xref: /netbsd-src/sys/kern/kern_sig.c (revision 1ffa7b76c40339c17a0fb2a09fac93f287cfc046)
1 /*	$NetBSD: kern_sig.c,v 1.140 2003/04/23 21:32:10 nathanw Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.140 2003/04/23 21:32:10 nathanw Exp $");
45 
46 #include "opt_ktrace.h"
47 #include "opt_compat_sunos.h"
48 #include "opt_compat_netbsd32.h"
49 
50 #define	SIGPROP		/* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 
80 #include <machine/cpu.h>
81 
82 #include <sys/user.h>		/* for coredump */
83 
84 #include <uvm/uvm_extern.h>
85 
86 static void	proc_stop(struct proc *p);
87 static int	build_corename(struct proc *, char [MAXPATHLEN]);
88 sigset_t	contsigmask, stopsigmask, sigcantmask;
89 
90 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
91 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
92 
93 /*
94  * Can process p, with pcred pc, send the signal signum to process q?
95  */
96 #define	CANSIGNAL(p, pc, q, signum) \
97 	((pc)->pc_ucred->cr_uid == 0 || \
98 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
99 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
100 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
101 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
102 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
103 
104 /*
105  * Initialize signal-related data structures.
106  */
107 void
108 signal_init(void)
109 {
110 
111 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
112 	    &pool_allocator_nointr);
113 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
114 	    &pool_allocator_nointr);
115 }
116 
117 /*
118  * Create an initial sigctx structure, using the same signal state
119  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
120  * copy it from parent.
121  */
122 void
123 sigactsinit(struct proc *np, struct proc *pp, int share)
124 {
125 	struct sigacts *ps;
126 
127 	if (share) {
128 		np->p_sigacts = pp->p_sigacts;
129 		pp->p_sigacts->sa_refcnt++;
130 	} else {
131 		ps = pool_get(&sigacts_pool, PR_WAITOK);
132 		if (pp)
133 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
134 		else
135 			memset(ps, '\0', sizeof(struct sigacts));
136 		ps->sa_refcnt = 1;
137 		np->p_sigacts = ps;
138 	}
139 }
140 
141 /*
142  * Make this process not share its sigctx, maintaining all
143  * signal state.
144  */
145 void
146 sigactsunshare(struct proc *p)
147 {
148 	struct sigacts *oldps;
149 
150 	if (p->p_sigacts->sa_refcnt == 1)
151 		return;
152 
153 	oldps = p->p_sigacts;
154 	sigactsinit(p, NULL, 0);
155 
156 	if (--oldps->sa_refcnt == 0)
157 		pool_put(&sigacts_pool, oldps);
158 }
159 
160 /*
161  * Release a sigctx structure.
162  */
163 void
164 sigactsfree(struct proc *p)
165 {
166 	struct sigacts *ps;
167 
168 	ps = p->p_sigacts;
169 	if (--ps->sa_refcnt > 0)
170 		return;
171 
172 	pool_put(&sigacts_pool, ps);
173 }
174 
175 int
176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
177 	struct sigaction *osa, void *tramp, int vers)
178 {
179 	struct sigacts	*ps;
180 	int		prop;
181 
182 	ps = p->p_sigacts;
183 	if (signum <= 0 || signum >= NSIG)
184 		return (EINVAL);
185 
186 	/*
187 	 * Trampoline ABI version 0 is reserved for the legacy
188 	 * kernel-provided on-stack trampoline.  Conversely, if
189 	 * we are using a non-0 ABI version, we must have a
190 	 * trampoline.
191 	 */
192 	if ((vers != 0 && tramp == NULL) ||
193 	    (vers == 0 && tramp != NULL))
194 		return (EINVAL);
195 
196 	if (osa)
197 		*osa = SIGACTION_PS(ps, signum);
198 
199 	if (nsa) {
200 		if (nsa->sa_flags & ~SA_ALLBITS)
201 			return (EINVAL);
202 
203 		prop = sigprop[signum];
204 		if (prop & SA_CANTMASK)
205 			return (EINVAL);
206 
207 		(void) splsched();	/* XXXSMP */
208 		SIGACTION_PS(ps, signum) = *nsa;
209 		ps->sa_sigdesc[signum].sd_tramp = tramp;
210 		ps->sa_sigdesc[signum].sd_vers = vers;
211 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
212 		if ((prop & SA_NORESET) != 0)
213 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
214 		if (signum == SIGCHLD) {
215 			if (nsa->sa_flags & SA_NOCLDSTOP)
216 				p->p_flag |= P_NOCLDSTOP;
217 			else
218 				p->p_flag &= ~P_NOCLDSTOP;
219 			if (nsa->sa_flags & SA_NOCLDWAIT) {
220 				/*
221 				 * Paranoia: since SA_NOCLDWAIT is implemented
222 				 * by reparenting the dying child to PID 1 (and
223 				 * trust it to reap the zombie), PID 1 itself
224 				 * is forbidden to set SA_NOCLDWAIT.
225 				 */
226 				if (p->p_pid == 1)
227 					p->p_flag &= ~P_NOCLDWAIT;
228 				else
229 					p->p_flag |= P_NOCLDWAIT;
230 			} else
231 				p->p_flag &= ~P_NOCLDWAIT;
232 		}
233 		if ((nsa->sa_flags & SA_NODEFER) == 0)
234 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
235 		else
236 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
237 		/*
238 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
239 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
240 		 * to ignore. However, don't put SIGCONT in
241 		 * p_sigctx.ps_sigignore, as we have to restart the process.
242 	 	 */
243 		if (nsa->sa_handler == SIG_IGN ||
244 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
245 						/* never to be seen again */
246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
247 			if (signum != SIGCONT) {
248 						/* easier in psignal */
249 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
250 			}
251 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
252 		} else {
253 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
254 			if (nsa->sa_handler == SIG_DFL)
255 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
256 			else
257 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
258 		}
259 		(void) spl0();
260 	}
261 
262 	return (0);
263 }
264 
265 /* ARGSUSED */
266 int
267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
268 {
269 	struct sys___sigaction14_args /* {
270 		syscallarg(int)				signum;
271 		syscallarg(const struct sigaction *)	nsa;
272 		syscallarg(struct sigaction *)		osa;
273 	} */ *uap = v;
274 	struct proc		*p;
275 	struct sigaction	nsa, osa;
276 	int			error;
277 
278 	if (SCARG(uap, nsa)) {
279 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
280 		if (error)
281 			return (error);
282 	}
283 	p = l->l_proc;
284 	error = sigaction1(p, SCARG(uap, signum),
285 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
286 	    NULL, 0);
287 	if (error)
288 		return (error);
289 	if (SCARG(uap, osa)) {
290 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
291 		if (error)
292 			return (error);
293 	}
294 	return (0);
295 }
296 
297 /* ARGSUSED */
298 int
299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
300 {
301 	struct sys___sigaction_sigtramp_args /* {
302 		syscallarg(int)				signum;
303 		syscallarg(const struct sigaction *)	nsa;
304 		syscallarg(struct sigaction *)		osa;
305 		syscallarg(void *)			tramp;
306 		syscallarg(int)				vers;
307 	} */ *uap = v;
308 	struct proc *p = l->l_proc;
309 	struct sigaction nsa, osa;
310 	int error;
311 
312 	if (SCARG(uap, nsa)) {
313 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
314 		if (error)
315 			return (error);
316 	}
317 	error = sigaction1(p, SCARG(uap, signum),
318 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
319 	    SCARG(uap, tramp), SCARG(uap, vers));
320 	if (error)
321 		return (error);
322 	if (SCARG(uap, osa)) {
323 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
324 		if (error)
325 			return (error);
326 	}
327 	return (0);
328 }
329 
330 /*
331  * Initialize signal state for process 0;
332  * set to ignore signals that are ignored by default and disable the signal
333  * stack.
