xref: /netbsd-src/sys/kern/kern_sig.c (revision 1ca06f9c9235889e2ff6dc77279d01d151d70a9a)
1 /*	$NetBSD: kern_sig.c,v 1.300 2009/11/14 19:06:54 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.300 2009/11/14 19:06:54 rmind Exp $");
70 
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77 
78 #define	SIGPROP		/* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103 
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106 
107 static void	ksiginfo_exechook(struct proc *, void *);
108 static void	proc_stop_callout(void *);
109 static int	sigchecktrace(void);
110 static int	sigpost(struct lwp *, sig_t, int, int, int);
111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 static int	sigunwait(struct proc *, const ksiginfo_t *);
113 static void	sigswitch(bool, int, int);
114 
115 sigset_t	contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void	sigacts_poolpage_free(struct pool *, void *);
118 static void	*sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 static pool_cache_t siginfo_cache;
121 static pool_cache_t ksiginfo_cache;
122 
123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
124 int (*coredump_vec)(struct lwp *, const char *) =
125     (int (*)(struct lwp *, const char *))enosys;
126 
127 static struct pool_allocator sigactspool_allocator = {
128         .pa_alloc = sigacts_poolpage_alloc,
129 	.pa_free = sigacts_poolpage_free,
130 };
131 
132 #ifdef DEBUG
133 int	kern_logsigexit = 1;
134 #else
135 int	kern_logsigexit = 0;
136 #endif
137 
138 static	const char logcoredump[] =
139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
140 static	const char lognocoredump[] =
141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
142 
143 static kauth_listener_t signal_listener;
144 
145 static int
146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
147     void *arg0, void *arg1, void *arg2, void *arg3)
148 {
149 	struct proc *p;
150 	int result, signum;
151 
152 	result = KAUTH_RESULT_DEFER;
153 	p = arg0;
154 	signum = (int)(unsigned long)arg1;
155 
156 	if (action != KAUTH_PROCESS_SIGNAL)
157 		return result;
158 
159 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
160 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
161 		result = KAUTH_RESULT_ALLOW;
162 
163 	return result;
164 }
165 
166 /*
167  * signal_init:
168  *
169  * 	Initialize global signal-related data structures.
170  */
171 void
172 signal_init(void)
173 {
174 
175 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
176 
177 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
178 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
179 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
180 
181 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
182 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
183 
184 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
185 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
186 
187 	exechook_establish(ksiginfo_exechook, NULL);
188 
189 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
190 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
191 
192 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
193 	    signal_listener_cb, NULL);
194 }
195 
196 /*
197  * sigacts_poolpage_alloc:
198  *
199  *	 Allocate a page for the sigacts memory pool.
200  */
201 static void *
202 sigacts_poolpage_alloc(struct pool *pp, int flags)
203 {
204 
205 	return (void *)uvm_km_alloc(kernel_map,
206 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
207 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
208 	    | UVM_KMF_WIRED);
209 }
210 
211 /*
212  * sigacts_poolpage_free:
213  *
214  *	 Free a page on behalf of the sigacts memory pool.
215  */
216 static void
217 sigacts_poolpage_free(struct pool *pp, void *v)
218 {
219 
220         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
221 }
222 
223 /*
224  * sigactsinit:
225  *
226  *	 Create an initial sigctx structure, using the same signal state as
227  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
228  *	 copy it from parent.
229  */
230 struct sigacts *
231 sigactsinit(struct proc *pp, int share)
232 {
233 	struct sigacts *ps, *ps2;
234 
235 	ps = pp->p_sigacts;
236 
237 	if (share) {
238 		atomic_inc_uint(&ps->sa_refcnt);
239 		ps2 = ps;
240 	} else {
241 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
242 		/* XXXAD get rid of this */
243 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
244 		mutex_enter(&ps->sa_mutex);
245 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
246 		    sizeof(ps2->sa_sigdesc));
247 		mutex_exit(&ps->sa_mutex);
248 		ps2->sa_refcnt = 1;
249 	}
250 
251 	return ps2;
252 }
253 
254 /*
255  * sigactsunshare:
256  *
257  *	Make this process not share its sigctx, maintaining all
258  *	signal state.
259  */
260 void
261 sigactsunshare(struct proc *p)
262 {
263 	struct sigacts *ps, *oldps;
264 
265 	oldps = p->p_sigacts;
266 	if (oldps->sa_refcnt == 1)
267 		return;
268 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
269 	/* XXXAD get rid of this */
270 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
271 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
272 	p->p_sigacts = ps;
273 	sigactsfree(oldps);
274 }
275 
276 /*
277  * sigactsfree;
278  *
279  *	Release a sigctx structure.
280  */
281 void
282 sigactsfree(struct sigacts *ps)
283 {
284 
285 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
286 		mutex_destroy(&ps->sa_mutex);
287 		pool_cache_put(sigacts_cache, ps);
288 	}
289 }
290 
291 /*
292  * siginit:
293  *
294  *	Initialize signal state for process 0; set to ignore signals that
295  *	are ignored by default and disable the signal stack.  Locking not
296  *	required as the system is still cold.
