1 /* $NetBSD: kern_sig.c,v 1.199 2004/10/01 16:30:55 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.199 2004/10/01 16:30:55 yamt Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_compat_sunos.h" 44 #include "opt_compat_netbsd.h" 45 #include "opt_compat_netbsd32.h" 46 47 #define SIGPROP /* include signal properties table */ 48 #include <sys/param.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/namei.h> 52 #include <sys/vnode.h> 53 #include <sys/proc.h> 54 #include <sys/systm.h> 55 #include <sys/timeb.h> 56 #include <sys/times.h> 57 #include <sys/buf.h> 58 #include <sys/acct.h> 59 #include <sys/file.h> 60 #include <sys/kernel.h> 61 #include <sys/wait.h> 62 #include <sys/ktrace.h> 63 #include <sys/syslog.h> 64 #include <sys/stat.h> 65 #include <sys/core.h> 66 #include <sys/filedesc.h> 67 #include <sys/malloc.h> 68 #include <sys/pool.h> 69 #include <sys/ucontext.h> 70 #include <sys/sa.h> 71 #include <sys/savar.h> 72 #include <sys/exec.h> 73 74 #include <sys/mount.h> 75 #include <sys/syscallargs.h> 76 77 #include <machine/cpu.h> 78 79 #include <sys/user.h> /* for coredump */ 80 81 #include <uvm/uvm.h> 82 #include <uvm/uvm_extern.h> 83 84 static void child_psignal(struct proc *, int); 85 static int build_corename(struct proc *, char [MAXPATHLEN]); 86 static void ksiginfo_exithook(struct proc *, void *); 87 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 88 static ksiginfo_t *ksiginfo_get(struct proc *, int); 89 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 90 91 sigset_t contsigmask, stopsigmask, sigcantmask; 92 93 struct pool sigacts_pool; /* memory pool for sigacts structures */ 94 95 /* 96 * struct sigacts memory pool allocator. 97 */ 98 99 static void * 100 sigacts_poolpage_alloc(struct pool *pp, int flags) 101 { 102 103 return (void *)uvm_km_kmemalloc1(kernel_map, 104 uvm.kernel_object, (PAGE_SIZE)*2, (PAGE_SIZE)*2, UVM_UNKNOWN_OFFSET, 105 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK); 106 } 107 108 static void 109 sigacts_poolpage_free(struct pool *pp, void *v) 110 { 111 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2); 112 } 113 114 static struct pool_allocator sigactspool_allocator = { 115 sigacts_poolpage_alloc, sigacts_poolpage_free, 116 }; 117 118 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 119 &pool_allocator_nointr); 120 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL); 121 122 /* 123 * Can process p, with pcred pc, send the signal signum to process q? 124 */ 125 #define CANSIGNAL(p, pc, q, signum) \ 126 ((pc)->pc_ucred->cr_uid == 0 || \ 127 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 128 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 129 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 130 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 131 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 132 133 /* 134 * Remove and return the first ksiginfo element that matches our requested 135 * signal, or return NULL if one not found. 136 */ 137 static ksiginfo_t * 138 ksiginfo_get(struct proc *p, int signo) 139 { 140 ksiginfo_t *ksi; 141 int s; 142 143 s = splsoftclock(); 144 simple_lock(&p->p_sigctx.ps_silock); 145 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 146 if (ksi->ksi_signo == signo) { 147 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 148 goto out; 149 } 150 } 151 ksi = NULL; 152 out: 153 simple_unlock(&p->p_sigctx.ps_silock); 154 splx(s); 155 return ksi; 156 } 157 158 /* 159 * Append a new ksiginfo element to the list of pending ksiginfo's, if 160 * we need to (SA_SIGINFO was requested). We replace non RT signals if 161 * they already existed in the queue and we add new entries for RT signals, 162 * or for non RT signals with non-existing entries. 163 */ 164 static void 165 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 166 { 167 ksiginfo_t *kp; 168 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 169 int s; 170 171 if ((sa->sa_flags & SA_SIGINFO) == 0) 172 return; 173 /* 174 * If there's no info, don't save it. 175 */ 176 if (KSI_EMPTY_P(ksi)) 177 return; 178 179 s = splsoftclock(); 180 simple_lock(&p->p_sigctx.ps_silock); 181 #ifdef notyet /* XXX: QUEUING */ 182 if (ksi->ksi_signo < SIGRTMIN) 183 #endif 184 { 185 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 186 if (kp->ksi_signo == ksi->ksi_signo) { 187 KSI_COPY(ksi, kp); 188 goto out; 189 } 190 } 191 } 192 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 193 if (kp == NULL) { 194 #ifdef DIAGNOSTIC 195 printf("Out of memory allocating siginfo for pid %d\n", 196 p->p_pid); 197 #endif 198 goto out; 199 } 200 *kp = *ksi; 201 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 202 out: 203 simple_unlock(&p->p_sigctx.ps_silock); 204 splx(s); 205 } 206 207 /* 208 * free all pending ksiginfo on exit 209 */ 210 static void 211 ksiginfo_exithook(struct proc *p, void *v) 212 { 213 int s; 214 215 s = splsoftclock(); 216 simple_lock(&p->p_sigctx.ps_silock); 217 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 218 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 219 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 220 pool_put(&ksiginfo_pool, ksi); 221 } 222 simple_unlock(&p->p_sigctx.ps_silock); 223 splx(s); 224 } 225 226 /* 227 * Initialize signal-related data structures. 228 */ 229 void 230 signal_init(void) 231 { 232 233 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 234 235 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 236 sizeof(struct sigacts) > PAGE_SIZE ? 237 &sigactspool_allocator : &pool_allocator_nointr); 238 239 exithook_establish(ksiginfo_exithook, NULL); 240 exechook_establish(ksiginfo_exithook, NULL); 241 } 242 243 /* 244 * Create an initial sigctx structure, using the same signal state 245 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 246 * copy it from parent. 247 */ 248 void 249 sigactsinit(struct proc *np, struct proc *pp, int share) 250 { 251 struct sigacts *ps; 252 253 if (share) { 254 np->p_sigacts = pp->p_sigacts; 255 pp->p_sigacts->sa_refcnt++; 256 } else { 257 ps = pool_get(&sigacts_pool, PR_WAITOK); 258 if (pp) 259 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 260 else 261 memset(ps, '\0', sizeof(struct sigacts)); 262 ps->sa_refcnt = 1; 263 np->p_sigacts = ps; 264 } 265 } 266 267 /* 268 * Make this process not share its sigctx, maintaining all 269 * signal state. 270 */ 271 void 272 sigactsunshare(struct proc *p) 273 { 274 struct sigacts *oldps; 275 276 if (p->p_sigacts->sa_refcnt == 1) 277 return; 278 279 oldps = p->p_sigacts; 280 sigactsinit(p, NULL, 0); 281 282 if (--oldps->sa_refcnt == 0) 283 pool_put(&sigacts_pool, oldps); 284 } 285 286 /* 287 * Release a sigctx structure. 288 */ 289 void 290 sigactsfree(struct sigacts *ps) 291 { 292 293 if (--ps->sa_refcnt > 0) 294 return; 295 296 pool_put(&sigacts_pool, ps); 297 } 298 299 int 300 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 301 struct sigaction *osa, const void *tramp, int vers) 302 { 303 struct sigacts *ps; 304 int prop; 305 306 ps = p->p_sigacts; 307 if (signum <= 0 || signum >= NSIG) 308 return (EINVAL); 309 310 /* 311 * Trampoline ABI version 0 is reserved for the legacy 312 * kernel-provided on-stack trampoline. Conversely, if we are 313 * using a non-0 ABI version, we must have a trampoline. Only 314 * validate the vers if a new sigaction was supplied. Emulations 315 * use legacy kernel trampolines with version 0, alternatively 316 * check for that too. 317 */ 318 if ((vers != 0 && tramp == NULL) || 319 #ifdef SIGTRAMP_VALID 320 (nsa != NULL && 321 ((vers == 0) ? 322 (p->p_emul->e_sigcode == NULL) : 323 !SIGTRAMP_VALID(vers))) || 324 #endif 325 (vers == 0 && tramp != NULL)) 326 return (EINVAL); 327 328 if (osa) 329 *osa = SIGACTION_PS(ps, signum); 330 331 if (nsa) { 332 if (nsa->sa_flags & ~SA_ALLBITS) 333 return (EINVAL); 334 335 prop = sigprop[signum]; 336 if (prop & SA_CANTMASK) 337 return (EINVAL); 338 339 (void) splsched(); /* XXXSMP */ 340 SIGACTION_PS(ps, signum) = *nsa; 341 ps->sa_sigdesc[signum].sd_tramp = tramp; 342 ps->sa_sigdesc[signum].sd_vers = vers; 343 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 344 if ((prop & SA_NORESET) != 0) 345 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 346 if (signum == SIGCHLD) { 347 if (nsa->sa_flags & SA_NOCLDSTOP) 348 p->p_flag |= P_NOCLDSTOP; 349 else 350 p->p_flag &= ~P_NOCLDSTOP; 351 if (nsa->sa_flags & SA_NOCLDWAIT) { 352 /* 353 * Paranoia: since SA_NOCLDWAIT is implemented 354 * by reparenting the dying child to PID 1 (and 355 * trust it to reap the zombie), PID 1 itself 356 * is forbidden to set SA_NOCLDWAIT. 