1 /* $NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_compat_sunos.h" 44 #include "opt_compat_netbsd.h" 45 #include "opt_compat_netbsd32.h" 46 47 #define SIGPROP /* include signal properties table */ 48 #include <sys/param.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/namei.h> 52 #include <sys/vnode.h> 53 #include <sys/proc.h> 54 #include <sys/systm.h> 55 #include <sys/timeb.h> 56 #include <sys/times.h> 57 #include <sys/buf.h> 58 #include <sys/acct.h> 59 #include <sys/file.h> 60 #include <sys/kernel.h> 61 #include <sys/wait.h> 62 #include <sys/ktrace.h> 63 #include <sys/syslog.h> 64 #include <sys/stat.h> 65 #include <sys/core.h> 66 #include <sys/filedesc.h> 67 #include <sys/malloc.h> 68 #include <sys/pool.h> 69 #include <sys/ucontext.h> 70 #include <sys/sa.h> 71 #include <sys/savar.h> 72 #include <sys/exec.h> 73 74 #include <sys/mount.h> 75 #include <sys/syscallargs.h> 76 77 #include <machine/cpu.h> 78 79 #include <sys/user.h> /* for coredump */ 80 81 #include <uvm/uvm.h> 82 #include <uvm/uvm_extern.h> 83 84 static void child_psignal(struct proc *, int); 85 static int build_corename(struct proc *, char [MAXPATHLEN]); 86 static void ksiginfo_exithook(struct proc *, void *); 87 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 88 static ksiginfo_t *ksiginfo_get(struct proc *, int); 89 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 90 91 sigset_t contsigmask, stopsigmask, sigcantmask, sigtrapmask; 92 93 struct pool sigacts_pool; /* memory pool for sigacts structures */ 94 95 /* 96 * struct sigacts memory pool allocator. 97 */ 98 99 static void * 100 sigacts_poolpage_alloc(struct pool *pp, int flags) 101 { 102 103 return (void *)uvm_km_kmemalloc1(kernel_map, 104 uvm.kernel_object, (PAGE_SIZE)*2, (PAGE_SIZE)*2, UVM_UNKNOWN_OFFSET, 105 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK); 106 } 107 108 static void 109 sigacts_poolpage_free(struct pool *pp, void *v) 110 { 111 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2); 112 } 113 114 static struct pool_allocator sigactspool_allocator = { 115 sigacts_poolpage_alloc, sigacts_poolpage_free, 116 }; 117 118 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 119 &pool_allocator_nointr); 120 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL); 121 122 /* 123 * Can process p, with pcred pc, send the signal signum to process q? 124 */ 125 #define CANSIGNAL(p, pc, q, signum) \ 126 ((pc)->pc_ucred->cr_uid == 0 || \ 127 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 128 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 129 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 130 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 131 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 132 133 /* 134 * Remove and return the first ksiginfo element that matches our requested 135 * signal, or return NULL if one not found. 136 */ 137 static ksiginfo_t * 138 ksiginfo_get(struct proc *p, int signo) 139 { 140 ksiginfo_t *ksi; 141 int s; 142 143 s = splsoftclock(); 144 simple_lock(&p->p_sigctx.ps_silock); 145 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 146 if (ksi->ksi_signo == signo) { 147 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 148 goto out; 149 } 150 } 151 ksi = NULL; 152 out: 153 simple_unlock(&p->p_sigctx.ps_silock); 154 splx(s); 155 return ksi; 156 } 157 158 /* 159 * Append a new ksiginfo element to the list of pending ksiginfo's, if 160 * we need to (SA_SIGINFO was requested). We replace non RT signals if 161 * they already existed in the queue and we add new entries for RT signals, 162 * or for non RT signals with non-existing entries. 163 */ 164 static void 165 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 166 { 167 ksiginfo_t *kp; 168 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 169 int s; 170 171 if ((sa->sa_flags & SA_SIGINFO) == 0) 172 return; 173 /* 174 * If there's no info, don't save it. 175 */ 176 if (KSI_EMPTY_P(ksi)) 177 return; 178 179 s = splsoftclock(); 180 simple_lock(&p->p_sigctx.ps_silock); 181 #ifdef notyet /* XXX: QUEUING */ 182 if (ksi->ksi_signo < SIGRTMIN) 183 #endif 184 { 185 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 186 if (kp->ksi_signo == ksi->ksi_signo) { 187 KSI_COPY(ksi, kp); 188 goto out; 189 } 190 } 191 } 192 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 193 if (kp == NULL) { 194 #ifdef DIAGNOSTIC 195 printf("Out of memory allocating siginfo for pid %d\n", 196 p->p_pid); 197 #endif 198 goto out; 199 } 200 *kp = *ksi; 201 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 202 out: 203 simple_unlock(&p->p_sigctx.ps_silock); 204 splx(s); 205 } 206 207 /* 208 * free all pending ksiginfo on exit 209 */ 210 static void 211 ksiginfo_exithook(struct proc *p, void *v) 212 { 213 int s; 214 215 s = splsoftclock(); 216 simple_lock(&p->p_sigctx.ps_silock); 217 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 218 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 219 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 220 pool_put(&ksiginfo_pool, ksi); 221 } 222 simple_unlock(&p->p_sigctx.ps_silock); 223 splx(s); 224 } 225 226 /* 227 * Initialize signal-related data structures. 228 */ 229 void 230 signal_init(void) 231 { 232 233 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 234 235 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 236 sizeof(struct sigacts) > PAGE_SIZE ? 237 &sigactspool_allocator : &pool_allocator_nointr); 238 239 exithook_establish(ksiginfo_exithook, NULL); 240 exechook_establish(ksiginfo_exithook, NULL); 241 242 sigaddset(&sigtrapmask, SIGSEGV); 243 sigaddset(&sigtrapmask, SIGBUS); 244 sigaddset(&sigtrapmask, SIGILL); 245 sigaddset(&sigtrapmask, SIGFPE); 246 sigaddset(&sigtrapmask, SIGTRAP); 247 } 248 249 /* 250 * Create an initial sigctx structure, using the same signal state 251 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 252 * copy it from parent. 253 */ 254 void 255 sigactsinit(struct proc *np, struct proc *pp, int share) 256 { 257 struct sigacts *ps; 258 259 if (share) { 260 np->p_sigacts = pp->p_sigacts; 261 pp->p_sigacts->sa_refcnt++; 262 } else { 263 ps = pool_get(&sigacts_pool, PR_WAITOK); 264 if (pp) 265 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 266 else 267 memset(ps, '\0', sizeof(struct sigacts)); 268 ps->sa_refcnt = 1; 269 np->p_sigacts = ps; 270 } 271 } 272 273 /* 274 * Make this process not share its sigctx, maintaining all 275 * signal state. 276 */ 277 void 278 sigactsunshare(struct proc *p) 279 { 280 struct sigacts *oldps; 281 282 if (p->p_sigacts->sa_refcnt == 1) 283 return; 284 285 oldps = p->p_sigacts; 286 sigactsinit(p, NULL, 0); 287 288 if (--oldps->sa_refcnt == 0) 289 pool_put(&sigacts_pool, oldps); 290 } 291 292 /* 293 * Release a sigctx structure. 294 */ 295 void 296 sigactsfree(struct sigacts *ps) 297 { 298 299 if (--ps->sa_refcnt > 0) 300 return; 301 302 pool_put(&sigacts_pool, ps); 303 } 304 305 int 306 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 307 struct sigaction *osa, const void *tramp, int vers) 308 { 309 struct sigacts *ps; 310 int prop; 311 312 ps = p->p_sigacts; 313 if (signum <= 0 || signum >= NSIG) 314 return (EINVAL); 315 316 /* 317 * Trampoline ABI version 0 is reserved for the legacy 318 * kernel-provided on-stack trampoline. Conversely, if we are 319 * using a non-0 ABI version, we must have a trampoline. Only 320 * validate the vers if a new sigaction was supplied. Emulations 321 * use legacy kernel trampolines with version 0, alternatively 322 * check for that too. 323 */ 324 if ((vers != 0 && tramp == NULL) || 325 #ifdef SIGTRAMP_VALID 326 (nsa != NULL && 327 ((vers == 0) ? 328 (p->p_emul->e_sigcode == NULL) : 329 !SIGTRAMP_VALID(vers))) || 330 #endif 331 (vers == 0 && tramp != NULL)) 332 return (EINVAL); 333 334 if (osa) 335 *osa = SIGACTION_PS(ps, signum); 336 337 if (nsa) { 338 if (nsa->sa_flags & ~SA_ALLBITS) 339 return (EINVAL); 340 341 prop = sigprop[signum]; 342 if (prop & SA_CANTMASK) 343 return (EINVAL); 344 345 (void) splsched(); /* XXXSMP */ 346 SIGACTION_PS(ps, signum) = *nsa; 347 ps->sa_sigdesc[signum].sd_tramp = tramp; 348 ps->sa_sigdesc[signum].sd_vers = vers; 349 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 350 if ((prop & SA_NORESET) != 0) 351 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 352 if (signum == SIGCHLD) { 353 if (nsa->sa_flags & SA_NOCLDSTOP) 354 p->p_flag |= P_NOCLDSTOP; 355 else 356 p->p_flag &= ~P_NOCLDSTOP; 357 if (nsa->sa_flags & SA_NOCLDWAIT) { 358 /* 359 * Paranoia: since SA_NOCLDWAIT is implemented 360 * by reparenting the dying child to PID 1 (and 361 * trust it to reap the zombie), PID 1 itself 362 * is forbidden to set SA_NOCLDWAIT. 