297  */
298 void
299 siginit(struct proc *p)
300 {
301 	struct lwp *l;
302 	struct sigacts *ps;
303 	int signo, prop;
304 
305 	ps = p->p_sigacts;
306 	sigemptyset(&contsigmask);
307 	sigemptyset(&stopsigmask);
308 	sigemptyset(&sigcantmask);
309 	for (signo = 1; signo < NSIG; signo++) {
310 		prop = sigprop[signo];
311 		if (prop & SA_CONT)
312 			sigaddset(&contsigmask, signo);
313 		if (prop & SA_STOP)
314 			sigaddset(&stopsigmask, signo);
315 		if (prop & SA_CANTMASK)
316 			sigaddset(&sigcantmask, signo);
317 		if (prop & SA_IGNORE && signo != SIGCONT)
318 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
319 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
320 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
321 	}
322 	sigemptyset(&p->p_sigctx.ps_sigcatch);
323 	p->p_sflag &= ~PS_NOCLDSTOP;
324 
325 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
326 	sigemptyset(&p->p_sigpend.sp_set);
327 
328 	/*
329 	 * Reset per LWP state.
330 	 */
331 	l = LIST_FIRST(&p->p_lwps);
332 	l->l_sigwaited = NULL;
333 	l->l_sigstk.ss_flags = SS_DISABLE;
334 	l->l_sigstk.ss_size = 0;
335 	l->l_sigstk.ss_sp = 0;
336 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
337 	sigemptyset(&l->l_sigpend.sp_set);
338 
339 	/* One reference. */
340 	ps->sa_refcnt = 1;
341 }
342 
343 /*
344  * execsigs:
345  *
346  *	Reset signals for an exec of the specified process.
347  */
348 void
349 execsigs(struct proc *p)
350 {
351 	struct sigacts *ps;
352 	struct lwp *l;
353 	int signo, prop;
354 	sigset_t tset;
355 	ksiginfoq_t kq;
356 
357 	KASSERT(p->p_nlwps == 1);
358 
359 	sigactsunshare(p);
360 	ps = p->p_sigacts;
361 
362 	/*
363 	 * Reset caught signals.  Held signals remain held through
364 	 * l->l_sigmask (unless they were caught, and are now ignored
365 	 * by default).
366 	 *
367 	 * No need to lock yet, the process has only one LWP and
368 	 * at this point the sigacts are private to the process.
369 	 */
370 	sigemptyset(&tset);
371 	for (signo = 1; signo < NSIG; signo++) {
372 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
373 			prop = sigprop[signo];
374 			if (prop & SA_IGNORE) {
375 				if ((prop & SA_CONT) == 0)
376 					sigaddset(&p->p_sigctx.ps_sigignore,
377 					    signo);
378 				sigaddset(&tset, signo);
379 			}
380 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
381 		}
382 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
383 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
384 	}
385 	ksiginfo_queue_init(&kq);
386 
387 	mutex_enter(p->p_lock);
388 	sigclearall(p, &tset, &kq);
389 	sigemptyset(&p->p_sigctx.ps_sigcatch);
390 
391 	/*
392 	 * Reset no zombies if child dies flag as Solaris does.
393 	 */
394 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
395 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
396 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
397 
398 	/*
399 	 * Reset per-LWP state.
400 	 */
401 	l = LIST_FIRST(&p->p_lwps);
402 	l->l_sigwaited = NULL;
403 	l->l_sigstk.ss_flags = SS_DISABLE;
404 	l->l_sigstk.ss_size = 0;
405 	l->l_sigstk.ss_sp = 0;
406 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
407 	sigemptyset(&l->l_sigpend.sp_set);
408 	mutex_exit(p->p_lock);
409 
410 	ksiginfo_queue_drain(&kq);
411 }
412 
413 /*
414  * ksiginfo_exechook:
415  *
416  *	Free all pending ksiginfo entries from a process on exec.
417  *	Additionally, drain any unused ksiginfo structures in the
418  *	system back to the pool.
419  *
420  *	XXX This should not be a hook, every process has signals.
421  */
422 static void
423 ksiginfo_exechook(struct proc *p, void *v)
424 {
425 	ksiginfoq_t kq;
426 
427 	ksiginfo_queue_init(&kq);
428 
429 	mutex_enter(p->p_lock);
430 	sigclearall(p, NULL, &kq);
431 	mutex_exit(p->p_lock);
432 
433 	ksiginfo_queue_drain(&kq);
434 }
435 
436 /*
437  * ksiginfo_alloc:
438  *
439  *	Allocate a new ksiginfo structure from the pool, and optionally copy
440  *	an existing one.  If the existing ksiginfo_t is from the pool, and
441  *	has not been queued somewhere, then just return it.  Additionally,
442  *	if the existing ksiginfo_t does not contain any information beyond
443  *	the signal number, then just return it.
444  */
445 ksiginfo_t *
446 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
447 {
448 	ksiginfo_t *kp;
449 
450 	if (ok != NULL) {
451 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
452 		    KSI_FROMPOOL)
453 		    	return ok;
454 		if (KSI_EMPTY_P(ok))
455 			return ok;
456 	}
457 
458 	kp = pool_cache_get(ksiginfo_cache, flags);
459 	if (kp == NULL) {
460 #ifdef DIAGNOSTIC
461 		printf("Out of memory allocating ksiginfo for pid %d\n",
462 		    p->p_pid);
463 #endif
464 		return NULL;
465 	}
466 
467 	if (ok != NULL) {
468 		memcpy(kp, ok, sizeof(*kp));
469 		kp->ksi_flags &= ~KSI_QUEUED;
470 	} else
471 		KSI_INIT_EMPTY(kp);
472 
473 	kp->ksi_flags |= KSI_FROMPOOL;
474 
475 	return kp;
476 }
477 
478 /*
479  * ksiginfo_free:
480  *
481  *	If the given ksiginfo_t is from the pool and has not been queued,
482  *	then free it.
