xref: /netbsd-src/sys/kern/kern_sig.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $");
41 
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46 
47 #define	SIGPROP		/* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76 
77 #include <machine/cpu.h>
78 
79 #include <sys/user.h>		/* for coredump */
80 
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83 
84 static void	child_psignal(struct proc *, int);
85 static int	build_corename(struct proc *, char [MAXPATHLEN]);
86 static void	ksiginfo_exithook(struct proc *, void *);
87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
90 
91 sigset_t	contsigmask, stopsigmask, sigcantmask, sigtrapmask;
92 
93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
94 
95 /*
96  * struct sigacts memory pool allocator.
97  */
98 
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102 
103 	return (void *)uvm_km_kmemalloc1(kernel_map,
104 	    uvm.kernel_object, (PAGE_SIZE)*2, (PAGE_SIZE)*2, UVM_UNKNOWN_OFFSET,
105 	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
106 }
107 
108 static void
109 sigacts_poolpage_free(struct pool *pp, void *v)
110 {
111         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2);
112 }
113 
114 static struct pool_allocator sigactspool_allocator = {
115         sigacts_poolpage_alloc, sigacts_poolpage_free,
116 };
117 
118 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
119     &pool_allocator_nointr);
120 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
121 
122 /*
123  * Can process p, with pcred pc, send the signal signum to process q?
124  */
125 #define	CANSIGNAL(p, pc, q, signum) \
126 	((pc)->pc_ucred->cr_uid == 0 || \
127 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
128 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
129 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
130 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
131 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
132 
133 /*
134  * Remove and return the first ksiginfo element that matches our requested
135  * signal, or return NULL if one not found.
136  */
137 static ksiginfo_t *
138 ksiginfo_get(struct proc *p, int signo)
139 {
140 	ksiginfo_t *ksi;
141 	int s;
142 
143 	s = splsoftclock();
144 	simple_lock(&p->p_sigctx.ps_silock);
145 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
146 		if (ksi->ksi_signo == signo) {
147 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
148 			goto out;
149 		}
150 	}
151 	ksi = NULL;
152 out:
153 	simple_unlock(&p->p_sigctx.ps_silock);
154 	splx(s);
155 	return ksi;
156 }
157 
158 /*
159  * Append a new ksiginfo element to the list of pending ksiginfo's, if
160  * we need to (SA_SIGINFO was requested). We replace non RT signals if
161  * they already existed in the queue and we add new entries for RT signals,
162  * or for non RT signals with non-existing entries.
163  */
164 static void
165 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
166 {
167 	ksiginfo_t *kp;
168 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
169 	int s;
170 
171 	if ((sa->sa_flags & SA_SIGINFO) == 0)
172 		return;
173 	/*
174 	 * If there's no info, don't save it.
175 	 */
176 	if (KSI_EMPTY_P(ksi))
177 		return;
178 
179 	s = splsoftclock();
180 	simple_lock(&p->p_sigctx.ps_silock);
181 #ifdef notyet	/* XXX: QUEUING */
182 	if (ksi->ksi_signo < SIGRTMIN)
183 #endif
184 	{
185 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
186 			if (kp->ksi_signo == ksi->ksi_signo) {
187 				KSI_COPY(ksi, kp);
188 				goto out;
189 			}
190 		}
191 	}
192 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
193 	if (kp == NULL) {
194 #ifdef DIAGNOSTIC
195 		printf("Out of memory allocating siginfo for pid %d\n",
196 		    p->p_pid);
197 #endif
198 		goto out;
199 	}
200 	*kp = *ksi;
201 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
202 out:
203 	simple_unlock(&p->p_sigctx.ps_silock);
204 	splx(s);
205 }
206 
207 /*
208  * free all pending ksiginfo on exit
209  */
210 static void
211 ksiginfo_exithook(struct proc *p, void *v)
212 {
213 	int s;
214 
215 	s = splsoftclock();
216 	simple_lock(&p->p_sigctx.ps_silock);
217 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
218 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
219 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
220 		pool_put(&ksiginfo_pool, ksi);
221 	}
222 	simple_unlock(&p->p_sigctx.ps_silock);
223 	splx(s);
224 }
225 
226 /*
227  * Initialize signal-related data structures.
228  */
229 void
230 signal_init(void)
231 {
232 
233 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
234 
235 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
236 	    sizeof(struct sigacts) > PAGE_SIZE ?
237 	    &sigactspool_allocator : &pool_allocator_nointr);
238 
239 	exithook_establish(ksiginfo_exithook, NULL);
240 	exechook_establish(ksiginfo_exithook, NULL);
241 
242 	sigaddset(&sigtrapmask, SIGSEGV);
243 	sigaddset(&sigtrapmask, SIGBUS);
244 	sigaddset(&sigtrapmask, SIGILL);
245 	sigaddset(&sigtrapmask, SIGFPE);
246 	sigaddset(&sigtrapmask, SIGTRAP);
247 }
248 
249 /*
250  * Create an initial sigctx structure, using the same signal state
251  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
252  * copy it from parent.
253  */
254 void
255 sigactsinit(struct proc *np, struct proc *pp, int share)
256 {
257 	struct sigacts *ps;
258 
259 	if (share) {
260 		np->p_sigacts = pp->p_sigacts;
261 		pp->p_sigacts->sa_refcnt++;
262 	} else {
263 		ps = pool_get(&sigacts_pool, PR_WAITOK);
264 		if (pp)
265 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
266 		else
267 			memset(ps, '\0', sizeof(struct sigacts));
268 		ps->sa_refcnt = 1;
269 		np->p_sigacts = ps;
270 	}
271 }
272 
273 /*
274  * Make this process not share its sigctx, maintaining all
275  * signal state.
276  */
277 void
278 sigactsunshare(struct proc *p)
279 {
280 	struct sigacts *oldps;
281 
282 	if (p->p_sigacts->sa_refcnt == 1)
283 		return;
284 
285 	oldps = p->p_sigacts;
286 	sigactsinit(p, NULL, 0);
287 
288 	if (--oldps->sa_refcnt == 0)
289 		pool_put(&sigacts_pool, oldps);
290 }
291 
292 /*
293  * Release a sigctx structure.
294  */
295 void
296 sigactsfree(struct sigacts *ps)
297 {
298 
299 	if (--ps->sa_refcnt > 0)
300 		return;
301 
302 	pool_put(&sigacts_pool, ps);
303 }
304 
305 int
306 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
307 	struct sigaction *osa, const void *tramp, int vers)
308 {
309 	struct sigacts	*ps;
310 	int		prop;
311 
312 	ps = p->p_sigacts;
313 	if (signum <= 0 || signum >= NSIG)
314 		return (EINVAL);
315 
316 	/*
317 	 * Trampoline ABI version 0 is reserved for the legacy
318 	 * kernel-provided on-stack trampoline.  Conversely, if we are
319 	 * using a non-0 ABI version, we must have a trampoline.  Only
320 	 * validate the vers if a new sigaction was supplied. Emulations
321 	 * use legacy kernel trampolines with version 0, alternatively
322 	 * check for that too.
323 	 */
324 	if ((vers != 0 && tramp == NULL) ||
325 #ifdef SIGTRAMP_VALID
326 	    (nsa != NULL &&
327 	    ((vers == 0) ?
328 		(p->p_emul->e_sigcode == NULL) :
329 		!SIGTRAMP_VALID(vers))) ||
330 #endif
331 	    (vers == 0 && tramp != NULL))
332 		return (EINVAL);
333 
334 	if (osa)
335 		*osa = SIGACTION_PS(ps, signum);
336 
337 	if (nsa) {
338 		if (nsa->sa_flags & ~SA_ALLBITS)
339 			return (EINVAL);
340 
341 		prop = sigprop[signum];
342 		if (prop & SA_CANTMASK)
343 			return (EINVAL);
344 
345 		(void) splsched();	/* XXXSMP */
346 		SIGACTION_PS(ps, signum) = *nsa;
347 		ps->sa_sigdesc[signum].sd_tramp = tramp;
348 		ps->sa_sigdesc[signum].sd_vers = vers;
349 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
350 		if ((prop & SA_NORESET) != 0)
351 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
352 		if (signum == SIGCHLD) {
353 			if (nsa->sa_flags & SA_NOCLDSTOP)
354 				p->p_flag |= P_NOCLDSTOP;
355 			else
356 				p->p_flag &= ~P_NOCLDSTOP;
357 			if (nsa->sa_flags & SA_NOCLDWAIT) {
358 				/*
359 				 * Paranoia: since SA_NOCLDWAIT is implemented
360 				 * by reparenting the dying child to PID 1 (and
361 				 * trust it to reap the zombie), PID 1 itself
362 				 * is forbidden to set SA_NOCLDWAIT.
363 				 */
364 				if (p->p_pid == 1)
365 					p->p_flag &= ~P_NOCLDWAIT;
366 				else
367 					p->p_flag |= P_NOCLDWAIT;
368 			} else
369 				p->p_flag &= ~P_NOCLDWAIT;
370 		}
371 		if ((nsa->sa_flags & SA_NODEFER) == 0)
372 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
373 		else
374 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
375 		/*
376 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
377 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
378 		 * to ignore. However, don't put SIGCONT in
379 		 * p_sigctx.ps_sigignore, as we have to restart the process.