357 */ 358 if (p->p_pid == 1) 359 p->p_flag &= ~P_NOCLDWAIT; 360 else 361 p->p_flag |= P_NOCLDWAIT; 362 } else 363 p->p_flag &= ~P_NOCLDWAIT; 364 } 365 if ((nsa->sa_flags & SA_NODEFER) == 0) 366 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 367 else 368 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 369 /* 370 * Set bit in p_sigctx.ps_sigignore for signals that are set to 371 * SIG_IGN, and for signals set to SIG_DFL where the default is 372 * to ignore. However, don't put SIGCONT in 373 * p_sigctx.ps_sigignore, as we have to restart the process. 374 */ 375 if (nsa->sa_handler == SIG_IGN || 376 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 377 /* never to be seen again */ 378 sigdelset(&p->p_sigctx.ps_siglist, signum); 379 if (signum != SIGCONT) { 380 /* easier in psignal */ 381 sigaddset(&p->p_sigctx.ps_sigignore, signum); 382 } 383 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 384 } else { 385 sigdelset(&p->p_sigctx.ps_sigignore, signum); 386 if (nsa->sa_handler == SIG_DFL) 387 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 388 else 389 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 390 } 391 (void) spl0(); 392 } 393 394 return (0); 395 } 396 397 #ifdef COMPAT_16 398 /* ARGSUSED */ 399 int 400 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 401 { 402 struct compat_16_sys___sigaction14_args /* { 403 syscallarg(int) signum; 404 syscallarg(const struct sigaction *) nsa; 405 syscallarg(struct sigaction *) osa; 406 } */ *uap = v; 407 struct proc *p; 408 struct sigaction nsa, osa; 409 int error; 410 411 if (SCARG(uap, nsa)) { 412 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 413 if (error) 414 return (error); 415 } 416 p = l->l_proc; 417 error = sigaction1(p, SCARG(uap, signum), 418 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 419 NULL, 0); 420 if (error) 421 return (error); 422 if (SCARG(uap, osa)) { 423 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 424 if (error) 425 return (error); 426 } 427 return (0); 428 } 429 #endif 430 431 /* ARGSUSED */ 432 int 433 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 434 { 435 struct sys___sigaction_sigtramp_args /* { 436 syscallarg(int) signum; 437 syscallarg(const struct sigaction *) nsa; 438 syscallarg(struct sigaction *) osa; 439 syscallarg(void *) tramp; 440 syscallarg(int) vers; 441 } */ *uap = v; 442 struct proc *p = l->l_proc; 443 struct sigaction nsa, osa; 444 int error; 445 446 if (SCARG(uap, nsa)) { 447 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 448 if (error) 449 return (error); 450 } 451 error = sigaction1(p, SCARG(uap, signum), 452 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 453 SCARG(uap, tramp), SCARG(uap, vers)); 454 if (error) 455 return (error); 456 if (SCARG(uap, osa)) { 457 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 458 if (error) 459 return (error); 460 } 461 return (0); 462 } 463 464 /* 465 * Initialize signal state for process 0; 466 * set to ignore signals that are ignored by default and disable the signal 467 * stack. 468 */ 469 void 470 siginit(struct proc *p) 471 { 472 struct sigacts *ps; 473 int signum, prop; 474 475 ps = p->p_sigacts; 476 sigemptyset(&contsigmask); 477 sigemptyset(&stopsigmask); 478 sigemptyset(&sigcantmask); 479 for (signum = 1; signum < NSIG; signum++) { 480 prop = sigprop[signum]; 481 if (prop & SA_CONT) 482 sigaddset(&contsigmask, signum); 483 if (prop & SA_STOP) 484 sigaddset(&stopsigmask, signum); 485 if (prop & SA_CANTMASK) 486 sigaddset(&sigcantmask, signum); 487 if (prop & SA_IGNORE && signum != SIGCONT) 488 sigaddset(&p->p_sigctx.ps_sigignore, signum); 489 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 490 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 491 } 492 sigemptyset(&p->p_sigctx.ps_sigcatch); 493 p->p_sigctx.ps_sigwaited = NULL; 494 p->p_flag &= ~P_NOCLDSTOP; 495 496 /* 497 * Reset stack state to the user stack. 498 */ 499 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 500 p->p_sigctx.ps_sigstk.ss_size = 0; 501 p->p_sigctx.ps_sigstk.ss_sp = 0; 502 503 /* One reference. */ 504 ps->sa_refcnt = 1; 505 } 506 507 /* 508 * Reset signals for an exec of the specified process. 509 */ 510 void 511 execsigs(struct proc *p) 512 { 513 struct sigacts *ps; 514 int signum, prop; 515 516 sigactsunshare(p); 517 518 ps = p->p_sigacts; 519 520 /* 521 * Reset caught signals. Held signals remain held 522 * through p_sigctx.ps_sigmask (unless they were caught, 523 * and are now ignored by default). 524 */ 525 for (signum = 1; signum < NSIG; signum++) { 526 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 527 prop = sigprop[signum]; 528 if (prop & SA_IGNORE) { 529 if ((prop & SA_CONT) == 0) 530 sigaddset(&p->p_sigctx.ps_sigignore, 531 signum); 532 sigdelset(&p->p_sigctx.ps_siglist, signum); 533 } 534 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 535 } 536 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 537 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 538 } 539 sigemptyset(&p->p_sigctx.ps_sigcatch); 540 p->p_sigctx.ps_sigwaited = NULL; 541 p->p_flag &= ~P_NOCLDSTOP; 542 543 /* 544 * Reset stack state to the user stack. 545 */ 546 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 547 p->p_sigctx.ps_sigstk.ss_size = 0; 548 p->p_sigctx.ps_sigstk.ss_sp = 0; 549 } 550 551 int 552 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 553 { 554 555 if (oss) 556 *oss = p->p_sigctx.ps_sigmask; 557 558 if (nss) { 559 (void)splsched(); /* XXXSMP */ 560 switch (how) { 561 case SIG_BLOCK: 562 sigplusset(nss, &p->p_sigctx.ps_sigmask); 563 break; 564 case SIG_UNBLOCK: 565 sigminusset(nss, &p->p_sigctx.ps_sigmask); 566 CHECKSIGS(p); 567 break; 568 case SIG_SETMASK: 569 p->p_sigctx.ps_sigmask = *nss; 570 CHECKSIGS(p); 571 break; 572 default: 573 (void)spl0(); /* XXXSMP */ 574 return (EINVAL); 575 } 576 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 577 (void)spl0(); /* XXXSMP */ 578 } 579 580 return (0); 581 } 582 583 /* 584 * Manipulate signal mask. 585 * Note that we receive new mask, not pointer, 586 * and return old mask as return value; 587 * the library stub does the rest. 588 */ 589 int 590 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 591 { 592 struct sys___sigprocmask14_args /* { 593 syscallarg(int) how; 594 syscallarg(const sigset_t *) set; 595 syscallarg(sigset_t *) oset; 596 } */ *uap = v; 597 struct proc *p; 598 sigset_t nss, oss; 599 int error; 600 601 if (SCARG(uap, set)) { 602 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 603 if (error) 604 return (error); 605 } 606 p = l->l_proc; 607 error = sigprocmask1(p, SCARG(uap, how), 608 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 609 if (error) 610 return (error); 611 if (SCARG(uap, oset)) { 612 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 613 if (error) 614 return (error); 615 } 616 return (0); 617 } 618 619 void 620 sigpending1(struct proc *p, sigset_t *ss) 621 { 622 623 *ss = p->p_sigctx.ps_siglist; 624 sigminusset(&p->p_sigctx.ps_sigmask, ss); 625 } 626 627 /* ARGSUSED */ 628 int 629 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 630 { 631 struct sys___sigpending14_args /* { 632 syscallarg(sigset_t *) set; 633 } */ *uap = v; 634 struct proc *p; 635 sigset_t ss; 636 637 p = l->l_proc; 638 sigpending1(p, &ss); 639 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 640 } 641 642 int 643 sigsuspend1(struct proc *p, const sigset_t *ss) 644 { 645 struct sigacts *ps; 646 647 ps = p->p_sigacts; 648 if (ss) { 649 /* 650 * When returning from sigpause, we want 651 * the old mask to be restored after the 652 * signal handler has finished. Thus, we 653 * save it here and mark the sigctx structure 654 * to indicate this. 655 */ 656 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 657 p->p_sigctx.ps_flags |= SAS_OLDMASK; 658 (void) splsched(); /* XXXSMP */ 659 p->p_sigctx.ps_sigmask = *ss; 660 CHECKSIGS(p); 661 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 662 (void) spl0(); /* XXXSMP */ 663 } 664 665 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 666 /* void */; 667 668 /* always return EINTR rather than ERESTART... */ 669 return (EINTR); 670 } 671 672 /* 673 * Suspend process until signal, providing mask to be set 674 * in the meantime. Note nonstandard calling convention: 675 * libc stub passes mask, not pointer, to save a copyin. 