483  */
484 void
485 ksiginfo_free(ksiginfo_t *kp)
486 {
487 
488 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
489 		return;
490 	pool_cache_put(ksiginfo_cache, kp);
491 }
492 
493 /*
494  * ksiginfo_queue_drain:
495  *
496  *	Drain a non-empty ksiginfo_t queue.
497  */
498 void
499 ksiginfo_queue_drain0(ksiginfoq_t *kq)
500 {
501 	ksiginfo_t *ksi;
502 
503 	KASSERT(!CIRCLEQ_EMPTY(kq));
504 
505 	while (!CIRCLEQ_EMPTY(kq)) {
506 		ksi = CIRCLEQ_FIRST(kq);
507 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
508 		pool_cache_put(ksiginfo_cache, ksi);
509 	}
510 }
511 
512 /*
513  * sigget:
514  *
515  *	Fetch the first pending signal from a set.  Optionally, also fetch
516  *	or manufacture a ksiginfo element.  Returns the number of the first
517  *	pending signal, or zero.
518  */
519 int
520 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
521 {
522         ksiginfo_t *ksi;
523 	sigset_t tset;
524 
525 	/* If there's no pending set, the signal is from the debugger. */
526 	if (sp == NULL)
527 		goto out;
528 
529 	/* Construct mask from signo, and 'mask'. */
530 	if (signo == 0) {
531 		if (mask != NULL) {
532 			tset = *mask;
533 			__sigandset(&sp->sp_set, &tset);
534 		} else
535 			tset = sp->sp_set;
536 
537 		/* If there are no signals pending, that's it. */
538 		if ((signo = firstsig(&tset)) == 0)
539 			goto out;
540 	} else {
541 		KASSERT(sigismember(&sp->sp_set, signo));
542 	}
543 
544 	sigdelset(&sp->sp_set, signo);
545 
546 	/* Find siginfo and copy it out. */
547 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
548 		if (ksi->ksi_signo == signo) {
549 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
550 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
551 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
552 			ksi->ksi_flags &= ~KSI_QUEUED;
553 			if (out != NULL) {
554 				memcpy(out, ksi, sizeof(*out));
555 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
556 			}
557 			ksiginfo_free(ksi);
558 			return signo;
559 		}
560 	}
561 
562 out:
563 	/* If there's no siginfo, then manufacture it. */
564 	if (out != NULL) {
565 		KSI_INIT(out);
566 		out->ksi_info._signo = signo;
567 		out->ksi_info._code = SI_NOINFO;
568 	}
569 
570 	return signo;
571 }
572 
573 /*
574  * sigput:
575  *
576  *	Append a new ksiginfo element to the list of pending ksiginfo's.
577  */
578 static void
579 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
580 {
581 	ksiginfo_t *kp;
582 
583 	KASSERT(mutex_owned(p->p_lock));
584 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
585 
586 	sigaddset(&sp->sp_set, ksi->ksi_signo);
587 
588 	/*
589 	 * If there is no siginfo, we are done.
590 	 */
591 	if (KSI_EMPTY_P(ksi))
592 		return;
593 
594 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
595 
596 #ifdef notyet	/* XXX: QUEUING */
597 	if (ksi->ksi_signo < SIGRTMIN)
598 #endif
599 	{
600 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
601 			if (kp->ksi_signo == ksi->ksi_signo) {
602 				KSI_COPY(ksi, kp);
603 				kp->ksi_flags |= KSI_QUEUED;
604 				return;
605 			}
606 		}
607 	}
608 
609 	ksi->ksi_flags |= KSI_QUEUED;
610 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
611 }
612 
613 /*
614  * sigclear:
615  *
616  *	Clear all pending signals in the specified set.
617  */
618 void
619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
620 {
621 	ksiginfo_t *ksi, *next;
622 
623 	if (mask == NULL)
624 		sigemptyset(&sp->sp_set);
625 	else
626 		sigminusset(mask, &sp->sp_set);
627 
628 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
629 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
630 		next = CIRCLEQ_NEXT(ksi, ksi_list);
631 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
632 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
633 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
634 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
635 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
636 		}
637 	}
638 }
639 
640 /*
641  * sigclearall:
642  *
643  *	Clear all pending signals in the specified set from a process and
644  *	its LWPs.
645  */
646 void
647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
648 {
649 	struct lwp *l;
650 
651 	KASSERT(mutex_owned(p->p_lock));
652 
653 	sigclear(&p->p_sigpend, mask, kq);
654 
655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
656 		sigclear(&l->l_sigpend, mask, kq);
657 	}
658 }
659 
660 /*
661  * sigispending:
662  *
663  *	Return true if there are pending signals for the current LWP.  May
664  *	be called unlocked provided that LW_PENDSIG is set, and that the
665  *	signal has been posted to the appopriate queue before LW_PENDSIG is
666  *	set.
667  */
668 int
669 sigispending(struct lwp *l, int signo)
670 {
671 	struct proc *p = l->l_proc;
672 	sigset_t tset;
673 
674 	membar_consumer();
675 
676 	tset = l->l_sigpend.sp_set;
677 	sigplusset(&p->p_sigpend.sp_set, &tset);
678 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
679 	sigminusset(&l->l_sigmask, &tset);
680 
681 	if (signo == 0) {
682 		if (firstsig(&tset) != 0)
683 			return EINTR;
684 	} else if (sigismember(&tset, signo))
685 		return EINTR;
686 
687 	return 0;
688 }
689 
690 /*
691  * siginfo_alloc:
692  *
693  *	 Allocate a new siginfo_t structure from the pool.