334  */
335 void
336 siginit(struct proc *p)
337 {
338 	struct sigacts	*ps;
339 	int		signum, prop;
340 
341 	ps = p->p_sigacts;
342 	sigemptyset(&contsigmask);
343 	sigemptyset(&stopsigmask);
344 	sigemptyset(&sigcantmask);
345 	for (signum = 1; signum < NSIG; signum++) {
346 		prop = sigprop[signum];
347 		if (prop & SA_CONT)
348 			sigaddset(&contsigmask, signum);
349 		if (prop & SA_STOP)
350 			sigaddset(&stopsigmask, signum);
351 		if (prop & SA_CANTMASK)
352 			sigaddset(&sigcantmask, signum);
353 		if (prop & SA_IGNORE && signum != SIGCONT)
354 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
355 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
356 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
357 	}
358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
359 	p->p_sigctx.ps_sigwaited = 0;
360 	p->p_flag &= ~P_NOCLDSTOP;
361 
362 	/*
363 	 * Reset stack state to the user stack.
364 	 */
365 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
366 	p->p_sigctx.ps_sigstk.ss_size = 0;
367 	p->p_sigctx.ps_sigstk.ss_sp = 0;
368 
369 	/* One reference. */
370 	ps->sa_refcnt = 1;
371 }
372 
373 /*
374  * Reset signals for an exec of the specified process.
375  */
376 void
377 execsigs(struct proc *p)
378 {
379 	struct sigacts	*ps;
380 	int		signum, prop;
381 
382 	sigactsunshare(p);
383 
384 	ps = p->p_sigacts;
385 
386 	/*
387 	 * Reset caught signals.  Held signals remain held
388 	 * through p_sigctx.ps_sigmask (unless they were caught,
389 	 * and are now ignored by default).
390 	 */
391 	for (signum = 1; signum < NSIG; signum++) {
392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
393 			prop = sigprop[signum];
394 			if (prop & SA_IGNORE) {
395 				if ((prop & SA_CONT) == 0)
396 					sigaddset(&p->p_sigctx.ps_sigignore,
397 					    signum);
398 				sigdelset(&p->p_sigctx.ps_siglist, signum);
399 			}
400 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
401 		}
402 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
403 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
404 	}
405 	sigemptyset(&p->p_sigctx.ps_sigcatch);
406 	p->p_sigctx.ps_sigwaited = 0;
407 	p->p_flag &= ~P_NOCLDSTOP;
408 
409 	/*
410 	 * Reset stack state to the user stack.
411 	 */
412 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
413 	p->p_sigctx.ps_sigstk.ss_size = 0;
414 	p->p_sigctx.ps_sigstk.ss_sp = 0;
415 }
416 
417 int
418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
419 {
420 
421 	if (oss)
422 		*oss = p->p_sigctx.ps_sigmask;
423 
424 	if (nss) {
425 		(void)splsched();	/* XXXSMP */
426 		switch (how) {
427 		case SIG_BLOCK:
428 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
429 			break;
430 		case SIG_UNBLOCK:
431 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
432 			CHECKSIGS(p);
433 			break;
434 		case SIG_SETMASK:
435 			p->p_sigctx.ps_sigmask = *nss;
436 			CHECKSIGS(p);
437 			break;
438 		default:
439 			(void)spl0();	/* XXXSMP */
440 			return (EINVAL);
441 		}
442 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
443 		(void)spl0();		/* XXXSMP */
444 	}
445 
446 	return (0);
447 }
448 
449 /*
450  * Manipulate signal mask.
451  * Note that we receive new mask, not pointer,
452  * and return old mask as return value;
453  * the library stub does the rest.
454  */
455 int
456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
457 {
458 	struct sys___sigprocmask14_args /* {
459 		syscallarg(int)			how;
460 		syscallarg(const sigset_t *)	set;
461 		syscallarg(sigset_t *)		oset;
462 	} */ *uap = v;
463 	struct proc	*p;
464 	sigset_t	nss, oss;
465 	int		error;
466 
467 	if (SCARG(uap, set)) {
468 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
469 		if (error)
470 			return (error);
471 	}
472 	p = l->l_proc;
473 	error = sigprocmask1(p, SCARG(uap, how),
474 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
475 	if (error)
476 		return (error);
477 	if (SCARG(uap, oset)) {
478 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
479 		if (error)
480 			return (error);
481 	}
482 	return (0);
483 }
484 
485 void
486 sigpending1(struct proc *p, sigset_t *ss)
487 {
488 
489 	*ss = p->p_sigctx.ps_siglist;
490 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
491 }
492 
493 /* ARGSUSED */
494 int
495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
496 {
497 	struct sys___sigpending14_args /* {
498 		syscallarg(sigset_t *)	set;
499 	} */ *uap = v;
500 	struct proc	*p;
501 	sigset_t	ss;
502 
503 	p = l->l_proc;
504 	sigpending1(p, &ss);
505 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
506 }
507 
508 int
509 sigsuspend1(struct proc *p, const sigset_t *ss)
510 {
511 	struct sigacts *ps;
512 
513 	ps = p->p_sigacts;
514 	if (ss) {
515 		/*
516 		 * When returning from sigpause, we want
517 		 * the old mask to be restored after the
518 		 * signal handler has finished.  Thus, we
519 		 * save it here and mark the sigctx structure
520 		 * to indicate this.
521 		 */
522 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
523 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
524 		(void) splsched();	/* XXXSMP */
525 		p->p_sigctx.ps_sigmask = *ss;
526 		CHECKSIGS(p);
527 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
528 		(void) spl0();		/* XXXSMP */
529 	}
530 
531 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
532 		/* void */;
533 	/* always return EINTR rather than ERESTART... */
534 	return (EINTR);
535 }
536 
537 /*
538  * Suspend process until signal, providing mask to be set
539  * in the meantime.  Note nonstandard calling convention:
540  * libc stub passes mask, not pointer, to save a copyin.
