free(si);
1419 			if (KSI_TRAP_P(ksi))
1420 				/* XXX What do we do here?? */;
1421 		}
1422 		l->l_flag |= f;
1423 		return;
1424 	}
1425 
1426 	(*p->p_emul->e_sendsig)(ksi, mask);
1427 }
1428 
1429 static inline int firstsig(const sigset_t *);
1430 
1431 static inline int
1432 firstsig(const sigset_t *ss)
1433 {
1434 	int sig;
1435 
1436 	sig = ffs(ss->__bits[0]);
1437 	if (sig != 0)
1438 		return (sig);
1439 #if NSIG > 33
1440 	sig = ffs(ss->__bits[1]);
1441 	if (sig != 0)
1442 		return (sig + 32);
1443 #endif
1444 #if NSIG > 65
1445 	sig = ffs(ss->__bits[2]);
1446 	if (sig != 0)
1447 		return (sig + 64);
1448 #endif
1449 #if NSIG > 97
1450 	sig = ffs(ss->__bits[3]);
1451 	if (sig != 0)
1452 		return (sig + 96);
1453 #endif
1454 	return (0);
1455 }
1456 
1457 /*
1458  * If the current process has received a signal (should be caught or cause
1459  * termination, should interrupt current syscall), return the signal number.
1460  * Stop signals with default action are processed immediately, then cleared;
1461  * they aren't returned.  This is checked after each entry to the system for
1462  * a syscall or trap (though this can usually be done without calling issignal
1463  * by checking the pending signal masks in the CURSIG macro.) The normal call
1464  * sequence is
1465  *
1466  *	while (signum = CURSIG(curlwp))
1467  *		postsig(signum);
1468  */
1469 int
1470 issignal(struct lwp *l)
1471 {
1472 	struct proc	*p = l->l_proc;
1473 	int		s = 0, signum, prop;
1474 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1475 	sigset_t	ss;
1476 
1477 	/* Bail out if we do not own the virtual processor */
1478 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1479 		return 0;
1480 
1481 	if (p->p_stat == SSTOP) {
1482 		/*
1483 		 * The process is stopped/stopping. Stop ourselves now that
1484 		 * we're on the kernel/userspace boundary.
1485 		 */
1486 		if (dolock)
1487 			SCHED_LOCK(s);
1488 		l->l_stat = LSSTOP;
1489 		p->p_nrlwps--;
1490 		if (p->p_flag & P_TRACED)
1491 			goto sigtraceswitch;
1492 		else
1493 			goto sigswitch;
1494 	}
1495 	for (;;) {
1496 		sigpending1(p, &ss);
1497 		if (p->p_flag & P_PPWAIT)
1498 			sigminusset(&stopsigmask, &ss);
1499 		signum = firstsig(&ss);
1500 		if (signum == 0) {		 	/* no signal to send */
1501 			p->p_sigctx.ps_sigcheck = 0;
1502 			if (locked && dolock)
1503 				SCHED_LOCK(s);
1504 			return (0);
1505 		}
1506 							/* take the signal! */
1507 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1508 
1509 		/*
1510 		 * We should see pending but ignored signals
1511 		 * only if P_TRACED was on when they were posted.
1512 		 */
1513 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1514 		    (p->p_flag & P_TRACED) == 0)
1515 			continue;
1516 
1517 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1518 			/*
1519 			 * If traced, always stop, and stay
1520 			 * stopped until released by the debugger.
1521 			 */
1522 			p->p_xstat = signum;
1523 
1524 			/* Emulation-specific handling of signal trace */
1525 			if ((p->p_emul->e_tracesig != NULL) &&
1526 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1527 				goto childresumed;
1528 
1529 			if ((p->p_flag & P_FSTRACE) == 0)
1530 				child_psignal(p, dolock);
1531 			if (dolock)
1532 				SCHED_LOCK(s);
1533 			proc_stop(p, 1);
1534 		sigtraceswitch:
1535 			mi_switch(l, NULL);
1536 			SCHED_ASSERT_UNLOCKED();
1537 			if (dolock)
1538 				splx(s);
1539 			else
1540 				dolock = 1;
1541 
1542 		childresumed:
1543 			/*
1544 			 * If we are no longer being traced, or the parent
1545 			 * didn't give us a signal, look for more signals.
1546 			 */
1547 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1548 				continue;
1549 
1550 			/*
1551 			 * If the new signal is being masked, look for other
1552 			 * signals.
1553 			 */
1554 			signum = p->p_xstat;
1555 			p->p_xstat = 0;
1556 			/*
1557 			 * `p->p_sigctx.ps_siglist |= mask' is done
1558 			 * in setrunnable().