363 */ 364 if (p->p_pid == 1) 365 p->p_flag &= ~P_NOCLDWAIT; 366 else 367 p->p_flag |= P_NOCLDWAIT; 368 } else 369 p->p_flag &= ~P_NOCLDWAIT; 370 } 371 if ((nsa->sa_flags & SA_NODEFER) == 0) 372 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 373 else 374 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 375 /* 376 * Set bit in p_sigctx.ps_sigignore for signals that are set to 377 * SIG_IGN, and for signals set to SIG_DFL where the default is 378 * to ignore. However, don't put SIGCONT in 379 * p_sigctx.ps_sigignore, as we have to restart the process. 380 */ 381 if (nsa->sa_handler == SIG_IGN || 382 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 383 /* never to be seen again */ 384 sigdelset(&p->p_sigctx.ps_siglist, signum); 385 if (signum != SIGCONT) { 386 /* easier in psignal */ 387 sigaddset(&p->p_sigctx.ps_sigignore, signum); 388 } 389 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 390 } else { 391 sigdelset(&p->p_sigctx.ps_sigignore, signum); 392 if (nsa->sa_handler == SIG_DFL) 393 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 394 else 395 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 396 } 397 (void) spl0(); 398 } 399 400 return (0); 401 } 402 403 #ifdef COMPAT_16 404 /* ARGSUSED */ 405 int 406 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 407 { 408 struct compat_16_sys___sigaction14_args /* { 409 syscallarg(int) signum; 410 syscallarg(const struct sigaction *) nsa; 411 syscallarg(struct sigaction *) osa; 412 } */ *uap = v; 413 struct proc *p; 414 struct sigaction nsa, osa; 415 int error; 416 417 if (SCARG(uap, nsa)) { 418 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 419 if (error) 420 return (error); 421 } 422 p = l->l_proc; 423 error = sigaction1(p, SCARG(uap, signum), 424 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 425 NULL, 0); 426 if (error) 427 return (error); 428 if (SCARG(uap, osa)) { 429 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 430 if (error) 431 return (error); 432 } 433 return (0); 434 } 435 #endif 436 437 /* ARGSUSED */ 438 int 439 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 440 { 441 struct sys___sigaction_sigtramp_args /* { 442 syscallarg(int) signum; 443 syscallarg(const struct sigaction *) nsa; 444 syscallarg(struct sigaction *) osa; 445 syscallarg(void *) tramp; 446 syscallarg(int) vers; 447 } */ *uap = v; 448 struct proc *p = l->l_proc; 449 struct sigaction nsa, osa; 450 int error; 451 452 if (SCARG(uap, nsa)) { 453 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 454 if (error) 455 return (error); 456 } 457 error = sigaction1(p, SCARG(uap, signum), 458 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 459 SCARG(uap, tramp), SCARG(uap, vers)); 460 if (error) 461 return (error); 462 if (SCARG(uap, osa)) { 463 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 464 if (error) 465 return (error); 466 } 467 return (0); 468 } 469 470 /* 471 * Initialize signal state for process 0; 472 * set to ignore signals that are ignored by default and disable the signal 473 * stack. 474 */ 475 void 476 siginit(struct proc *p) 477 { 478 struct sigacts *ps; 479 int signum, prop; 480 481 ps = p->p_sigacts; 482 sigemptyset(&contsigmask); 483 sigemptyset(&stopsigmask); 484 sigemptyset(&sigcantmask); 485 for (signum = 1; signum < NSIG; signum++) { 486 prop = sigprop[signum]; 487 if (prop & SA_CONT) 488 sigaddset(&contsigmask, signum); 489 if (prop & SA_STOP) 490 sigaddset(&stopsigmask, signum); 491 if (prop & SA_CANTMASK) 492 sigaddset(&sigcantmask, signum); 493 if (prop & SA_IGNORE && signum != SIGCONT) 494 sigaddset(&p->p_sigctx.ps_sigignore, signum); 495 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 496 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 497 } 498 sigemptyset(&p->p_sigctx.ps_sigcatch); 499 p->p_sigctx.ps_sigwaited = NULL; 500 p->p_flag &= ~P_NOCLDSTOP; 501 502 /* 503 * Reset stack state to the user stack. 504 */ 505 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 506 p->p_sigctx.ps_sigstk.ss_size = 0; 507 p->p_sigctx.ps_sigstk.ss_sp = 0; 508 509 /* One reference. */ 510 ps->sa_refcnt = 1; 511 } 512 513 /* 514 * Reset signals for an exec of the specified process. 515 */ 516 void 517 execsigs(struct proc *p) 518 { 519 struct sigacts *ps; 520 int signum, prop; 521 522 sigactsunshare(p); 523 524 ps = p->p_sigacts; 525 526 /* 527 * Reset caught signals. Held signals remain held 528 * through p_sigctx.ps_sigmask (unless they were caught, 529 * and are now ignored by default). 530 */ 531 for (signum = 1; signum < NSIG; signum++) { 532 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 533 prop = sigprop[signum]; 534 if (prop & SA_IGNORE) { 535 if ((prop & SA_CONT) == 0) 536 sigaddset(&p->p_sigctx.ps_sigignore, 537 signum); 538 sigdelset(&p->p_sigctx.ps_siglist, signum); 539 } 540 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 541 } 542 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 543 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 544 } 545 sigemptyset(&p->p_sigctx.ps_sigcatch); 546 p->p_sigctx.ps_sigwaited = NULL; 547 p->p_flag &= ~P_NOCLDSTOP; 548 549 /* 550 * Reset stack state to the user stack. 551 */ 552 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 553 p->p_sigctx.ps_sigstk.ss_size = 0; 554 p->p_sigctx.ps_sigstk.ss_sp = 0; 555 } 556 557 int 558 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 559 { 560 561 if (oss) 562 *oss = p->p_sigctx.ps_sigmask; 563 564 if (nss) { 565 (void)splsched(); /* XXXSMP */ 566 switch (how) { 567 case SIG_BLOCK: 568 sigplusset(nss, &p->p_sigctx.ps_sigmask); 569 break; 570 case SIG_UNBLOCK: 571 sigminusset(nss, &p->p_sigctx.ps_sigmask); 572 CHECKSIGS(p); 573 break; 574 case SIG_SETMASK: 575 p->p_sigctx.ps_sigmask = *nss; 576 CHECKSIGS(p); 577 break; 578 default: 579 (void)spl0(); /* XXXSMP */ 580 return (EINVAL); 581 } 582 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 583 (void)spl0(); /* XXXSMP */ 584 } 585 586 return (0); 587 } 588 589 /* 590 * Manipulate signal mask. 591 * Note that we receive new mask, not pointer, 592 * and return old mask as return value; 593 * the library stub does the rest. 594 */ 595 int 596 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 597 { 598 struct sys___sigprocmask14_args /* { 599 syscallarg(int) how; 600 syscallarg(const sigset_t *) set; 601 syscallarg(sigset_t *) oset; 602 } */ *uap = v; 603 struct proc *p; 604 sigset_t nss, oss; 605 int error; 606 607 if (SCARG(uap, set)) { 608 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 609 if (error) 610 return (error); 611 } 612 p = l->l_proc; 613 error = sigprocmask1(p, SCARG(uap, how), 614 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 615 if (error) 616 return (error); 617 if (SCARG(uap, oset)) { 618 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 619 if (error) 620 return (error); 621 } 622 return (0); 623 } 624 625 void 626 sigpending1(struct proc *p, sigset_t *ss) 627 { 628 629 *ss = p->p_sigctx.ps_siglist; 630 sigminusset(&p->p_sigctx.ps_sigmask, ss); 631 } 632 633 /* ARGSUSED */ 634 int 635 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 636 { 637 struct sys___sigpending14_args /* { 638 syscallarg(sigset_t *) set; 639 } */ *uap = v; 640 struct proc *p; 641 sigset_t ss; 642 643 p = l->l_proc; 644 sigpending1(p, &ss); 645 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 646 } 647 648 int 649 sigsuspend1(struct proc *p, const sigset_t *ss) 650 { 651 struct sigacts *ps; 652 653 ps = p->p_sigacts; 654 if (ss) { 655 /* 656 * When returning from sigpause, we want 657 * the old mask to be restored after the 658 * signal handler has finished. Thus, we 659 * save it here and mark the sigctx structure 660 * to indicate this. 661 */ 662 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 663 p->p_sigctx.ps_flags |= SAS_OLDMASK; 664 (void) splsched(); /* XXXSMP */ 665 p->p_sigctx.ps_sigmask = *ss; 666 CHECKSIGS(p); 667 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 668 (void) spl0(); /* XXXSMP */ 669 } 670 671 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 672 /* void */; 673 674 /* always return EINTR rather than ERESTART... */ 675 return (EINTR); 676 } 677 678 /* 679 * Suspend process until signal, providing mask to be set 680 * in the meantime. Note nonstandard calling convention: 681 * libc stub passes mask, not pointer, to save a copyin. 