676 */ 677 /* ARGSUSED */ 678 int 679 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 680 { 681 struct sys___sigsuspend14_args /* { 682 syscallarg(const sigset_t *) set; 683 } */ *uap = v; 684 struct proc *p; 685 sigset_t ss; 686 int error; 687 688 if (SCARG(uap, set)) { 689 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 690 if (error) 691 return (error); 692 } 693 694 p = l->l_proc; 695 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 696 } 697 698 int 699 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 700 struct sigaltstack *oss) 701 { 702 703 if (oss) 704 *oss = p->p_sigctx.ps_sigstk; 705 706 if (nss) { 707 if (nss->ss_flags & ~SS_ALLBITS) 708 return (EINVAL); 709 710 if (nss->ss_flags & SS_DISABLE) { 711 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 712 return (EINVAL); 713 } else { 714 if (nss->ss_size < MINSIGSTKSZ) 715 return (ENOMEM); 716 } 717 p->p_sigctx.ps_sigstk = *nss; 718 } 719 720 return (0); 721 } 722 723 /* ARGSUSED */ 724 int 725 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 726 { 727 struct sys___sigaltstack14_args /* { 728 syscallarg(const struct sigaltstack *) nss; 729 syscallarg(struct sigaltstack *) oss; 730 } */ *uap = v; 731 struct proc *p; 732 struct sigaltstack nss, oss; 733 int error; 734 735 if (SCARG(uap, nss)) { 736 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 737 if (error) 738 return (error); 739 } 740 p = l->l_proc; 741 error = sigaltstack1(p, 742 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 743 if (error) 744 return (error); 745 if (SCARG(uap, oss)) { 746 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 747 if (error) 748 return (error); 749 } 750 return (0); 751 } 752 753 /* ARGSUSED */ 754 int 755 sys_kill(struct lwp *l, void *v, register_t *retval) 756 { 757 struct sys_kill_args /* { 758 syscallarg(int) pid; 759 syscallarg(int) signum; 760 } */ *uap = v; 761 struct proc *cp, *p; 762 struct pcred *pc; 763 ksiginfo_t ksi; 764 765 cp = l->l_proc; 766 pc = cp->p_cred; 767 if ((u_int)SCARG(uap, signum) >= NSIG) 768 return (EINVAL); 769 KSI_INIT(&ksi); 770 ksi.ksi_signo = SCARG(uap, signum); 771 ksi.ksi_code = SI_USER; 772 ksi.ksi_pid = cp->p_pid; 773 ksi.ksi_uid = cp->p_ucred->cr_uid; 774 if (SCARG(uap, pid) > 0) { 775 /* kill single process */ 776 if ((p = pfind(SCARG(uap, pid))) == NULL) 777 return (ESRCH); 778 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 779 return (EPERM); 780 if (SCARG(uap, signum)) 781 kpsignal2(p, &ksi, 1); 782 return (0); 783 } 784 switch (SCARG(uap, pid)) { 785 case -1: /* broadcast signal */ 786 return (killpg1(cp, &ksi, 0, 1)); 787 case 0: /* signal own process group */ 788 return (killpg1(cp, &ksi, 0, 0)); 789 default: /* negative explicit process group */ 790 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 791 } 792 /* NOTREACHED */ 793 } 794 795 /* 796 * Common code for kill process group/broadcast kill. 797 * cp is calling process. 798 */ 799 int 800 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 801 { 802 struct proc *p; 803 struct pcred *pc; 804 struct pgrp *pgrp; 805 int nfound; 806 int signum = ksi->ksi_signo; 807 808 pc = cp->p_cred; 809 nfound = 0; 810 if (all) { 811 /* 812 * broadcast 813 */ 814 proclist_lock_read(); 815 PROCLIST_FOREACH(p, &allproc) { 816 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 817 p == cp || !CANSIGNAL(cp, pc, p, signum)) 818 continue; 819 nfound++; 820 if (signum) 821 kpsignal2(p, ksi, 1); 822 } 823 proclist_unlock_read(); 824 } else { 825 if (pgid == 0) 826 /* 827 * zero pgid means send to my process group. 828 */ 829 pgrp = cp->p_pgrp; 830 else { 831 pgrp = pgfind(pgid); 832 if (pgrp == NULL) 833 return (ESRCH); 834 } 835 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 836 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 837 !CANSIGNAL(cp, pc, p, signum)) 838 continue; 839 nfound++; 840 if (signum && P_ZOMBIE(p) == 0) 841 kpsignal2(p, ksi, 1); 842 } 843 } 844 return (nfound ? 0 : ESRCH); 845 } 846 847 /* 848 * Send a signal to a process group. 849 */ 850 void 851 gsignal(int pgid, int signum) 852 { 853 ksiginfo_t ksi; 854 KSI_INIT_EMPTY(&ksi); 855 ksi.ksi_signo = signum; 856 kgsignal(pgid, &ksi, NULL); 857 } 858 859 void 860 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 861 { 862 struct pgrp *pgrp; 863 864 if (pgid && (pgrp = pgfind(pgid))) 865 kpgsignal(pgrp, ksi, data, 0); 866 } 867 868 /* 869 * Send a signal to a process group. If checktty is 1, 870 * limit to members which have a controlling terminal. 871 */ 872 void 873 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 874 { 875 ksiginfo_t ksi; 876 KSI_INIT_EMPTY(&ksi); 877 ksi.ksi_signo = sig; 878 kpgsignal(pgrp, &ksi, NULL, checkctty); 879 } 880 881 void 882 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 883 { 884 struct proc *p; 885 886 if (pgrp) 887 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 888 if (checkctty == 0 || p->p_flag & P_CONTROLT) 889 kpsignal(p, ksi, data); 890 } 891 892 /* 893 * Send a signal caused by a trap to the current process. 894 * If it will be caught immediately, deliver it with correct code. 895 * Otherwise, post it normally. 896 */ 897 void 898 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 899 { 900 struct proc *p; 901 struct sigacts *ps; 902 int signum = ksi->ksi_signo; 903 904 KASSERT(KSI_TRAP_P(ksi)); 905 906 p = l->l_proc; 907 ps = p->p_sigacts; 908 if ((p->p_flag & P_TRACED) == 0 && 909 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 910 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 911 p->p_stats->p_ru.ru_nsignals++; 912 #ifdef KTRACE 913 if (KTRPOINT(p, KTR_PSIG)) 914 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler, 915 &p->p_sigctx.ps_sigmask, ksi); 916 #endif 917 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 918 (void) splsched(); /* XXXSMP */ 919 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 920 &p->p_sigctx.ps_sigmask); 921 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 922 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 923 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 924 sigaddset(&p->p_sigctx.ps_sigignore, signum); 925 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 926 } 927 (void) spl0(); /* XXXSMP */ 928 } else { 929 p->p_sigctx.ps_lwp = l->l_lid; 930 /* XXX for core dump/debugger */ 931 p->p_sigctx.ps_signo = ksi->ksi_signo; 932 p->p_sigctx.ps_code = ksi->ksi_trap; 933 kpsignal2(p, ksi, 1); 934 } 935 } 936 937 /* 938 * Fill in signal information and signal the parent for a child status change. 939 */ 940 static void 941 child_psignal(struct proc *p, int dolock) 942 { 943 ksiginfo_t ksi; 944 945 KSI_INIT(&ksi); 946 ksi.ksi_signo = SIGCHLD; 947 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 948 ksi.ksi_pid = p->p_pid; 949 ksi.ksi_uid = p->p_ucred->cr_uid; 950 ksi.ksi_status = p->p_xstat; 951 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 952 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 953 kpsignal2(p->p_pptr, &ksi, dolock); 954 } 955 956 /* 957 * Send the signal to the process. If the signal has an action, the action 958 * is usually performed by the target process rather than the caller; we add 959 * the signal to the set of pending signals for the process. 960 * 961 * Exceptions: 962 * o When a stop signal is sent to a sleeping process that takes the 963 * default action, the process is stopped without awakening it. 964 * o SIGCONT restarts stopped processes (or puts them back to sleep) 965 * regardless of the signal action (eg, blocked or ignored). 966 * 967 * Other ignored signals are discarded immediately. 968 * 969 * XXXSMP: Invoked as psignal() or sched_psignal(). 