694  */
695 siginfo_t *
696 siginfo_alloc(int flags)
697 {
698 
699 	return pool_cache_get(siginfo_cache, flags);
700 }
701 
702 /*
703  * siginfo_free:
704  *
705  *	 Return a siginfo_t structure to the pool.
706  */
707 void
708 siginfo_free(void *arg)
709 {
710 
711 	pool_cache_put(siginfo_cache, arg);
712 }
713 
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 	struct proc *p = l->l_proc;
718 
719 	KASSERT(mutex_owned(p->p_lock));
720 
721 	ucp->uc_flags = 0;
722 	ucp->uc_link = l->l_ctxlink;
723 
724 #if KERN_SA
725 	if (p->p_sa != NULL)
726 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
727 	else
728 #endif /* KERN_SA */
729 		ucp->uc_sigmask = l->l_sigmask;
730 	ucp->uc_flags |= _UC_SIGMASK;
731 
732 	/*
733 	 * The (unsupplied) definition of the `current execution stack'
734 	 * in the System V Interface Definition appears to allow returning
735 	 * the main context stack.
736 	 */
737 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
738 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
739 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
740 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
741 	} else {
742 		/* Simply copy alternate signal execution stack. */
743 		ucp->uc_stack = l->l_sigstk;
744 	}
745 	ucp->uc_flags |= _UC_STACK;
746 	mutex_exit(p->p_lock);
747 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
748 	mutex_enter(p->p_lock);
749 }
750 
751 /*
752  * getucontext_sa:
753  *      Get a ucontext_t for use in SA upcall generation.
754  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
755  * fudge things with uc_link (which is usually NULL for libpthread
756  * code), and 3) we report an empty signal mask.
757  */
758 void
759 getucontext_sa(struct lwp *l, ucontext_t *ucp)
760 {
761 	ucp->uc_flags = 0;
762 	ucp->uc_link = l->l_ctxlink;
763 
764 	sigemptyset(&ucp->uc_sigmask);
765 	ucp->uc_flags |= _UC_SIGMASK;
766 
767 	/*
768 	 * The (unsupplied) definition of the `current execution stack'
769 	 * in the System V Interface Definition appears to allow returning
770 	 * the main context stack.
771 	 */
772 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
773 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
774 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
775 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
776 	} else {
777 		/* Simply copy alternate signal execution stack. */
778 		ucp->uc_stack = l->l_sigstk;
779 	}
780 	ucp->uc_flags |= _UC_STACK;
781 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
782 }
783 
784 int
785 setucontext(struct lwp *l, const ucontext_t *ucp)
786 {
787 	struct proc *p = l->l_proc;
788 	int error;
789 
790 	KASSERT(mutex_owned(p->p_lock));
791 
792 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
793 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
794 		if (error != 0)
795 			return error;
796 	}
797 
798 	mutex_exit(p->p_lock);
799 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
800 	mutex_enter(p->p_lock);
801 	if (error != 0)
802 		return (error);
803 
804 	l->l_ctxlink = ucp->uc_link;
805 
806 	/*
807 	 * If there was stack information, update whether or not we are
808 	 * still running on an alternate signal stack.
809 	 */
810 	if ((ucp->uc_flags & _UC_STACK) != 0) {
811 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
812 			l->l_sigstk.ss_flags |= SS_ONSTACK;
813 		else
814 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
815 	}
816 
817 	return 0;
818 }
819 
820 /*
821  * Common code for kill process group/broadcast kill.  cp is calling
822  * process.
823  */
824 int
825 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
826 {
827 	struct proc	*p, *cp;
828 	kauth_cred_t	pc;
829 	struct pgrp	*pgrp;
830 	int		nfound;
831 	int		signo = ksi->ksi_signo;
832 
833 	cp = l->l_proc;
834 	pc = l->l_cred;
835 	nfound = 0;
836 
837 	mutex_enter(proc_lock);
838 	if (all) {
839 		/*
840 		 * broadcast
841 		 */
842 		PROCLIST_FOREACH(p, &allproc) {
843 			if (p->p_pid <= 1 || p == cp ||
844 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
845 				continue;
846 			mutex_enter(p->p_lock);
847 			if (kauth_authorize_process(pc,
848 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
849 			    NULL) == 0) {
850 				nfound++;
851 				if (signo)
852 					kpsignal2(p, ksi);
853 			}
854 			mutex_exit(p->p_lock);
855 		}
856 	} else {
857 		if (pgid == 0)
858 			/*
859 			 * zero pgid means send to my process group.
860 			 */
861 			pgrp = cp->p_pgrp;
862 		else {
863 			pgrp = pg_find(pgid, PFIND_LOCKED);
864 			if (pgrp == NULL)
865 				goto out;
866 		}
867 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
868 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
869 				continue;
870 			mutex_enter(p->p_lock);
871 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
872 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
873 				nfound++;
874 				if (signo && P_ZOMBIE(p) == 0)
875 					kpsignal2(p, ksi);
876 			}
877 			mutex_exit(p->p_lock);
878 		}
879 	}
880   out:
881 	mutex_exit(proc_lock);
882 	return (nfound ? 0 : ESRCH);
883 }
884 
885 /*
886  * Send a signal to a process group. If checktty is 1, limit to members
887  * which have a controlling terminal.