1559 			 */
1560 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1561 				continue;
1562 							/* take the signal! */
1563 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1564 		}
1565 
1566 		prop = sigprop[signum];
1567 
1568 		/*
1569 		 * Decide whether the signal should be returned.
1570 		 * Return the signal's number, or fall through
1571 		 * to clear it from the pending mask.
1572 		 */
1573 		switch ((long)SIGACTION(p, signum).sa_handler) {
1574 
1575 		case (long)SIG_DFL:
1576 			/*
1577 			 * Don't take default actions on system processes.
1578 			 */
1579 			if (p->p_pid <= 1) {
1580 #ifdef DIAGNOSTIC
1581 				/*
1582 				 * Are you sure you want to ignore SIGSEGV
1583 				 * in init? XXX
1584 				 */
1585 				printf("Process (pid %d) got signal %d\n",
1586 				    p->p_pid, signum);
1587 #endif
1588 				break;		/* == ignore */
1589 			}
1590 			/*
1591 			 * If there is a pending stop signal to process
1592 			 * with default action, stop here,
1593 			 * then clear the signal.  However,
1594 			 * if process is member of an orphaned
1595 			 * process group, ignore tty stop signals.
1596 			 */
1597 			if (prop & SA_STOP) {
1598 				if (p->p_flag & P_TRACED ||
1599 		    		    (p->p_pgrp->pg_jobc == 0 &&
1600 				    prop & SA_TTYSTOP))
1601 					break;	/* == ignore */
1602 				p->p_xstat = signum;
1603 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1604 					child_psignal(p, dolock);
1605 				if (dolock)
1606 					SCHED_LOCK(s);
1607 				proc_stop(p, 1);
1608 			sigswitch:
1609 				mi_switch(l, NULL);
1610 				SCHED_ASSERT_UNLOCKED();
1611 				if (dolock)
1612 					splx(s);
1613 				else
1614 					dolock = 1;
1615 				break;
1616 			} else if (prop & SA_IGNORE) {
1617 				/*
1618 				 * Except for SIGCONT, shouldn't get here.
1619 				 * Default action is to ignore; drop it.
1620 				 */
1621 				break;		/* == ignore */
1622 			} else
1623 				goto keep;
1624 			/*NOTREACHED*/
1625 
1626 		case (long)SIG_IGN:
1627 			/*
1628 			 * Masking above should prevent us ever trying
1629 			 * to take action on an ignored signal other
1630 			 * than SIGCONT, unless process is traced.
1631 			 */
1632 #ifdef DEBUG_ISSIGNAL
1633 			if ((prop & SA_CONT) == 0 &&
1634 			    (p->p_flag & P_TRACED) == 0)
1635 				printf("issignal\n");
1636 #endif
1637 			break;		/* == ignore */
1638 
1639 		default:
1640 			/*
1641 			 * This signal has an action, let
1642 			 * postsig() process it.
1643 			 */
1644 			goto keep;
1645 		}
1646 	}
1647 	/* NOTREACHED */
1648 
1649  keep:
1650 						/* leave the signal for later */
1651 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1652 	CHECKSIGS(p);
1653 	if (locked && dolock)
1654 		SCHED_LOCK(s);
1655 	return (signum);
1656 }
1657 
1658 /*
1659  * Put the argument process into the stopped state and notify the parent
1660  * via wakeup.  Signals are handled elsewhere.  The process must not be
1661  * on the run queue.
1662  */
1663 void
1664 proc_stop(struct proc *p, int dowakeup)
1665 {
1666 	struct lwp *l;
1667 	struct proc *parent;
1668 	struct sadata_vp *vp;
1669 
1670 	SCHED_ASSERT_LOCKED();
1671 
1672 	/* XXX lock process LWP state */
1673 	p->p_flag &= ~P_WAITED;
1674 	p->p_stat = SSTOP;
1675 	parent = p->p_pptr;
1676 	parent->p_nstopchild++;
1677 
1678 	if (p->p_flag & P_SA) {
1679 		/*
1680 		 * Only (try to) put the LWP on the VP in stopped
1681 		 * state.
1682 		 * All other LWPs will suspend in sa_setwoken()
1683 		 * because the VP-LWP in stopped state cannot be
1684 		 * repossessed.