682 */ 683 /* ARGSUSED */ 684 int 685 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 686 { 687 struct sys___sigsuspend14_args /* { 688 syscallarg(const sigset_t *) set; 689 } */ *uap = v; 690 struct proc *p; 691 sigset_t ss; 692 int error; 693 694 if (SCARG(uap, set)) { 695 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 696 if (error) 697 return (error); 698 } 699 700 p = l->l_proc; 701 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 702 } 703 704 int 705 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 706 struct sigaltstack *oss) 707 { 708 709 if (oss) 710 *oss = p->p_sigctx.ps_sigstk; 711 712 if (nss) { 713 if (nss->ss_flags & ~SS_ALLBITS) 714 return (EINVAL); 715 716 if (nss->ss_flags & SS_DISABLE) { 717 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 718 return (EINVAL); 719 } else { 720 if (nss->ss_size < MINSIGSTKSZ) 721 return (ENOMEM); 722 } 723 p->p_sigctx.ps_sigstk = *nss; 724 } 725 726 return (0); 727 } 728 729 /* ARGSUSED */ 730 int 731 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 732 { 733 struct sys___sigaltstack14_args /* { 734 syscallarg(const struct sigaltstack *) nss; 735 syscallarg(struct sigaltstack *) oss; 736 } */ *uap = v; 737 struct proc *p; 738 struct sigaltstack nss, oss; 739 int error; 740 741 if (SCARG(uap, nss)) { 742 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 743 if (error) 744 return (error); 745 } 746 p = l->l_proc; 747 error = sigaltstack1(p, 748 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 749 if (error) 750 return (error); 751 if (SCARG(uap, oss)) { 752 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 753 if (error) 754 return (error); 755 } 756 return (0); 757 } 758 759 /* ARGSUSED */ 760 int 761 sys_kill(struct lwp *l, void *v, register_t *retval) 762 { 763 struct sys_kill_args /* { 764 syscallarg(int) pid; 765 syscallarg(int) signum; 766 } */ *uap = v; 767 struct proc *cp, *p; 768 struct pcred *pc; 769 ksiginfo_t ksi; 770 771 cp = l->l_proc; 772 pc = cp->p_cred; 773 if ((u_int)SCARG(uap, signum) >= NSIG) 774 return (EINVAL); 775 KSI_INIT(&ksi); 776 ksi.ksi_signo = SCARG(uap, signum); 777 ksi.ksi_code = SI_USER; 778 ksi.ksi_pid = cp->p_pid; 779 ksi.ksi_uid = cp->p_ucred->cr_uid; 780 if (SCARG(uap, pid) > 0) { 781 /* kill single process */ 782 if ((p = pfind(SCARG(uap, pid))) == NULL) 783 return (ESRCH); 784 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 785 return (EPERM); 786 if (SCARG(uap, signum)) 787 kpsignal2(p, &ksi, 1); 788 return (0); 789 } 790 switch (SCARG(uap, pid)) { 791 case -1: /* broadcast signal */ 792 return (killpg1(cp, &ksi, 0, 1)); 793 case 0: /* signal own process group */ 794 return (killpg1(cp, &ksi, 0, 0)); 795 default: /* negative explicit process group */ 796 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 797 } 798 /* NOTREACHED */ 799 } 800 801 /* 802 * Common code for kill process group/broadcast kill. 803 * cp is calling process. 804 */ 805 int 806 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 807 { 808 struct proc *p; 809 struct pcred *pc; 810 struct pgrp *pgrp; 811 int nfound; 812 int signum = ksi->ksi_signo; 813 814 pc = cp->p_cred; 815 nfound = 0; 816 if (all) { 817 /* 818 * broadcast 819 */ 820 proclist_lock_read(); 821 LIST_FOREACH(p, &allproc, p_list) { 822 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 823 p == cp || !CANSIGNAL(cp, pc, p, signum)) 824 continue; 825 nfound++; 826 if (signum) 827 kpsignal2(p, ksi, 1); 828 } 829 proclist_unlock_read(); 830 } else { 831 if (pgid == 0) 832 /* 833 * zero pgid means send to my process group. 834 */ 835 pgrp = cp->p_pgrp; 836 else { 837 pgrp = pgfind(pgid); 838 if (pgrp == NULL) 839 return (ESRCH); 840 } 841 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 842 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 843 !CANSIGNAL(cp, pc, p, signum)) 844 continue; 845 nfound++; 846 if (signum && P_ZOMBIE(p) == 0) 847 kpsignal2(p, ksi, 1); 848 } 849 } 850 return (nfound ? 0 : ESRCH); 851 } 852 853 /* 854 * Send a signal to a process group. 855 */ 856 void 857 gsignal(int pgid, int signum) 858 { 859 ksiginfo_t ksi; 860 KSI_INIT_EMPTY(&ksi); 861 ksi.ksi_signo = signum; 862 kgsignal(pgid, &ksi, NULL); 863 } 864 865 void 866 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 867 { 868 struct pgrp *pgrp; 869 870 if (pgid && (pgrp = pgfind(pgid))) 871 kpgsignal(pgrp, ksi, data, 0); 872 } 873 874 /* 875 * Send a signal to a process group. If checktty is 1, 876 * limit to members which have a controlling terminal. 877 */ 878 void 879 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 880 { 881 ksiginfo_t ksi; 882 KSI_INIT_EMPTY(&ksi); 883 ksi.ksi_signo = sig; 884 kpgsignal(pgrp, &ksi, NULL, checkctty); 885 } 886 887 void 888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 889 { 890 struct proc *p; 891 892 if (pgrp) 893 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 894 if (checkctty == 0 || p->p_flag & P_CONTROLT) 895 kpsignal(p, ksi, data); 896 } 897 898 /* 899 * Send a signal caused by a trap to the current process. 900 * If it will be caught immediately, deliver it with correct code. 901 * Otherwise, post it normally. 902 */ 903 void 904 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 905 { 906 struct proc *p; 907 struct sigacts *ps; 908 int signum = ksi->ksi_signo; 909 910 KASSERT(KSI_TRAP_P(ksi)); 911 912 p = l->l_proc; 913 ps = p->p_sigacts; 914 if ((p->p_flag & P_TRACED) == 0 && 915 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 916 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 917 p->p_stats->p_ru.ru_nsignals++; 918 #ifdef KTRACE 919 if (KTRPOINT(p, KTR_PSIG)) 920 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler, 921 &p->p_sigctx.ps_sigmask, ksi); 922 #endif 923 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 924 (void) splsched(); /* XXXSMP */ 925 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 926 &p->p_sigctx.ps_sigmask); 927 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 928 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 929 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 930 sigaddset(&p->p_sigctx.ps_sigignore, signum); 931 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 932 } 933 (void) spl0(); /* XXXSMP */ 934 } else { 935 p->p_sigctx.ps_lwp = l->l_lid; 936 /* XXX for core dump/debugger */ 937 p->p_sigctx.ps_signo = ksi->ksi_signo; 938 p->p_sigctx.ps_code = ksi->ksi_trap; 939 kpsignal2(p, ksi, 1); 940 } 941 } 942 943 /* 944 * Fill in signal information and signal the parent for a child status change. 945 */ 946 static void 947 child_psignal(struct proc *p, int dolock) 948 { 949 ksiginfo_t ksi; 950 951 KSI_INIT(&ksi); 952 ksi.ksi_signo = SIGCHLD; 953 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 954 ksi.ksi_pid = p->p_pid; 955 ksi.ksi_uid = p->p_ucred->cr_uid; 956 ksi.ksi_status = p->p_xstat; 957 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 958 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 959 kpsignal2(p->p_pptr, &ksi, dolock); 960 } 961 962 /* 963 * Send the signal to the process. If the signal has an action, the action 964 * is usually performed by the target process rather than the caller; we add 965 * the signal to the set of pending signals for the process. 966 * 967 * Exceptions: 968 * o When a stop signal is sent to a sleeping process that takes the 969 * default action, the process is stopped without awakening it. 970 * o SIGCONT restarts stopped processes (or puts them back to sleep) 971 * regardless of the signal action (eg, blocked or ignored). 972 * 973 * Other ignored signals are discarded immediately. 974 * 975 * XXXSMP: Invoked as psignal() or sched_psignal(). 