380 	 	 */
381 		if (nsa->sa_handler == SIG_IGN ||
382 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
383 						/* never to be seen again */
384 			sigdelset(&p->p_sigctx.ps_siglist, signum);
385 			if (signum != SIGCONT) {
386 						/* easier in psignal */
387 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
388 			}
389 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
390 		} else {
391 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
392 			if (nsa->sa_handler == SIG_DFL)
393 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
394 			else
395 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
396 		}
397 		(void) spl0();
398 	}
399 
400 	return (0);
401 }
402 
403 #ifdef COMPAT_16
404 /* ARGSUSED */
405 int
406 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
407 {
408 	struct compat_16_sys___sigaction14_args /* {
409 		syscallarg(int)				signum;
410 		syscallarg(const struct sigaction *)	nsa;
411 		syscallarg(struct sigaction *)		osa;
412 	} */ *uap = v;
413 	struct proc		*p;
414 	struct sigaction	nsa, osa;
415 	int			error;
416 
417 	if (SCARG(uap, nsa)) {
418 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
419 		if (error)
420 			return (error);
421 	}
422 	p = l->l_proc;
423 	error = sigaction1(p, SCARG(uap, signum),
424 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
425 	    NULL, 0);
426 	if (error)
427 		return (error);
428 	if (SCARG(uap, osa)) {
429 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
430 		if (error)
431 			return (error);
432 	}
433 	return (0);
434 }
435 #endif
436 
437 /* ARGSUSED */
438 int
439 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
440 {
441 	struct sys___sigaction_sigtramp_args /* {
442 		syscallarg(int)				signum;
443 		syscallarg(const struct sigaction *)	nsa;
444 		syscallarg(struct sigaction *)		osa;
445 		syscallarg(void *)			tramp;
446 		syscallarg(int)				vers;
447 	} */ *uap = v;
448 	struct proc *p = l->l_proc;
449 	struct sigaction nsa, osa;
450 	int error;
451 
452 	if (SCARG(uap, nsa)) {
453 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
454 		if (error)
455 			return (error);
456 	}
457 	error = sigaction1(p, SCARG(uap, signum),
458 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
459 	    SCARG(uap, tramp), SCARG(uap, vers));
460 	if (error)
461 		return (error);
462 	if (SCARG(uap, osa)) {
463 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
464 		if (error)
465 			return (error);
466 	}
467 	return (0);
468 }
469 
470 /*
471  * Initialize signal state for process 0;
472  * set to ignore signals that are ignored by default and disable the signal
473  * stack.
474  */
475 void
476 siginit(struct proc *p)
477 {
478 	struct sigacts	*ps;
479 	int		signum, prop;
480 
481 	ps = p->p_sigacts;
482 	sigemptyset(&contsigmask);
483 	sigemptyset(&stopsigmask);
484 	sigemptyset(&sigcantmask);
485 	for (signum = 1; signum < NSIG; signum++) {
486 		prop = sigprop[signum];
487 		if (prop & SA_CONT)
488 			sigaddset(&contsigmask, signum);
489 		if (prop & SA_STOP)
490 			sigaddset(&stopsigmask, signum);
491 		if (prop & SA_CANTMASK)
492 			sigaddset(&sigcantmask, signum);
493 		if (prop & SA_IGNORE && signum != SIGCONT)
494 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
495 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
496 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
497 	}
498 	sigemptyset(&p->p_sigctx.ps_sigcatch);
499 	p->p_sigctx.ps_sigwaited = NULL;
500 	p->p_flag &= ~P_NOCLDSTOP;
501 
502 	/*
503 	 * Reset stack state to the user stack.
504 	 */
505 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
506 	p->p_sigctx.ps_sigstk.ss_size = 0;
507 	p->p_sigctx.ps_sigstk.ss_sp = 0;
508 
509 	/* One reference. */
510 	ps->sa_refcnt = 1;
511 }
512 
513 /*
514  * Reset signals for an exec of the specified process.
515  */
516 void
517 execsigs(struct proc *p)
518 {
519 	struct sigacts	*ps;
520 	int		signum, prop;
521 
522 	sigactsunshare(p);
523 
524 	ps = p->p_sigacts;
525 
526 	/*
527 	 * Reset caught signals.  Held signals remain held
528 	 * through p_sigctx.ps_sigmask (unless they were caught,
529 	 * and are now ignored by default).
530 	 */
531 	for (signum = 1; signum < NSIG; signum++) {
532 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
533 			prop = sigprop[signum];
534 			if (prop & SA_IGNORE) {
535 				if ((prop & SA_CONT) == 0)
536 					sigaddset(&p->p_sigctx.ps_sigignore,
537 					    signum);
538 				sigdelset(&p->p_sigctx.ps_siglist, signum);
539 			}
540 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
541 		}
542 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
543 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
544 	}
545 	sigemptyset(&p->p_sigctx.ps_sigcatch);
546 	p->p_sigctx.ps_sigwaited = NULL;
547 	p->p_flag &= ~P_NOCLDSTOP;
548 
549 	/*
550 	 * Reset stack state to the user stack.
551 	 */
552 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
553 	p->p_sigctx.ps_sigstk.ss_size = 0;
554 	p->p_sigctx.ps_sigstk.ss_sp = 0;
555 }
556 
557 int
558 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
559 {
560 
561 	if (oss)
562 		*oss = p->p_sigctx.ps_sigmask;
563 
564 	if (nss) {
565 		(void)splsched();	/* XXXSMP */
566 		switch (how) {
567 		case SIG_BLOCK:
568 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
569 			break;
570 		case SIG_UNBLOCK:
571 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
572 			CHECKSIGS(p);
573 			break;
574 		case SIG_SETMASK:
575 			p->p_sigctx.ps_sigmask = *nss;
576 			CHECKSIGS(p);
577 			break;
578 		default:
579 			(void)spl0();	/* XXXSMP */
580 			return (EINVAL);
581 		}
582 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
583 		(void)spl0();		/* XXXSMP */
584 	}
585 
586 	return (0);
587 }
588 
589 /*
590  * Manipulate signal mask.
591  * Note that we receive new mask, not pointer,
592  * and return old mask as return value;
593  * the library stub does the rest.
594  */
595 int
596 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
597 {
598 	struct sys___sigprocmask14_args /* {
599 		syscallarg(int)			how;
600 		syscallarg(const sigset_t *)	set;
601 		syscallarg(sigset_t *)		oset;
602 	} */ *uap = v;
603 	struct proc	*p;
604 	sigset_t	nss, oss;
605 	int		error;
606 
607 	if (SCARG(uap, set)) {
608 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
609 		if (error)
610 			return (error);
611 	}
612 	p = l->l_proc;
613 	error = sigprocmask1(p, SCARG(uap, how),
614 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
615 	if (error)
616 		return (error);
617 	if (SCARG(uap, oset)) {
618 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
619 		if (error)
620 			return (error);
621 	}
622 	return (0);
623 }
624 
625 void
626 sigpending1(struct proc *p, sigset_t *ss)
627 {
628 
629 	*ss = p->p_sigctx.ps_siglist;
630 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
631 }
632 
633 /* ARGSUSED */
634 int
635 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
636 {
637 	struct sys___sigpending14_args /* {
638 		syscallarg(sigset_t *)	set;
639 	} */ *uap = v;
640 	struct proc	*p;
641 	sigset_t	ss;
642 
643 	p = l->l_proc;
644 	sigpending1(p, &ss);
645 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
646 }
647 
648 int
649 sigsuspend1(struct proc *p, const sigset_t *ss)
650 {
651 	struct sigacts *ps;
652 
653 	ps = p->p_sigacts;
654 	if (ss) {
655 		/*
656 		 * When returning from sigpause, we want
657 		 * the old mask to be restored after the
658 		 * signal handler has finished.  Thus, we
659 		 * save it here and mark the sigctx structure
660 		 * to indicate this.
661 		 */
662 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
663 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
664 		(void) splsched();	/* XXXSMP */
665 		p->p_sigctx.ps_sigmask = *ss;
666 		CHECKSIGS(p);
667 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
668 		(void) spl0();		/* XXXSMP */
669 	}
670 
671 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
672 		/* void */;
673 
674 	/* always return EINTR rather than ERESTART... */
675 	return (EINTR);
676 }
677 
678 /*
679  * Suspend process until signal, providing mask to be set
680  * in the meantime.  Note nonstandard calling convention:
681  * libc stub passes mask, not pointer, to save a copyin.