970 */ 971 void 972 psignal1(struct proc *p, int signum, int dolock) 973 { 974 ksiginfo_t ksi; 975 976 KSI_INIT_EMPTY(&ksi); 977 ksi.ksi_signo = signum; 978 kpsignal2(p, &ksi, dolock); 979 } 980 981 void 982 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 983 { 984 985 if ((p->p_flag & P_WEXIT) == 0 && data) { 986 size_t fd; 987 struct filedesc *fdp = p->p_fd; 988 989 ksi->ksi_fd = -1; 990 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 991 struct file *fp = fdp->fd_ofiles[fd]; 992 /* XXX: lock? */ 993 if (fp && fp->f_data == data) { 994 ksi->ksi_fd = fd; 995 break; 996 } 997 } 998 } 999 kpsignal2(p, ksi, dolock); 1000 } 1001 1002 static void 1003 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 1004 { 1005 struct lwp *l, *suspended = NULL; 1006 struct sadata_vp *vp; 1007 int s = 0, prop, allsusp; 1008 sig_t action; 1009 int signum = ksi->ksi_signo; 1010 1011 #ifdef DIAGNOSTIC 1012 if (signum <= 0 || signum >= NSIG) 1013 panic("psignal signal number %d", signum); 1014 1015 /* XXXSMP: works, but icky */ 1016 if (dolock) 1017 SCHED_ASSERT_UNLOCKED(); 1018 else 1019 SCHED_ASSERT_LOCKED(); 1020 #endif 1021 1022 /* 1023 * Notify any interested parties in the signal. 1024 */ 1025 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1026 1027 prop = sigprop[signum]; 1028 1029 /* 1030 * If proc is traced, always give parent a chance. 1031 */ 1032 if (p->p_flag & P_TRACED) { 1033 action = SIG_DFL; 1034 1035 /* 1036 * If the process is being traced and the signal is being 1037 * caught, make sure to save any ksiginfo. 1038 */ 1039 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1040 ksiginfo_put(p, ksi); 1041 } else { 1042 /* 1043 * If the signal was the result of a trap, reset it 1044 * to default action if it's currently masked, so that it would 1045 * coredump immediatelly instead of spinning repeatedly 1046 * taking the signal. 1047 */ 1048 if (KSI_TRAP_P(ksi) 1049 && sigismember(&p->p_sigctx.ps_sigmask, signum) 1050 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 1051 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1052 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1053 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1054 SIGACTION(p, signum).sa_handler = SIG_DFL; 1055 } 1056 1057 /* 1058 * If the signal is being ignored, 1059 * then we forget about it immediately. 1060 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1061 * and if it is set to SIG_IGN, 1062 * action will be SIG_DFL here.) 1063 */ 1064 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1065 return; 1066 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1067 action = SIG_HOLD; 1068 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1069 action = SIG_CATCH; 1070 else { 1071 action = SIG_DFL; 1072 1073 if (prop & SA_KILL && p->p_nice > NZERO) 1074 p->p_nice = NZERO; 1075 1076 /* 1077 * If sending a tty stop signal to a member of an 1078 * orphaned process group, discard the signal here if 1079 * the action is default; don't stop the process below 1080 * if sleeping, and don't clear any pending SIGCONT. 1081 */ 1082 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1083 return; 1084 } 1085 } 1086 1087 if (prop & SA_CONT) 1088 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1089 1090 if (prop & SA_STOP) 1091 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1092 1093 /* 1094 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1095 * please!), check if anything waits on it. If yes, save the 1096 * info into provided ps_sigwaited, and wake-up the waiter. 1097 * The signal won't be processed further here. 1098 */ 1099 if ((prop & SA_CANTMASK) == 0 1100 && p->p_sigctx.ps_sigwaited 1101 && sigismember(p->p_sigctx.ps_sigwait, signum) 1102 && p->p_stat != SSTOP) { 1103 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1104 p->p_sigctx.ps_sigwaited = NULL; 1105 if (dolock) 1106 wakeup_one(&p->p_sigctx.ps_sigwait); 1107 else 1108 sched_wakeup(&p->p_sigctx.ps_sigwait); 1109 return; 1110 } 1111 1112 sigaddset(&p->p_sigctx.ps_siglist, signum); 1113 1114 /* CHECKSIGS() is "inlined" here. */ 1115 p->p_sigctx.ps_sigcheck = 1; 1116 1117 /* 1118 * Defer further processing for signals which are held, 1119 * except that stopped processes must be continued by SIGCONT. 1120 */ 1121 if (action == SIG_HOLD && 1122 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1123 ksiginfo_put(p, ksi); 1124 return; 1125 } 1126 /* XXXSMP: works, but icky */ 1127 if (dolock) 1128 SCHED_LOCK(s); 1129 1130 if (p->p_flag & P_SA) { 1131 allsusp = 0; 1132 l = NULL; 1133 if (p->p_stat == SACTIVE) { 1134 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1135 l = vp->savp_lwp; 1136 KDASSERT(l != NULL); 1137 if (l->l_flag & L_SA_IDLE) { 1138 /* wakeup idle LWP */ 1139 goto found; 1140 /*NOTREACHED*/ 1141 } else if (l->l_flag & L_SA_YIELD) { 1142 /* idle LWP is already waking up */ 1143 goto out; 1144 /*NOTREACHED*/ 1145 } 1146 } 1147 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1148 l = vp->savp_lwp; 1149 if (l->l_stat == LSRUN || 1150 l->l_stat == LSONPROC) { 1151 signotify(p); 1152 goto out; 1153 /*NOTREACHED*/ 1154 } 1155 if (l->l_stat == LSSLEEP && 1156 l->l_flag & L_SINTR) { 1157 /* ok to signal vp lwp */ 1158 } else 1159 l = NULL; 1160 } 1161 if (l == NULL) 1162 allsusp = 1; 1163 } else if (p->p_stat == SSTOP) { 1164 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1165 l = vp->savp_lwp; 1166 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1167 break; 1168 l = NULL; 1169 } 1170 } 1171 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1172 /* 1173 * At least one LWP is running or on a run queue. 1174 * The signal will be noticed when one of them returns 1175 * to userspace. 1176 */ 1177 signotify(p); 1178 /* 1179 * The signal will be noticed very soon. 1180 */ 1181 goto out; 1182 /*NOTREACHED*/ 1183 } else { 1184 /* 1185 * Find out if any of the sleeps are interruptable, 1186 * and if all the live LWPs remaining are suspended. 1187 */ 1188 allsusp = 1; 1189 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1190 if (l->l_stat == LSSLEEP && 1191 l->l_flag & L_SINTR) 1192 break; 1193 if (l->l_stat == LSSUSPENDED) 1194 suspended = l; 1195 else if ((l->l_stat != LSZOMB) && 1196 (l->l_stat != LSDEAD)) 1197 allsusp = 0; 1198 } 1199 } 1200 1201 found: 1202 switch (p->p_stat) { 1203 case SACTIVE: 1204 1205 if (l != NULL && (p->p_flag & P_TRACED)) 1206 goto run; 1207 1208 /* 1209 * If SIGCONT is default (or ignored) and process is 1210 * asleep, we are finished; the process should not 1211 * be awakened. 1212 */ 1213 if ((prop & SA_CONT) && action == SIG_DFL) { 1214 sigdelset(&p->p_sigctx.ps_siglist, signum); 1215 goto done; 1216 } 1217 1218 /* 1219 * When a sleeping process receives a stop 1220 * signal, process immediately if possible. 1221 */ 1222 if ((prop & SA_STOP) && action == SIG_DFL) { 1223 /* 1224 * If a child holding parent blocked, 1225 * stopping could cause deadlock. 1226 */ 1227 if (p->p_flag & P_PPWAIT) { 1228 goto out; 1229 } 1230 sigdelset(&p->p_sigctx.ps_siglist, signum); 1231 p->p_xstat = signum; 1232 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1233 /* 1234 * XXXSMP: recursive call; don't lock 1235 * the second time around. 1236 */ 1237 child_psignal(p, 0); 1238 } 1239 proc_stop(p, 1); /* XXXSMP: recurse? */ 1240 goto done; 1241 } 1242 1243 if (l == NULL) { 1244 /* 1245 * Special case: SIGKILL of a process 1246 * which is entirely composed of 1247 * suspended LWPs should succeed. We 1248 * make this happen by unsuspending one of 1249 * them. 1250 */ 1251 if (allsusp && (signum == SIGKILL)) { 1252 if (p->p_flag & P_SA) { 1253 /* 1254 * get a suspended lwp from 1255 * the cache to send KILL 1256 * signal 1257 * XXXcl add signal checks at resume points 1258 */ 1259 suspended = sa_getcachelwp 1260 (SLIST_FIRST(&p->p_sa->sa_vps)); 1261 } 1262 lwp_continue(suspended); 1263 } 1264 goto done; 1265 } 1266 /* 1267 * All other (caught or default) signals 1268 * cause the process to run. 1269 */ 1270 goto runfast; 1271 /*NOTREACHED*/ 1272 case SSTOP: 1273 /* Process is stopped */ 1274 /* 1275 * If traced process is already stopped, 1276 * then no further action is necessary. 