541  */
542 /* ARGSUSED */
543 int
544 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
545 {
546 	struct sys___sigsuspend14_args /* {
547 		syscallarg(const sigset_t *)	set;
548 	} */ *uap = v;
549 	struct proc	*p;
550 	sigset_t	ss;
551 	int		error;
552 
553 	if (SCARG(uap, set)) {
554 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
555 		if (error)
556 			return (error);
557 	}
558 
559 	p = l->l_proc;
560 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
561 }
562 
563 int
564 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
565 	struct sigaltstack *oss)
566 {
567 
568 	if (oss)
569 		*oss = p->p_sigctx.ps_sigstk;
570 
571 	if (nss) {
572 		if (nss->ss_flags & ~SS_ALLBITS)
573 			return (EINVAL);
574 
575 		if (nss->ss_flags & SS_DISABLE) {
576 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
577 				return (EINVAL);
578 		} else {
579 			if (nss->ss_size < MINSIGSTKSZ)
580 				return (ENOMEM);
581 		}
582 		p->p_sigctx.ps_sigstk = *nss;
583 	}
584 
585 	return (0);
586 }
587 
588 /* ARGSUSED */
589 int
590 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
591 {
592 	struct sys___sigaltstack14_args /* {
593 		syscallarg(const struct sigaltstack *)	nss;
594 		syscallarg(struct sigaltstack *)	oss;
595 	} */ *uap = v;
596 	struct proc		*p;
597 	struct sigaltstack	nss, oss;
598 	int			error;
599 
600 	if (SCARG(uap, nss)) {
601 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
602 		if (error)
603 			return (error);
604 	}
605 	p = l->l_proc;
606 	error = sigaltstack1(p,
607 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
608 	if (error)
609 		return (error);
610 	if (SCARG(uap, oss)) {
611 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
612 		if (error)
613 			return (error);
614 	}
615 	return (0);
616 }
617 
618 /* ARGSUSED */
619 int
620 sys_kill(struct lwp *l, void *v, register_t *retval)
621 {
622 	struct sys_kill_args /* {
623 		syscallarg(int)	pid;
624 		syscallarg(int)	signum;
625 	} */ *uap = v;
626 	struct proc	*cp, *p;
627 	struct pcred	*pc;
628 
629 	cp = l->l_proc;
630 	pc = cp->p_cred;
631 	if ((u_int)SCARG(uap, signum) >= NSIG)
632 		return (EINVAL);
633 	if (SCARG(uap, pid) > 0) {
634 		/* kill single process */
635 		if ((p = pfind(SCARG(uap, pid))) == NULL)
636 			return (ESRCH);
637 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
638 			return (EPERM);
639 		if (SCARG(uap, signum))
640 			psignal(p, SCARG(uap, signum));
641 		return (0);
642 	}
643 	switch (SCARG(uap, pid)) {
644 	case -1:		/* broadcast signal */
645 		return (killpg1(cp, SCARG(uap, signum), 0, 1));
646 	case 0:			/* signal own process group */
647 		return (killpg1(cp, SCARG(uap, signum), 0, 0));
648 	default:		/* negative explicit process group */
649 		return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
650 	}
651 	/* NOTREACHED */
652 }
653 
654 /*
655  * Common code for kill process group/broadcast kill.
656  * cp is calling process.
657  */
658 int
659 killpg1(struct proc *cp, int signum, int pgid, int all)
660 {
661 	struct proc	*p;
662 	struct pcred	*pc;
663 	struct pgrp	*pgrp;
664 	int		nfound;
665 
666 	pc = cp->p_cred;
667 	nfound = 0;
668 	if (all) {
669 		/*
670 		 * broadcast
671 		 */
672 		proclist_lock_read();
673 		LIST_FOREACH(p, &allproc, p_list) {
674 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
675 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
676 				continue;
677 			nfound++;
678 			if (signum)
679 				psignal(p, signum);
680 		}
681 		proclist_unlock_read();
682 	} else {
683 		if (pgid == 0)
684 			/*
685 			 * zero pgid means send to my process group.
686 			 */
687 			pgrp = cp->p_pgrp;
688 		else {
689 			pgrp = pgfind(pgid);
690 			if (pgrp == NULL)
691 				return (ESRCH);
692 		}
693 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
694 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
695 			    !CANSIGNAL(cp, pc, p, signum))
696 				continue;
697 			nfound++;
698 			if (signum && P_ZOMBIE(p) == 0)
699 				psignal(p, signum);
700 		}
701 	}
702 	return (nfound ? 0 : ESRCH);
703 }
704 
705 /*
706  * Send a signal to a process group.
707  */
708 void
709 gsignal(int pgid, int signum)
710 {
711 	struct pgrp *pgrp;
712 
713 	if (pgid && (pgrp = pgfind(pgid)))
714 		pgsignal(pgrp, signum, 0);
715 }
716 
717 /*
718  * Send a signal to a process group. If checktty is 1,
719  * limit to members which have a controlling terminal.
720  */
721 void
722 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
723 {
724 	struct proc *p;
725 
726 	if (pgrp)
727 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
728 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
729 				psignal(p, signum);
730 }
731 
732 /*
733  * Send a signal caused by a trap to the current process.
734  * If it will be caught immediately, deliver it with correct code.
735  * Otherwise, post it normally.
736  */
737 void
738 trapsignal(struct lwp *l, int signum, u_long code)
739 {
740 	struct proc	*p;
741 	struct sigacts	*ps;
742 
743 	p = l->l_proc;
744 	ps = p->p_sigacts;
745 	if ((p->p_flag & P_TRACED) == 0 &&
746 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
747 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
748 		p->p_stats->p_ru.ru_nsignals++;
749 #ifdef KTRACE
750 		if (KTRPOINT(p, KTR_PSIG))
751 			ktrpsig(p, signum,
752 			    SIGACTION_PS(ps, signum).sa_handler,
753 			    &p->p_sigctx.ps_sigmask, code);
754 #endif
755 		psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
756 		(void) splsched();	/* XXXSMP */
757 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
758 		    &p->p_sigctx.ps_sigmask);
759 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
760 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
761 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
762 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
763 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
764 		}
765 		(void) spl0();		/* XXXSMP */
766 	} else {
767 		p->p_sigctx.ps_code = code;	/* XXX for core dump/debugger */
768 		p->p_sigctx.ps_sig = signum;	/* XXX to verify code */
769 		psignal(p, signum);
770 	}
771 }
772 
773 /*
774  * Send the signal to the process.  If the signal has an action, the action
775  * is usually performed by the target process rather than the caller; we add
776  * the signal to the set of pending signals for the process.
777  *
778  * Exceptions:
779  *   o When a stop signal is sent to a sleeping process that takes the
780  *     default action, the process is stopped without awakening it.
781  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
782  *     regardless of the signal action (eg, blocked or ignored).
783  *
784  * Other ignored signals are discarded immediately.
785  *
786  * XXXSMP: Invoked as psignal() or sched_psignal().
787  */
788 void
789 psignal1(struct proc *p, int signum,
790 	int dolock)		/* XXXSMP: works, but icky */
791 {
792 	struct lwp *l, *suspended;
793 	int	s = 0, prop, allsusp;
794 	sig_t	action;
795 
796 #ifdef DIAGNOSTIC
797 	if (signum <= 0 || signum >= NSIG)
798 		panic("psignal signal number");
799 
800 	/* XXXSMP: works, but icky */
801 	if (dolock)
802 		SCHED_ASSERT_UNLOCKED();
803 	else
804 		SCHED_ASSERT_LOCKED();
805 #endif
806 	/*
807 	 * Notify any interested parties in the signal.
808 	 */
809 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
810 
811 	prop = sigprop[signum];
812 
813 	/*
814 	 * If proc is traced, always give parent a chance.
815 	 */
816 	if (p->p_flag & P_TRACED)
817 		action = SIG_DFL;
818 	else {
819 		/*
820 		 * If the signal is being ignored,
821 		 * then we forget about it immediately.
822 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
823 		 * and if it is set to SIG_IGN,
824 		 * action will be SIG_DFL here.)
825 		 */
826 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
827 			return;
828 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
829 			action = SIG_HOLD;
830 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
831 			action = SIG_CATCH;
832 		else {
833 			action = SIG_DFL;
834 
835 			if (prop & SA_KILL && p->p_nice > NZERO)
836 				p->p_nice = NZERO;
837 
838 			/*
839 			 * If sending a tty stop signal to a member of an
840 			 * orphaned process group, discard the signal here if
841 			 * the action is default; don't stop the process below
842 			 * if sleeping, and don't clear any pending SIGCONT.
843 			 */
844 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
845 				return;
846 		}
847 	}
848 
849 	if (prop & SA_CONT)
850 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
851 
852 	if (prop & SA_STOP)
853 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
854 
855 	sigaddset(&p->p_sigctx.ps_siglist, signum);
856 
857 	/* CHECKSIGS() is "inlined" here. */
858 	p->p_sigctx.ps_sigcheck = 1;
859 
860 	/*
861 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
862 	 * please!), check if anything waits on it. If yes, clear the
863 	 * pending signal from siglist set, save it to ps_sigwaited,
864 	 * clear sigwait list, and wakeup any sigwaiters.