888  */
889 void
890 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
891 {
892 	ksiginfo_t ksi;
893 
894 	KASSERT(!cpu_intr_p());
895 	KASSERT(mutex_owned(proc_lock));
896 
897 	KSI_INIT_EMPTY(&ksi);
898 	ksi.ksi_signo = sig;
899 	kpgsignal(pgrp, &ksi, NULL, checkctty);
900 }
901 
902 void
903 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
904 {
905 	struct proc *p;
906 
907 	KASSERT(!cpu_intr_p());
908 	KASSERT(mutex_owned(proc_lock));
909 
910 	if (__predict_false(pgrp == 0))
911 		return;
912 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
913 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
914 			kpsignal(p, ksi, data);
915 }
916 
917 /*
918  * Send a signal caused by a trap to the current LWP.  If it will be caught
919  * immediately, deliver it with correct code.  Otherwise, post it normally.
920  */
921 void
922 trapsignal(struct lwp *l, ksiginfo_t *ksi)
923 {
924 	struct proc	*p;
925 	struct sigacts	*ps;
926 	int signo = ksi->ksi_signo;
927 	sigset_t *mask;
928 
929 	KASSERT(KSI_TRAP_P(ksi));
930 
931 	ksi->ksi_lid = l->l_lid;
932 	p = l->l_proc;
933 
934 	KASSERT(!cpu_intr_p());
935 	mutex_enter(proc_lock);
936 	mutex_enter(p->p_lock);
937 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
938 	ps = p->p_sigacts;
939 	if ((p->p_slflag & PSL_TRACED) == 0 &&
940 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
941 	    !sigismember(mask, signo)) {
942 		mutex_exit(proc_lock);
943 		l->l_ru.ru_nsignals++;
944 		kpsendsig(l, ksi, mask);
945 		mutex_exit(p->p_lock);
946 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
947 		    mask, ksi);
948 	} else {
949 		/* XXX for core dump/debugger */
950 		p->p_sigctx.ps_lwp = l->l_lid;
951 		p->p_sigctx.ps_signo = ksi->ksi_signo;
952 		p->p_sigctx.ps_code = ksi->ksi_trap;
953 		kpsignal2(p, ksi);
954 		mutex_exit(p->p_lock);
955 		mutex_exit(proc_lock);
956 	}
957 }
958 
959 /*
960  * Fill in signal information and signal the parent for a child status change.
961  */
962 void
963 child_psignal(struct proc *p, int mask)
964 {
965 	ksiginfo_t ksi;
966 	struct proc *q;
967 	int xstat;
968 
969 	KASSERT(mutex_owned(proc_lock));
970 	KASSERT(mutex_owned(p->p_lock));
971 
972 	xstat = p->p_xstat;
973 
974 	KSI_INIT(&ksi);
975 	ksi.ksi_signo = SIGCHLD;
976 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
977 	ksi.ksi_pid = p->p_pid;
978 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
979 	ksi.ksi_status = xstat;
980 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
981 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
982 
983 	q = p->p_pptr;
984 
985 	mutex_exit(p->p_lock);
986 	mutex_enter(q->p_lock);
987 
988 	if ((q->p_sflag & mask) == 0)
989 		kpsignal2(q, &ksi);
990 
991 	mutex_exit(q->p_lock);
992 	mutex_enter(p->p_lock);
993 }
994 
995 void
996 psignal(struct proc *p, int signo)
997 {
998 	ksiginfo_t ksi;
999 
1000 	KASSERT(!cpu_intr_p());
1001 	KASSERT(mutex_owned(proc_lock));
1002 
1003 	KSI_INIT_EMPTY(&ksi);
1004 	ksi.ksi_signo = signo;
1005 	mutex_enter(p->p_lock);
1006 	kpsignal2(p, &ksi);
1007 	mutex_exit(p->p_lock);
1008 }
1009 
1010 void
1011 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1012 {
1013 	fdfile_t *ff;
1014 	file_t *fp;
1015 	fdtab_t *dt;
1016 
1017 	KASSERT(!cpu_intr_p());
1018 	KASSERT(mutex_owned(proc_lock));
1019 
1020 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1021 		size_t fd;
1022 		filedesc_t *fdp = p->p_fd;
1023 
1024 		/* XXXSMP locking */
1025 		ksi->ksi_fd = -1;
1026 		dt = fdp->fd_dt;
1027 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
1028 			if ((ff = dt->dt_ff[fd]) == NULL)
1029 				continue;
1030 			if ((fp = ff->ff_file) == NULL)
1031 				continue;
1032 			if (fp->f_data == data) {
1033 				ksi->ksi_fd = fd;
1034 				break;
1035 			}
1036 		}
1037 	}
1038 	mutex_enter(p->p_lock);
1039 	kpsignal2(p, ksi);
1040 	mutex_exit(p->p_lock);
1041 }
1042 
1043 /*
1044  * sigismasked:
1045  *
1046  *	 Returns true if signal is ignored or masked for the specified LWP.
1047  */
1048 int
1049 sigismasked(struct lwp *l, int sig)
1050 {
1051 	struct proc *p = l->l_proc;
1052 
1053 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1054 	    sigismember(&l->l_sigmask, sig)
1055 #if KERN_SA
1056 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1057 #endif /* KERN_SA */
1058 	    );
1059 }
1060 
1061 /*
1062  * sigpost:
1063  *
1064  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP may
1065  *	 be able to take the signal.
1066  */
1067 static int
1068 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1069 {
1070 	int rv, masked;
1071 	struct proc *p = l->l_proc;
1072 
1073 	KASSERT(mutex_owned(p->p_lock));
1074 
1075 	/*
1076 	 * If the LWP is on the way out, sigclear() will be busy draining all
1077 	 * pending signals.  Don't give it more.