1277 */ 1278 if (p->p_flag & P_TRACED) 1279 goto done; 1280 1281 /* 1282 * Kill signal always sets processes running, 1283 * if possible. 1284 */ 1285 if (signum == SIGKILL) { 1286 l = proc_unstop(p); 1287 if (l) 1288 goto runfast; 1289 goto done; 1290 } 1291 1292 if (prop & SA_CONT) { 1293 /* 1294 * If SIGCONT is default (or ignored), 1295 * we continue the process but don't 1296 * leave the signal in ps_siglist, as 1297 * it has no further action. If 1298 * SIGCONT is held, we continue the 1299 * process and leave the signal in 1300 * ps_siglist. If the process catches 1301 * SIGCONT, let it handle the signal 1302 * itself. If it isn't waiting on an 1303 * event, then it goes back to run 1304 * state. Otherwise, process goes 1305 * back to sleep state. 1306 */ 1307 if (action == SIG_DFL) 1308 sigdelset(&p->p_sigctx.ps_siglist, 1309 signum); 1310 l = proc_unstop(p); 1311 if (l && (action == SIG_CATCH)) 1312 goto runfast; 1313 goto out; 1314 } 1315 1316 if (prop & SA_STOP) { 1317 /* 1318 * Already stopped, don't need to stop again. 1319 * (If we did the shell could get confused.) 1320 */ 1321 sigdelset(&p->p_sigctx.ps_siglist, signum); 1322 goto done; 1323 } 1324 1325 /* 1326 * If a lwp is sleeping interruptibly, then 1327 * wake it up; it will run until the kernel 1328 * boundary, where it will stop in issignal(), 1329 * since p->p_stat is still SSTOP. When the 1330 * process is continued, it will be made 1331 * runnable and can look at the signal. 1332 */ 1333 if (l) 1334 goto run; 1335 goto out; 1336 case SIDL: 1337 /* Process is being created by fork */ 1338 /* XXX: We are not ready to receive signals yet */ 1339 goto done; 1340 default: 1341 /* Else what? */ 1342 panic("psignal: Invalid process state %d.", p->p_stat); 1343 } 1344 /*NOTREACHED*/ 1345 1346 runfast: 1347 if (action == SIG_CATCH) { 1348 ksiginfo_put(p, ksi); 1349 action = SIG_HOLD; 1350 } 1351 /* 1352 * Raise priority to at least PUSER. 1353 */ 1354 if (l->l_priority > PUSER) 1355 l->l_priority = PUSER; 1356 run: 1357 if (action == SIG_CATCH) { 1358 ksiginfo_put(p, ksi); 1359 action = SIG_HOLD; 1360 } 1361 1362 setrunnable(l); /* XXXSMP: recurse? */ 1363 out: 1364 if (action == SIG_CATCH) 1365 ksiginfo_put(p, ksi); 1366 done: 1367 /* XXXSMP: works, but icky */ 1368 if (dolock) 1369 SCHED_UNLOCK(s); 1370 } 1371 1372 void 1373 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1374 { 1375 struct proc *p = l->l_proc; 1376 struct lwp *le, *li; 1377 siginfo_t *si; 1378 int f; 1379 1380 if (p->p_flag & P_SA) { 1381 1382 /* XXXUPSXXX What if not on sa_vp ? */ 1383 1384 f = l->l_flag & L_SA; 1385 l->l_flag &= ~L_SA; 1386 si = pool_get(&siginfo_pool, PR_WAITOK); 1387 si->_info = ksi->ksi_info; 1388 le = li = NULL; 1389 if (KSI_TRAP_P(ksi)) 1390 le = l; 1391 else 1392 li = l; 1393 1394 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1395 sizeof(siginfo_t), si); 1396 l->l_flag |= f; 1397 return; 1398 } 1399 1400 (*p->p_emul->e_sendsig)(ksi, mask); 1401 } 1402 1403 static __inline int firstsig(const sigset_t *); 1404 1405 static __inline int 1406 firstsig(const sigset_t *ss) 1407 { 1408 int sig; 1409 1410 sig = ffs(ss->__bits[0]); 1411 if (sig != 0) 1412 return (sig); 1413 #if NSIG > 33 1414 sig = ffs(ss->__bits[1]); 1415 if (sig != 0) 1416 return (sig + 32); 1417 #endif 1418 #if NSIG > 65 1419 sig = ffs(ss->__bits[2]); 1420 if (sig != 0) 1421 return (sig + 64); 1422 #endif 1423 #if NSIG > 97 1424 sig = ffs(ss->__bits[3]); 1425 if (sig != 0) 1426 return (sig + 96); 1427 #endif 1428 return (0); 1429 } 1430 1431 /* 1432 * If the current process has received a signal (should be caught or cause 1433 * termination, should interrupt current syscall), return the signal number. 1434 * Stop signals with default action are processed immediately, then cleared; 1435 * they aren't returned. This is checked after each entry to the system for 1436 * a syscall or trap (though this can usually be done without calling issignal 1437 * by checking the pending signal masks in the CURSIG macro.) The normal call 1438 * sequence is 1439 * 1440 * while (signum = CURSIG(curlwp)) 1441 * postsig(signum); 1442 */ 1443 int 1444 issignal(struct lwp *l) 1445 { 1446 struct proc *p = l->l_proc; 1447 int s = 0, signum, prop; 1448 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1449 sigset_t ss; 1450 1451 /* Bail out if we do not own the virtual processor */ 1452 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1453 return 0; 1454 1455 if (p->p_stat == SSTOP) { 1456 /* 1457 * The process is stopped/stopping. Stop ourselves now that 1458 * we're on the kernel/userspace boundary. 1459 */ 1460 if (dolock) 1461 SCHED_LOCK(s); 1462 l->l_stat = LSSTOP; 1463 p->p_nrlwps--; 1464 if (p->p_flag & P_TRACED) 1465 goto sigtraceswitch; 1466 else 1467 goto sigswitch; 1468 } 1469 for (;;) { 1470 sigpending1(p, &ss); 1471 if (p->p_flag & P_PPWAIT) 1472 sigminusset(&stopsigmask, &ss); 1473 signum = firstsig(&ss); 1474 if (signum == 0) { /* no signal to send */ 1475 p->p_sigctx.ps_sigcheck = 0; 1476 if (locked && dolock) 1477 SCHED_LOCK(s); 1478 return (0); 1479 } 1480 /* take the signal! */ 1481 sigdelset(&p->p_sigctx.ps_siglist, signum); 1482 1483 /* 1484 * We should see pending but ignored signals 1485 * only if P_TRACED was on when they were posted. 1486 */ 1487 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1488 (p->p_flag & P_TRACED) == 0) 1489 continue; 1490 1491 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1492 /* 1493 * If traced, always stop, and stay 1494 * stopped until released by the debugger. 1495 */ 1496 p->p_xstat = signum; 1497 1498 /* Emulation-specific handling of signal trace */ 1499 if ((p->p_emul->e_tracesig != NULL) && 1500 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1501 goto childresumed; 1502 1503 if ((p->p_flag & P_FSTRACE) == 0) 1504 child_psignal(p, dolock); 1505 if (dolock) 1506 SCHED_LOCK(s); 1507 proc_stop(p, 1); 1508 sigtraceswitch: 1509 mi_switch(l, NULL); 1510 SCHED_ASSERT_UNLOCKED(); 1511 if (dolock) 1512 splx(s); 1513 else 1514 dolock = 1; 1515 1516 childresumed: 1517 /* 1518 * If we are no longer being traced, or the parent 1519 * didn't give us a signal, look for more signals. 1520 */ 1521 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1522 continue; 1523 1524 /* 1525 * If the new signal is being masked, look for other 1526 * signals. 1527 */ 1528 signum = p->p_xstat; 1529 p->p_xstat = 0; 1530 /* 1531 * `p->p_sigctx.ps_siglist |= mask' is done 1532 * in setrunnable(). 1533 */ 1534 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1535 continue; 1536 /* take the signal! */ 1537 sigdelset(&p->p_sigctx.ps_siglist, signum); 1538 } 1539 1540 prop = sigprop[signum]; 1541 1542 /* 1543 * Decide whether the signal should be returned. 1544 * Return the signal's number, or fall through 1545 * to clear it from the pending mask. 1546 */ 1547 switch ((long)SIGACTION(p, signum).sa_handler) { 1548 1549 case (long)SIG_DFL: 1550 /* 1551 * Don't take default actions on system processes. 1552 */ 1553 if (p->p_pid <= 1) { 1554 #ifdef DIAGNOSTIC 1555 /* 1556 * Are you sure you want to ignore SIGSEGV 1557 * in init? XXX 1558 */ 1559 printf("Process (pid %d) got signal %d\n", 1560 p->p_pid, signum); 1561 #endif 1562 break; /* == ignore */ 1563 } 1564 /* 1565 * If there is a pending stop signal to process 1566 * with default action, stop here, 1567 * then clear the signal. However, 1568 * if process is member of an orphaned 1569 * process group, ignore tty stop signals. 1570 */ 1571 if (prop & SA_STOP) { 1572 if (p->p_flag & P_TRACED || 1573 (p->p_pgrp->pg_jobc == 0 && 1574 prop & SA_TTYSTOP)) 1575 break; /* == ignore */ 1576 p->p_xstat = signum; 1577 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1578 child_psignal(p, dolock); 1579 if (dolock) 1580 SCHED_LOCK(s); 1581 proc_stop(p, 1); 1582 sigswitch: 1583 mi_switch(l, NULL); 1584 SCHED_ASSERT_UNLOCKED(); 1585 if (dolock) 1586 splx(s); 1587 else 1588 dolock = 1; 1589 break; 1590 } else if (prop & SA_IGNORE) { 1591 /* 1592 * Except for SIGCONT, shouldn't get here. 1593 * Default action is to ignore; drop it. 1594 */ 1595 break; /* == ignore */ 1596 } else 1597 goto keep; 1598 /*NOTREACHED*/ 1599 1600 case (long)SIG_IGN: 1601 /* 1602 * Masking above should prevent us ever trying 1603 * to take action on an ignored signal other 1604 * than SIGCONT, unless process is traced. 