976 */ 977 void 978 psignal1(struct proc *p, int signum, int dolock) 979 { 980 ksiginfo_t ksi; 981 982 KSI_INIT_EMPTY(&ksi); 983 ksi.ksi_signo = signum; 984 kpsignal2(p, &ksi, dolock); 985 } 986 987 void 988 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 989 { 990 991 if ((p->p_flag & P_WEXIT) == 0 && data) { 992 size_t fd; 993 struct filedesc *fdp = p->p_fd; 994 995 ksi->ksi_fd = -1; 996 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 997 struct file *fp = fdp->fd_ofiles[fd]; 998 /* XXX: lock? */ 999 if (fp && fp->f_data == data) { 1000 ksi->ksi_fd = fd; 1001 break; 1002 } 1003 } 1004 } 1005 kpsignal2(p, ksi, dolock); 1006 } 1007 1008 static void 1009 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 1010 { 1011 struct lwp *l, *suspended = NULL; 1012 struct sadata_vp *vp; 1013 int s = 0, prop, allsusp; 1014 sig_t action; 1015 int signum = ksi->ksi_signo; 1016 1017 #ifdef DIAGNOSTIC 1018 if (signum <= 0 || signum >= NSIG) 1019 panic("psignal signal number %d", signum); 1020 1021 /* XXXSMP: works, but icky */ 1022 if (dolock) 1023 SCHED_ASSERT_UNLOCKED(); 1024 else 1025 SCHED_ASSERT_LOCKED(); 1026 #endif 1027 1028 /* 1029 * Notify any interested parties in the signal. 1030 */ 1031 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1032 1033 prop = sigprop[signum]; 1034 1035 /* 1036 * If proc is traced, always give parent a chance. 1037 */ 1038 action = SIG_DFL; 1039 if ((p->p_flag & P_TRACED) == 0) { 1040 if (KSI_TRAP_P(ksi)) { 1041 /* 1042 * If the signal was the result of a trap, only catch 1043 * the signal if it isn't masked and there is a 1044 * non-default non-ignore handler installed for it. 1045 * Otherwise take the default action. 1046 */ 1047 if (!sigismember(&p->p_sigctx.ps_sigmask, signum) && 1048 sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1049 action = SIG_CATCH; 1050 /* 1051 * If we are to take the default action, reset the 1052 * signal back to its defaults. 1053 */ 1054 if (action == SIG_DFL) { 1055 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1056 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1057 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1058 SIGACTION(p, signum).sa_handler = SIG_DFL; 1059 } 1060 } else { 1061 /* 1062 * If the signal is being ignored, 1063 * then we forget about it immediately. 1064 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1065 * and if it is set to SIG_IGN, 1066 * action will be SIG_DFL here.) 1067 */ 1068 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1069 return; 1070 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1071 action = SIG_HOLD; 1072 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1073 action = SIG_CATCH; 1074 } 1075 if (action == SIG_DFL) { 1076 if (prop & SA_KILL && p->p_nice > NZERO) 1077 p->p_nice = NZERO; 1078 1079 /* 1080 * If sending a tty stop signal to a member of an 1081 * orphaned process group, discard the signal here if 1082 * the action is default; don't stop the process below 1083 * if sleeping, and don't clear any pending SIGCONT. 1084 */ 1085 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1086 return; 1087 } 1088 } else { 1089 /* 1090 * If the process is being traced and the signal is being 1091 * caught, make sure to save any ksiginfo. 1092 */ 1093 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1094 ksiginfo_put(p, ksi); 1095 } 1096 1097 if (prop & SA_CONT) 1098 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1099 1100 if (prop & SA_STOP) 1101 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1102 1103 /* 1104 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1105 * please!), check if anything waits on it. If yes, save the 1106 * info into provided ps_sigwaited, and wake-up the waiter. 1107 * The signal won't be processed further here. 1108 */ 1109 if ((prop & SA_CANTMASK) == 0 1110 && p->p_sigctx.ps_sigwaited 1111 && sigismember(p->p_sigctx.ps_sigwait, signum) 1112 && p->p_stat != SSTOP) { 1113 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1114 p->p_sigctx.ps_sigwaited = NULL; 1115 if (dolock) 1116 wakeup_one(&p->p_sigctx.ps_sigwait); 1117 else 1118 sched_wakeup(&p->p_sigctx.ps_sigwait); 1119 return; 1120 } 1121 1122 sigaddset(&p->p_sigctx.ps_siglist, signum); 1123 1124 /* CHECKSIGS() is "inlined" here. */ 1125 p->p_sigctx.ps_sigcheck = 1; 1126 1127 /* 1128 * Defer further processing for signals which are held, 1129 * except that stopped processes must be continued by SIGCONT. 1130 */ 1131 if (action == SIG_HOLD && 1132 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1133 ksiginfo_put(p, ksi); 1134 return; 1135 } 1136 /* XXXSMP: works, but icky */ 1137 if (dolock) 1138 SCHED_LOCK(s); 1139 1140 if (p->p_flag & P_SA) { 1141 allsusp = 0; 1142 l = NULL; 1143 if (p->p_stat == SACTIVE) { 1144 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1145 l = vp->savp_lwp; 1146 KDASSERT(l != NULL); 1147 if (l->l_flag & L_SA_IDLE) { 1148 /* wakeup idle LWP */ 1149 goto found; 1150 /*NOTREACHED*/ 1151 } else if (l->l_flag & L_SA_YIELD) { 1152 /* idle LWP is already waking up */ 1153 goto out; 1154 /*NOTREACHED*/ 1155 } 1156 } 1157 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1158 l = vp->savp_lwp; 1159 if (l->l_stat == LSRUN || 1160 l->l_stat == LSONPROC) { 1161 signotify(p); 1162 goto out; 1163 /*NOTREACHED*/ 1164 } 1165 if (l->l_stat == LSSLEEP && 1166 l->l_flag & L_SINTR) { 1167 /* ok to signal vp lwp */ 1168 } else 1169 l = NULL; 1170 } 1171 if (l == NULL) 1172 allsusp = 1; 1173 } else if (p->p_stat == SSTOP) { 1174 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1175 l = vp->savp_lwp; 1176 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1177 break; 1178 l = NULL; 1179 } 1180 } 1181 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1182 /* 1183 * At least one LWP is running or on a run queue. 1184 * The signal will be noticed when one of them returns 1185 * to userspace. 1186 */ 1187 signotify(p); 1188 /* 1189 * The signal will be noticed very soon. 1190 */ 1191 goto out; 1192 /*NOTREACHED*/ 1193 } else { 1194 /* 1195 * Find out if any of the sleeps are interruptable, 1196 * and if all the live LWPs remaining are suspended. 1197 */ 1198 allsusp = 1; 1199 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1200 if (l->l_stat == LSSLEEP && 1201 l->l_flag & L_SINTR) 1202 break; 1203 if (l->l_stat == LSSUSPENDED) 1204 suspended = l; 1205 else if ((l->l_stat != LSZOMB) && 1206 (l->l_stat != LSDEAD)) 1207 allsusp = 0; 1208 } 1209 } 1210 1211 found: 1212 switch (p->p_stat) { 1213 case SACTIVE: 1214 1215 if (l != NULL && (p->p_flag & P_TRACED)) 1216 goto run; 1217 1218 /* 1219 * If SIGCONT is default (or ignored) and process is 1220 * asleep, we are finished; the process should not 1221 * be awakened. 1222 */ 1223 if ((prop & SA_CONT) && action == SIG_DFL) { 1224 sigdelset(&p->p_sigctx.ps_siglist, signum); 1225 goto done; 1226 } 1227 1228 /* 1229 * When a sleeping process receives a stop 1230 * signal, process immediately if possible. 1231 */ 1232 if ((prop & SA_STOP) && action == SIG_DFL) { 1233 /* 1234 * If a child holding parent blocked, 1235 * stopping could cause deadlock. 1236 */ 1237 if (p->p_flag & P_PPWAIT) { 1238 goto out; 1239 } 1240 sigdelset(&p->p_sigctx.ps_siglist, signum); 1241 p->p_xstat = signum; 1242 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1243 /* 1244 * XXXSMP: recursive call; don't lock 1245 * the second time around. 1246 */ 1247 child_psignal(p, 0); 1248 } 1249 proc_stop(p, 1); /* XXXSMP: recurse? */ 1250 goto done; 1251 } 1252 1253 if (l == NULL) { 1254 /* 1255 * Special case: SIGKILL of a process 1256 * which is entirely composed of 1257 * suspended LWPs should succeed. We 1258 * make this happen by unsuspending one of 1259 * them. 1260 */ 1261 if (allsusp && (signum == SIGKILL)) { 1262 if (p->p_flag & P_SA) { 1263 /* 1264 * get a suspended lwp from 1265 * the cache to send KILL 1266 * signal 1267 * XXXcl add signal checks at resume points 1268 */ 1269 suspended = sa_getcachelwp 1270 (SLIST_FIRST(&p->p_sa->sa_vps)); 1271 } 1272 lwp_continue(suspended); 1273 } 1274 goto done; 1275 } 1276 /* 1277 * All other (caught or default) signals 1278 * cause the process to run. 1279 */ 1280 goto runfast; 1281 /*NOTREACHED*/ 1282 case SSTOP: 1283 /* Process is stopped */ 1284 /* 1285 * If traced process is already stopped, 1286 * then no further action is necessary. 