682  */
683 /* ARGSUSED */
684 int
685 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
686 {
687 	struct sys___sigsuspend14_args /* {
688 		syscallarg(const sigset_t *)	set;
689 	} */ *uap = v;
690 	struct proc	*p;
691 	sigset_t	ss;
692 	int		error;
693 
694 	if (SCARG(uap, set)) {
695 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
696 		if (error)
697 			return (error);
698 	}
699 
700 	p = l->l_proc;
701 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
702 }
703 
704 int
705 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
706 	struct sigaltstack *oss)
707 {
708 
709 	if (oss)
710 		*oss = p->p_sigctx.ps_sigstk;
711 
712 	if (nss) {
713 		if (nss->ss_flags & ~SS_ALLBITS)
714 			return (EINVAL);
715 
716 		if (nss->ss_flags & SS_DISABLE) {
717 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
718 				return (EINVAL);
719 		} else {
720 			if (nss->ss_size < MINSIGSTKSZ)
721 				return (ENOMEM);
722 		}
723 		p->p_sigctx.ps_sigstk = *nss;
724 	}
725 
726 	return (0);
727 }
728 
729 /* ARGSUSED */
730 int
731 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
732 {
733 	struct sys___sigaltstack14_args /* {
734 		syscallarg(const struct sigaltstack *)	nss;
735 		syscallarg(struct sigaltstack *)	oss;
736 	} */ *uap = v;
737 	struct proc		*p;
738 	struct sigaltstack	nss, oss;
739 	int			error;
740 
741 	if (SCARG(uap, nss)) {
742 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
743 		if (error)
744 			return (error);
745 	}
746 	p = l->l_proc;
747 	error = sigaltstack1(p,
748 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
749 	if (error)
750 		return (error);
751 	if (SCARG(uap, oss)) {
752 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
753 		if (error)
754 			return (error);
755 	}
756 	return (0);
757 }
758 
759 /* ARGSUSED */
760 int
761 sys_kill(struct lwp *l, void *v, register_t *retval)
762 {
763 	struct sys_kill_args /* {
764 		syscallarg(int)	pid;
765 		syscallarg(int)	signum;
766 	} */ *uap = v;
767 	struct proc	*cp, *p;
768 	struct pcred	*pc;
769 	ksiginfo_t	ksi;
770 
771 	cp = l->l_proc;
772 	pc = cp->p_cred;
773 	if ((u_int)SCARG(uap, signum) >= NSIG)
774 		return (EINVAL);
775 	KSI_INIT(&ksi);
776 	ksi.ksi_signo = SCARG(uap, signum);
777 	ksi.ksi_code = SI_USER;
778 	ksi.ksi_pid = cp->p_pid;
779 	ksi.ksi_uid = cp->p_ucred->cr_uid;
780 	if (SCARG(uap, pid) > 0) {
781 		/* kill single process */
782 		if ((p = pfind(SCARG(uap, pid))) == NULL)
783 			return (ESRCH);
784 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
785 			return (EPERM);
786 		if (SCARG(uap, signum))
787 			kpsignal2(p, &ksi, 1);
788 		return (0);
789 	}
790 	switch (SCARG(uap, pid)) {
791 	case -1:		/* broadcast signal */
792 		return (killpg1(cp, &ksi, 0, 1));
793 	case 0:			/* signal own process group */
794 		return (killpg1(cp, &ksi, 0, 0));
795 	default:		/* negative explicit process group */
796 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
797 	}
798 	/* NOTREACHED */
799 }
800 
801 /*
802  * Common code for kill process group/broadcast kill.
803  * cp is calling process.
804  */
805 int
806 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
807 {
808 	struct proc	*p;
809 	struct pcred	*pc;
810 	struct pgrp	*pgrp;
811 	int		nfound;
812 	int		signum = ksi->ksi_signo;
813 
814 	pc = cp->p_cred;
815 	nfound = 0;
816 	if (all) {
817 		/*
818 		 * broadcast
819 		 */
820 		proclist_lock_read();
821 		LIST_FOREACH(p, &allproc, p_list) {
822 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
823 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
824 				continue;
825 			nfound++;
826 			if (signum)
827 				kpsignal2(p, ksi, 1);
828 		}
829 		proclist_unlock_read();
830 	} else {
831 		if (pgid == 0)
832 			/*
833 			 * zero pgid means send to my process group.
834 			 */
835 			pgrp = cp->p_pgrp;
836 		else {
837 			pgrp = pgfind(pgid);
838 			if (pgrp == NULL)
839 				return (ESRCH);
840 		}
841 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
842 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
843 			    !CANSIGNAL(cp, pc, p, signum))
844 				continue;
845 			nfound++;
846 			if (signum && P_ZOMBIE(p) == 0)
847 				kpsignal2(p, ksi, 1);
848 		}
849 	}
850 	return (nfound ? 0 : ESRCH);
851 }
852 
853 /*
854  * Send a signal to a process group.
855  */
856 void
857 gsignal(int pgid, int signum)
858 {
859 	ksiginfo_t ksi;
860 	KSI_INIT_EMPTY(&ksi);
861 	ksi.ksi_signo = signum;
862 	kgsignal(pgid, &ksi, NULL);
863 }
864 
865 void
866 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
867 {
868 	struct pgrp *pgrp;
869 
870 	if (pgid && (pgrp = pgfind(pgid)))
871 		kpgsignal(pgrp, ksi, data, 0);
872 }
873 
874 /*
875  * Send a signal to a process group. If checktty is 1,
876  * limit to members which have a controlling terminal.
877  */
878 void
879 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
880 {
881 	ksiginfo_t ksi;
882 	KSI_INIT_EMPTY(&ksi);
883 	ksi.ksi_signo = sig;
884 	kpgsignal(pgrp, &ksi, NULL, checkctty);
885 }
886 
887 void
888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
889 {
890 	struct proc *p;
891 
892 	if (pgrp)
893 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
894 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
895 				kpsignal(p, ksi, data);
896 }
897 
898 /*
899  * Send a signal caused by a trap to the current process.
900  * If it will be caught immediately, deliver it with correct code.
901  * Otherwise, post it normally.
902  */
903 void
904 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
905 {
906 	struct proc	*p;
907 	struct sigacts	*ps;
908 	int signum = ksi->ksi_signo;
909 
910 	KASSERT(KSI_TRAP_P(ksi));
911 
912 	p = l->l_proc;
913 	ps = p->p_sigacts;
914 	if ((p->p_flag & P_TRACED) == 0 &&
915 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
916 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
917 		p->p_stats->p_ru.ru_nsignals++;
918 #ifdef KTRACE
919 		if (KTRPOINT(p, KTR_PSIG))
920 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
921 			    &p->p_sigctx.ps_sigmask, ksi);
922 #endif
923 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
924 		(void) splsched();	/* XXXSMP */
925 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
926 		    &p->p_sigctx.ps_sigmask);
927 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
928 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
929 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
930 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
931 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
932 		}
933 		(void) spl0();		/* XXXSMP */
934 	} else {
935 		p->p_sigctx.ps_lwp = l->l_lid;
936 		/* XXX for core dump/debugger */
937 		p->p_sigctx.ps_signo = ksi->ksi_signo;
938 		p->p_sigctx.ps_code = ksi->ksi_trap;
939 		kpsignal2(p, ksi, 1);
940 	}
941 }
942 
943 /*
944  * Fill in signal information and signal the parent for a child status change.
945  */
946 static void
947 child_psignal(struct proc *p, int dolock)
948 {
949 	ksiginfo_t ksi;
950 
951 	KSI_INIT(&ksi);
952 	ksi.ksi_signo = SIGCHLD;
953 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
954 	ksi.ksi_pid = p->p_pid;
955 	ksi.ksi_uid = p->p_ucred->cr_uid;
956 	ksi.ksi_status = p->p_xstat;
957 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
958 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
959 	kpsignal2(p->p_pptr, &ksi, dolock);
960 }
961 
962 /*
963  * Send the signal to the process.  If the signal has an action, the action
964  * is usually performed by the target process rather than the caller; we add
965  * the signal to the set of pending signals for the process.
966  *
967  * Exceptions:
968  *   o When a stop signal is sent to a sleeping process that takes the
969  *     default action, the process is stopped without awakening it.
970  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
971  *     regardless of the signal action (eg, blocked or ignored).
972  *
973  * Other ignored signals are discarded immediately.
974  *
975  * XXXSMP: Invoked as psignal() or sched_psignal().
976  */
977 void
978 psignal1(struct proc *p, int signum, int dolock)
979 {
980 	ksiginfo_t ksi;
981 
982 	KSI_INIT_EMPTY(&ksi);
983 	ksi.ksi_signo = signum;
984 	kpsignal2(p, &ksi, dolock);
985 }
986 
987 void
988 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
989 {
990 
991 	if ((p->p_flag & P_WEXIT) == 0 && data) {
992 		size_t fd;
993 		struct filedesc *fdp = p->p_fd;
994 
995 		ksi->ksi_fd = -1;
996 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
997 			struct file *fp = fdp->fd_ofiles[fd];
998 			/* XXX: lock? */
999 			if (fp && fp->f_data == data) {
1000 				ksi->ksi_fd = fd;
1001 				break;
1002 			}
1003 		}
1004 	}
1005 	kpsignal2(p, ksi, dolock);
1006 }
1007 
1008 static void
1009 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1010 {
1011 	struct lwp *l, *suspended = NULL;
1012 	struct sadata_vp *vp;
1013 	int	s = 0, prop, allsusp;
1014 	sig_t	action;
1015 	int	signum = ksi->ksi_signo;
1016 
1017 #ifdef DIAGNOSTIC
1018 	if (signum <= 0 || signum >= NSIG)
1019 		panic("psignal signal number %d", signum);
1020 
1021 	/* XXXSMP: works, but icky */
1022 	if (dolock)
1023 		SCHED_ASSERT_UNLOCKED();
1024 	else
1025 		SCHED_ASSERT_LOCKED();
1026 #endif
1027 
1028 	/*
1029 	 * Notify any interested parties in the signal.
1030 	 */
1031 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1032 
1033 	prop = sigprop[signum];
1034 
1035 	/*
1036 	 * If proc is traced, always give parent a chance.