1685 		 */
1686 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1687 			l = vp->savp_lwp;
1688 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1689 				l->l_stat = LSSTOP;
1690 				p->p_nrlwps--;
1691 			} else if (l->l_stat == LSRUN) {
1692 				/* Remove LWP from the run queue */
1693 				remrunqueue(l);
1694 				l->l_stat = LSSTOP;
1695 				p->p_nrlwps--;
1696 			} else if (l->l_stat == LSSLEEP &&
1697 			    l->l_flag & L_SA_IDLE) {
1698 				l->l_flag &= ~L_SA_IDLE;
1699 				l->l_stat = LSSTOP;
1700 			}
1701 		}
1702 		goto out;
1703 	}
1704 
1705 	/*
1706 	 * Put as many LWP's as possible in stopped state.
1707 	 * Sleeping ones will notice the stopped state as they try to
1708 	 * return to userspace.
1709 	 */
1710 
1711 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1712 		if (l->l_stat == LSONPROC) {
1713 			/* XXX SMP this assumes that a LWP that is LSONPROC
1714 			 * is curlwp and hence is about to be mi_switched
1715 			 * away; the only callers of proc_stop() are:
1716 			 * - psignal
1717 			 * - issignal()
1718 			 * For the former, proc_stop() is only called when
1719 			 * no processes are running, so we don't worry.
1720 			 * For the latter, proc_stop() is called right
1721 			 * before mi_switch().
1722 			 */
1723 			l->l_stat = LSSTOP;
1724 			p->p_nrlwps--;
1725 		} else if (l->l_stat == LSRUN) {
1726 			/* Remove LWP from the run queue */
1727 			remrunqueue(l);
1728 			l->l_stat = LSSTOP;
1729 			p->p_nrlwps--;
1730 		} else if ((l->l_stat == LSSLEEP) ||
1731 		    (l->l_stat == LSSUSPENDED) ||
1732 		    (l->l_stat == LSZOMB) ||
1733 		    (l->l_stat == LSDEAD)) {
1734 			/*
1735 			 * Don't do anything; let sleeping LWPs
1736 			 * discover the stopped state of the process
1737 			 * on their way out of the kernel; otherwise,
1738 			 * things like NFS threads that sleep with
1739 			 * locks will block the rest of the system
1740 			 * from getting any work done.
1741 			 *
1742 			 * Suspended/dead/zombie LWPs aren't going
1743 			 * anywhere, so we don't need to touch them.
1744 			 */
1745 		}
1746 #ifdef DIAGNOSTIC
1747 		else {
1748 			panic("proc_stop: process %d lwp %d "
1749 			      "in unstoppable state %d.\n",
1750 			    p->p_pid, l->l_lid, l->l_stat);
1751 		}
1752 #endif
1753 	}
1754 
1755  out:
1756 	/* XXX unlock process LWP state */
1757 
1758 	if (dowakeup)
1759 		sched_wakeup((caddr_t)p->p_pptr);
1760 }
1761 
1762 /*
1763  * Given a process in state SSTOP, set the state back to SACTIVE and
1764  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1765  *
1766  * If no LWPs ended up runnable (and therefore able to take a signal),
1767  * return a LWP that is sleeping interruptably. The caller can wake
1768  * that LWP up to take a signal.
1769  */
1770 struct lwp *
1771 proc_unstop(struct proc *p)
1772 {
1773 	struct lwp *l, *lr = NULL;
1774 	struct sadata_vp *vp;
1775 	int cantake = 0;
1776 
1777 	SCHED_ASSERT_LOCKED();
1778 
1779 	/*
1780 	 * Our caller wants to be informed if there are only sleeping
1781 	 * and interruptable LWPs left after we have run so that it
1782 	 * can invoke setrunnable() if required - return one of the
1783 	 * interruptable LWPs if this is the case.
1784 	 */
1785 
1786 	if (!(p->p_flag & P_WAITED))
1787 		p->p_pptr->p_nstopchild--;
1788 	p->p_stat = SACTIVE;
1789 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1790 		if (l->l_stat == LSRUN) {
1791 			lr = NULL;
1792 			cantake = 1;
1793 		}
1794 		if (l->l_stat != LSSTOP)
1795 			continue;
1796 
1797 		if (l->l_wchan != NULL) {
1798 			l->l_stat = LSSLEEP;
1799 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1800 				lr = l;
1801 				cantake = 1;
1802 			}
1803 		} else {
1804 			setrunnable(l);
1805 			lr = NULL;
1806 			cantake = 1;
1807 		}
1808 	}
1809 	if (p->p_flag & P_SA) {
1810 		/* Only consider returning the LWP on the VP. */
1811 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1812 			lr = vp->savp_lwp;
1813 			if (lr->l_stat == LSSLEEP) {
1814 				if (lr->l_flag & L_SA_YIELD) {
1815 					setrunnable(lr);
1816 					break;
1817 				} else if (lr->l_flag & L_SINTR)
1818 					return lr;
1819 			}
1820 		}
1821 		return NULL;
1822 	}
1823 	return lr;
1824 }
1825 
1826 /*
1827  * Take the action for the specified signal
1828  * from the current set of pending signals.