1605 */ 1606 #ifdef DEBUG_ISSIGNAL 1607 if ((prop & SA_CONT) == 0 && 1608 (p->p_flag & P_TRACED) == 0) 1609 printf("issignal\n"); 1610 #endif 1611 break; /* == ignore */ 1612 1613 default: 1614 /* 1615 * This signal has an action, let 1616 * postsig() process it. 1617 */ 1618 goto keep; 1619 } 1620 } 1621 /* NOTREACHED */ 1622 1623 keep: 1624 /* leave the signal for later */ 1625 sigaddset(&p->p_sigctx.ps_siglist, signum); 1626 CHECKSIGS(p); 1627 if (locked && dolock) 1628 SCHED_LOCK(s); 1629 return (signum); 1630 } 1631 1632 /* 1633 * Put the argument process into the stopped state and notify the parent 1634 * via wakeup. Signals are handled elsewhere. The process must not be 1635 * on the run queue. 1636 */ 1637 void 1638 proc_stop(struct proc *p, int wakeup) 1639 { 1640 struct lwp *l; 1641 struct proc *parent; 1642 struct sadata_vp *vp; 1643 1644 SCHED_ASSERT_LOCKED(); 1645 1646 /* XXX lock process LWP state */ 1647 p->p_flag &= ~P_WAITED; 1648 p->p_stat = SSTOP; 1649 parent = p->p_pptr; 1650 parent->p_nstopchild++; 1651 1652 if (p->p_flag & P_SA) { 1653 /* 1654 * Only (try to) put the LWP on the VP in stopped 1655 * state. 1656 * All other LWPs will suspend in sa_setwoken() 1657 * because the VP-LWP in stopped state cannot be 1658 * repossessed. 1659 */ 1660 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1661 l = vp->savp_lwp; 1662 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1663 l->l_stat = LSSTOP; 1664 p->p_nrlwps--; 1665 } else if (l->l_stat == LSRUN) { 1666 /* Remove LWP from the run queue */ 1667 remrunqueue(l); 1668 l->l_stat = LSSTOP; 1669 p->p_nrlwps--; 1670 } else if (l->l_stat == LSSLEEP && 1671 l->l_flag & L_SA_IDLE) { 1672 l->l_flag &= ~L_SA_IDLE; 1673 l->l_stat = LSSTOP; 1674 } 1675 } 1676 goto out; 1677 } 1678 1679 /* 1680 * Put as many LWP's as possible in stopped state. 1681 * Sleeping ones will notice the stopped state as they try to 1682 * return to userspace. 1683 */ 1684 1685 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1686 if (l->l_stat == LSONPROC) { 1687 /* XXX SMP this assumes that a LWP that is LSONPROC 1688 * is curlwp and hence is about to be mi_switched 1689 * away; the only callers of proc_stop() are: 1690 * - psignal 1691 * - issignal() 1692 * For the former, proc_stop() is only called when 1693 * no processes are running, so we don't worry. 1694 * For the latter, proc_stop() is called right 1695 * before mi_switch(). 1696 */ 1697 l->l_stat = LSSTOP; 1698 p->p_nrlwps--; 1699 } else if (l->l_stat == LSRUN) { 1700 /* Remove LWP from the run queue */ 1701 remrunqueue(l); 1702 l->l_stat = LSSTOP; 1703 p->p_nrlwps--; 1704 } else if ((l->l_stat == LSSLEEP) || 1705 (l->l_stat == LSSUSPENDED) || 1706 (l->l_stat == LSZOMB) || 1707 (l->l_stat == LSDEAD)) { 1708 /* 1709 * Don't do anything; let sleeping LWPs 1710 * discover the stopped state of the process 1711 * on their way out of the kernel; otherwise, 1712 * things like NFS threads that sleep with 1713 * locks will block the rest of the system 1714 * from getting any work done. 1715 * 1716 * Suspended/dead/zombie LWPs aren't going 1717 * anywhere, so we don't need to touch them. 1718 */ 1719 } 1720 #ifdef DIAGNOSTIC 1721 else { 1722 panic("proc_stop: process %d lwp %d " 1723 "in unstoppable state %d.\n", 1724 p->p_pid, l->l_lid, l->l_stat); 1725 } 1726 #endif 1727 } 1728 1729 out: 1730 /* XXX unlock process LWP state */ 1731 1732 if (wakeup) 1733 sched_wakeup((caddr_t)p->p_pptr); 1734 } 1735 1736 /* 1737 * Given a process in state SSTOP, set the state back to SACTIVE and 1738 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1739 * 1740 * If no LWPs ended up runnable (and therefore able to take a signal), 1741 * return a LWP that is sleeping interruptably. The caller can wake 1742 * that LWP up to take a signal. 1743 */ 1744 struct lwp * 1745 proc_unstop(struct proc *p) 1746 { 1747 struct lwp *l, *lr = NULL; 1748 struct sadata_vp *vp; 1749 int cantake = 0; 1750 1751 SCHED_ASSERT_LOCKED(); 1752 1753 /* 1754 * Our caller wants to be informed if there are only sleeping 1755 * and interruptable LWPs left after we have run so that it 1756 * can invoke setrunnable() if required - return one of the 1757 * interruptable LWPs if this is the case. 1758 */ 1759 1760 if (!(p->p_flag & P_WAITED)) 1761 p->p_pptr->p_nstopchild--; 1762 p->p_stat = SACTIVE; 1763 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1764 if (l->l_stat == LSRUN) { 1765 lr = NULL; 1766 cantake = 1; 1767 } 1768 if (l->l_stat != LSSTOP) 1769 continue; 1770 1771 if (l->l_wchan != NULL) { 1772 l->l_stat = LSSLEEP; 1773 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1774 lr = l; 1775 cantake = 1; 1776 } 1777 } else { 1778 setrunnable(l); 1779 lr = NULL; 1780 cantake = 1; 1781 } 1782 } 1783 if (p->p_flag & P_SA) { 1784 /* Only consider returning the LWP on the VP. */ 1785 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1786 lr = vp->savp_lwp; 1787 if (lr->l_stat == LSSLEEP) { 1788 if (lr->l_flag & L_SA_YIELD) { 1789 setrunnable(lr); 1790 break; 1791 } else if (lr->l_flag & L_SINTR) 1792 return lr; 1793 } 1794 } 1795 return NULL; 1796 } 1797 return lr; 1798 } 1799 1800 /* 1801 * Take the action for the specified signal 1802 * from the current set of pending signals. 1803 */ 1804 void 1805 postsig(int signum) 1806 { 1807 struct lwp *l; 1808 struct proc *p; 1809 struct sigacts *ps; 1810 sig_t action; 1811 sigset_t *returnmask; 1812 1813 l = curlwp; 1814 p = l->l_proc; 1815 ps = p->p_sigacts; 1816 #ifdef DIAGNOSTIC 1817 if (signum == 0) 1818 panic("postsig"); 1819 #endif 1820 1821 KERNEL_PROC_LOCK(l); 1822 1823 #ifdef MULTIPROCESSOR 1824 /* 1825 * On MP, issignal() can return the same signal to multiple 1826 * LWPs. The LWPs will block above waiting for the kernel 1827 * lock and the first LWP which gets through will then remove 1828 * the signal from ps_siglist. All other LWPs exit here. 1829 */ 1830 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1831 KERNEL_PROC_UNLOCK(l); 1832 return; 1833 } 1834 #endif 1835 sigdelset(&p->p_sigctx.ps_siglist, signum); 1836 action = SIGACTION_PS(ps, signum).sa_handler; 1837 if (action == SIG_DFL) { 1838 #ifdef KTRACE 1839 if (KTRPOINT(p, KTR_PSIG)) 1840 ktrpsig(p, signum, action, 1841 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1842 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1843 NULL); 1844 #endif 1845 /* 1846 * Default action, where the default is to kill 1847 * the process. (Other cases were ignored above.) 1848 */ 1849 sigexit(l, signum); 1850 /* NOTREACHED */ 1851 } else { 1852 ksiginfo_t *ksi; 1853 /* 1854 * If we get here, the signal must be caught. 1855 */ 1856 #ifdef DIAGNOSTIC 1857 if (action == SIG_IGN || 1858 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1859 panic("postsig action"); 1860 #endif 1861 /* 1862 * Set the new mask value and also defer further 1863 * occurrences of this signal. 1864 * 1865 * Special case: user has done a sigpause. Here the 1866 * current mask is not of interest, but rather the 1867 * mask from before the sigpause is what we want 1868 * restored after the signal processing is completed. 1869 */ 1870 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1871 returnmask = &p->p_sigctx.ps_oldmask; 1872 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1873 } else 1874 returnmask = &p->p_sigctx.ps_sigmask; 1875 p->p_stats->p_ru.ru_nsignals++; 1876 ksi = ksiginfo_get(p, signum); 1877 #ifdef KTRACE 1878 if (KTRPOINT(p, KTR_PSIG)) 1879 ktrpsig(p, signum, action, 1880 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1881 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1882 ksi); 1883 #endif 1884 if (ksi == NULL) { 1885 ksiginfo_t ksi1; 1886 /* 1887 * we did not save any siginfo for this, either 1888 * because the signal was not caught, or because the 1889 * user did not request SA_SIGINFO 1890 */ 1891 KSI_INIT_EMPTY(&ksi1); 1892 ksi1.ksi_signo = signum; 1893 kpsendsig(l, &ksi1, returnmask); 1894 } else { 1895 kpsendsig(l, ksi, returnmask); 1896 pool_put(&ksiginfo_pool, ksi); 1897 } 1898 p->p_sigctx.ps_lwp = 0; 1899 p->p_sigctx.ps_code = 0; 1900 p->p_sigctx.ps_signo = 0; 1901 (void) splsched(); /* XXXSMP */ 1902 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1903 &p->p_sigctx.ps_sigmask); 1904 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1905 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1906 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1907 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1908 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1909 } 1910 (void) spl0(); /* XXXSMP */ 1911 } 1912 1913 KERNEL_PROC_UNLOCK(l); 1914 } 1915 1916 /* 1917 * Kill the current process for stated reason. 