1037 	 */
1038 	action = SIG_DFL;
1039 	if ((p->p_flag & P_TRACED) == 0) {
1040 		if (KSI_TRAP_P(ksi)) {
1041 			/*
1042 			 * If the signal was the result of a trap, only catch
1043 			 * the signal if it isn't masked and there is a
1044 			 * non-default non-ignore handler installed for it.
1045 			 * Otherwise take the default action.
1046 			 */
1047 			if (!sigismember(&p->p_sigctx.ps_sigmask, signum) &&
1048 			    sigismember(&p->p_sigctx.ps_sigcatch, signum))
1049 				action = SIG_CATCH;
1050 			/*
1051 			 * If we are to take the default action, reset the
1052 			 * signal back to its defaults.
1053 			 */
1054 			if (action == SIG_DFL) {
1055 				sigdelset(&p->p_sigctx.ps_sigignore, signum);
1056 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1057 				sigdelset(&p->p_sigctx.ps_sigmask, signum);
1058 				SIGACTION(p, signum).sa_handler = SIG_DFL;
1059 			}
1060 		} else {
1061 			/*
1062 			 * If the signal is being ignored,
1063 			 * then we forget about it immediately.
1064 			 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1065 			 * and if it is set to SIG_IGN,
1066 			 * action will be SIG_DFL here.)
1067 			 */
1068 			if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1069 				return;
1070 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1071 				action = SIG_HOLD;
1072 			else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1073 				action = SIG_CATCH;
1074 		}
1075 		if (action == SIG_DFL) {
1076 			if (prop & SA_KILL && p->p_nice > NZERO)
1077 				p->p_nice = NZERO;
1078 
1079 			/*
1080 			 * If sending a tty stop signal to a member of an
1081 			 * orphaned process group, discard the signal here if
1082 			 * the action is default; don't stop the process below
1083 			 * if sleeping, and don't clear any pending SIGCONT.
1084 			 */
1085 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1086 				return;
1087 		}
1088 	} else {
1089 		/*
1090 		 * If the process is being traced and the signal is being
1091 		 * caught, make sure to save any ksiginfo.
1092 		 */
1093 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1094 			ksiginfo_put(p, ksi);
1095 	}
1096 
1097 	if (prop & SA_CONT)
1098 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1099 
1100 	if (prop & SA_STOP)
1101 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1102 
1103 	/*
1104 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1105 	 * please!), check if anything waits on it. If yes, save the
1106 	 * info into provided ps_sigwaited, and wake-up the waiter.
1107 	 * The signal won't be processed further here.
1108 	 */
1109 	if ((prop & SA_CANTMASK) == 0
1110 	    && p->p_sigctx.ps_sigwaited
1111 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1112 	    && p->p_stat != SSTOP) {
1113 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1114 		p->p_sigctx.ps_sigwaited = NULL;
1115 		if (dolock)
1116 			wakeup_one(&p->p_sigctx.ps_sigwait);
1117 		else
1118 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1119 		return;
1120 	}
1121 
1122 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1123 
1124 	/* CHECKSIGS() is "inlined" here. */
1125 	p->p_sigctx.ps_sigcheck = 1;
1126 
1127 	/*
1128 	 * Defer further processing for signals which are held,
1129 	 * except that stopped processes must be continued by SIGCONT.
1130 	 */
1131 	if (action == SIG_HOLD &&
1132 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1133 		ksiginfo_put(p, ksi);
1134 		return;
1135 	}
1136 	/* XXXSMP: works, but icky */
1137 	if (dolock)
1138 		SCHED_LOCK(s);
1139 
1140 	if (p->p_flag & P_SA) {
1141 		allsusp = 0;
1142 		l = NULL;
1143 		if (p->p_stat == SACTIVE) {
1144 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1145 				l = vp->savp_lwp;
1146 				KDASSERT(l != NULL);
1147 				if (l->l_flag & L_SA_IDLE) {
1148 					/* wakeup idle LWP */
1149 					goto found;
1150 					/*NOTREACHED*/
1151 				} else if (l->l_flag & L_SA_YIELD) {
1152 					/* idle LWP is already waking up */
1153 					goto out;
1154 					/*NOTREACHED*/
1155 				}
1156 			}
1157 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1158 				l = vp->savp_lwp;
1159 				if (l->l_stat == LSRUN ||
1160 				    l->l_stat == LSONPROC) {
1161 					signotify(p);
1162 					goto out;
1163 					/*NOTREACHED*/
1164 				}
1165 				if (l->l_stat == LSSLEEP &&
1166 				    l->l_flag & L_SINTR) {
1167 					/* ok to signal vp lwp */
1168 				} else
1169 					l = NULL;
1170 			}
1171 			if (l == NULL)
1172 				allsusp = 1;
1173 		} else if (p->p_stat == SSTOP) {
1174 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1175 				l = vp->savp_lwp;
1176 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1177 					break;
1178 				l = NULL;
1179 			}
1180 		}
1181 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1182 		/*
1183 		 * At least one LWP is running or on a run queue.
1184 		 * The signal will be noticed when one of them returns
1185 		 * to userspace.
1186 		 */
1187 		signotify(p);
1188 		/*
1189 		 * The signal will be noticed very soon.
1190 		 */
1191 		goto out;
1192 		/*NOTREACHED*/
1193 	} else {
1194 		/*
1195 		 * Find out if any of the sleeps are interruptable,
1196 		 * and if all the live LWPs remaining are suspended.
1197 		 */
1198 		allsusp = 1;
1199 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1200 			if (l->l_stat == LSSLEEP &&
1201 			    l->l_flag & L_SINTR)
1202 				break;
1203 			if (l->l_stat == LSSUSPENDED)
1204 				suspended = l;
1205 			else if ((l->l_stat != LSZOMB) &&
1206 			    (l->l_stat != LSDEAD))
1207 				allsusp = 0;
1208 		}
1209 	}
1210 
1211  found:
1212 	switch (p->p_stat) {
1213 	case SACTIVE:
1214 
1215 		if (l != NULL && (p->p_flag & P_TRACED))
1216 			goto run;
1217 
1218 		/*
1219 		 * If SIGCONT is default (or ignored) and process is
1220 		 * asleep, we are finished; the process should not
1221 		 * be awakened.
1222 		 */
1223 		if ((prop & SA_CONT) && action == SIG_DFL) {
1224 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1225 			goto done;
1226 		}
1227 
1228 		/*
1229 		 * When a sleeping process receives a stop
1230 		 * signal, process immediately if possible.
1231 		 */
1232 		if ((prop & SA_STOP) && action == SIG_DFL) {
1233 			/*
1234 			 * If a child holding parent blocked,
1235 			 * stopping could cause deadlock.
1236 			 */
1237 			if (p->p_flag & P_PPWAIT) {
1238 				goto out;
1239 			}
1240 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1241 			p->p_xstat = signum;
1242 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1243 				/*
1244 				 * XXXSMP: recursive call; don't lock
1245 				 * the second time around.
1246 				 */
1247 				child_psignal(p, 0);
1248 			}
1249 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1250 			goto done;
1251 		}
1252 
1253 		if (l == NULL) {
1254 			/*
1255 			 * Special case: SIGKILL of a process
1256 			 * which is entirely composed of
1257 			 * suspended LWPs should succeed. We
1258 			 * make this happen by unsuspending one of
1259 			 * them.
1260 			 */
1261 			if (allsusp && (signum == SIGKILL)) {
1262 				if (p->p_flag & P_SA) {
1263 					/*
1264 					 * get a suspended lwp from
1265 					 * the cache to send KILL
1266 					 * signal
1267 					 * XXXcl add signal checks at resume points
1268 					 */
1269 					suspended = sa_getcachelwp
1270 						(SLIST_FIRST(&p->p_sa->sa_vps));
1271 				}
1272 				lwp_continue(suspended);
1273 			}
1274 			goto done;
1275 		}
1276 		/*
1277 		 * All other (caught or default) signals
1278 		 * cause the process to run.
1279 		 */
1280 		goto runfast;
1281 		/*NOTREACHED*/
1282 	case SSTOP:
1283 		/* Process is stopped */
1284 		/*
1285 		 * If traced process is already stopped,
1286 		 * then no further action is necessary.
1287 		 */
1288 		if (p->p_flag & P_TRACED)
1289 			goto done;
1290 
1291 		/*
1292 		 * Kill signal always sets processes running,
1293 		 * if possible.
1294 		 */
1295 		if (signum == SIGKILL) {
1296 			l = proc_unstop(p);
1297 			if (l)
1298 				goto runfast;
1299 			goto done;
1300 		}
1301 
1302 		if (prop & SA_CONT) {
1303 			/*
1304 			 * If SIGCONT is default (or ignored),
1305 			 * we continue the process but don't
1306 			 * leave the signal in ps_siglist, as
1307 			 * it has no further action.  If
1308 			 * SIGCONT is held, we continue the
1309 			 * process and leave the signal in
1310 			 * ps_siglist.  If the process catches
1311 			 * SIGCONT, let it handle the signal
1312 			 * itself.  If it isn't waiting on an
1313 			 * event, then it goes back to run
1314 			 * state.  Otherwise, process goes
1315 			 * back to sleep state.