1829  */
1830 void
1831 postsig(int signum)
1832 {
1833 	struct lwp *l;
1834 	struct proc	*p;
1835 	struct sigacts	*ps;
1836 	sig_t		action;
1837 	sigset_t	*returnmask;
1838 
1839 	l = curlwp;
1840 	p = l->l_proc;
1841 	ps = p->p_sigacts;
1842 #ifdef DIAGNOSTIC
1843 	if (signum == 0)
1844 		panic("postsig");
1845 #endif
1846 
1847 	KERNEL_PROC_LOCK(l);
1848 
1849 #ifdef MULTIPROCESSOR
1850 	/*
1851 	 * On MP, issignal() can return the same signal to multiple
1852 	 * LWPs.  The LWPs will block above waiting for the kernel
1853 	 * lock and the first LWP which gets through will then remove
1854 	 * the signal from ps_siglist.  All other LWPs exit here.
1855 	 */
1856 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1857 		KERNEL_PROC_UNLOCK(l);
1858 		return;
1859 	}
1860 #endif
1861 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1862 	action = SIGACTION_PS(ps, signum).sa_handler;
1863 	if (action == SIG_DFL) {
1864 #ifdef KTRACE
1865 		if (KTRPOINT(p, KTR_PSIG))
1866 			ktrpsig(l, signum, action,
1867 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1868 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1869 			    NULL);
1870 #endif
1871 		/*
1872 		 * Default action, where the default is to kill
1873 		 * the process.  (Other cases were ignored above.)
1874 		 */
1875 		sigexit(l, signum);
1876 		/* NOTREACHED */
1877 	} else {
1878 		ksiginfo_t *ksi;
1879 		/*
1880 		 * If we get here, the signal must be caught.
1881 		 */
1882 #ifdef DIAGNOSTIC
1883 		if (action == SIG_IGN ||
1884 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1885 			panic("postsig action");
1886 #endif
1887 		/*
1888 		 * Set the new mask value and also defer further
1889 		 * occurrences of this signal.
1890 		 *
1891 		 * Special case: user has done a sigpause.  Here the
1892 		 * current mask is not of interest, but rather the
1893 		 * mask from before the sigpause is what we want
1894 		 * restored after the signal processing is completed.
1895 		 */
1896 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1897 			returnmask = &p->p_sigctx.ps_oldmask;
1898 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1899 		} else
1900 			returnmask = &p->p_sigctx.ps_sigmask;
1901 		p->p_stats->p_ru.ru_nsignals++;
1902 		ksi = ksiginfo_get(p, signum);
1903 #ifdef KTRACE
1904 		if (KTRPOINT(p, KTR_PSIG))
1905 			ktrpsig(l, signum, action,
1906 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1907 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1908 			    ksi);
1909 #endif
1910 		if (ksi == NULL) {
1911 			ksiginfo_t ksi1;
1912 			/*
1913 			 * we did not save any siginfo for this, either
1914 			 * because the signal was not caught, or because the
1915 			 * user did not request SA_SIGINFO
1916 			 */
1917 			KSI_INIT_EMPTY(&ksi1);
1918 			ksi1.ksi_signo = signum;
1919 			kpsendsig(l, &ksi1, returnmask);
1920 		} else {
1921 			kpsendsig(l, ksi, returnmask);
1922 			pool_put(&ksiginfo_pool, ksi);
1923 		}
1924 		p->p_sigctx.ps_lwp = 0;
1925 		p->p_sigctx.ps_code = 0;
1926 		p->p_sigctx.ps_signo = 0;
1927 		(void) splsched();	/* XXXSMP */
1928 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1929 		    &p->p_sigctx.ps_sigmask);
1930 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1931 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1932 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1933 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1934 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1935 		}
1936 		(void) spl0();		/* XXXSMP */
1937 	}
1938 
1939 	KERNEL_PROC_UNLOCK(l);
1940 }
1941 
1942 /*
1943  * Kill the current process for stated reason.
1944  */
1945 void
1946 killproc(struct proc *p, const char *why)
1947 {
1948 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1949 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1950 	psignal(p, SIGKILL);
1951 }
1952 
1953 /*
1954  * Force the current process to exit with the specified signal, dumping core
1955  * if appropriate.  We bypass the normal tests for masked and caught signals,
1956  * allowing unrecoverable failures to terminate the process without changing
1957  * signal state.  Mark the accounting record with the signal termination.