1078 	 */
1079 	if (l->l_refcnt == 0)
1080 		return 0;
1081 
1082 	/*
1083 	 * Have the LWP check for signals.  This ensures that even if no LWP
1084 	 * is found to take the signal immediately, it should be taken soon.
1085 	 */
1086 	lwp_lock(l);
1087 	l->l_flag |= LW_PENDSIG;
1088 
1089 	/*
1090 	 * When sending signals to SA processes, we first try to find an
1091 	 * idle VP to take it.
1092 	 */
1093 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1094 		lwp_unlock(l);
1095 		return 0;
1096 	}
1097 
1098 	/*
1099 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1100 	 * Note: SIGKILL and SIGSTOP cannot be masked.
1101 	 */
1102 #if KERN_SA
1103 	if (p->p_sa != NULL)
1104 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
1105 	else
1106 #endif
1107 		masked = sigismember(&l->l_sigmask, sig);
1108 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1109 		lwp_unlock(l);
1110 		return 0;
1111 	}
1112 
1113 	/*
1114 	 * If killing the process, make it run fast.
1115 	 */
1116 	if (__predict_false((prop & SA_KILL) != 0) &&
1117 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1118 		KASSERT(l->l_class == SCHED_OTHER);
1119 		lwp_changepri(l, MAXPRI_USER);
1120 	}
1121 
1122 	/*
1123 	 * If the LWP is running or on a run queue, then we win.  If it's
1124 	 * sleeping interruptably, wake it and make it take the signal.  If
1125 	 * the sleep isn't interruptable, then the chances are it will get
1126 	 * to see the signal soon anyhow.  If suspended, it can't take the
1127 	 * signal right now.  If it's LWP private or for all LWPs, save it
1128 	 * for later; otherwise punt.
1129 	 */
1130 	rv = 0;
1131 
1132 	switch (l->l_stat) {
1133 	case LSRUN:
1134 	case LSONPROC:
1135 		lwp_need_userret(l);
1136 		rv = 1;
1137 		break;
1138 
1139 	case LSSLEEP:
1140 		if ((l->l_flag & LW_SINTR) != 0) {
1141 			/* setrunnable() will release the lock. */
1142 			setrunnable(l);
1143 			return 1;
1144 		}
1145 		break;
1146 
1147 	case LSSUSPENDED:
1148 		if ((prop & SA_KILL) != 0) {
1149 			/* lwp_continue() will release the lock. */
1150 			lwp_continue(l);
1151 			return 1;
1152 		}
1153 		break;
1154 
1155 	case LSSTOP:
1156 		if ((prop & SA_STOP) != 0)
1157 			break;
1158 
1159 		/*
1160 		 * If the LWP is stopped and we are sending a continue
1161 		 * signal, then start it again.
1162 		 */
1163 		if ((prop & SA_CONT) != 0) {
1164 			if (l->l_wchan != NULL) {
1165 				l->l_stat = LSSLEEP;
1166 				p->p_nrlwps++;
1167 				rv = 1;
1168 				break;
1169 			}
1170 			/* setrunnable() will release the lock. */
1171 			setrunnable(l);
1172 			return 1;
1173 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1174 			/* setrunnable() will release the lock. */
1175 			setrunnable(l);
1176 			return 1;
1177 		}
1178 		break;
1179 
1180 	default:
1181 		break;
1182 	}
1183 
1184 	lwp_unlock(l);
1185 	return rv;
1186 }
1187 
1188 /*
1189  * Notify an LWP that it has a pending signal.
1190  */
1191 void
1192 signotify(struct lwp *l)
1193 {
1194 	KASSERT(lwp_locked(l, NULL));
1195 
1196 	l->l_flag |= LW_PENDSIG;
1197 	lwp_need_userret(l);
1198 }
1199 
1200 /*
1201  * Find an LWP within process p that is waiting on signal ksi, and hand
1202  * it on.
1203  */
1204 static int
1205 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1206 {
1207 	struct lwp *l;
1208 	int signo;
1209 
1210 	KASSERT(mutex_owned(p->p_lock));
1211 
1212 	signo = ksi->ksi_signo;
1213 
1214 	if (ksi->ksi_lid != 0) {
1215 		/*
1216 		 * Signal came via _lwp_kill().  Find the LWP and see if
1217 		 * it's interested.
1218 		 */
1219 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1220 			return 0;
1221 		if (l->l_sigwaited == NULL ||
1222 		    !sigismember(&l->l_sigwaitset, signo))
1223 			return 0;
1224 	} else {
1225 		/*
1226 		 * Look for any LWP that may be interested.
1227 		 */
1228 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1229 			KASSERT(l->l_sigwaited != NULL);
1230 			if (sigismember(&l->l_sigwaitset, signo))
1231 				break;
1232 		}
1233 	}
1234 
1235 	if (l != NULL) {
1236 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1237 		l->l_sigwaited = NULL;
1238 		LIST_REMOVE(l, l_sigwaiter);
1239 		cv_signal(&l->l_sigcv);
1240 		return 1;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * Send the signal to the process.  If the signal has an action, the action
1248  * is usually performed by the target process rather than the caller; we add
1249  * the signal to the set of pending signals for the process.
1250  *
1251  * Exceptions:
1252  *   o When a stop signal is sent to a sleeping process that takes the
1253  *     default action, the process is stopped without awakening it.
1254  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1255  *     regardless of the signal action (eg, blocked or ignored).