1316 			 */
1317 			if (action == SIG_DFL)
1318 				sigdelset(&p->p_sigctx.ps_siglist,
1319 				    signum);
1320 			l = proc_unstop(p);
1321 			if (l && (action == SIG_CATCH))
1322 				goto runfast;
1323 			goto out;
1324 		}
1325 
1326 		if (prop & SA_STOP) {
1327 			/*
1328 			 * Already stopped, don't need to stop again.
1329 			 * (If we did the shell could get confused.)
1330 			 */
1331 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1332 			goto done;
1333 		}
1334 
1335 		/*
1336 		 * If a lwp is sleeping interruptibly, then
1337 		 * wake it up; it will run until the kernel
1338 		 * boundary, where it will stop in issignal(),
1339 		 * since p->p_stat is still SSTOP. When the
1340 		 * process is continued, it will be made
1341 		 * runnable and can look at the signal.
1342 		 */
1343 		if (l)
1344 			goto run;
1345 		goto out;
1346 	case SIDL:
1347 		/* Process is being created by fork */
1348 		/* XXX: We are not ready to receive signals yet */
1349 		goto done;
1350 	default:
1351 		/* Else what? */
1352 		panic("psignal: Invalid process state %d.", p->p_stat);
1353 	}
1354 	/*NOTREACHED*/
1355 
1356  runfast:
1357 	if (action == SIG_CATCH) {
1358 		ksiginfo_put(p, ksi);
1359 		action = SIG_HOLD;
1360 	}
1361 	/*
1362 	 * Raise priority to at least PUSER.
1363 	 */
1364 	if (l->l_priority > PUSER)
1365 		l->l_priority = PUSER;
1366  run:
1367 	if (action == SIG_CATCH) {
1368 		ksiginfo_put(p, ksi);
1369 		action = SIG_HOLD;
1370 	}
1371 
1372 	setrunnable(l);		/* XXXSMP: recurse? */
1373  out:
1374 	if (action == SIG_CATCH)
1375 		ksiginfo_put(p, ksi);
1376  done:
1377 	/* XXXSMP: works, but icky */
1378 	if (dolock)
1379 		SCHED_UNLOCK(s);
1380 }
1381 
1382 void
1383 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1384 {
1385 	struct proc *p = l->l_proc;
1386 	struct lwp *le, *li;
1387 	siginfo_t *si;
1388 	int f;
1389 
1390 	if (p->p_flag & P_SA) {
1391 
1392 		/* XXXUPSXXX What if not on sa_vp ? */
1393 
1394 		f = l->l_flag & L_SA;
1395 		l->l_flag &= ~L_SA;
1396 		si = pool_get(&siginfo_pool, PR_WAITOK);
1397 		si->_info = ksi->ksi_info;
1398 		le = li = NULL;
1399 		if (KSI_TRAP_P(ksi))
1400 			le = l;
1401 		else
1402 			li = l;
1403 
1404 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1405 			    sizeof(siginfo_t), si);
1406 		l->l_flag |= f;
1407 		return;
1408 	}
1409 
1410 	(*p->p_emul->e_sendsig)(ksi, mask);
1411 }
1412 
1413 static __inline int firstsig(const sigset_t *);
1414 
1415 static __inline int
1416 firstsig(const sigset_t *ss)
1417 {
1418 	int sig;
1419 
1420 	sig = ffs(ss->__bits[0]);
1421 	if (sig != 0)
1422 		return (sig);
1423 #if NSIG > 33
1424 	sig = ffs(ss->__bits[1]);
1425 	if (sig != 0)
1426 		return (sig + 32);
1427 #endif
1428 #if NSIG > 65
1429 	sig = ffs(ss->__bits[2]);
1430 	if (sig != 0)
1431 		return (sig + 64);
1432 #endif
1433 #if NSIG > 97
1434 	sig = ffs(ss->__bits[3]);
1435 	if (sig != 0)
1436 		return (sig + 96);
1437 #endif
1438 	return (0);
1439 }
1440 
1441 /*
1442  * If the current process has received a signal (should be caught or cause
1443  * termination, should interrupt current syscall), return the signal number.
1444  * Stop signals with default action are processed immediately, then cleared;
1445  * they aren't returned.  This is checked after each entry to the system for
1446  * a syscall or trap (though this can usually be done without calling issignal
1447  * by checking the pending signal masks in the CURSIG macro.) The normal call
1448  * sequence is
1449  *
1450  *	while (signum = CURSIG(curlwp))
1451  *		postsig(signum);
1452  */
1453 int
1454 issignal(struct lwp *l)
1455 {
1456 	struct proc	*p = l->l_proc;
1457 	int		s = 0, signum, prop;
1458 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1459 	sigset_t	ss;
1460 
1461 	/* Bail out if we do not own the virtual processor */
1462 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1463 		return 0;
1464 
1465 	if (p->p_stat == SSTOP) {
1466 		/*
1467 		 * The process is stopped/stopping. Stop ourselves now that
1468 		 * we're on the kernel/userspace boundary.
1469 		 */
1470 		if (dolock)
1471 			SCHED_LOCK(s);
1472 		l->l_stat = LSSTOP;
1473 		p->p_nrlwps--;
1474 		if (p->p_flag & P_TRACED)
1475 			goto sigtraceswitch;
1476 		else
1477 			goto sigswitch;
1478 	}
1479 	for (;;) {
1480 		sigpending1(p, &ss);
1481 		if (p->p_flag & P_PPWAIT)
1482 			sigminusset(&stopsigmask, &ss);
1483 		signum = firstsig(&ss);
1484 		if (signum == 0) {		 	/* no signal to send */
1485 			p->p_sigctx.ps_sigcheck = 0;
1486 			if (locked && dolock)
1487 				SCHED_LOCK(s);
1488 			return (0);
1489 		}
1490 							/* take the signal! */
1491 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1492 
1493 		/*
1494 		 * We should see pending but ignored signals
1495 		 * only if P_TRACED was on when they were posted.
1496 		 */
1497 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1498 		    (p->p_flag & P_TRACED) == 0)
1499 			continue;
1500 
1501 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1502 			/*
1503 			 * If traced, always stop, and stay
1504 			 * stopped until released by the debugger.
1505 			 */
1506 			p->p_xstat = signum;
1507 
1508 			/* Emulation-specific handling of signal trace */
1509 			if ((p->p_emul->e_tracesig != NULL) &&
1510 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1511 				goto childresumed;
1512 
1513 			if ((p->p_flag & P_FSTRACE) == 0)
1514 				child_psignal(p, dolock);
1515 			if (dolock)
1516 				SCHED_LOCK(s);
1517 			proc_stop(p, 1);
1518 		sigtraceswitch:
1519 			mi_switch(l, NULL);
1520 			SCHED_ASSERT_UNLOCKED();
1521 			if (dolock)
1522 				splx(s);
1523 			else
1524 				dolock = 1;
1525 
1526 		childresumed:
1527 			/*
1528 			 * If we are no longer being traced, or the parent
1529 			 * didn't give us a signal, look for more signals.
1530 			 */
1531 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1532 				continue;
1533 
1534 			/*
1535 			 * If the new signal is being masked, look for other
1536 			 * signals.
1537 			 */
1538 			signum = p->p_xstat;
1539 			p->p_xstat = 0;
1540 			/*
1541 			 * `p->p_sigctx.ps_siglist |= mask' is done
1542 			 * in setrunnable().
1543 			 */
1544 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1545 				continue;
1546 							/* take the signal! */
1547 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1548 		}
1549 
1550 		prop = sigprop[signum];
1551 
1552 		/*
1553 		 * Decide whether the signal should be returned.
1554 		 * Return the signal's number, or fall through
1555 		 * to clear it from the pending mask.
1556 		 */
1557 		switch ((long)SIGACTION(p, signum).sa_handler) {
1558 
1559 		case (long)SIG_DFL:
1560 			/*
1561 			 * Don't take default actions on system processes.
1562 			 */
1563 			if (p->p_pid <= 1) {
1564 #ifdef DIAGNOSTIC
1565 				/*
1566 				 * Are you sure you want to ignore SIGSEGV
1567 				 * in init? XXX
1568 				 */
1569 				printf("Process (pid %d) got signal %d\n",
1570 				    p->p_pid, signum);
1571 #endif
1572 				break;		/* == ignore */
1573 			}
1574 			/*
1575 			 * If there is a pending stop signal to process
1576 			 * with default action, stop here,
1577 			 * then clear the signal.  However,
1578 			 * if process is member of an orphaned
1579 			 * process group, ignore tty stop signals.
1580 			 */
1581 			if (prop & SA_STOP) {
1582 				if (p->p_flag & P_TRACED ||
1583 		    		    (p->p_pgrp->pg_jobc == 0 &&
1584 				    prop & SA_TTYSTOP))
1585 					break;	/* == ignore */
1586 				p->p_xstat = signum;
1587 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1588 					child_psignal(p, dolock);
1589 				if (dolock)
1590 					SCHED_LOCK(s);
1591 				proc_stop(p, 1);
1592 			sigswitch:
1593 				mi_switch(l, NULL);
1594 				SCHED_ASSERT_UNLOCKED();
1595 				if (dolock)
1596 					splx(s);
1597 				else
1598 					dolock = 1;
1599 				break;
1600 			} else if (prop & SA_IGNORE) {
1601 				/*
1602 				 * Except for SIGCONT, shouldn't get here.
1603 				 * Default action is to ignore; drop it.