1918 */ 1919 void 1920 killproc(struct proc *p, const char *why) 1921 { 1922 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1923 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1924 psignal(p, SIGKILL); 1925 } 1926 1927 /* 1928 * Force the current process to exit with the specified signal, dumping core 1929 * if appropriate. We bypass the normal tests for masked and caught signals, 1930 * allowing unrecoverable failures to terminate the process without changing 1931 * signal state. Mark the accounting record with the signal termination. 1932 * If dumping core, save the signal number for the debugger. Calls exit and 1933 * does not return. 1934 */ 1935 1936 #if defined(DEBUG) 1937 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1938 #else 1939 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1940 #endif 1941 1942 static const char logcoredump[] = 1943 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1944 static const char lognocoredump[] = 1945 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1946 1947 /* Wrapper function for use in p_userret */ 1948 static void 1949 lwp_coredump_hook(struct lwp *l, void *arg) 1950 { 1951 int s; 1952 1953 /* 1954 * Suspend ourselves, so that the kernel stack and therefore 1955 * the userland registers saved in the trapframe are around 1956 * for coredump() to write them out. 1957 */ 1958 KERNEL_PROC_LOCK(l); 1959 l->l_flag &= ~L_DETACHED; 1960 SCHED_LOCK(s); 1961 l->l_stat = LSSUSPENDED; 1962 l->l_proc->p_nrlwps--; 1963 /* XXX NJWLWP check if this makes sense here: */ 1964 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1965 mi_switch(l, NULL); 1966 SCHED_ASSERT_UNLOCKED(); 1967 splx(s); 1968 1969 lwp_exit(l); 1970 } 1971 1972 void 1973 sigexit(struct lwp *l, int signum) 1974 { 1975 struct proc *p; 1976 #if 0 1977 struct lwp *l2; 1978 #endif 1979 int error, exitsig; 1980 1981 p = l->l_proc; 1982 1983 /* 1984 * Don't permit coredump() or exit1() multiple times 1985 * in the same process. 1986 */ 1987 if (p->p_flag & P_WEXIT) { 1988 KERNEL_PROC_UNLOCK(l); 1989 (*p->p_userret)(l, p->p_userret_arg); 1990 } 1991 p->p_flag |= P_WEXIT; 1992 /* We don't want to switch away from exiting. */ 1993 /* XXX multiprocessor: stop LWPs on other processors. */ 1994 #if 0 1995 if (p->p_flag & P_SA) { 1996 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 1997 l2->l_flag &= ~L_SA; 1998 p->p_flag &= ~P_SA; 1999 } 2000 #endif 2001 2002 /* Make other LWPs stick around long enough to be dumped */ 2003 p->p_userret = lwp_coredump_hook; 2004 p->p_userret_arg = NULL; 2005 2006 exitsig = signum; 2007 p->p_acflag |= AXSIG; 2008 if (sigprop[signum] & SA_CORE) { 2009 p->p_sigctx.ps_signo = signum; 2010 if ((error = coredump(l)) == 0) 2011 exitsig |= WCOREFLAG; 2012 2013 if (kern_logsigexit) { 2014 /* XXX What if we ever have really large UIDs? */ 2015 int uid = p->p_cred && p->p_ucred ? 2016 (int) p->p_ucred->cr_uid : -1; 2017 2018 if (error) 2019 log(LOG_INFO, lognocoredump, p->p_pid, 2020 p->p_comm, uid, signum, error); 2021 else 2022 log(LOG_INFO, logcoredump, p->p_pid, 2023 p->p_comm, uid, signum); 2024 } 2025 2026 } 2027 2028 exit1(l, W_EXITCODE(0, exitsig)); 2029 /* NOTREACHED */ 2030 } 2031 2032 /* 2033 * Dump core, into a file named "progname.core" or "core" (depending on the 2034 * value of shortcorename), unless the process was setuid/setgid. 2035 */ 2036 int 2037 coredump(struct lwp *l) 2038 { 2039 struct vnode *vp; 2040 struct proc *p; 2041 struct vmspace *vm; 2042 struct ucred *cred; 2043 struct nameidata nd; 2044 struct vattr vattr; 2045 struct mount *mp; 2046 int error, error1; 2047 char name[MAXPATHLEN]; 2048 2049 p = l->l_proc; 2050 vm = p->p_vmspace; 2051 cred = p->p_cred->pc_ucred; 2052 2053 /* 2054 * Make sure the process has not set-id, to prevent data leaks. 2055 */ 2056 if (p->p_flag & P_SUGID) 2057 return (EPERM); 2058 2059 /* 2060 * Refuse to core if the data + stack + user size is larger than 2061 * the core dump limit. XXX THIS IS WRONG, because of mapped 2062 * data. 2063 */ 2064 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2065 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2066 return (EFBIG); /* better error code? */ 2067 2068 restart: 2069 /* 2070 * The core dump will go in the current working directory. Make 2071 * sure that the directory is still there and that the mount flags 2072 * allow us to write core dumps there. 2073 */ 2074 vp = p->p_cwdi->cwdi_cdir; 2075 if (vp->v_mount == NULL || 2076 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) 2077 return (EPERM); 2078 2079 error = build_corename(p, name); 2080 if (error) 2081 return error; 2082 2083 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p); 2084 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 2085 if (error) 2086 return (error); 2087 vp = nd.ni_vp; 2088 2089 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2090 VOP_UNLOCK(vp, 0); 2091 if ((error = vn_close(vp, FWRITE, cred, p)) != 0) 2092 return (error); 2093 if ((error = vn_start_write(NULL, &mp, 2094 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) 2095 return (error); 2096 goto restart; 2097 } 2098 2099 /* Don't dump to non-regular files or files with links. */ 2100 if (vp->v_type != VREG || 2101 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) { 2102 error = EINVAL; 2103 goto out; 2104 } 2105 VATTR_NULL(&vattr); 2106 vattr.va_size = 0; 2107 VOP_LEASE(vp, p, cred, LEASE_WRITE); 2108 VOP_SETATTR(vp, &vattr, cred, p); 2109 p->p_acflag |= ACORE; 2110 2111 /* Now dump the actual core file. */ 2112 error = (*p->p_execsw->es_coredump)(l, vp, cred); 2113 out: 2114 VOP_UNLOCK(vp, 0); 2115 vn_finished_write(mp, 0); 2116 error1 = vn_close(vp, FWRITE, cred, p); 2117 if (error == 0) 2118 error = error1; 2119 return (error); 2120 } 2121 2122 /* 2123 * Nonexistent system call-- signal process (may want to handle it). 2124 * Flag error in case process won't see signal immediately (blocked or ignored). 2125 */ 2126 /* ARGSUSED */ 2127 int 2128 sys_nosys(struct lwp *l, void *v, register_t *retval) 2129 { 2130 struct proc *p; 2131 2132 p = l->l_proc; 2133 psignal(p, SIGSYS); 2134 return (ENOSYS); 2135 } 2136 2137 static int 2138 build_corename(struct proc *p, char dst[MAXPATHLEN]) 2139 { 2140 const char *s; 2141 char *d, *end; 2142 int i; 2143 2144 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN; 2145 *s != '\0'; s++) { 2146 if (*s == '%') { 2147 switch (*(s + 1)) { 2148 case 'n': 2149 i = snprintf(d, end - d, "%s", p->p_comm); 2150 break; 2151 case 'p': 2152 i = snprintf(d, end - d, "%d", p->p_pid); 2153 break; 2154 case 'u': 2155 i = snprintf(d, end - d, "%.*s", 2156 (int)sizeof p->p_pgrp->pg_session->s_login, 2157 p->p_pgrp->pg_session->s_login); 2158 break; 2159 case 't': 2160 i = snprintf(d, end - d, "%ld", 2161 p->p_stats->p_start.tv_sec); 2162 break; 2163 default: 2164 goto copy; 2165 } 2166 d += i; 2167 s++; 2168 } else { 2169 copy: *d = *s; 2170 d++; 2171 } 2172 if (d >= end) 2173 return (ENAMETOOLONG); 2174 } 2175 *d = '\0'; 2176 return 0; 2177 } 2178 2179 void 2180 getucontext(struct lwp *l, ucontext_t *ucp) 2181 { 2182 struct proc *p; 2183 2184 p = l->l_proc; 2185 2186 ucp->uc_flags = 0; 2187 ucp->uc_link = l->l_ctxlink; 2188 2189 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2190 ucp->uc_flags |= _UC_SIGMASK; 2191 2192 /* 2193 * The (unsupplied) definition of the `current execution stack' 2194 * in the System V Interface Definition appears to allow returning 2195 * the main context stack. 