1256  *
1257  * Other ignored signals are discarded immediately.
1258  */
1259 void
1260 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1261 {
1262 	int prop, lid, toall, signo = ksi->ksi_signo;
1263 	struct sigacts *sa;
1264 	struct lwp *l;
1265 	ksiginfo_t *kp;
1266 	ksiginfoq_t kq;
1267 	sig_t action;
1268 #ifdef KERN_SA
1269 	struct sadata_vp *vp;
1270 #endif
1271 
1272 	KASSERT(!cpu_intr_p());
1273 	KASSERT(mutex_owned(proc_lock));
1274 	KASSERT(mutex_owned(p->p_lock));
1275 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1276 	KASSERT(signo > 0 && signo < NSIG);
1277 
1278 	/*
1279 	 * If the process is being created by fork, is a zombie or is
1280 	 * exiting, then just drop the signal here and bail out.
1281 	 */
1282 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1283 		return;
1284 
1285 	/*
1286 	 * Notify any interested parties of the signal.
1287 	 */
1288 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1289 
1290 	/*
1291 	 * Some signals including SIGKILL must act on the entire process.
1292 	 */
1293 	kp = NULL;
1294 	prop = sigprop[signo];
1295 	toall = ((prop & SA_TOALL) != 0);
1296 
1297 	if (toall)
1298 		lid = 0;
1299 	else
1300 		lid = ksi->ksi_lid;
1301 
1302 	/*
1303 	 * If proc is traced, always give parent a chance.
1304 	 */
1305 	if (p->p_slflag & PSL_TRACED) {
1306 		action = SIG_DFL;
1307 
1308 		if (lid == 0) {
1309 			/*
1310 			 * If the process is being traced and the signal
1311 			 * is being caught, make sure to save any ksiginfo.
1312 			 */
1313 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1314 				return;
1315 			sigput(&p->p_sigpend, p, kp);
1316 		}
1317 	} else {
1318 		/*
1319 		 * If the signal was the result of a trap and is not being
1320 		 * caught, then reset it to default action so that the
1321 		 * process dumps core immediately.
1322 		 */
1323 		if (KSI_TRAP_P(ksi)) {
1324 			sa = p->p_sigacts;
1325 			mutex_enter(&sa->sa_mutex);
1326 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1327 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1328 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1329 			}
1330 			mutex_exit(&sa->sa_mutex);
1331 		}
1332 
1333 		/*
1334 		 * If the signal is being ignored, then drop it.  Note: we
1335 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1336 		 * SIG_IGN, action will be SIG_DFL here.
1337 		 */
1338 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1339 			return;
1340 
1341 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1342 			action = SIG_CATCH;
1343 		else {
1344 			action = SIG_DFL;
1345 
1346 			/*
1347 			 * If sending a tty stop signal to a member of an
1348 			 * orphaned process group, discard the signal here if
1349 			 * the action is default; don't stop the process below
1350 			 * if sleeping, and don't clear any pending SIGCONT.
1351 			 */
1352 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1353 				return;
1354 
1355 			if (prop & SA_KILL && p->p_nice > NZERO)
1356 				p->p_nice = NZERO;
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * If stopping or continuing a process, discard any pending
1362 	 * signals that would do the inverse.
1363 	 */
1364 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1365 		ksiginfo_queue_init(&kq);
1366 		if ((prop & SA_CONT) != 0)
1367 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1368 		if ((prop & SA_STOP) != 0)
1369 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1370 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1371 	}
1372 
1373 	/*
1374 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1375 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1376 	 * the signal info.  The signal won't be processed further here.
1377 	 */
1378 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1379 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1380 	    sigunwait(p, ksi))
1381 		return;
1382 
1383 	/*
1384 	 * XXXSMP Should be allocated by the caller, we're holding locks
1385 	 * here.
1386 	 */
1387 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1388 		return;
1389 
1390 	/*
1391 	 * LWP private signals are easy - just find the LWP and post
1392 	 * the signal to it.
1393 	 */
1394 	if (lid != 0) {
1395 		l = lwp_find(p, lid);
1396 		if (l != NULL) {
1397 			sigput(&l->l_sigpend, p, kp);
1398 			membar_producer();
1399 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
1400 		}
1401 		goto out;
1402 	}
1403 
1404 	/*
1405 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
1406 	 * or for an SA process.
1407 	 */
1408 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1409 		if ((p->p_slflag & PSL_TRACED) != 0)
1410 			goto deliver;
1411 
1412 		/*
1413 		 * If SIGCONT is default (or ignored) and process is
1414 		 * asleep, we are finished; the process should not
1415 		 * be awakened.
1416 		 */
1417 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1418 			goto out;
1419 	} else {
1420 		/*
1421 		 * Process is stopped or stopping.
1422 		 * - If traced, then no action is needed, unless killing.
1423 		 * - Run the process only if sending SIGCONT or SIGKILL.
1424 		 */
1425 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1426 			goto out;
1427 		}
1428 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1429 			/*
1430 			 * Re-adjust p_nstopchild if the process wasn't
1431 			 * collected by its parent.
1432 			 */
1433 			p->p_stat = SACTIVE;
1434 			p->p_sflag &= ~PS_STOPPING;
1435 			if (!p->p_waited) {
1436 				p->p_pptr->p_nstopchild--;
1437 			}
1438 			if (p->p_slflag & PSL_TRACED) {
1439 				KASSERT(signo == SIGKILL);
1440 				goto deliver;
1441 			}
1442 			/*
1443 			 * Do not make signal pending if SIGCONT is default.