1604 				 */
1605 				break;		/* == ignore */
1606 			} else
1607 				goto keep;
1608 			/*NOTREACHED*/
1609 
1610 		case (long)SIG_IGN:
1611 			/*
1612 			 * Masking above should prevent us ever trying
1613 			 * to take action on an ignored signal other
1614 			 * than SIGCONT, unless process is traced.
1615 			 */
1616 #ifdef DEBUG_ISSIGNAL
1617 			if ((prop & SA_CONT) == 0 &&
1618 			    (p->p_flag & P_TRACED) == 0)
1619 				printf("issignal\n");
1620 #endif
1621 			break;		/* == ignore */
1622 
1623 		default:
1624 			/*
1625 			 * This signal has an action, let
1626 			 * postsig() process it.
1627 			 */
1628 			goto keep;
1629 		}
1630 	}
1631 	/* NOTREACHED */
1632 
1633  keep:
1634 						/* leave the signal for later */
1635 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1636 	CHECKSIGS(p);
1637 	if (locked && dolock)
1638 		SCHED_LOCK(s);
1639 	return (signum);
1640 }
1641 
1642 /*
1643  * Put the argument process into the stopped state and notify the parent
1644  * via wakeup.  Signals are handled elsewhere.  The process must not be
1645  * on the run queue.
1646  */
1647 void
1648 proc_stop(struct proc *p, int wakeup)
1649 {
1650 	struct lwp *l;
1651 	struct proc *parent;
1652 	struct sadata_vp *vp;
1653 
1654 	SCHED_ASSERT_LOCKED();
1655 
1656 	/* XXX lock process LWP state */
1657 	p->p_flag &= ~P_WAITED;
1658 	p->p_stat = SSTOP;
1659 	parent = p->p_pptr;
1660 	parent->p_nstopchild++;
1661 
1662 	if (p->p_flag & P_SA) {
1663 		/*
1664 		 * Only (try to) put the LWP on the VP in stopped
1665 		 * state.
1666 		 * All other LWPs will suspend in sa_setwoken()
1667 		 * because the VP-LWP in stopped state cannot be
1668 		 * repossessed.
1669 		 */
1670 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1671 			l = vp->savp_lwp;
1672 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1673 				l->l_stat = LSSTOP;
1674 				p->p_nrlwps--;
1675 			} else if (l->l_stat == LSRUN) {
1676 				/* Remove LWP from the run queue */
1677 				remrunqueue(l);
1678 				l->l_stat = LSSTOP;
1679 				p->p_nrlwps--;
1680 			} else if (l->l_stat == LSSLEEP &&
1681 			    l->l_flag & L_SA_IDLE) {
1682 				l->l_flag &= ~L_SA_IDLE;
1683 				l->l_stat = LSSTOP;
1684 			}
1685 		}
1686 		goto out;
1687 	}
1688 
1689 	/*
1690 	 * Put as many LWP's as possible in stopped state.
1691 	 * Sleeping ones will notice the stopped state as they try to
1692 	 * return to userspace.
1693 	 */
1694 
1695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1696 		if (l->l_stat == LSONPROC) {
1697 			/* XXX SMP this assumes that a LWP that is LSONPROC
1698 			 * is curlwp and hence is about to be mi_switched
1699 			 * away; the only callers of proc_stop() are:
1700 			 * - psignal
1701 			 * - issignal()
1702 			 * For the former, proc_stop() is only called when
1703 			 * no processes are running, so we don't worry.
1704 			 * For the latter, proc_stop() is called right
1705 			 * before mi_switch().
1706 			 */
1707 			l->l_stat = LSSTOP;
1708 			p->p_nrlwps--;
1709 		} else if (l->l_stat == LSRUN) {
1710 			/* Remove LWP from the run queue */
1711 			remrunqueue(l);
1712 			l->l_stat = LSSTOP;
1713 			p->p_nrlwps--;
1714 		} else if ((l->l_stat == LSSLEEP) ||
1715 		    (l->l_stat == LSSUSPENDED) ||
1716 		    (l->l_stat == LSZOMB) ||
1717 		    (l->l_stat == LSDEAD)) {
1718 			/*
1719 			 * Don't do anything; let sleeping LWPs
1720 			 * discover the stopped state of the process
1721 			 * on their way out of the kernel; otherwise,
1722 			 * things like NFS threads that sleep with
1723 			 * locks will block the rest of the system
1724 			 * from getting any work done.
1725 			 *
1726 			 * Suspended/dead/zombie LWPs aren't going
1727 			 * anywhere, so we don't need to touch them.
1728 			 */
1729 		}
1730 #ifdef DIAGNOSTIC
1731 		else {
1732 			panic("proc_stop: process %d lwp %d "
1733 			      "in unstoppable state %d.\n",
1734 			    p->p_pid, l->l_lid, l->l_stat);
1735 		}
1736 #endif
1737 	}
1738 
1739  out:
1740 	/* XXX unlock process LWP state */
1741 
1742 	if (wakeup)
1743 		sched_wakeup((caddr_t)p->p_pptr);
1744 }
1745 
1746 /*
1747  * Given a process in state SSTOP, set the state back to SACTIVE and
1748  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1749  *
1750  * If no LWPs ended up runnable (and therefore able to take a signal),
1751  * return a LWP that is sleeping interruptably. The caller can wake
1752  * that LWP up to take a signal.
1753  */
1754 struct lwp *
1755 proc_unstop(struct proc *p)
1756 {
1757 	struct lwp *l, *lr = NULL;
1758 	struct sadata_vp *vp;
1759 	int cantake = 0;
1760 
1761 	SCHED_ASSERT_LOCKED();
1762 
1763 	/*
1764 	 * Our caller wants to be informed if there are only sleeping
1765 	 * and interruptable LWPs left after we have run so that it
1766 	 * can invoke setrunnable() if required - return one of the
1767 	 * interruptable LWPs if this is the case.
1768 	 */
1769 
1770 	if (!(p->p_flag & P_WAITED))
1771 		p->p_pptr->p_nstopchild--;
1772 	p->p_stat = SACTIVE;
1773 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1774 		if (l->l_stat == LSRUN) {
1775 			lr = NULL;
1776 			cantake = 1;
1777 		}
1778 		if (l->l_stat != LSSTOP)
1779 			continue;
1780 
1781 		if (l->l_wchan != NULL) {
1782 			l->l_stat = LSSLEEP;
1783 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1784 				lr = l;
1785 				cantake = 1;
1786 			}
1787 		} else {
1788 			setrunnable(l);
1789 			lr = NULL;
1790 			cantake = 1;
1791 		}
1792 	}
1793 	if (p->p_flag & P_SA) {
1794 		/* Only consider returning the LWP on the VP. */
1795 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1796 			lr = vp->savp_lwp;
1797 			if (lr->l_stat == LSSLEEP) {
1798 				if (lr->l_flag & L_SA_YIELD) {
1799 					setrunnable(lr);
1800 					break;
1801 				} else if (lr->l_flag & L_SINTR)
1802 					return lr;
1803 			}
1804 		}
1805 		return NULL;
1806 	}
1807 	return lr;
1808 }
1809 
1810 /*
1811  * Take the action for the specified signal
1812  * from the current set of pending signals.
1813  */
1814 void
1815 postsig(int signum)
1816 {
1817 	struct lwp *l;
1818 	struct proc	*p;
1819 	struct sigacts	*ps;
1820 	sig_t		action;
1821 	sigset_t	*returnmask;
1822 
1823 	l = curlwp;
1824 	p = l->l_proc;
1825 	ps = p->p_sigacts;
1826 #ifdef DIAGNOSTIC
1827 	if (signum == 0)
1828 		panic("postsig");
1829 #endif
1830 
1831 	KERNEL_PROC_LOCK(l);
1832 
1833 #ifdef MULTIPROCESSOR
1834 	/*
1835 	 * On MP, issignal() can return the same signal to multiple
1836 	 * LWPs.  The LWPs will block above waiting for the kernel
1837 	 * lock and the first LWP which gets through will then remove
1838 	 * the signal from ps_siglist.  All other LWPs exit here.
1839 	 */
1840 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1841 		KERNEL_PROC_UNLOCK(l);
1842 		return;
1843 	}
1844 #endif
1845 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1846 	action = SIGACTION_PS(ps, signum).sa_handler;
1847 	if (action == SIG_DFL) {
1848 #ifdef KTRACE
1849 		if (KTRPOINT(p, KTR_PSIG))
1850 			ktrpsig(p, signum, action,
1851 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1852 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1853 			    NULL);
1854 #endif
1855 		/*
1856 		 * Default action, where the default is to kill
1857 		 * the process.  (Other cases were ignored above.)
1858 		 */
1859 		sigexit(l, signum);
1860 		/* NOTREACHED */
1861 	} else {
1862 		ksiginfo_t *ksi;
1863 		/*
1864 		 * If we get here, the signal must be caught.
1865 		 */
1866 #ifdef DIAGNOSTIC
1867 		if (action == SIG_IGN ||
1868 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1869 			panic("postsig action");
1870 #endif
1871 		/*
1872 		 * Set the new mask value and also defer further
1873 		 * occurrences of this signal.
1874 		 *
1875 		 * Special case: user has done a sigpause.  Here the
1876 		 * current mask is not of interest, but rather the
1877 		 * mask from before the sigpause is what we want
1878 		 * restored after the signal processing is completed.