1958  * If dumping core, save the signal number for the debugger.  Calls exit and
1959  * does not return.
1960  */
1961 
1962 #if defined(DEBUG)
1963 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1964 #else
1965 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1966 #endif
1967 
1968 static	const char logcoredump[] =
1969 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1970 static	const char lognocoredump[] =
1971 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1972 
1973 /* Wrapper function for use in p_userret */
1974 static void
1975 lwp_coredump_hook(struct lwp *l, void *arg)
1976 {
1977 	int s;
1978 
1979 	/*
1980 	 * Suspend ourselves, so that the kernel stack and therefore
1981 	 * the userland registers saved in the trapframe are around
1982 	 * for coredump() to write them out.
1983 	 */
1984 	KERNEL_PROC_LOCK(l);
1985 	l->l_flag &= ~L_DETACHED;
1986 	SCHED_LOCK(s);
1987 	l->l_stat = LSSUSPENDED;
1988 	l->l_proc->p_nrlwps--;
1989 	/* XXX NJWLWP check if this makes sense here: */
1990 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1991 	mi_switch(l, NULL);
1992 	SCHED_ASSERT_UNLOCKED();
1993 	splx(s);
1994 
1995 	lwp_exit(l);
1996 }
1997 
1998 void
1999 sigexit(struct lwp *l, int signum)
2000 {
2001 	struct proc	*p;
2002 #if 0
2003 	struct lwp	*l2;
2004 #endif
2005 	int		error, exitsig;
2006 
2007 	p = l->l_proc;
2008 
2009 	/*
2010 	 * Don't permit coredump() or exit1() multiple times
2011 	 * in the same process.
2012 	 */
2013 	if (p->p_flag & P_WEXIT) {
2014 		KERNEL_PROC_UNLOCK(l);
2015 		(*p->p_userret)(l, p->p_userret_arg);
2016 	}
2017 	p->p_flag |= P_WEXIT;
2018 	/* We don't want to switch away from exiting. */
2019 	/* XXX multiprocessor: stop LWPs on other processors. */
2020 #if 0
2021 	if (p->p_flag & P_SA) {
2022 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2023 		    l2->l_flag &= ~L_SA;
2024 		p->p_flag &= ~P_SA;
2025 	}
2026 #endif
2027 
2028 	/* Make other LWPs stick around long enough to be dumped */
2029 	p->p_userret = lwp_coredump_hook;
2030 	p->p_userret_arg = NULL;
2031 
2032 	exitsig = signum;
2033 	p->p_acflag |= AXSIG;
2034 	if (sigprop[signum] & SA_CORE) {
2035 		p->p_sigctx.ps_signo = signum;
2036 		if ((error = coredump(l, NULL)) == 0)
2037 			exitsig |= WCOREFLAG;
2038 
2039 		if (kern_logsigexit) {
2040 			/* XXX What if we ever have really large UIDs? */
2041 			int uid = p->p_cred && p->p_ucred ?
2042 				(int) p->p_ucred->cr_uid : -1;
2043 
2044 			if (error)
2045 				log(LOG_INFO, lognocoredump, p->p_pid,
2046 				    p->p_comm, uid, signum, error);
2047 			else
2048 				log(LOG_INFO, logcoredump, p->p_pid,
2049 				    p->p_comm, uid, signum);
2050 		}
2051 
2052 	}
2053 
2054 	exit1(l, W_EXITCODE(0, exitsig));
2055 	/* NOTREACHED */
2056 }
2057 
2058 struct coredump_iostate {
2059 	struct lwp *io_lwp;
2060 	struct vnode *io_vp;
2061 	struct ucred *io_cred;
2062 	off_t io_offset;
2063 };
2064 
2065 int
2066 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2067 {
2068 	struct coredump_iostate *io = cookie;
2069 	int error;
2070 
2071 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2072 	    io->io_offset, segflg,
2073 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2074 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2075 	if (error)
2076 		return (error);
2077 
2078 	io->io_offset += len;
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Dump core, into a file named "progname.core" or "core" (depending on the
2084  * value of shortcorename), unless the process was setuid/setgid.
2085  */
2086 int
2087 coredump(struct lwp *l, const char *pattern)
2088 {
2089 	struct vnode		*vp;
2090 	struct proc		*p;
2091 	struct vmspace		*vm;
2092 	struct ucred		*cred;
2093 	struct nameidata	nd;
2094 	struct vattr		vattr;
2095 	struct mount		*mp;
2096 	struct coredump_iostate	io;
2097 	int			error, error1;
2098 	char			*name = NULL;
2099 
2100 	p = l->l_proc;
2101 	vm = p->p_vmspace;
2102 	cred = p->p_cred->pc_ucred;
2103 
2104 	/*
2105 	 * Make sure the process has not set-id, to prevent data leaks,
2106 	 * unless it was specifically requested to allow set-id coredumps.