1287 */ 1288 if (p->p_flag & P_TRACED) 1289 goto done; 1290 1291 /* 1292 * Kill signal always sets processes running, 1293 * if possible. 1294 */ 1295 if (signum == SIGKILL) { 1296 l = proc_unstop(p); 1297 if (l) 1298 goto runfast; 1299 goto done; 1300 } 1301 1302 if (prop & SA_CONT) { 1303 /* 1304 * If SIGCONT is default (or ignored), 1305 * we continue the process but don't 1306 * leave the signal in ps_siglist, as 1307 * it has no further action. If 1308 * SIGCONT is held, we continue the 1309 * process and leave the signal in 1310 * ps_siglist. If the process catches 1311 * SIGCONT, let it handle the signal 1312 * itself. If it isn't waiting on an 1313 * event, then it goes back to run 1314 * state. Otherwise, process goes 1315 * back to sleep state. 1316 */ 1317 if (action == SIG_DFL) 1318 sigdelset(&p->p_sigctx.ps_siglist, 1319 signum); 1320 l = proc_unstop(p); 1321 if (l && (action == SIG_CATCH)) 1322 goto runfast; 1323 goto out; 1324 } 1325 1326 if (prop & SA_STOP) { 1327 /* 1328 * Already stopped, don't need to stop again. 1329 * (If we did the shell could get confused.) 1330 */ 1331 sigdelset(&p->p_sigctx.ps_siglist, signum); 1332 goto done; 1333 } 1334 1335 /* 1336 * If a lwp is sleeping interruptibly, then 1337 * wake it up; it will run until the kernel 1338 * boundary, where it will stop in issignal(), 1339 * since p->p_stat is still SSTOP. When the 1340 * process is continued, it will be made 1341 * runnable and can look at the signal. 1342 */ 1343 if (l) 1344 goto run; 1345 goto out; 1346 case SIDL: 1347 /* Process is being created by fork */ 1348 /* XXX: We are not ready to receive signals yet */ 1349 goto done; 1350 default: 1351 /* Else what? */ 1352 panic("psignal: Invalid process state %d.", p->p_stat); 1353 } 1354 /*NOTREACHED*/ 1355 1356 runfast: 1357 if (action == SIG_CATCH) { 1358 ksiginfo_put(p, ksi); 1359 action = SIG_HOLD; 1360 } 1361 /* 1362 * Raise priority to at least PUSER. 1363 */ 1364 if (l->l_priority > PUSER) 1365 l->l_priority = PUSER; 1366 run: 1367 if (action == SIG_CATCH) { 1368 ksiginfo_put(p, ksi); 1369 action = SIG_HOLD; 1370 } 1371 1372 setrunnable(l); /* XXXSMP: recurse? */ 1373 out: 1374 if (action == SIG_CATCH) 1375 ksiginfo_put(p, ksi); 1376 done: 1377 /* XXXSMP: works, but icky */ 1378 if (dolock) 1379 SCHED_UNLOCK(s); 1380 } 1381 1382 void 1383 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1384 { 1385 struct proc *p = l->l_proc; 1386 struct lwp *le, *li; 1387 siginfo_t *si; 1388 int f; 1389 1390 if (p->p_flag & P_SA) { 1391 1392 /* XXXUPSXXX What if not on sa_vp ? */ 1393 1394 f = l->l_flag & L_SA; 1395 l->l_flag &= ~L_SA; 1396 si = pool_get(&siginfo_pool, PR_WAITOK); 1397 si->_info = ksi->ksi_info; 1398 le = li = NULL; 1399 if (KSI_TRAP_P(ksi)) 1400 le = l; 1401 else 1402 li = l; 1403 1404 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1405 sizeof(siginfo_t), si); 1406 l->l_flag |= f; 1407 return; 1408 } 1409 1410 (*p->p_emul->e_sendsig)(ksi, mask); 1411 } 1412 1413 static __inline int firstsig(const sigset_t *); 1414 1415 static __inline int 1416 firstsig(const sigset_t *ss) 1417 { 1418 int sig; 1419 1420 sig = ffs(ss->__bits[0]); 1421 if (sig != 0) 1422 return (sig); 1423 #if NSIG > 33 1424 sig = ffs(ss->__bits[1]); 1425 if (sig != 0) 1426 return (sig + 32); 1427 #endif 1428 #if NSIG > 65 1429 sig = ffs(ss->__bits[2]); 1430 if (sig != 0) 1431 return (sig + 64); 1432 #endif 1433 #if NSIG > 97 1434 sig = ffs(ss->__bits[3]); 1435 if (sig != 0) 1436 return (sig + 96); 1437 #endif 1438 return (0); 1439 } 1440 1441 /* 1442 * If the current process has received a signal (should be caught or cause 1443 * termination, should interrupt current syscall), return the signal number. 1444 * Stop signals with default action are processed immediately, then cleared; 1445 * they aren't returned. This is checked after each entry to the system for 1446 * a syscall or trap (though this can usually be done without calling issignal 1447 * by checking the pending signal masks in the CURSIG macro.) The normal call 1448 * sequence is 1449 * 1450 * while (signum = CURSIG(curlwp)) 1451 * postsig(signum); 1452 */ 1453 int 1454 issignal(struct lwp *l) 1455 { 1456 struct proc *p = l->l_proc; 1457 int s = 0, signum, prop; 1458 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1459 sigset_t ss; 1460 1461 /* Bail out if we do not own the virtual processor */ 1462 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1463 return 0; 1464 1465 if (p->p_stat == SSTOP) { 1466 /* 1467 * The process is stopped/stopping. Stop ourselves now that 1468 * we're on the kernel/userspace boundary. 1469 */ 1470 if (dolock) 1471 SCHED_LOCK(s); 1472 l->l_stat = LSSTOP; 1473 p->p_nrlwps--; 1474 if (p->p_flag & P_TRACED) 1475 goto sigtraceswitch; 1476 else 1477 goto sigswitch; 1478 } 1479 for (;;) { 1480 sigpending1(p, &ss); 1481 if (p->p_flag & P_PPWAIT) 1482 sigminusset(&stopsigmask, &ss); 1483 signum = firstsig(&ss); 1484 if (signum == 0) { /* no signal to send */ 1485 p->p_sigctx.ps_sigcheck = 0; 1486 if (locked && dolock) 1487 SCHED_LOCK(s); 1488 return (0); 1489 } 1490 /* take the signal! */ 1491 sigdelset(&p->p_sigctx.ps_siglist, signum); 1492 1493 /* 1494 * We should see pending but ignored signals 1495 * only if P_TRACED was on when they were posted. 1496 */ 1497 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1498 (p->p_flag & P_TRACED) == 0) 1499 continue; 1500 1501 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1502 /* 1503 * If traced, always stop, and stay 1504 * stopped until released by the debugger. 1505 */ 1506 p->p_xstat = signum; 1507 1508 /* Emulation-specific handling of signal trace */ 1509 if ((p->p_emul->e_tracesig != NULL) && 1510 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1511 goto childresumed; 1512 1513 if ((p->p_flag & P_FSTRACE) == 0) 1514 child_psignal(p, dolock); 1515 if (dolock) 1516 SCHED_LOCK(s); 1517 proc_stop(p, 1); 1518 sigtraceswitch: 1519 mi_switch(l, NULL); 1520 SCHED_ASSERT_UNLOCKED(); 1521 if (dolock) 1522 splx(s); 1523 else 1524 dolock = 1; 1525 1526 childresumed: 1527 /* 1528 * If we are no longer being traced, or the parent 1529 * didn't give us a signal, look for more signals. 1530 */ 1531 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1532 continue; 1533 1534 /* 1535 * If the new signal is being masked, look for other 1536 * signals. 1537 */ 1538 signum = p->p_xstat; 1539 p->p_xstat = 0; 1540 /* 1541 * `p->p_sigctx.ps_siglist |= mask' is done 1542 * in setrunnable(). 1543 */ 1544 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1545 continue; 1546 /* take the signal! */ 1547 sigdelset(&p->p_sigctx.ps_siglist, signum); 1548 } 1549 1550 prop = sigprop[signum]; 1551 1552 /* 1553 * Decide whether the signal should be returned. 1554 * Return the signal's number, or fall through 1555 * to clear it from the pending mask. 1556 */ 1557 switch ((long)SIGACTION(p, signum).sa_handler) { 1558 1559 case (long)SIG_DFL: 1560 /* 1561 * Don't take default actions on system processes. 1562 */ 1563 if (p->p_pid <= 1) { 1564 #ifdef DIAGNOSTIC 1565 /* 1566 * Are you sure you want to ignore SIGSEGV 1567 * in init? XXX 1568 */ 1569 printf("Process (pid %d) got signal %d\n", 1570 p->p_pid, signum); 1571 #endif 1572 break; /* == ignore */ 1573 } 1574 /* 1575 * If there is a pending stop signal to process 1576 * with default action, stop here, 1577 * then clear the signal. However, 1578 * if process is member of an orphaned 1579 * process group, ignore tty stop signals. 1580 */ 1581 if (prop & SA_STOP) { 1582 if (p->p_flag & P_TRACED || 1583 (p->p_pgrp->pg_jobc == 0 && 1584 prop & SA_TTYSTOP)) 1585 break; /* == ignore */ 1586 p->p_xstat = signum; 1587 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1588 child_psignal(p, dolock); 1589 if (dolock) 1590 SCHED_LOCK(s); 1591 proc_stop(p, 1); 1592 sigswitch: 1593 mi_switch(l, NULL); 1594 SCHED_ASSERT_UNLOCKED(); 1595 if (dolock) 1596 splx(s); 1597 else 1598 dolock = 1; 1599 break; 1600 } else if (prop & SA_IGNORE) { 1601 /* 1602 * Except for SIGCONT, shouldn't get here. 1603 * Default action is to ignore; drop it. 1604 */ 1605 break; /* == ignore */ 1606 } else 1607 goto keep; 1608 /*NOTREACHED*/ 1609 1610 case (long)SIG_IGN: 1611 /* 1612 * Masking above should prevent us ever trying 1613 * to take action on an ignored signal other 1614 * than SIGCONT, unless process is traced. 