865 	 * The signal won't be processed further here.
866 	 */
867 	if ((prop & SA_CANTMASK) == 0
868 	    && p->p_sigctx.ps_sigwaited < 0
869 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)) {
870 		sigdelset(&p->p_sigctx.ps_siglist, signum);
871 		p->p_sigctx.ps_sigwaited = signum;
872 		sigemptyset(&p->p_sigctx.ps_sigwait);
873 
874 		if (dolock)
875 			wakeup_one(&p->p_sigctx.ps_sigwait);
876 		else
877 			sched_wakeup(&p->p_sigctx.ps_sigwait);
878 		return;
879 	}
880 
881 	/*
882 	 * Defer further processing for signals which are held,
883 	 * except that stopped processes must be continued by SIGCONT.
884 	 */
885 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
886 		return;
887 	/* XXXSMP: works, but icky */
888 	if (dolock)
889 		SCHED_LOCK(s);
890 
891 	if (p->p_nrlwps > 0) {
892 		/*
893 		 * At least one LWP is running or on a run queue.
894 		 * The signal will be noticed when one of them returns
895 		 * to userspace.
896 		 */
897 		signotify(p);
898 		/*
899 		 * The signal will be noticed very soon.
900 		 */
901 		goto out;
902 	} else {
903 		/* Process is sleeping or stopped */
904 		if (p->p_flag & P_SA) {
905 			l = p->p_sa->sa_idle;
906 		} else {
907 			/*
908 			 * Find out if any of the sleeps are interruptable,
909 			 * and if all the live LWPs remaining are suspended.
910 			 */
911 			allsusp = 1;
912 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
913 				if (l->l_stat == LSSLEEP &&
914 				    l->l_flag & L_SINTR)
915 					break;
916 				if (l->l_stat == LSSUSPENDED)
917 					suspended = l;
918 				else if ((l->l_stat != LSZOMB) &&
919 				         (l->l_stat != LSDEAD))
920 					allsusp = 0;
921 			}
922 		}
923 		if (p->p_stat == SACTIVE) {
924 			/* All LWPs must be sleeping */
925 			KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
926 
927 			if (l != NULL && (p->p_flag & P_TRACED))
928 				goto run;
929 
930 			/*
931 			 * If SIGCONT is default (or ignored) and process is
932 			 * asleep, we are finished; the process should not
933 			 * be awakened.
934 			 */
935 			if ((prop & SA_CONT) && action == SIG_DFL) {
936 				sigdelset(&p->p_sigctx.ps_siglist, signum);
937 				goto out;
938 			}
939 
940 			/*
941 			 * When a sleeping process receives a stop
942 			 * signal, process immediately if possible.
943 			 */
944 			if ((prop & SA_STOP) && action == SIG_DFL) {
945 				/*
946 				 * If a child holding parent blocked,
947 				 * stopping could cause deadlock.
948 				 */
949 				if (p->p_flag & P_PPWAIT)
950 					goto out;
951 				sigdelset(&p->p_sigctx.ps_siglist, signum);
952 				p->p_xstat = signum;
953 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
954 					/*
955 					 * XXXSMP: recursive call; don't lock
956 					 * the second time around.
957 					 */
958 					sched_psignal(p->p_pptr, SIGCHLD);
959 				}
960 				proc_stop(p);	/* XXXSMP: recurse? */
961 				goto out;
962 			}
963 
964 			if (l == NULL) {
965 				/*
966 				 * Special case: SIGKILL of a process
967 				 * which is entirely composed of
968 				 * suspended LWPs should succeed. We
969 				 * make this happen by unsuspending one of
970 				 * them.
971 				 */
972 				if (allsusp && (signum == SIGKILL))
973 					lwp_continue(suspended);
974 				goto out;
975 			}
976 			/*
977 			 * All other (caught or default) signals
978 			 * cause the process to run.
979 			 */
980 			goto runfast;
981 			/*NOTREACHED*/
982 		} else if (p->p_stat == SSTOP) {
983 			/* Process is stopped */
984 			/*
985 			 * If traced process is already stopped,
986 			 * then no further action is necessary.
987 			 */
988 			if (p->p_flag & P_TRACED)
989 				goto out;
990 
991 			/*
992 			 * Kill signal always sets processes running,
993 			 * if possible.
994 			 */
995 			if (signum == SIGKILL) {
996 				l = proc_unstop(p);
997 				if (l)
998 					goto runfast;
999 				goto out;
1000 			}
1001 
1002 			if (prop & SA_CONT) {
1003 				/*
1004 				 * If SIGCONT is default (or ignored),
1005 				 * we continue the process but don't
1006 				 * leave the signal in ps_siglist, as
1007 				 * it has no further action.  If
1008 				 * SIGCONT is held, we continue the
1009 				 * process and leave the signal in
1010 				 * ps_siglist.  If the process catches
1011 				 * SIGCONT, let it handle the signal
1012 				 * itself.  If it isn't waiting on an
1013 				 * event, then it goes back to run
1014 				 * state.  Otherwise, process goes
1015 				 * back to sleep state.
1016 				 */
1017 				if (action == SIG_DFL)
1018 					sigdelset(&p->p_sigctx.ps_siglist,
1019 					signum);
1020 				l = proc_unstop(p);
1021 				if (l && (action == SIG_CATCH))
1022 					goto runfast;
1023 				goto out;
1024 			}
1025 
1026 			if (prop & SA_STOP) {
1027 				/*
1028 				 * Already stopped, don't need to stop again.
1029 				 * (If we did the shell could get confused.)
1030 				 */
1031 				sigdelset(&p->p_sigctx.ps_siglist, signum);
1032 				goto out;
1033 			}
1034 
1035 			/*
1036 			 * If a lwp is sleeping interruptibly, then
1037 			 * wake it up; it will run until the kernel
1038 			 * boundary, where it will stop in issignal(),
1039 			 * since p->p_stat is still SSTOP. When the
1040 			 * process is continued, it will be made
1041 			 * runnable and can look at the signal.
1042 			 */
1043 			if (l)
1044 				goto run;
1045 			goto out;
1046 		} else {
1047 			/* Else what? */
1048 			panic("psignal: Invalid process state %d.",
1049 				p->p_stat);
1050 		}
1051 	}
1052 	/*NOTREACHED*/
1053 
1054  runfast:
1055 	/*
1056 	 * Raise priority to at least PUSER.
1057 	 */
1058 	if (l->l_priority > PUSER)
1059 		l->l_priority = PUSER;
1060  run:
1061 	setrunnable(l);		/* XXXSMP: recurse? */
1062  out:
1063 	/* XXXSMP: works, but icky */
1064 	if (dolock)
1065 		SCHED_UNLOCK(s);
1066 }
1067 
1068 void
1069 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
1070 {
1071 	struct proc *p = l->l_proc;
1072 	struct lwp *le, *li;
1073 	siginfo_t *si;
1074 
1075 	if (p->p_flag & P_SA) {
1076 		si = pool_get(&siginfo_pool, PR_WAITOK);
1077 		si->si_signo = sig;
1078 		si->si_errno = 0;
1079 		si->si_code = code;
1080 		le = li = NULL;
1081 		if (code)
1082 			le = l;
1083 		else
1084 			li = l;
1085 
1086 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1087 			    sizeof(siginfo_t), si);
1088 		return;
1089 	}
1090 
1091 	(*p->p_emul->e_sendsig)(sig, mask, code);
1092 }
1093 
1094 static __inline int firstsig(const sigset_t *);
1095 
1096 static __inline int
1097 firstsig(const sigset_t *ss)
1098 {
1099 	int sig;
1100 
1101 	sig = ffs(ss->__bits[0]);
1102 	if (sig != 0)
1103 		return (sig);
1104 #if NSIG > 33
1105 	sig = ffs(ss->__bits[1]);
1106 	if (sig != 0)
1107 		return (sig + 32);
1108 #endif
1109 #if NSIG > 65
1110 	sig = ffs(ss->__bits[2]);
1111 	if (sig != 0)
1112 		return (sig + 64);
1113 #endif
1114 #if NSIG > 97
1115 	sig = ffs(ss->__bits[3]);
1116 	if (sig != 0)
1117 		return (sig + 96);
1118 #endif
1119 	return (0);
1120 }
1121 
1122 /*
1123  * If the current process has received a signal (should be caught or cause
1124  * termination, should interrupt current syscall), return the signal number.