2107 	 */
2108 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2109 		return (EPERM);
2110 
2111 	/*
2112 	 * Refuse to core if the data + stack + user size is larger than
2113 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2114 	 * data.
2115 	 */
2116 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2117 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2118 		return (EFBIG);		/* better error code? */
2119 
2120 restart:
2121 	/*
2122 	 * The core dump will go in the current working directory.  Make
2123 	 * sure that the directory is still there and that the mount flags
2124 	 * allow us to write core dumps there.
2125 	 */
2126 	vp = p->p_cwdi->cwdi_cdir;
2127 	if (vp->v_mount == NULL ||
2128 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2129 		error = EPERM;
2130 		goto done;
2131 	}
2132 
2133 	if (p->p_flag & P_SUGID && security_setidcore_dump)
2134 		pattern = security_setidcore_path;
2135 
2136 	if (pattern == NULL)
2137 		pattern = p->p_limit->pl_corename;
2138 	if (name == NULL) {
2139 		name = PNBUF_GET();
2140 	}
2141 	error = build_corename(p, name, pattern, MAXPATHLEN);
2142 	if (error != 0) {
2143 		goto done;
2144 	}
2145 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2146 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2147 	if (error) {
2148 		goto done;
2149 	}
2150 	vp = nd.ni_vp;
2151 
2152 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2153 		VOP_UNLOCK(vp, 0);
2154 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0) {
2155 			goto done;
2156 		}
2157 		if ((error = vn_start_write(NULL, &mp,
2158 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) {
2159 			goto done;
2160 		}
2161 		goto restart;
2162 	}
2163 
2164 	/* Don't dump to non-regular files or files with links. */
2165 	if (vp->v_type != VREG ||
2166 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2167 		error = EINVAL;
2168 		goto out;
2169 	}
2170 	VATTR_NULL(&vattr);
2171 	vattr.va_size = 0;
2172 
2173 	if (p->p_flag & P_SUGID && security_setidcore_dump) {
2174 		vattr.va_uid = security_setidcore_owner;
2175 		vattr.va_gid = security_setidcore_group;
2176 		vattr.va_mode = security_setidcore_mode;
2177 	}
2178 
2179 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
2180 	VOP_SETATTR(vp, &vattr, cred, l);
2181 	p->p_acflag |= ACORE;
2182 
2183 	io.io_lwp = l;
2184 	io.io_vp = vp;
2185 	io.io_cred = cred;
2186 	io.io_offset = 0;
2187 
2188 	/* Now dump the actual core file. */
2189 	error = (*p->p_execsw->es_coredump)(l, &io);
2190  out:
2191 	VOP_UNLOCK(vp, 0);
2192 	vn_finished_write(mp, 0);
2193 	error1 = vn_close(vp, FWRITE, cred, l);
2194 	if (error == 0)
2195 		error = error1;
2196 done:
2197 	if (name != NULL) {
2198 		PNBUF_PUT(name);
2199 	}
2200 	return (error);
2201 }
2202 
2203 /*
2204  * Nonexistent system call-- signal process (may want to handle it).
2205  * Flag error in case process won't see signal immediately (blocked or ignored).
2206  */
2207 /* ARGSUSED */
2208 int
2209 sys_nosys(struct lwp *l, void *v, register_t *retval)
2210 {
2211 	struct proc 	*p;
2212 
2213 	p = l->l_proc;
2214 	psignal(p, SIGSYS);
2215 	return (ENOSYS);
2216 }
2217 
2218 static int
2219 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2220 {
2221 	const char	*s;
2222 	char		*d, *end;
2223 	int		i;
2224 
2225 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2226 		if (*s == '%') {
2227 			switch (*(s + 1)) {
2228 			case 'n':
2229 				i = snprintf(d, end - d, "%s", p->p_comm);
2230 				break;
2231 			case 'p':
2232 				i = snprintf(d, end - d, "%d", p->p_pid);
2233 				break;
2234 			case 'u':
2235 				i = snprintf(d, end - d, "%.*s",
2236 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2237 				    p->p_pgrp->pg_session->s_login);
2238 				break;
2239 			case 't':
2240 				i = snprintf(d, end - d, "%ld",
2241 				    p->p_stats->p_start.tv_sec);
2242 				break;
2243 			default:
2244 				goto copy;
2245 			}
2246 			d += i;
2247 			s++;
2248 		} else {
2249  copy:			*d = *s;
2250 			d++;
2251 		}
2252 		if (d >= end)
2253 			return (ENAMETOOLONG);
2254 	}
2255 	*d = '\0';
2256 	return 0;
2257 }
2258 
2259 void
2260 getucontext(struct lwp *l, ucontext_t *ucp)
2261 {
2262 	struct proc	*p;
2263 
2264 	p = l->l_proc;
2265 
2266 	ucp->uc_flags = 0;
2267 	ucp->uc_link = l->l_ctxlink;
2268 
2269 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2270 	ucp->uc_flags |= _UC_SIGMASK;
2271 
2272 	/*
2273 	 * The (unsupplied) definition of the `current execution stack'
2274 	 * in the System V Interface Definition appears to allow returning
2275 	 * the main context stack.