1879 		 */
1880 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1881 			returnmask = &p->p_sigctx.ps_oldmask;
1882 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1883 		} else
1884 			returnmask = &p->p_sigctx.ps_sigmask;
1885 		p->p_stats->p_ru.ru_nsignals++;
1886 		ksi = ksiginfo_get(p, signum);
1887 #ifdef KTRACE
1888 		if (KTRPOINT(p, KTR_PSIG))
1889 			ktrpsig(p, signum, action,
1890 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1891 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1892 			    ksi);
1893 #endif
1894 		if (ksi == NULL) {
1895 			ksiginfo_t ksi1;
1896 			/*
1897 			 * we did not save any siginfo for this, either
1898 			 * because the signal was not caught, or because the
1899 			 * user did not request SA_SIGINFO
1900 			 */
1901 			KSI_INIT_EMPTY(&ksi1);
1902 			ksi1.ksi_signo = signum;
1903 			kpsendsig(l, &ksi1, returnmask);
1904 		} else {
1905 			kpsendsig(l, ksi, returnmask);
1906 			pool_put(&ksiginfo_pool, ksi);
1907 		}
1908 		p->p_sigctx.ps_lwp = 0;
1909 		p->p_sigctx.ps_code = 0;
1910 		p->p_sigctx.ps_signo = 0;
1911 		(void) splsched();	/* XXXSMP */
1912 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1913 		    &p->p_sigctx.ps_sigmask);
1914 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1915 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1916 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1917 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1918 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1919 		}
1920 		(void) spl0();		/* XXXSMP */
1921 	}
1922 
1923 	KERNEL_PROC_UNLOCK(l);
1924 }
1925 
1926 /*
1927  * Kill the current process for stated reason.
1928  */
1929 void
1930 killproc(struct proc *p, const char *why)
1931 {
1932 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1933 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1934 	psignal(p, SIGKILL);
1935 }
1936 
1937 /*
1938  * Force the current process to exit with the specified signal, dumping core
1939  * if appropriate.  We bypass the normal tests for masked and caught signals,
1940  * allowing unrecoverable failures to terminate the process without changing
1941  * signal state.  Mark the accounting record with the signal termination.
1942  * If dumping core, save the signal number for the debugger.  Calls exit and
1943  * does not return.
1944  */
1945 
1946 #if defined(DEBUG)
1947 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1948 #else
1949 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1950 #endif
1951 
1952 static	const char logcoredump[] =
1953 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1954 static	const char lognocoredump[] =
1955 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1956 
1957 /* Wrapper function for use in p_userret */
1958 static void
1959 lwp_coredump_hook(struct lwp *l, void *arg)
1960 {
1961 	int s;
1962 
1963 	/*
1964 	 * Suspend ourselves, so that the kernel stack and therefore
1965 	 * the userland registers saved in the trapframe are around
1966 	 * for coredump() to write them out.
1967 	 */
1968 	KERNEL_PROC_LOCK(l);
1969 	l->l_flag &= ~L_DETACHED;
1970 	SCHED_LOCK(s);
1971 	l->l_stat = LSSUSPENDED;
1972 	l->l_proc->p_nrlwps--;
1973 	/* XXX NJWLWP check if this makes sense here: */
1974 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1975 	mi_switch(l, NULL);
1976 	SCHED_ASSERT_UNLOCKED();
1977 	splx(s);
1978 
1979 	lwp_exit(l);
1980 }
1981 
1982 void
1983 sigexit(struct lwp *l, int signum)
1984 {
1985 	struct proc	*p;
1986 #if 0
1987 	struct lwp	*l2;
1988 #endif
1989 	int		error, exitsig;
1990 
1991 	p = l->l_proc;
1992 
1993 	/*
1994 	 * Don't permit coredump() or exit1() multiple times
1995 	 * in the same process.
1996 	 */
1997 	if (p->p_flag & P_WEXIT) {
1998 		KERNEL_PROC_UNLOCK(l);
1999 		(*p->p_userret)(l, p->p_userret_arg);
2000 	}
2001 	p->p_flag |= P_WEXIT;
2002 	/* We don't want to switch away from exiting. */
2003 	/* XXX multiprocessor: stop LWPs on other processors. */
2004 #if 0
2005 	if (p->p_flag & P_SA) {
2006 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2007 		    l2->l_flag &= ~L_SA;
2008 		p->p_flag &= ~P_SA;
2009 	}
2010 #endif
2011 
2012 	/* Make other LWPs stick around long enough to be dumped */
2013 	p->p_userret = lwp_coredump_hook;
2014 	p->p_userret_arg = NULL;
2015 
2016 	exitsig = signum;
2017 	p->p_acflag |= AXSIG;
2018 	if (sigprop[signum] & SA_CORE) {
2019 		p->p_sigctx.ps_signo = signum;
2020 		if ((error = coredump(l)) == 0)
2021 			exitsig |= WCOREFLAG;
2022 
2023 		if (kern_logsigexit) {
2024 			/* XXX What if we ever have really large UIDs? */
2025 			int uid = p->p_cred && p->p_ucred ?
2026 				(int) p->p_ucred->cr_uid : -1;
2027 
2028 			if (error)
2029 				log(LOG_INFO, lognocoredump, p->p_pid,
2030 				    p->p_comm, uid, signum, error);
2031 			else
2032 				log(LOG_INFO, logcoredump, p->p_pid,
2033 				    p->p_comm, uid, signum);
2034 		}
2035 
2036 	}
2037 
2038 	exit1(l, W_EXITCODE(0, exitsig));
2039 	/* NOTREACHED */
2040 }
2041 
2042 /*
2043  * Dump core, into a file named "progname.core" or "core" (depending on the
2044  * value of shortcorename), unless the process was setuid/setgid.
2045  */
2046 int
2047 coredump(struct lwp *l)
2048 {
2049 	struct vnode		*vp;
2050 	struct proc		*p;
2051 	struct vmspace		*vm;
2052 	struct ucred		*cred;
2053 	struct nameidata	nd;
2054 	struct vattr		vattr;
2055 	struct mount		*mp;
2056 	int			error, error1;
2057 	char			name[MAXPATHLEN];
2058 
2059 	p = l->l_proc;
2060 	vm = p->p_vmspace;
2061 	cred = p->p_cred->pc_ucred;
2062 
2063 	/*
2064 	 * Make sure the process has not set-id, to prevent data leaks.
2065 	 */
2066 	if (p->p_flag & P_SUGID)
2067 		return (EPERM);
2068 
2069 	/*
2070 	 * Refuse to core if the data + stack + user size is larger than
2071 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2072 	 * data.
2073 	 */
2074 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2075 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2076 		return (EFBIG);		/* better error code? */
2077 
2078 restart:
2079 	/*
2080 	 * The core dump will go in the current working directory.  Make
2081 	 * sure that the directory is still there and that the mount flags
2082 	 * allow us to write core dumps there.
2083 	 */
2084 	vp = p->p_cwdi->cwdi_cdir;
2085 	if (vp->v_mount == NULL ||
2086 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2087 		return (EPERM);
2088 
2089 	error = build_corename(p, name);
2090 	if (error)
2091 		return error;
2092 
2093 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2094 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2095 	if (error)
2096 		return (error);
2097 	vp = nd.ni_vp;
2098 
2099 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2100 		VOP_UNLOCK(vp, 0);
2101 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2102 			return (error);
2103 		if ((error = vn_start_write(NULL, &mp,
2104 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2105 			return (error);
2106 		goto restart;
2107 	}
2108 
2109 	/* Don't dump to non-regular files or files with links. */
2110 	if (vp->v_type != VREG ||
2111 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2112 		error = EINVAL;
2113 		goto out;
2114 	}
2115 	VATTR_NULL(&vattr);
2116 	vattr.va_size = 0;
2117 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
2118 	VOP_SETATTR(vp, &vattr, cred, p);
2119 	p->p_acflag |= ACORE;
2120 
2121 	/* Now dump the actual core file. */
2122 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
2123  out:
2124 	VOP_UNLOCK(vp, 0);
2125 	vn_finished_write(mp, 0);
2126 	error1 = vn_close(vp, FWRITE, cred, p);
2127 	if (error == 0)
2128 		error = error1;
2129 	return (error);
2130 }
2131 
2132 /*
2133  * Nonexistent system call-- signal process (may want to handle it).
2134  * Flag error in case process won't see signal immediately (blocked or ignored).