1125  * Stop signals with default action are processed immediately, then cleared;
1126  * they aren't returned.  This is checked after each entry to the system for
1127  * a syscall or trap (though this can usually be done without calling issignal
1128  * by checking the pending signal masks in the CURSIG macro.) The normal call
1129  * sequence is
1130  *
1131  *	while (signum = CURSIG(curlwp))
1132  *		postsig(signum);
1133  */
1134 int
1135 issignal(struct lwp *l)
1136 {
1137 	struct proc	*p = l->l_proc;
1138 	int		s = 0, signum, prop;
1139 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1140 	sigset_t	ss;
1141 
1142 	if (p->p_stat == SSTOP) {
1143 		/*
1144 		 * The process is stopped/stopping. Stop ourselves now that
1145 		 * we're on the kernel/userspace boundary.
1146 		 */
1147 		if (dolock)
1148 			SCHED_LOCK(s);
1149 		l->l_stat = LSSTOP;
1150 		p->p_nrlwps--;
1151 		if (p->p_flag & P_TRACED)
1152 			goto sigtraceswitch;
1153 		else
1154 			goto sigswitch;
1155 	}
1156 	for (;;) {
1157 		sigpending1(p, &ss);
1158 		if (p->p_flag & P_PPWAIT)
1159 			sigminusset(&stopsigmask, &ss);
1160 		signum = firstsig(&ss);
1161 		if (signum == 0) {		 	/* no signal to send */
1162 			p->p_sigctx.ps_sigcheck = 0;
1163 			if (locked && dolock)
1164 				SCHED_LOCK(s);
1165 			return (0);
1166 		}
1167 							/* take the signal! */
1168 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1169 
1170 		/*
1171 		 * We should see pending but ignored signals
1172 		 * only if P_TRACED was on when they were posted.
1173 		 */
1174 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1175 		    (p->p_flag & P_TRACED) == 0)
1176 			continue;
1177 
1178 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1179 			/*
1180 			 * If traced, always stop, and stay
1181 			 * stopped until released by the debugger.
1182 			 */
1183 			p->p_xstat = signum;
1184 			if ((p->p_flag & P_FSTRACE) == 0)
1185 				psignal1(p->p_pptr, SIGCHLD, dolock);
1186 			if (dolock)
1187 				SCHED_LOCK(s);
1188 			proc_stop(p);
1189 		sigtraceswitch:
1190 			mi_switch(l, NULL);
1191 			SCHED_ASSERT_UNLOCKED();
1192 			if (dolock)
1193 				splx(s);
1194 			else
1195 				dolock = 1;
1196 
1197 			/*
1198 			 * If we are no longer being traced, or the parent
1199 			 * didn't give us a signal, look for more signals.
1200 			 */
1201 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1202 				continue;
1203 
1204 			/*
1205 			 * If the new signal is being masked, look for other
1206 			 * signals.
1207 			 */
1208 			signum = p->p_xstat;
1209 			p->p_xstat = 0;
1210 			/*
1211 			 * `p->p_sigctx.ps_siglist |= mask' is done
1212 			 * in setrunnable().
1213 			 */
1214 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1215 				continue;
1216 							/* take the signal! */
1217 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1218 		}
1219 
1220 		prop = sigprop[signum];
1221 
1222 		/*
1223 		 * Decide whether the signal should be returned.
1224 		 * Return the signal's number, or fall through
1225 		 * to clear it from the pending mask.
1226 		 */
1227 		switch ((long)SIGACTION(p, signum).sa_handler) {
1228 
1229 		case (long)SIG_DFL:
1230 			/*
1231 			 * Don't take default actions on system processes.
1232 			 */
1233 			if (p->p_pid <= 1) {
1234 #ifdef DIAGNOSTIC
1235 				/*
1236 				 * Are you sure you want to ignore SIGSEGV
1237 				 * in init? XXX
1238 				 */
1239 				printf("Process (pid %d) got signal %d\n",
1240 				    p->p_pid, signum);
1241 #endif
1242 				break;		/* == ignore */
1243 			}
1244 			/*
1245 			 * If there is a pending stop signal to process
1246 			 * with default action, stop here,
1247 			 * then clear the signal.  However,
1248 			 * if process is member of an orphaned
1249 			 * process group, ignore tty stop signals.
1250 			 */
1251 			if (prop & SA_STOP) {
1252 				if (p->p_flag & P_TRACED ||
1253 		    		    (p->p_pgrp->pg_jobc == 0 &&
1254 				    prop & SA_TTYSTOP))
1255 					break;	/* == ignore */
1256 				p->p_xstat = signum;
1257 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1258 					psignal1(p->p_pptr, SIGCHLD, dolock);
1259 				if (dolock)
1260 					SCHED_LOCK(s);
1261 				proc_stop(p);
1262 			sigswitch:
1263 				mi_switch(l, NULL);
1264 				SCHED_ASSERT_UNLOCKED();
1265 				if (dolock)
1266 					splx(s);
1267 				else
1268 					dolock = 1;
1269 				break;
1270 			} else if (prop & SA_IGNORE) {
1271 				/*
1272 				 * Except for SIGCONT, shouldn't get here.
1273 				 * Default action is to ignore; drop it.
1274 				 */
1275 				break;		/* == ignore */
1276 			} else
1277 				goto keep;
1278 			/*NOTREACHED*/
1279 
1280 		case (long)SIG_IGN:
1281 			/*
1282 			 * Masking above should prevent us ever trying
1283 			 * to take action on an ignored signal other
1284 			 * than SIGCONT, unless process is traced.
1285 			 */
1286 #ifdef DEBUG_ISSIGNAL
1287 			if ((prop & SA_CONT) == 0 &&
1288 			    (p->p_flag & P_TRACED) == 0)
1289 				printf("issignal\n");
1290 #endif
1291 			break;		/* == ignore */
1292 
1293 		default:
1294 			/*
1295 			 * This signal has an action, let
1296 			 * postsig() process it.
1297 			 */
1298 			goto keep;
1299 		}
1300 	}
1301 	/* NOTREACHED */
1302 
1303  keep:
1304 						/* leave the signal for later */
1305 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1306 	CHECKSIGS(p);
1307 	if (locked && dolock)
1308 		SCHED_LOCK(s);
1309 	return (signum);
1310 }
1311 
1312 /*
1313  * Put the argument process into the stopped state and notify the parent
1314  * via wakeup.  Signals are handled elsewhere.  The process must not be
1315  * on the run queue.
1316  */
1317 static void
1318 proc_stop(struct proc *p)
1319 {
1320 	struct lwp *l;
1321 
1322 	SCHED_ASSERT_LOCKED();
1323 
1324 	/* XXX lock process LWP state */
1325 	p->p_stat = SSTOP;
1326 	p->p_flag &= ~P_WAITED;
1327 
1328 	/*
1329 	 * Put as many LWP's as possible in stopped state.
1330 	 * Sleeping ones will notice the stopped state as they try to
1331 	 * return to userspace.