2276 	 */
2277 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2278 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2279 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2280 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2281 	} else {
2282 		/* Simply copy alternate signal execution stack. */
2283 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2284 	}
2285 	ucp->uc_flags |= _UC_STACK;
2286 
2287 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2288 }
2289 
2290 /* ARGSUSED */
2291 int
2292 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2293 {
2294 	struct sys_getcontext_args /* {
2295 		syscallarg(struct __ucontext *) ucp;
2296 	} */ *uap = v;
2297 	ucontext_t uc;
2298 
2299 	getucontext(l, &uc);
2300 
2301 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2302 }
2303 
2304 int
2305 setucontext(struct lwp *l, const ucontext_t *ucp)
2306 {
2307 	struct proc	*p;
2308 	int		error;
2309 
2310 	p = l->l_proc;
2311 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2312 		return (error);
2313 	l->l_ctxlink = ucp->uc_link;
2314 
2315 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2316 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2317 
2318 	/*
2319 	 * If there was stack information, update whether or not we are
2320 	 * still running on an alternate signal stack.
2321 	 */
2322 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2323 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2324 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2325 		else
2326 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 /* ARGSUSED */
2333 int
2334 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2335 {
2336 	struct sys_setcontext_args /* {
2337 		syscallarg(const ucontext_t *) ucp;
2338 	} */ *uap = v;
2339 	ucontext_t uc;
2340 	int error;
2341 
2342 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2343 		exit1(l, W_EXITCODE(0, 0));
2344 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2345 	    (error = setucontext(l, &uc)) != 0)
2346 		return (error);
2347 
2348 	return (EJUSTRETURN);
2349 }
2350 
2351 /*
2352  * sigtimedwait(2) system call, used also for implementation
2353  * of sigwaitinfo() and sigwait().
2354  *
2355  * This only handles single LWP in signal wait. libpthread provides
2356  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2357  */
2358 int
2359 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2360 {
2361 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2362 }
2363 
2364 int
2365 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2366     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2367 {
2368 	struct sys___sigtimedwait_args /* {
2369 		syscallarg(const sigset_t *) set;
2370 		syscallarg(siginfo_t *) info;
2371 		syscallarg(struct timespec *) timeout;
2372 	} */ *uap = v;
2373 	sigset_t *waitset, twaitset;
2374 	struct proc *p = l->l_proc;
2375 	int error, signum, s;
2376 	int timo = 0;
2377 	struct timeval tvstart;
2378 	struct timespec ts;
2379 	ksiginfo_t *ksi;
2380 
2381 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2382 
2383 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2384 		FREE(waitset, M_TEMP);
2385 		return (error);
2386 	}
2387 
2388 	/*
2389 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2390 	 * ignore SA_CANTMASK signals in waitset, we do this
2391 	 * only for the below siglist check.
2392 	 */
2393 	sigminusset(&sigcantmask, waitset);
2394 
2395 	/*
2396 	 * First scan siglist and check if there is signal from
2397 	 * our waitset already pending.
2398 	 */
2399 	twaitset = *waitset;
2400 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2401 	if ((signum = firstsig(&twaitset))) {
2402 		/* found pending signal */
2403 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2404 		ksi = ksiginfo_get(p, signum);
2405 		if (!ksi) {
2406 			/* No queued siginfo, manufacture one */
2407 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2408 			KSI_INIT(ksi);
2409 			ksi->ksi_info._signo = signum;
2410 			ksi->ksi_info._code = SI_USER;
2411 		}
2412 
2413 		goto sig;
2414 	}
2415 
2416 	/*
2417 	 * Calculate timeout, if it was specified.
2418 	 */
2419 	if (SCARG(uap, timeout)) {
2420 		uint64_t ms;
2421 
2422 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2423 			return (error);
2424 
2425 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2426 		timo = mstohz(ms);
2427 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2428 			timo = 1;
2429 		if (timo <= 0)
2430 			return (EAGAIN);
2431 
2432 		/*
2433 		 * Remember current mono_time, it would be used in
2434 		 * ECANCELED/ERESTART case.