1615 */ 1616 #ifdef DEBUG_ISSIGNAL 1617 if ((prop & SA_CONT) == 0 && 1618 (p->p_flag & P_TRACED) == 0) 1619 printf("issignal\n"); 1620 #endif 1621 break; /* == ignore */ 1622 1623 default: 1624 /* 1625 * This signal has an action, let 1626 * postsig() process it. 1627 */ 1628 goto keep; 1629 } 1630 } 1631 /* NOTREACHED */ 1632 1633 keep: 1634 /* leave the signal for later */ 1635 sigaddset(&p->p_sigctx.ps_siglist, signum); 1636 CHECKSIGS(p); 1637 if (locked && dolock) 1638 SCHED_LOCK(s); 1639 return (signum); 1640 } 1641 1642 /* 1643 * Put the argument process into the stopped state and notify the parent 1644 * via wakeup. Signals are handled elsewhere. The process must not be 1645 * on the run queue. 1646 */ 1647 void 1648 proc_stop(struct proc *p, int wakeup) 1649 { 1650 struct lwp *l; 1651 struct proc *parent; 1652 struct sadata_vp *vp; 1653 1654 SCHED_ASSERT_LOCKED(); 1655 1656 /* XXX lock process LWP state */ 1657 p->p_flag &= ~P_WAITED; 1658 p->p_stat = SSTOP; 1659 parent = p->p_pptr; 1660 parent->p_nstopchild++; 1661 1662 if (p->p_flag & P_SA) { 1663 /* 1664 * Only (try to) put the LWP on the VP in stopped 1665 * state. 1666 * All other LWPs will suspend in sa_setwoken() 1667 * because the VP-LWP in stopped state cannot be 1668 * repossessed. 1669 */ 1670 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1671 l = vp->savp_lwp; 1672 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1673 l->l_stat = LSSTOP; 1674 p->p_nrlwps--; 1675 } else if (l->l_stat == LSRUN) { 1676 /* Remove LWP from the run queue */ 1677 remrunqueue(l); 1678 l->l_stat = LSSTOP; 1679 p->p_nrlwps--; 1680 } else if (l->l_stat == LSSLEEP && 1681 l->l_flag & L_SA_IDLE) { 1682 l->l_flag &= ~L_SA_IDLE; 1683 l->l_stat = LSSTOP; 1684 } 1685 } 1686 goto out; 1687 } 1688 1689 /* 1690 * Put as many LWP's as possible in stopped state. 1691 * Sleeping ones will notice the stopped state as they try to 1692 * return to userspace. 1693 */ 1694 1695 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1696 if (l->l_stat == LSONPROC) { 1697 /* XXX SMP this assumes that a LWP that is LSONPROC 1698 * is curlwp and hence is about to be mi_switched 1699 * away; the only callers of proc_stop() are: 1700 * - psignal 1701 * - issignal() 1702 * For the former, proc_stop() is only called when 1703 * no processes are running, so we don't worry. 1704 * For the latter, proc_stop() is called right 1705 * before mi_switch(). 1706 */ 1707 l->l_stat = LSSTOP; 1708 p->p_nrlwps--; 1709 } else if (l->l_stat == LSRUN) { 1710 /* Remove LWP from the run queue */ 1711 remrunqueue(l); 1712 l->l_stat = LSSTOP; 1713 p->p_nrlwps--; 1714 } else if ((l->l_stat == LSSLEEP) || 1715 (l->l_stat == LSSUSPENDED) || 1716 (l->l_stat == LSZOMB) || 1717 (l->l_stat == LSDEAD)) { 1718 /* 1719 * Don't do anything; let sleeping LWPs 1720 * discover the stopped state of the process 1721 * on their way out of the kernel; otherwise, 1722 * things like NFS threads that sleep with 1723 * locks will block the rest of the system 1724 * from getting any work done. 1725 * 1726 * Suspended/dead/zombie LWPs aren't going 1727 * anywhere, so we don't need to touch them. 1728 */ 1729 } 1730 #ifdef DIAGNOSTIC 1731 else { 1732 panic("proc_stop: process %d lwp %d " 1733 "in unstoppable state %d.\n", 1734 p->p_pid, l->l_lid, l->l_stat); 1735 } 1736 #endif 1737 } 1738 1739 out: 1740 /* XXX unlock process LWP state */ 1741 1742 if (wakeup) 1743 sched_wakeup((caddr_t)p->p_pptr); 1744 } 1745 1746 /* 1747 * Given a process in state SSTOP, set the state back to SACTIVE and 1748 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1749 * 1750 * If no LWPs ended up runnable (and therefore able to take a signal), 1751 * return a LWP that is sleeping interruptably. The caller can wake 1752 * that LWP up to take a signal. 1753 */ 1754 struct lwp * 1755 proc_unstop(struct proc *p) 1756 { 1757 struct lwp *l, *lr = NULL; 1758 struct sadata_vp *vp; 1759 int cantake = 0; 1760 1761 SCHED_ASSERT_LOCKED(); 1762 1763 /* 1764 * Our caller wants to be informed if there are only sleeping 1765 * and interruptable LWPs left after we have run so that it 1766 * can invoke setrunnable() if required - return one of the 1767 * interruptable LWPs if this is the case. 1768 */ 1769 1770 if (!(p->p_flag & P_WAITED)) 1771 p->p_pptr->p_nstopchild--; 1772 p->p_stat = SACTIVE; 1773 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1774 if (l->l_stat == LSRUN) { 1775 lr = NULL; 1776 cantake = 1; 1777 } 1778 if (l->l_stat != LSSTOP) 1779 continue; 1780 1781 if (l->l_wchan != NULL) { 1782 l->l_stat = LSSLEEP; 1783 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1784 lr = l; 1785 cantake = 1; 1786 } 1787 } else { 1788 setrunnable(l); 1789 lr = NULL; 1790 cantake = 1; 1791 } 1792 } 1793 if (p->p_flag & P_SA) { 1794 /* Only consider returning the LWP on the VP. */ 1795 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1796 lr = vp->savp_lwp; 1797 if (lr->l_stat == LSSLEEP) { 1798 if (lr->l_flag & L_SA_YIELD) { 1799 setrunnable(lr); 1800 break; 1801 } else if (lr->l_flag & L_SINTR) 1802 return lr; 1803 } 1804 } 1805 return NULL; 1806 } 1807 return lr; 1808 } 1809 1810 /* 1811 * Take the action for the specified signal 1812 * from the current set of pending signals. 1813 */ 1814 void 1815 postsig(int signum) 1816 { 1817 struct lwp *l; 1818 struct proc *p; 1819 struct sigacts *ps; 1820 sig_t action; 1821 sigset_t *returnmask; 1822 1823 l = curlwp; 1824 p = l->l_proc; 1825 ps = p->p_sigacts; 1826 #ifdef DIAGNOSTIC 1827 if (signum == 0) 1828 panic("postsig"); 1829 #endif 1830 1831 KERNEL_PROC_LOCK(l); 1832 1833 #ifdef MULTIPROCESSOR 1834 /* 1835 * On MP, issignal() can return the same signal to multiple 1836 * LWPs. The LWPs will block above waiting for the kernel 1837 * lock and the first LWP which gets through will then remove 1838 * the signal from ps_siglist. All other LWPs exit here. 1839 */ 1840 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1841 KERNEL_PROC_UNLOCK(l); 1842 return; 1843 } 1844 #endif 1845 sigdelset(&p->p_sigctx.ps_siglist, signum); 1846 action = SIGACTION_PS(ps, signum).sa_handler; 1847 if (action == SIG_DFL) { 1848 #ifdef KTRACE 1849 if (KTRPOINT(p, KTR_PSIG)) 1850 ktrpsig(p, signum, action, 1851 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1852 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1853 NULL); 1854 #endif 1855 /* 1856 * Default action, where the default is to kill 1857 * the process. (Other cases were ignored above.) 1858 */ 1859 sigexit(l, signum); 1860 /* NOTREACHED */ 1861 } else { 1862 ksiginfo_t *ksi; 1863 /* 1864 * If we get here, the signal must be caught. 1865 */ 1866 #ifdef DIAGNOSTIC 1867 if (action == SIG_IGN || 1868 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1869 panic("postsig action"); 1870 #endif 1871 /* 1872 * Set the new mask value and also defer further 1873 * occurrences of this signal. 1874 * 1875 * Special case: user has done a sigpause. Here the 1876 * current mask is not of interest, but rather the 1877 * mask from before the sigpause is what we want 1878 * restored after the signal processing is completed. 1879 */ 1880 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1881 returnmask = &p->p_sigctx.ps_oldmask; 1882 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1883 } else 1884 returnmask = &p->p_sigctx.ps_sigmask; 1885 p->p_stats->p_ru.ru_nsignals++; 1886 ksi = ksiginfo_get(p, signum); 1887 #ifdef KTRACE 1888 if (KTRPOINT(p, KTR_PSIG)) 1889 ktrpsig(p, signum, action, 1890 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1891 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1892 ksi); 1893 #endif 1894 if (ksi == NULL) { 1895 ksiginfo_t ksi1; 1896 /* 1897 * we did not save any siginfo for this, either 1898 * because the signal was not caught, or because the 1899 * user did not request SA_SIGINFO 1900 */ 1901 KSI_INIT_EMPTY(&ksi1); 1902 ksi1.ksi_signo = signum; 1903 kpsendsig(l, &ksi1, returnmask); 1904 } else { 1905 kpsendsig(l, ksi, returnmask); 1906 pool_put(&ksiginfo_pool, ksi); 1907 } 1908 p->p_sigctx.ps_lwp = 0; 1909 p->p_sigctx.ps_code = 0; 1910 p->p_sigctx.ps_signo = 0; 1911 (void) splsched(); /* XXXSMP */ 1912 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1913 &p->p_sigctx.ps_sigmask); 1914 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1915 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1916 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1917 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1918 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1919 } 1920 (void) spl0(); /* XXXSMP */ 1921 } 1922 1923 KERNEL_PROC_UNLOCK(l); 1924 } 1925 1926 /* 1927 * Kill the current process for stated reason. 