2135  */
2136 /* ARGSUSED */
2137 int
2138 sys_nosys(struct lwp *l, void *v, register_t *retval)
2139 {
2140 	struct proc 	*p;
2141 
2142 	p = l->l_proc;
2143 	psignal(p, SIGSYS);
2144 	return (ENOSYS);
2145 }
2146 
2147 static int
2148 build_corename(struct proc *p, char dst[MAXPATHLEN])
2149 {
2150 	const char	*s;
2151 	char		*d, *end;
2152 	int		i;
2153 
2154 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2155 	    *s != '\0'; s++) {
2156 		if (*s == '%') {
2157 			switch (*(s + 1)) {
2158 			case 'n':
2159 				i = snprintf(d, end - d, "%s", p->p_comm);
2160 				break;
2161 			case 'p':
2162 				i = snprintf(d, end - d, "%d", p->p_pid);
2163 				break;
2164 			case 'u':
2165 				i = snprintf(d, end - d, "%.*s",
2166 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2167 				    p->p_pgrp->pg_session->s_login);
2168 				break;
2169 			case 't':
2170 				i = snprintf(d, end - d, "%ld",
2171 				    p->p_stats->p_start.tv_sec);
2172 				break;
2173 			default:
2174 				goto copy;
2175 			}
2176 			d += i;
2177 			s++;
2178 		} else {
2179  copy:			*d = *s;
2180 			d++;
2181 		}
2182 		if (d >= end)
2183 			return (ENAMETOOLONG);
2184 	}
2185 	*d = '\0';
2186 	return 0;
2187 }
2188 
2189 void
2190 getucontext(struct lwp *l, ucontext_t *ucp)
2191 {
2192 	struct proc	*p;
2193 
2194 	p = l->l_proc;
2195 
2196 	ucp->uc_flags = 0;
2197 	ucp->uc_link = l->l_ctxlink;
2198 
2199 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2200 	ucp->uc_flags |= _UC_SIGMASK;
2201 
2202 	/*
2203 	 * The (unsupplied) definition of the `current execution stack'
2204 	 * in the System V Interface Definition appears to allow returning
2205 	 * the main context stack.
2206 	 */
2207 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2208 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2209 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2210 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2211 	} else {
2212 		/* Simply copy alternate signal execution stack. */
2213 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2214 	}
2215 	ucp->uc_flags |= _UC_STACK;
2216 
2217 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2218 }
2219 
2220 /* ARGSUSED */
2221 int
2222 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2223 {
2224 	struct sys_getcontext_args /* {
2225 		syscallarg(struct __ucontext *) ucp;
2226 	} */ *uap = v;
2227 	ucontext_t uc;
2228 
2229 	getucontext(l, &uc);
2230 
2231 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2232 }
2233 
2234 int
2235 setucontext(struct lwp *l, const ucontext_t *ucp)
2236 {
2237 	struct proc	*p;
2238 	int		error;
2239 
2240 	p = l->l_proc;
2241 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2242 		return (error);
2243 	l->l_ctxlink = ucp->uc_link;
2244 
2245 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2246 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2247 
2248 	/*
2249 	 * If there was stack information, update whether or not we are
2250 	 * still running on an alternate signal stack.
2251 	 */
2252 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2253 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2254 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2255 		else
2256 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 /* ARGSUSED */
2263 int
2264 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2265 {
2266 	struct sys_setcontext_args /* {
2267 		syscallarg(const ucontext_t *) ucp;
2268 	} */ *uap = v;
2269 	ucontext_t uc;
2270 	int error;
2271 
2272 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2273 		exit1(l, W_EXITCODE(0, 0));
2274 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2275 	    (error = setucontext(l, &uc)) != 0)
2276 		return (error);
2277 
2278 	return (EJUSTRETURN);
2279 }
2280 
2281 /*
2282  * sigtimedwait(2) system call, used also for implementation
2283  * of sigwaitinfo() and sigwait().
2284  *
2285  * This only handles single LWP in signal wait. libpthread provides
2286  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2287  */
2288 int
2289 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2290 {
2291 	struct sys___sigtimedwait_args /* {
2292 		syscallarg(const sigset_t *) set;
2293 		syscallarg(siginfo_t *) info;
2294 		syscallarg(struct timespec *) timeout;
2295 	} */ *uap = v;
2296 	sigset_t *waitset, twaitset;
2297 	struct proc *p = l->l_proc;
2298 	int error, signum, s;
2299 	int timo = 0;
2300 	struct timeval tvstart;
2301 	struct timespec ts;
2302 	ksiginfo_t *ksi;
2303 
2304 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2305 
2306 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2307 		FREE(waitset, M_TEMP);
2308 		return (error);
2309 	}
2310 
2311 	/*
2312 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2313 	 * ignore SA_CANTMASK signals in waitset, we do this
2314 	 * only for the below siglist check.
2315 	 */
2316 	sigminusset(&sigcantmask, waitset);
2317 
2318 	/*
2319 	 * First scan siglist and check if there is signal from
2320 	 * our waitset already pending.
2321 	 */
2322 	twaitset = *waitset;
2323 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2324 	if ((signum = firstsig(&twaitset))) {
2325 		/* found pending signal */
2326 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2327 		ksi = ksiginfo_get(p, signum);
2328 		if (!ksi) {
2329 			/* No queued siginfo, manufacture one */
2330 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2331 			KSI_INIT(ksi);
2332 			ksi->ksi_info._signo = signum;
2333 			ksi->ksi_info._code = SI_USER;
2334 		}
2335 
2336 		goto sig;
2337 	}
2338 
2339 	/*
2340 	 * Calculate timeout, if it was specified.
2341 	 */
2342 	if (SCARG(uap, timeout)) {
2343 		uint64_t ms;
2344 
2345 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2346 			return (error);
2347 
2348 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2349 		timo = mstohz(ms);
2350 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2351 			timo = 1;
2352 		if (timo <= 0)
2353 			return (EAGAIN);
2354 
2355 		/*
2356 		 * Remember current mono_time, it would be used in
2357 		 * ECANCELED/ERESTART case.
2358 		 */
2359 		s = splclock();
2360 		tvstart = mono_time;
2361 		splx(s);
2362 	}
2363 
2364 	/*
2365 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2366 	 * here; it's not possible to pass pointer to a structure
2367 	 * on current process's stack, the current process might
2368 	 * be swapped out at the time the signal would get delivered.
2369 	 */
2370 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2371 	p->p_sigctx.ps_sigwaited = ksi;
2372 	p->p_sigctx.ps_sigwait = waitset;
2373 
2374 	/*
2375 	 * Wait for signal to arrive. We can either be woken up or
2376 	 * time out.
2377 	 */
2378 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2379 
2380 	/*
2381 	 * Need to find out if we woke as a result of lwp_wakeup()
2382 	 * or a signal outside our wait set.
2383 	 */
2384 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2385 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2386 		/* wakeup via _lwp_wakeup() */
2387 		error = ECANCELED;
2388 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2389 		/* spurious wakeup - arrange for syscall restart */
2390 		error = ERESTART;
2391 		goto fail;
2392 	}
2393 
2394 	/*
2395 	 * On error, clear sigwait indication. psignal1() clears it
2396 	 * in !error case.
2397 	 */
2398 	if (error) {
2399 		p->p_sigctx.ps_sigwaited = NULL;
2400 
2401 		/*
2402 		 * If the sleep was interrupted (either by signal or wakeup),
2403 		 * update the timeout and copyout new value back.
2404 		 * It would be used when the syscall would be restarted
2405 		 * or called again.
2406 		 */
2407 		if (timo && (error == ERESTART || error == ECANCELED)) {
2408 			struct timeval tvnow, tvtimo;
2409 			int err;
2410 
2411 			s = splclock();
2412 			tvnow = mono_time;
2413 			splx(s);
2414 
2415 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2416 
2417 			/* compute how much time has passed since start */
2418 			timersub(&tvnow, &tvstart, &tvnow);
2419 			/* substract passed time from timeout */
2420 			timersub(&tvtimo, &tvnow, &tvtimo);
2421 
2422 			if (tvtimo.tv_sec < 0) {
2423 				error = EAGAIN;
2424 				goto fail;
2425 			}
2426 
2427 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2428 
2429 			/* copy updated timeout to userland */
2430 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2431 				error = err;
2432 				goto fail;
2433 			}
2434 		}
2435 
2436 		goto fail;
2437 	}
2438 
2439 	/*
2440 	 * If a signal from the wait set arrived, copy it to userland.
2441 	 * Copy only the used part of siginfo, the padding part is
2442 	 * left unchanged (userland is not supposed to touch it anyway).
2443 	 */
2444  sig:
2445 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2446 
2447  fail:
2448 	FREE(waitset, M_TEMP);
2449 	pool_put(&ksiginfo_pool, ksi);
2450 	p->p_sigctx.ps_sigwait = NULL;
2451 
2452 	return (error);
2453 }
2454 
2455 /*
2456  * Returns true if signal is ignored or masked for passed process.
2457  */
2458 int
2459 sigismasked(struct proc *p, int sig)
2460 {
2461 
2462 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2463 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2464 }
2465 
2466 static int
2467 filt_sigattach(struct knote *kn)
2468 {
2469 	struct proc *p = curproc;
2470 
2471 	kn->kn_ptr.p_proc = p;
2472 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2473 
2474 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2475 
2476 	return (0);
2477 }
2478 
2479 static void
2480 filt_sigdetach(struct knote *kn)
2481 {
2482 	struct proc *p = kn->kn_ptr.p_proc;
2483 
2484 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2485 }
2486 
2487 /*
2488  * signal knotes are shared with proc knotes, so we apply a mask to
2489  * the hint in order to differentiate them from process hints.  This
2490  * could be avoided by using a signal-specific knote list, but probably
2491  * isn't worth the trouble.
2492  */
2493 static int
2494 filt_signal(struct knote *kn, long hint)
2495 {
2496 
2497 	if (hint & NOTE_SIGNAL) {
2498 		hint &= ~NOTE_SIGNAL;
2499 
2500 		if (kn->kn_id == hint)
2501 			kn->kn_data++;
2502 	}
2503 	return (kn->kn_data != 0);
2504 }
2505 
2506 const struct filterops sig_filtops = {
2507 	0, filt_sigattach, filt_sigdetach, filt_signal
2508 };
2509