2196 */ 2197 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2198 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2199 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2200 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2201 } else { 2202 /* Simply copy alternate signal execution stack. */ 2203 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2204 } 2205 ucp->uc_flags |= _UC_STACK; 2206 2207 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2208 } 2209 2210 /* ARGSUSED */ 2211 int 2212 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2213 { 2214 struct sys_getcontext_args /* { 2215 syscallarg(struct __ucontext *) ucp; 2216 } */ *uap = v; 2217 ucontext_t uc; 2218 2219 getucontext(l, &uc); 2220 2221 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2222 } 2223 2224 int 2225 setucontext(struct lwp *l, const ucontext_t *ucp) 2226 { 2227 struct proc *p; 2228 int error; 2229 2230 p = l->l_proc; 2231 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2232 return (error); 2233 l->l_ctxlink = ucp->uc_link; 2234 2235 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2236 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2237 2238 /* 2239 * If there was stack information, update whether or not we are 2240 * still running on an alternate signal stack. 2241 */ 2242 if ((ucp->uc_flags & _UC_STACK) != 0) { 2243 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2244 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2245 else 2246 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2247 } 2248 2249 return 0; 2250 } 2251 2252 /* ARGSUSED */ 2253 int 2254 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2255 { 2256 struct sys_setcontext_args /* { 2257 syscallarg(const ucontext_t *) ucp; 2258 } */ *uap = v; 2259 ucontext_t uc; 2260 int error; 2261 2262 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2263 exit1(l, W_EXITCODE(0, 0)); 2264 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2265 (error = setucontext(l, &uc)) != 0) 2266 return (error); 2267 2268 return (EJUSTRETURN); 2269 } 2270 2271 /* 2272 * sigtimedwait(2) system call, used also for implementation 2273 * of sigwaitinfo() and sigwait(). 2274 * 2275 * This only handles single LWP in signal wait. libpthread provides 2276 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2277 */ 2278 int 2279 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2280 { 2281 struct sys___sigtimedwait_args /* { 2282 syscallarg(const sigset_t *) set; 2283 syscallarg(siginfo_t *) info; 2284 syscallarg(struct timespec *) timeout; 2285 } */ *uap = v; 2286 sigset_t *waitset, twaitset; 2287 struct proc *p = l->l_proc; 2288 int error, signum, s; 2289 int timo = 0; 2290 struct timeval tvstart; 2291 struct timespec ts; 2292 ksiginfo_t *ksi; 2293 2294 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2295 2296 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2297 FREE(waitset, M_TEMP); 2298 return (error); 2299 } 2300 2301 /* 2302 * Silently ignore SA_CANTMASK signals. psignal1() would 2303 * ignore SA_CANTMASK signals in waitset, we do this 2304 * only for the below siglist check. 2305 */ 2306 sigminusset(&sigcantmask, waitset); 2307 2308 /* 2309 * First scan siglist and check if there is signal from 2310 * our waitset already pending. 2311 */ 2312 twaitset = *waitset; 2313 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2314 if ((signum = firstsig(&twaitset))) { 2315 /* found pending signal */ 2316 sigdelset(&p->p_sigctx.ps_siglist, signum); 2317 ksi = ksiginfo_get(p, signum); 2318 if (!ksi) { 2319 /* No queued siginfo, manufacture one */ 2320 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2321 KSI_INIT(ksi); 2322 ksi->ksi_info._signo = signum; 2323 ksi->ksi_info._code = SI_USER; 2324 } 2325 2326 goto sig; 2327 } 2328 2329 /* 2330 * Calculate timeout, if it was specified. 2331 */ 2332 if (SCARG(uap, timeout)) { 2333 uint64_t ms; 2334 2335 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts)))) 2336 return (error); 2337 2338 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2339 timo = mstohz(ms); 2340 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2341 timo = 1; 2342 if (timo <= 0) 2343 return (EAGAIN); 2344 2345 /* 2346 * Remember current mono_time, it would be used in 2347 * ECANCELED/ERESTART case. 2348 */ 2349 s = splclock(); 2350 tvstart = mono_time; 2351 splx(s); 2352 } 2353 2354 /* 2355 * Setup ps_sigwait list. Pass pointer to malloced memory 2356 * here; it's not possible to pass pointer to a structure 2357 * on current process's stack, the current process might 2358 * be swapped out at the time the signal would get delivered. 2359 */ 2360 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2361 p->p_sigctx.ps_sigwaited = ksi; 2362 p->p_sigctx.ps_sigwait = waitset; 2363 2364 /* 2365 * Wait for signal to arrive. We can either be woken up or 2366 * time out. 2367 */ 2368 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2369 2370 /* 2371 * Need to find out if we woke as a result of lwp_wakeup() 2372 * or a signal outside our wait set. 2373 */ 2374 if (error == EINTR && p->p_sigctx.ps_sigwaited 2375 && !firstsig(&p->p_sigctx.ps_siglist)) { 2376 /* wakeup via _lwp_wakeup() */ 2377 error = ECANCELED; 2378 } else if (!error && p->p_sigctx.ps_sigwaited) { 2379 /* spurious wakeup - arrange for syscall restart */ 2380 error = ERESTART; 2381 goto fail; 2382 } 2383 2384 /* 2385 * On error, clear sigwait indication. psignal1() clears it 2386 * in !error case. 2387 */ 2388 if (error) { 2389 p->p_sigctx.ps_sigwaited = NULL; 2390 2391 /* 2392 * If the sleep was interrupted (either by signal or wakeup), 2393 * update the timeout and copyout new value back. 2394 * It would be used when the syscall would be restarted 2395 * or called again. 2396 */ 2397 if (timo && (error == ERESTART || error == ECANCELED)) { 2398 struct timeval tvnow, tvtimo; 2399 int err; 2400 2401 s = splclock(); 2402 tvnow = mono_time; 2403 splx(s); 2404 2405 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 2406 2407 /* compute how much time has passed since start */ 2408 timersub(&tvnow, &tvstart, &tvnow); 2409 /* substract passed time from timeout */ 2410 timersub(&tvtimo, &tvnow, &tvtimo); 2411 2412 if (tvtimo.tv_sec < 0) { 2413 error = EAGAIN; 2414 goto fail; 2415 } 2416 2417 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 2418 2419 /* copy updated timeout to userland */ 2420 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) { 2421 error = err; 2422 goto fail; 2423 } 2424 } 2425 2426 goto fail; 2427 } 2428 2429 /* 2430 * If a signal from the wait set arrived, copy it to userland. 2431 * Copy only the used part of siginfo, the padding part is 2432 * left unchanged (userland is not supposed to touch it anyway). 2433 */ 2434 sig: 2435 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2436 2437 fail: 2438 FREE(waitset, M_TEMP); 2439 pool_put(&ksiginfo_pool, ksi); 2440 p->p_sigctx.ps_sigwait = NULL; 2441 2442 return (error); 2443 } 2444 2445 /* 2446 * Returns true if signal is ignored or masked for passed process. 2447 */ 2448 int 2449 sigismasked(struct proc *p, int sig) 2450 { 2451 2452 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2453 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2454 } 2455 2456 static int 2457 filt_sigattach(struct knote *kn) 2458 { 2459 struct proc *p = curproc; 2460 2461 kn->kn_ptr.p_proc = p; 2462 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2463 2464 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2465 2466 return (0); 2467 } 2468 2469 static void 2470 filt_sigdetach(struct knote *kn) 2471 { 2472 struct proc *p = kn->kn_ptr.p_proc; 2473 2474 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2475 } 2476 2477 /* 2478 * signal knotes are shared with proc knotes, so we apply a mask to 2479 * the hint in order to differentiate them from process hints. This 2480 * could be avoided by using a signal-specific knote list, but probably 2481 * isn't worth the trouble. 2482 */ 2483 static int 2484 filt_signal(struct knote *kn, long hint) 2485 { 2486 2487 if (hint & NOTE_SIGNAL) { 2488 hint &= ~NOTE_SIGNAL; 2489 2490 if (kn->kn_id == hint) 2491 kn->kn_data++; 2492 } 2493 return (kn->kn_data != 0); 2494 } 2495 2496 const struct filterops sig_filtops = { 2497 0, filt_sigattach, filt_sigdetach, filt_signal 2498 }; 2499