1928 */ 1929 void 1930 killproc(struct proc *p, const char *why) 1931 { 1932 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1933 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1934 psignal(p, SIGKILL); 1935 } 1936 1937 /* 1938 * Force the current process to exit with the specified signal, dumping core 1939 * if appropriate. We bypass the normal tests for masked and caught signals, 1940 * allowing unrecoverable failures to terminate the process without changing 1941 * signal state. Mark the accounting record with the signal termination. 1942 * If dumping core, save the signal number for the debugger. Calls exit and 1943 * does not return. 1944 */ 1945 1946 #if defined(DEBUG) 1947 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1948 #else 1949 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1950 #endif 1951 1952 static const char logcoredump[] = 1953 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1954 static const char lognocoredump[] = 1955 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1956 1957 /* Wrapper function for use in p_userret */ 1958 static void 1959 lwp_coredump_hook(struct lwp *l, void *arg) 1960 { 1961 int s; 1962 1963 /* 1964 * Suspend ourselves, so that the kernel stack and therefore 1965 * the userland registers saved in the trapframe are around 1966 * for coredump() to write them out. 1967 */ 1968 KERNEL_PROC_LOCK(l); 1969 l->l_flag &= ~L_DETACHED; 1970 SCHED_LOCK(s); 1971 l->l_stat = LSSUSPENDED; 1972 l->l_proc->p_nrlwps--; 1973 /* XXX NJWLWP check if this makes sense here: */ 1974 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1975 mi_switch(l, NULL); 1976 SCHED_ASSERT_UNLOCKED(); 1977 splx(s); 1978 1979 lwp_exit(l); 1980 } 1981 1982 void 1983 sigexit(struct lwp *l, int signum) 1984 { 1985 struct proc *p; 1986 #if 0 1987 struct lwp *l2; 1988 #endif 1989 int error, exitsig; 1990 1991 p = l->l_proc; 1992 1993 /* 1994 * Don't permit coredump() or exit1() multiple times 1995 * in the same process. 1996 */ 1997 if (p->p_flag & P_WEXIT) { 1998 KERNEL_PROC_UNLOCK(l); 1999 (*p->p_userret)(l, p->p_userret_arg); 2000 } 2001 p->p_flag |= P_WEXIT; 2002 /* We don't want to switch away from exiting. */ 2003 /* XXX multiprocessor: stop LWPs on other processors. */ 2004 #if 0 2005 if (p->p_flag & P_SA) { 2006 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 2007 l2->l_flag &= ~L_SA; 2008 p->p_flag &= ~P_SA; 2009 } 2010 #endif 2011 2012 /* Make other LWPs stick around long enough to be dumped */ 2013 p->p_userret = lwp_coredump_hook; 2014 p->p_userret_arg = NULL; 2015 2016 exitsig = signum; 2017 p->p_acflag |= AXSIG; 2018 if (sigprop[signum] & SA_CORE) { 2019 p->p_sigctx.ps_signo = signum; 2020 if ((error = coredump(l)) == 0) 2021 exitsig |= WCOREFLAG; 2022 2023 if (kern_logsigexit) { 2024 /* XXX What if we ever have really large UIDs? */ 2025 int uid = p->p_cred && p->p_ucred ? 2026 (int) p->p_ucred->cr_uid : -1; 2027 2028 if (error) 2029 log(LOG_INFO, lognocoredump, p->p_pid, 2030 p->p_comm, uid, signum, error); 2031 else 2032 log(LOG_INFO, logcoredump, p->p_pid, 2033 p->p_comm, uid, signum); 2034 } 2035 2036 } 2037 2038 exit1(l, W_EXITCODE(0, exitsig)); 2039 /* NOTREACHED */ 2040 } 2041 2042 /* 2043 * Dump core, into a file named "progname.core" or "core" (depending on the 2044 * value of shortcorename), unless the process was setuid/setgid. 2045 */ 2046 int 2047 coredump(struct lwp *l) 2048 { 2049 struct vnode *vp; 2050 struct proc *p; 2051 struct vmspace *vm; 2052 struct ucred *cred; 2053 struct nameidata nd; 2054 struct vattr vattr; 2055 struct mount *mp; 2056 int error, error1; 2057 char name[MAXPATHLEN]; 2058 2059 p = l->l_proc; 2060 vm = p->p_vmspace; 2061 cred = p->p_cred->pc_ucred; 2062 2063 /* 2064 * Make sure the process has not set-id, to prevent data leaks. 2065 */ 2066 if (p->p_flag & P_SUGID) 2067 return (EPERM); 2068 2069 /* 2070 * Refuse to core if the data + stack + user size is larger than 2071 * the core dump limit. XXX THIS IS WRONG, because of mapped 2072 * data. 2073 */ 2074 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2075 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2076 return (EFBIG); /* better error code? */ 2077 2078 restart: 2079 /* 2080 * The core dump will go in the current working directory. Make 2081 * sure that the directory is still there and that the mount flags 2082 * allow us to write core dumps there. 2083 */ 2084 vp = p->p_cwdi->cwdi_cdir; 2085 if (vp->v_mount == NULL || 2086 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) 2087 return (EPERM); 2088 2089 error = build_corename(p, name); 2090 if (error) 2091 return error; 2092 2093 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p); 2094 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 2095 if (error) 2096 return (error); 2097 vp = nd.ni_vp; 2098 2099 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2100 VOP_UNLOCK(vp, 0); 2101 if ((error = vn_close(vp, FWRITE, cred, p)) != 0) 2102 return (error); 2103 if ((error = vn_start_write(NULL, &mp, 2104 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) 2105 return (error); 2106 goto restart; 2107 } 2108 2109 /* Don't dump to non-regular files or files with links. */ 2110 if (vp->v_type != VREG || 2111 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) { 2112 error = EINVAL; 2113 goto out; 2114 } 2115 VATTR_NULL(&vattr); 2116 vattr.va_size = 0; 2117 VOP_LEASE(vp, p, cred, LEASE_WRITE); 2118 VOP_SETATTR(vp, &vattr, cred, p); 2119 p->p_acflag |= ACORE; 2120 2121 /* Now dump the actual core file. */ 2122 error = (*p->p_execsw->es_coredump)(l, vp, cred); 2123 out: 2124 VOP_UNLOCK(vp, 0); 2125 vn_finished_write(mp, 0); 2126 error1 = vn_close(vp, FWRITE, cred, p); 2127 if (error == 0) 2128 error = error1; 2129 return (error); 2130 } 2131 2132 /* 2133 * Nonexistent system call-- signal process (may want to handle it). 2134 * Flag error in case process won't see signal immediately (blocked or ignored). 2135 */ 2136 /* ARGSUSED */ 2137 int 2138 sys_nosys(struct lwp *l, void *v, register_t *retval) 2139 { 2140 struct proc *p; 2141 2142 p = l->l_proc; 2143 psignal(p, SIGSYS); 2144 return (ENOSYS); 2145 } 2146 2147 static int 2148 build_corename(struct proc *p, char dst[MAXPATHLEN]) 2149 { 2150 const char *s; 2151 char *d, *end; 2152 int i; 2153 2154 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN; 2155 *s != '\0'; s++) { 2156 if (*s == '%') { 2157 switch (*(s + 1)) { 2158 case 'n': 2159 i = snprintf(d, end - d, "%s", p->p_comm); 2160 break; 2161 case 'p': 2162 i = snprintf(d, end - d, "%d", p->p_pid); 2163 break; 2164 case 'u': 2165 i = snprintf(d, end - d, "%.*s", 2166 (int)sizeof p->p_pgrp->pg_session->s_login, 2167 p->p_pgrp->pg_session->s_login); 2168 break; 2169 case 't': 2170 i = snprintf(d, end - d, "%ld", 2171 p->p_stats->p_start.tv_sec); 2172 break; 2173 default: 2174 goto copy; 2175 } 2176 d += i; 2177 s++; 2178 } else { 2179 copy: *d = *s; 2180 d++; 2181 } 2182 if (d >= end) 2183 return (ENAMETOOLONG); 2184 } 2185 *d = '\0'; 2186 return 0; 2187 } 2188 2189 void 2190 getucontext(struct lwp *l, ucontext_t *ucp) 2191 { 2192 struct proc *p; 2193 2194 p = l->l_proc; 2195 2196 ucp->uc_flags = 0; 2197 ucp->uc_link = l->l_ctxlink; 2198 2199 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2200 ucp->uc_flags |= _UC_SIGMASK; 2201 2202 /* 2203 * The (unsupplied) definition of the `current execution stack' 2204 * in the System V Interface Definition appears to allow returning 2205 * the main context stack. 