1332 	 */
1333 
1334 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1335 		if (l->l_stat == LSONPROC) {
1336 			/* XXX SMP this assumes that a LWP that is LSONPROC
1337 			 * is curlwp and hence is about to be mi_switched
1338 			 * away; the only callers of proc_stop() are:
1339 			 * - psignal
1340 			 * - issignal()
1341 			 * For the former, proc_stop() is only called when
1342 			 * no processes are running, so we don't worry.
1343 			 * For the latter, proc_stop() is called right
1344 			 * before mi_switch().
1345 			 */
1346 			l->l_stat = LSSTOP;
1347 			p->p_nrlwps--;
1348 		} else if (l->l_stat == LSRUN) {
1349 			/* Remove LWP from the run queue */
1350 			remrunqueue(l);
1351 			l->l_stat = LSSTOP;
1352 			p->p_nrlwps--;
1353 		} else if ((l->l_stat == LSSLEEP) ||
1354 		    (l->l_stat == LSSUSPENDED) ||
1355 		    (l->l_stat == LSZOMB) ||
1356 		    (l->l_stat == LSDEAD)) {
1357 			/*
1358 			 * Don't do anything; let sleeping LWPs
1359 			 * discover the stopped state of the process
1360 			 * on their way out of the kernel; otherwise,
1361 			 * things like NFS threads that sleep with
1362 			 * locks will block the rest of the system
1363 			 * from getting any work done.
1364 			 *
1365 			 * Suspended/dead/zombie LWPs aren't going
1366 			 * anywhere, so we don't need to touch them.
1367 			 */
1368 		}
1369 #ifdef DIAGNOSTIC
1370 		else {
1371 			panic("proc_stop: process %d lwp %d "
1372 			      "in unstoppable state %d.\n",
1373 			    p->p_pid, l->l_lid, l->l_stat);
1374 		}
1375 #endif
1376 	}
1377 	/* XXX unlock process LWP state */
1378 
1379 	sched_wakeup((caddr_t)p->p_pptr);
1380 }
1381 
1382 /*
1383  * Given a process in state SSTOP, set the state back to SACTIVE and
1384  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1385  *
1386  * If no LWPs ended up runnable (and therefore able to take a signal),
1387  * return a LWP that is sleeping interruptably. The caller can wake
1388  * that LWP up to take a signal.
1389  */
1390 struct lwp *
1391 proc_unstop(struct proc *p)
1392 {
1393 	struct lwp *l, *lr = NULL;
1394 	int cantake = 0;
1395 
1396 	SCHED_ASSERT_LOCKED();
1397 
1398 	/*
1399 	 * Our caller wants to be informed if there are only sleeping
1400 	 * and interruptable LWPs left after we have run so that it
1401 	 * can invoke setrunnable() if required - return one of the
1402 	 * interruptable LWPs if this is the case.
1403 	 */
1404 
1405 	p->p_stat = SACTIVE;
1406 	if (p->p_flag & P_SA) {
1407 		/*
1408 		 * Preferentially select the idle LWP as the interruptable
1409 		 * LWP to return if it exists.
1410 		 */
1411 		lr = p->p_sa->sa_idle;
1412 		if (lr != NULL)
1413 			cantake = 1;
1414 	}
1415 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1416 		if (l->l_stat == LSRUN) {
1417 			lr = NULL;
1418 			cantake = 1;
1419 		}
1420 		if (l->l_stat != LSSTOP)
1421 			continue;
1422 
1423 		if (l->l_wchan != NULL) {
1424 			l->l_stat = LSSLEEP;
1425 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1426 				lr = l;
1427 				cantake = 1;
1428 			}
1429 		} else {
1430 			setrunnable(l);
1431 			lr = NULL;
1432 			cantake = 1;
1433 		}
1434 	}
1435 
1436 	return lr;
1437 }
1438 
1439 /*
1440  * Take the action for the specified signal
1441  * from the current set of pending signals.
1442  */
1443 void
1444 postsig(int signum)
1445 {
1446 	struct lwp *l;
1447 	struct proc	*p;
1448 	struct sigacts	*ps;
1449 	sig_t		action;
1450 	u_long		code;
1451 	sigset_t	*returnmask;
1452 
1453 	l = curlwp;
1454 	p = l->l_proc;
1455 	ps = p->p_sigacts;
1456 #ifdef DIAGNOSTIC
1457 	if (signum == 0)
1458 		panic("postsig");
1459 #endif
1460 
1461 	KERNEL_PROC_LOCK(l);
1462 
1463 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1464 	action = SIGACTION_PS(ps, signum).sa_handler;
1465 #ifdef KTRACE
1466 	if (KTRPOINT(p, KTR_PSIG))
1467 		ktrpsig(p,
1468 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1469 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1470 #endif
1471 	if (action == SIG_DFL) {
1472 		/*
1473 		 * Default action, where the default is to kill
1474 		 * the process.  (Other cases were ignored above.)
1475 		 */
1476 		sigexit(l, signum);
1477 		/* NOTREACHED */
1478 	} else {
1479 		/*
1480 		 * If we get here, the signal must be caught.
1481 		 */
1482 #ifdef DIAGNOSTIC
1483 		if (action == SIG_IGN ||
1484 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1485 			panic("postsig action");
1486 #endif
1487 		/*
1488 		 * Set the new mask value and also defer further
1489 		 * occurrences of this signal.
1490 		 *
1491 		 * Special case: user has done a sigpause.  Here the
1492 		 * current mask is not of interest, but rather the
1493 		 * mask from before the sigpause is what we want
1494 		 * restored after the signal processing is completed.
1495 		 */
1496 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1497 			returnmask = &p->p_sigctx.ps_oldmask;
1498 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1499 		} else
1500 			returnmask = &p->p_sigctx.ps_sigmask;
1501 		p->p_stats->p_ru.ru_nsignals++;
1502 		if (p->p_sigctx.ps_sig != signum) {
1503 			code = 0;
1504 		} else {
1505 			code = p->p_sigctx.ps_code;
1506 			p->p_sigctx.ps_code = 0;
1507 			p->p_sigctx.ps_sig = 0;
1508 		}
1509 		psendsig(l, signum, returnmask, code);
1510 		(void) splsched();	/* XXXSMP */
1511 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1512 		    &p->p_sigctx.ps_sigmask);
1513 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1514 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1515 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1516 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1517 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1518 		}
1519 		(void) spl0();		/* XXXSMP */
1520 	}
1521 
1522 	KERNEL_PROC_UNLOCK(l);
1523 }
1524 
1525 /*
1526  * Kill the current process for stated reason.
1527  */
1528 void
1529 killproc(struct proc *p, const char *why)
1530 {
1531 
1532 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1533 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1534 	psignal(p, SIGKILL);
1535 }
1536 
1537 /*
1538  * Force the current process to exit with the specified signal, dumping core
1539  * if appropriate.  We bypass the normal tests for masked and caught signals,
1540  * allowing unrecoverable failures to terminate the process without changing
1541  * signal state.  Mark the accounting record with the signal termination.
1542  * If dumping core, save the signal number for the debugger.  Calls exit and
1543  * does not return.
1544  */
1545 
1546 #if defined(DEBUG)
1547 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1548 #else
1549 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1550 #endif
1551 
1552 static	const char logcoredump[] =
1553 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1554 static	const char lognocoredump[] =
1555 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1556 
1557 /* Wrapper function for use in p_userret */
1558 static void
1559 lwp_coredump_hook(struct lwp *l, void *arg)
1560 {
1561 	int s;
1562 
1563 	/*
1564 	 * Suspend ourselves, so that the kernel stack and therefore
1565 	 * the userland registers saved in the trapframe are around
1566 	 * for coredump() to write them out.