2435 		 */
2436 		s = splclock();
2437 		tvstart = mono_time;
2438 		splx(s);
2439 	}
2440 
2441 	/*
2442 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2443 	 * here; it's not possible to pass pointer to a structure
2444 	 * on current process's stack, the current process might
2445 	 * be swapped out at the time the signal would get delivered.
2446 	 */
2447 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2448 	p->p_sigctx.ps_sigwaited = ksi;
2449 	p->p_sigctx.ps_sigwait = waitset;
2450 
2451 	/*
2452 	 * Wait for signal to arrive. We can either be woken up or
2453 	 * time out.
2454 	 */
2455 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2456 
2457 	/*
2458 	 * Need to find out if we woke as a result of lwp_wakeup()
2459 	 * or a signal outside our wait set.
2460 	 */
2461 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2462 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2463 		/* wakeup via _lwp_wakeup() */
2464 		error = ECANCELED;
2465 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2466 		/* spurious wakeup - arrange for syscall restart */
2467 		error = ERESTART;
2468 		goto fail;
2469 	}
2470 
2471 	/*
2472 	 * On error, clear sigwait indication. psignal1() clears it
2473 	 * in !error case.
2474 	 */
2475 	if (error) {
2476 		p->p_sigctx.ps_sigwaited = NULL;
2477 
2478 		/*
2479 		 * If the sleep was interrupted (either by signal or wakeup),
2480 		 * update the timeout and copyout new value back.
2481 		 * It would be used when the syscall would be restarted
2482 		 * or called again.
2483 		 */
2484 		if (timo && (error == ERESTART || error == ECANCELED)) {
2485 			struct timeval tvnow, tvtimo;
2486 			int err;
2487 
2488 			s = splclock();
2489 			tvnow = mono_time;
2490 			splx(s);
2491 
2492 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2493 
2494 			/* compute how much time has passed since start */
2495 			timersub(&tvnow, &tvstart, &tvnow);
2496 			/* substract passed time from timeout */
2497 			timersub(&tvtimo, &tvnow, &tvtimo);
2498 
2499 			if (tvtimo.tv_sec < 0) {
2500 				error = EAGAIN;
2501 				goto fail;
2502 			}
2503 
2504 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2505 
2506 			/* copy updated timeout to userland */
2507 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2508 			    sizeof(ts)))) {
2509 				error = err;
2510 				goto fail;
2511 			}
2512 		}
2513 
2514 		goto fail;
2515 	}
2516 
2517 	/*
2518 	 * If a signal from the wait set arrived, copy it to userland.
2519 	 * Copy only the used part of siginfo, the padding part is
2520 	 * left unchanged (userland is not supposed to touch it anyway).
2521 	 */
2522  sig:
2523 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2524 
2525  fail:
2526 	FREE(waitset, M_TEMP);
2527 	pool_put(&ksiginfo_pool, ksi);
2528 	p->p_sigctx.ps_sigwait = NULL;
2529 
2530 	return (error);
2531 }
2532 
2533 /*
2534  * Returns true if signal is ignored or masked for passed process.
2535  */
2536 int
2537 sigismasked(struct proc *p, int sig)
2538 {
2539 
2540 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2541 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2542 }
2543 
2544 static int
2545 filt_sigattach(struct knote *kn)
2546 {
2547 	struct proc *p = curproc;
2548 
2549 	kn->kn_ptr.p_proc = p;
2550 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2551 
2552 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2553 
2554 	return (0);
2555 }
2556 
2557 static void
2558 filt_sigdetach(struct knote *kn)
2559 {
2560 	struct proc *p = kn->kn_ptr.p_proc;
2561 
2562 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2563 }
2564 
2565 /*
2566  * signal knotes are shared with proc knotes, so we apply a mask to
2567  * the hint in order to differentiate them from process hints.  This
2568  * could be avoided by using a signal-specific knote list, but probably
2569  * isn't worth the trouble.
2570  */
2571 static int
2572 filt_signal(struct knote *kn, long hint)
2573 {
2574 
2575 	if (hint & NOTE_SIGNAL) {
2576 		hint &= ~NOTE_SIGNAL;
2577 
2578 		if (kn->kn_id == hint)
2579 			kn->kn_data++;
2580 	}
2581 	return (kn->kn_data != 0);
2582 }
2583 
2584 const struct filterops sig_filtops = {
2585 	0, filt_sigattach, filt_sigdetach, filt_signal
2586 };
2587