2206 */ 2207 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2208 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2209 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2210 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2211 } else { 2212 /* Simply copy alternate signal execution stack. */ 2213 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2214 } 2215 ucp->uc_flags |= _UC_STACK; 2216 2217 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2218 } 2219 2220 /* ARGSUSED */ 2221 int 2222 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2223 { 2224 struct sys_getcontext_args /* { 2225 syscallarg(struct __ucontext *) ucp; 2226 } */ *uap = v; 2227 ucontext_t uc; 2228 2229 getucontext(l, &uc); 2230 2231 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2232 } 2233 2234 int 2235 setucontext(struct lwp *l, const ucontext_t *ucp) 2236 { 2237 struct proc *p; 2238 int error; 2239 2240 p = l->l_proc; 2241 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2242 return (error); 2243 l->l_ctxlink = ucp->uc_link; 2244 2245 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2246 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2247 2248 /* 2249 * If there was stack information, update whether or not we are 2250 * still running on an alternate signal stack. 2251 */ 2252 if ((ucp->uc_flags & _UC_STACK) != 0) { 2253 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2254 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2255 else 2256 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2257 } 2258 2259 return 0; 2260 } 2261 2262 /* ARGSUSED */ 2263 int 2264 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2265 { 2266 struct sys_setcontext_args /* { 2267 syscallarg(const ucontext_t *) ucp; 2268 } */ *uap = v; 2269 ucontext_t uc; 2270 int error; 2271 2272 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2273 exit1(l, W_EXITCODE(0, 0)); 2274 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2275 (error = setucontext(l, &uc)) != 0) 2276 return (error); 2277 2278 return (EJUSTRETURN); 2279 } 2280 2281 /* 2282 * sigtimedwait(2) system call, used also for implementation 2283 * of sigwaitinfo() and sigwait(). 2284 * 2285 * This only handles single LWP in signal wait. libpthread provides 2286 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2287 */ 2288 int 2289 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2290 { 2291 struct sys___sigtimedwait_args /* { 2292 syscallarg(const sigset_t *) set; 2293 syscallarg(siginfo_t *) info; 2294 syscallarg(struct timespec *) timeout; 2295 } */ *uap = v; 2296 sigset_t *waitset, twaitset; 2297 struct proc *p = l->l_proc; 2298 int error, signum, s; 2299 int timo = 0; 2300 struct timeval tvstart; 2301 struct timespec ts; 2302 ksiginfo_t *ksi; 2303 2304 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2305 2306 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2307 FREE(waitset, M_TEMP); 2308 return (error); 2309 } 2310 2311 /* 2312 * Silently ignore SA_CANTMASK signals. psignal1() would 2313 * ignore SA_CANTMASK signals in waitset, we do this 2314 * only for the below siglist check. 2315 */ 2316 sigminusset(&sigcantmask, waitset); 2317 2318 /* 2319 * First scan siglist and check if there is signal from 2320 * our waitset already pending. 2321 */ 2322 twaitset = *waitset; 2323 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2324 if ((signum = firstsig(&twaitset))) { 2325 /* found pending signal */ 2326 sigdelset(&p->p_sigctx.ps_siglist, signum); 2327 ksi = ksiginfo_get(p, signum); 2328 if (!ksi) { 2329 /* No queued siginfo, manufacture one */ 2330 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2331 KSI_INIT(ksi); 2332 ksi->ksi_info._signo = signum; 2333 ksi->ksi_info._code = SI_USER; 2334 } 2335 2336 goto sig; 2337 } 2338 2339 /* 2340 * Calculate timeout, if it was specified. 2341 */ 2342 if (SCARG(uap, timeout)) { 2343 uint64_t ms; 2344 2345 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts)))) 2346 return (error); 2347 2348 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2349 timo = mstohz(ms); 2350 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2351 timo = 1; 2352 if (timo <= 0) 2353 return (EAGAIN); 2354 2355 /* 2356 * Remember current mono_time, it would be used in 2357 * ECANCELED/ERESTART case. 2358 */ 2359 s = splclock(); 2360 tvstart = mono_time; 2361 splx(s); 2362 } 2363 2364 /* 2365 * Setup ps_sigwait list. Pass pointer to malloced memory 2366 * here; it's not possible to pass pointer to a structure 2367 * on current process's stack, the current process might 2368 * be swapped out at the time the signal would get delivered. 2369 */ 2370 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2371 p->p_sigctx.ps_sigwaited = ksi; 2372 p->p_sigctx.ps_sigwait = waitset; 2373 2374 /* 2375 * Wait for signal to arrive. We can either be woken up or 2376 * time out. 2377 */ 2378 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2379 2380 /* 2381 * Need to find out if we woke as a result of lwp_wakeup() 2382 * or a signal outside our wait set. 2383 */ 2384 if (error == EINTR && p->p_sigctx.ps_sigwaited 2385 && !firstsig(&p->p_sigctx.ps_siglist)) { 2386 /* wakeup via _lwp_wakeup() */ 2387 error = ECANCELED; 2388 } else if (!error && p->p_sigctx.ps_sigwaited) { 2389 /* spurious wakeup - arrange for syscall restart */ 2390 error = ERESTART; 2391 goto fail; 2392 } 2393 2394 /* 2395 * On error, clear sigwait indication. psignal1() clears it 2396 * in !error case. 2397 */ 2398 if (error) { 2399 p->p_sigctx.ps_sigwaited = NULL; 2400 2401 /* 2402 * If the sleep was interrupted (either by signal or wakeup), 2403 * update the timeout and copyout new value back. 2404 * It would be used when the syscall would be restarted 2405 * or called again. 2406 */ 2407 if (timo && (error == ERESTART || error == ECANCELED)) { 2408 struct timeval tvnow, tvtimo; 2409 int err; 2410 2411 s = splclock(); 2412 tvnow = mono_time; 2413 splx(s); 2414 2415 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 2416 2417 /* compute how much time has passed since start */ 2418 timersub(&tvnow, &tvstart, &tvnow); 2419 /* substract passed time from timeout */ 2420 timersub(&tvtimo, &tvnow, &tvtimo); 2421 2422 if (tvtimo.tv_sec < 0) { 2423 error = EAGAIN; 2424 goto fail; 2425 } 2426 2427 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 2428 2429 /* copy updated timeout to userland */ 2430 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) { 2431 error = err; 2432 goto fail; 2433 } 2434 } 2435 2436 goto fail; 2437 } 2438 2439 /* 2440 * If a signal from the wait set arrived, copy it to userland. 2441 * Copy only the used part of siginfo, the padding part is 2442 * left unchanged (userland is not supposed to touch it anyway). 2443 */ 2444 sig: 2445 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2446 2447 fail: 2448 FREE(waitset, M_TEMP); 2449 pool_put(&ksiginfo_pool, ksi); 2450 p->p_sigctx.ps_sigwait = NULL; 2451 2452 return (error); 2453 } 2454 2455 /* 2456 * Returns true if signal is ignored or masked for passed process. 2457 */ 2458 int 2459 sigismasked(struct proc *p, int sig) 2460 { 2461 2462 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2463 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2464 } 2465 2466 static int 2467 filt_sigattach(struct knote *kn) 2468 { 2469 struct proc *p = curproc; 2470 2471 kn->kn_ptr.p_proc = p; 2472 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2473 2474 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2475 2476 return (0); 2477 } 2478 2479 static void 2480 filt_sigdetach(struct knote *kn) 2481 { 2482 struct proc *p = kn->kn_ptr.p_proc; 2483 2484 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2485 } 2486 2487 /* 2488 * signal knotes are shared with proc knotes, so we apply a mask to 2489 * the hint in order to differentiate them from process hints. This 2490 * could be avoided by using a signal-specific knote list, but probably 2491 * isn't worth the trouble. 2492 */ 2493 static int 2494 filt_signal(struct knote *kn, long hint) 2495 { 2496 2497 if (hint & NOTE_SIGNAL) { 2498 hint &= ~NOTE_SIGNAL; 2499 2500 if (kn->kn_id == hint) 2501 kn->kn_data++; 2502 } 2503 return (kn->kn_data != 0); 2504 } 2505 2506 const struct filterops sig_filtops = { 2507 0, filt_sigattach, filt_sigdetach, filt_signal 2508 }; 2509