1567 	 */
1568 	KERNEL_PROC_LOCK(l);
1569 	l->l_flag &= ~L_DETACHED;
1570 	SCHED_LOCK(s);
1571 	l->l_stat = LSSUSPENDED;
1572 	l->l_proc->p_nrlwps--;
1573 	/* XXX NJWLWP check if this makes sense here: */
1574 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1575 	mi_switch(l, NULL);
1576 	SCHED_ASSERT_UNLOCKED();
1577 	splx(s);
1578 
1579 	lwp_exit(l);
1580 }
1581 
1582 void
1583 sigexit(struct lwp *l, int signum)
1584 {
1585 	struct proc	*p;
1586 	struct lwp	*l2;
1587 	int		error, exitsig;
1588 
1589 	p = l->l_proc;
1590 
1591 	/*
1592 	 * Don't permit coredump() or exit1() multiple times
1593 	 * in the same process.
1594 	 */
1595 	if (p->p_flag & P_WEXIT) {
1596 		KERNEL_PROC_UNLOCK(l);
1597 		(*p->p_userret)(l, p->p_userret_arg);
1598 	}
1599 	p->p_flag |= P_WEXIT;
1600 	/* We don't want to switch away from exiting. */
1601 	/* XXX multiprocessor: stop LWPs on other processors. */
1602 	if (p->p_flag & P_SA) {
1603 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1604 		    l2->l_flag &= ~L_SA;
1605 		p->p_flag &= ~P_SA;
1606 	}
1607 
1608 	/* Make other LWPs stick around long enough to be dumped */
1609 	p->p_userret = lwp_coredump_hook;
1610 	p->p_userret_arg = NULL;
1611 
1612 	exitsig = signum;
1613 	p->p_acflag |= AXSIG;
1614 	if (sigprop[signum] & SA_CORE) {
1615 		p->p_sigctx.ps_sig = signum;
1616 		if ((error = coredump(l)) == 0)
1617 			exitsig |= WCOREFLAG;
1618 
1619 		if (kern_logsigexit) {
1620 			/* XXX What if we ever have really large UIDs? */
1621 			int uid = p->p_cred && p->p_ucred ?
1622 				(int) p->p_ucred->cr_uid : -1;
1623 
1624 			if (error)
1625 				log(LOG_INFO, lognocoredump, p->p_pid,
1626 				    p->p_comm, uid, signum, error);
1627 			else
1628 				log(LOG_INFO, logcoredump, p->p_pid,
1629 				    p->p_comm, uid, signum);
1630 		}
1631 
1632 	}
1633 
1634 	exit1(l, W_EXITCODE(0, exitsig));
1635 	/* NOTREACHED */
1636 }
1637 
1638 /*
1639  * Dump core, into a file named "progname.core" or "core" (depending on the
1640  * value of shortcorename), unless the process was setuid/setgid.
1641  */
1642 int
1643 coredump(struct lwp *l)
1644 {
1645 	struct vnode		*vp;
1646 	struct proc		*p;
1647 	struct vmspace		*vm;
1648 	struct ucred		*cred;
1649 	struct nameidata	nd;
1650 	struct vattr		vattr;
1651 	int			error, error1;
1652 	char			name[MAXPATHLEN];
1653 
1654 	p = l->l_proc;
1655 	vm = p->p_vmspace;
1656 	cred = p->p_cred->pc_ucred;
1657 
1658 	/*
1659 	 * Make sure the process has not set-id, to prevent data leaks.
1660 	 */
1661 	if (p->p_flag & P_SUGID)
1662 		return (EPERM);
1663 
1664 	/*
1665 	 * Refuse to core if the data + stack + user size is larger than
1666 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
1667 	 * data.
1668 	 */
1669 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1670 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1671 		return (EFBIG);		/* better error code? */
1672 
1673 	/*
1674 	 * The core dump will go in the current working directory.  Make
1675 	 * sure that the directory is still there and that the mount flags
1676 	 * allow us to write core dumps there.
1677 	 */
1678 	vp = p->p_cwdi->cwdi_cdir;
1679 	if (vp->v_mount == NULL ||
1680 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1681 		return (EPERM);
1682 
1683 	error = build_corename(p, name);
1684 	if (error)
1685 		return error;
1686 
1687 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1688 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1689 	if (error)
1690 		return (error);
1691 	vp = nd.ni_vp;
1692 
1693 	/* Don't dump to non-regular files or files with links. */
1694 	if (vp->v_type != VREG ||
1695 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1696 		error = EINVAL;
1697 		goto out;
1698 	}
1699 	VATTR_NULL(&vattr);
1700 	vattr.va_size = 0;
1701 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
1702 	VOP_SETATTR(vp, &vattr, cred, p);
1703 	p->p_acflag |= ACORE;
1704 
1705 	/* Now dump the actual core file. */
1706 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
1707  out:
1708 	VOP_UNLOCK(vp, 0);
1709 	error1 = vn_close(vp, FWRITE, cred, p);
1710 	if (error == 0)
1711 		error = error1;
1712 	return (error);
1713 }
1714 
1715 /*
1716  * Nonexistent system call-- signal process (may want to handle it).
1717  * Flag error in case process won't see signal immediately (blocked or ignored).
1718  */
1719 /* ARGSUSED */
1720 int
1721 sys_nosys(struct lwp *l, void *v, register_t *retval)
1722 {
1723 	struct proc 	*p;
1724 
1725 	p = l->l_proc;
1726 	psignal(p, SIGSYS);
1727 	return (ENOSYS);
1728 }
1729 
1730 static int
1731 build_corename(struct proc *p, char dst[MAXPATHLEN])
1732 {
1733 	const char	*s;
1734 	char		*d, *end;
1735 	int		i;
1736 
1737 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1738 	    *s != '\0'; s++) {
1739 		if (*s == '%') {
1740 			switch (*(s + 1)) {
1741 			case 'n':
1742 				i = snprintf(d, end - d, "%s", p->p_comm);
1743 				break;
1744 			case 'p':
1745 				i = snprintf(d, end - d, "%d", p->p_pid);
1746 				break;
1747 			case 'u':
1748 				i = snprintf(d, end - d, "%.*s",
1749 				    (int)sizeof p->p_pgrp->pg_session->s_login,
1750 				    p->p_pgrp->pg_session->s_login);
1751 				break;
1752 			case 't':
1753 				i = snprintf(d, end - d, "%ld",
1754 				    p->p_stats->p_start.tv_sec);
1755 				break;
1756 			default:
1757 				goto copy;
1758 			}
1759 			d += i;
1760 			s++;
1761 		} else {
1762  copy:			*d = *s;
1763 			d++;
1764 		}
1765 		if (d >= end)
1766 			return (ENAMETOOLONG);
1767 	}
1768 	*d = '\0';
1769 	return 0;
1770 }
1771 
1772 void
1773 getucontext(struct lwp *l, ucontext_t *ucp)
1774 {
1775 	struct proc	*p;
1776 
1777 	p = l->l_proc;
1778 
1779 	ucp->uc_flags = 0;
1780 	ucp->uc_link = l->l_ctxlink;
1781 
1782 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
1783 	ucp->uc_flags |= _UC_SIGMASK;
1784 
1785 	/*
1786 	 * The (unsupplied) definition of the `current execution stack'
1787 	 * in the System V Interface Definition appears to allow returning
1788 	 * the main context stack.
1789 	 */
1790 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
1791 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
1792 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
1793 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
1794 	} else {
1795 		/* Simply copy alternate signal execution stack. */
1796 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
1797 	}
1798 	ucp->uc_flags |= _UC_STACK;
1799 
1800 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
1801 }
1802 
1803 /* ARGSUSED */
1804 int
1805 sys_getcontext(struct lwp *l, void *v, register_t *retval)
1806 {
1807 	struct sys_getcontext_args /* {
1808 		syscallarg(struct __ucontext *) ucp;
1809 	} */ *uap = v;
1810 	ucontext_t uc;
1811 
1812 	getucontext(l, &uc);
1813 
1814 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
1815 }
1816 
1817 int
1818 setucontext(struct lwp *l, const ucontext_t *ucp)
1819 {
1820 	struct proc	*p;
1821 	int		error;
1822 
1823 	p = l->l_proc;
1824 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
1825 		return (error);
1826 	l->l_ctxlink = ucp->uc_link;
1827 	/*
1828 	 * We might want to take care of the stack portion here but currently
1829 	 * don't; see the comment in getucontext().
1830 	 */
1831 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
1832 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
1833 
1834 	return 0;
1835 }
1836 
1837 /* ARGSUSED */
1838 int
1839 sys_setcontext(struct lwp *l, void *v, register_t *retval)
1840 {
1841 	struct sys_setcontext_args /* {
1842 		syscallarg(const ucontext_t *) ucp;
1843 	} */ *uap = v;
1844 	ucontext_t uc;
1845 	int error;
1846 
1847 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
1848 		exit1(l, W_EXITCODE(0, 0));
1849 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
1850 	    (error = setucontext(l, &uc)) != 0)
1851 		return (error);
1852 
1853 	return (EJUSTRETURN);
1854 }
1855 
1856 /*
1857  * sigtimedwait(2) system call, used also for implementation
1858  * of sigwaitinfo() and sigwait().
1859  *
1860  * This only handles single LWP in signal wait. libpthread provides
1861  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
1862  *
1863  * XXX no support for queued signals, si_code is always SI_USER.
1864  */
1865 int
1866 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
1867 {
1868 	struct sys___sigtimedwait_args /* {
1869 		syscallarg(const sigset_t *) set;
1870 		syscallarg(siginfo_t *) info;
1871 		syscallarg(struct timespec *) timeout;
1872 	} */ *uap = v;
1873 	sigset_t waitset, twaitset;
1874 	struct proc *p = l->l_proc;
1875 	int error, signum, s;
1876 	int timo = 0;
1877 	struct timeval tvstart;
1878 	struct timespec ts;
1879 
1880 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
1881 		return (error);
1882 
1883 	/*
1884 	 * Silently ignore SA_CANTMASK signals. psignal1() would
1885 	 * ignore SA_CANTMASK signals in waitset, we do this
1886 	 * only for the below siglist check.
1887 	 */
1888 	sigminusset(&sigcantmask, &waitset);
1889 
1890 	/*
1891 	 * First scan siglist and check if there is signal from
1892 	 * our waitset already pending.
1893 	 */
1894 	twaitset = waitset;
1895 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
1896 	if ((signum = firstsig(&twaitset))) {
1897 		/* found pending signal */
1898 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1899 		goto sig;
1900 	}
1901 
1902 	/*
1903 	 * Calculate timeout, if it was specified.
1904 	 */
1905 	if (SCARG(uap, timeout)) {
1906 		uint64_t ms;
1907 
1908 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
1909 			return (error);
1910 
1911 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
1912 		timo = mstohz(ms);
1913 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
1914 			timo = 1;
1915 		if (timo <= 0)
1916 			return (EAGAIN);
1917 
1918 		/*
1919 		 * Remember current mono_time, it would be used in
1920 		 * ECANCELED/ERESTART case.
1921 		 */
1922 		s = splclock();
1923 		tvstart = mono_time;
1924 		splx(s);
1925 	}
1926 
1927 	/*
1928 	 * Setup ps_sigwait list.
1929 	 */
1930 	p->p_sigctx.ps_sigwaited = -1;
1931 	p->p_sigctx.ps_sigwait = waitset;
1932 
1933 	/*
1934 	 * Wait for signal to arrive. We can either be woken up or
1935 	 * time out.
1936 	 */
1937 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
1938 
1939 	/*
1940 	 * Check if a signal from our wait set has arrived, or if it
1941 	 * was mere wakeup.
1942 	 */
1943 	if (!error) {
1944 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
1945 			/* wakeup via _lwp_wakeup() */
1946 			error = ECANCELED;
1947 		}
1948 	}
1949 
1950 	/*
1951 	 * On error, clear sigwait indication. psignal1() sets it
1952 	 * in !error case.
1953 	 */
1954 	if (error) {
1955 		p->p_sigctx.ps_sigwaited = 0;
1956 
1957 		/*
1958 		 * If the sleep was interrupted (either by signal or wakeup),
1959 		 * update the timeout and copyout new value back.
1960 		 * It would be used when the syscall would be restarted
1961 		 * or called again.
1962 		 */
1963 		if (timo && (error == ERESTART || error == ECANCELED)) {
1964 			struct timeval tvnow, tvtimo;
1965 			int err;
1966 
1967 			s = splclock();
1968 			tvnow = mono_time;
1969 			splx(s);
1970 
1971 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
1972 
1973 			/* compute how much time has passed since start */
1974 			timersub(&tvnow, &tvstart, &tvnow);
1975 			/* substract passed time from timeout */
1976 			timersub(&tvtimo, &tvnow, &tvtimo);
1977 
1978 			if (tvtimo.tv_sec < 0)
1979 				return (EAGAIN);
1980 
1981 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
1982 
1983 			/* copy updated timeout to userland */
1984 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
1985 				return (err);
1986 		}
1987 
1988 		return (error);
1989 	}
1990 
1991 	/*
1992 	 * If a signal from the wait set arrived, copy it to userland.
1993 	 * XXX no queued signals for now
1994 	 */
1995 	if (signum > 0) {
1996 		siginfo_t si;
1997 
1998  sig:
1999 		memset(&si, 0, sizeof(si));
2000 		si.si_signo = signum;
2001 		si.si_code = SI_USER;
2002 
2003 		error = copyout(&si, SCARG(uap, info), sizeof(si));
2004 		if (error)
2005 			return (error);
2006 	}
2007 
2008 	return (0);
2009 }
2010 
2011 /*
2012  * Returns true if signal is ignored or masked for passed process.
2013  */
2014 int
2015 sigismasked(struct proc *p, int sig)
2016 {
2017 
2018 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2019 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2020 }
2021 
2022 static int
2023 filt_sigattach(struct knote *kn)
2024 {
2025 	struct proc *p = curproc;
2026 
2027 	kn->kn_ptr.p_proc = p;
2028 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2029 
2030 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2031 
2032 	return (0);
2033 }
2034 
2035 static void
2036 filt_sigdetach(struct knote *kn)
2037 {
2038 	struct proc *p = kn->kn_ptr.p_proc;
2039 
2040 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2041 }
2042 
2043 /*
2044  * signal knotes are shared with proc knotes, so we apply a mask to
2045  * the hint in order to differentiate them from process hints.  This
2046  * could be avoided by using a signal-specific knote list, but probably
2047  * isn't worth the trouble.
2048  */
2049 static int
2050 filt_signal(struct knote *kn, long hint)
2051 {
2052 
2053 	if (hint & NOTE_SIGNAL) {
2054 		hint &= ~NOTE_SIGNAL;
2055 
2056 		if (kn->kn_id == hint)
2057 			kn->kn_data++;
2058 	}
2059 	return (kn->kn_data != 0);
2060 }
2061 
2062 const struct filterops sig_filtops = {
2063 	0, filt_sigattach, filt_sigdetach, filt_signal
2064 };
2065