1444 			 *
1445 			 * If the process catches SIGCONT, let it handle the
1446 			 * signal itself (if waiting on event - process runs,
1447 			 * otherwise continues sleeping).
1448 			 */
1449 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1450 				KASSERT(signo != SIGKILL);
1451 				goto deliver;
1452 			}
1453 		} else if ((prop & SA_STOP) != 0) {
1454 			/*
1455 			 * Already stopped, don't need to stop again.
1456 			 * (If we did the shell could get confused.)
1457 			 */
1458 			goto out;
1459 		}
1460 	}
1461 	/*
1462 	 * Make signal pending.
1463 	 */
1464 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
1465 	sigput(&p->p_sigpend, p, kp);
1466 
1467  deliver:
1468 	/*
1469 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1470 	 * visible on the per process list (for sigispending()).  This
1471 	 * is unlikely to be needed in practice, but...
1472 	 */
1473 	membar_producer();
1474 
1475 	/*
1476 	 * Try to find an LWP that can take the signal.
1477 	 */
1478 #if KERN_SA
1479 	if ((p->p_sa != NULL) && !toall) {
1480 		/*
1481 		 * If we're in this delivery path, we are delivering a
1482 		 * signal that needs to go to one thread in the process.
1483 		 *
1484 		 * In the SA case, we try to find an idle LWP that can take
1485 		 * the signal.  If that fails, only then do we consider
1486 		 * interrupting active LWPs. Since the signal's going to
1487 		 * just one thread, we need only look at "blessed" lwps,
1488 		 * so scan the vps for them.
1489 		 */
1490 		l = NULL;
1491 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1492 			l = vp->savp_lwp;
1493 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
1494 				break;
1495 		}
1496 
1497 		if (l == NULL) {
1498 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1499 				l = vp->savp_lwp;
1500 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
1501 					break;
1502 			}
1503 		}
1504 	} else	/* Catch the brace below if we're defined */
1505 #endif /* KERN_SA */
1506 	    {
1507 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
1508 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1509 				break;
1510 	}
1511 
1512  out:
1513  	/*
1514  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1515  	 * with locks held.  The caller should take care of this.
1516  	 */
1517  	ksiginfo_free(kp);
1518 }
1519 
1520 void
1521 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1522 {
1523 	struct proc *p = l->l_proc;
1524 #ifdef KERN_SA
1525 	struct lwp *le, *li;
1526 	siginfo_t *si;
1527 	int f;
1528 #endif /* KERN_SA */
1529 
1530 	KASSERT(mutex_owned(p->p_lock));
1531 
1532 #ifdef KERN_SA
1533 	if (p->p_sflag & PS_SA) {
1534 		/* f indicates if we should clear LP_SA_NOBLOCK */
1535 		f = ~l->l_pflag & LP_SA_NOBLOCK;
1536 		l->l_pflag |= LP_SA_NOBLOCK;
1537 
1538 		mutex_exit(p->p_lock);
1539 		/* XXXUPSXXX What if not on sa_vp? */
1540 		/*
1541 		 * WRS: I think it won't matter, beyond the
1542 		 * question of what exactly we do with a signal
1543 		 * to a blocked user thread. Also, we try hard to always
1544 		 * send signals to blessed lwps, so we would only send
1545 		 * to a non-blessed lwp under special circumstances.
1546 		 */
1547 		si = siginfo_alloc(PR_WAITOK);
1548 
1549 		si->_info = ksi->ksi_info;
1550 
1551 		/*
1552 		 * Figure out if we're the innocent victim or the main
1553 		 * perpitrator.
1554 		 */
1555 		le = li = NULL;
1556 		if (KSI_TRAP_P(ksi))
1557 			le = l;
1558 		else
1559 			li = l;
1560 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1561 		    sizeof(*si), si, siginfo_free) != 0) {
1562 			siginfo_free(si);
1563 #if 0
1564 			if (KSI_TRAP_P(ksi))
1565 				/* XXX What dowe do here? The signal
1566 				 * didn't make it
1567 				 */;
1568 #endif
1569 		}
1570 		l->l_pflag ^= f;
1571 		mutex_enter(p->p_lock);
1572 		return;
1573 	}
1574 #endif /* KERN_SA */
1575 
1576 	(*p->p_emul->e_sendsig)(ksi, mask);
1577 }
1578 
1579 /*
1580  * Stop any LWPs sleeping interruptably.
1581  */
1582 static void
1583 proc_stop_lwps(struct proc *p)
1584 {
1585 	struct lwp *l;
1586 
1587 	KASSERT(mutex_owned(p->p_lock));
1588 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1589 
1590 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1591 		lwp_lock(l);
1592 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1593 			l->l_stat = LSSTOP;
1594 			p->p_nrlwps--;
1595 		}
1596 		lwp_unlock(l);
1597 	}
1598 }
1599 
1600 /*
1601  * Finish stopping of a process.  Mark it stopped and notify the parent.
1602  *
1603  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1604  */
1605 static void
1606 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1607 {
1608 
1609 	KASSERT(mutex_owned(proc_lock));
1610 	KASSERT(mutex_owned(p->p_lock));
1611 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
1612 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1613 
1614 	p->p_sflag &= ~PS_STOPPING;
1615 	p->p_stat = SSTOP;
1616 	p->p_waited = 0;
1617 	p->p_pptr->p_nstopchild++;
1618 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1619 		if (ppsig) {
1620 			/* child_psignal drops p_lock briefly. */
1621 			child_psignal(p, ppmask);
1622 		}
1623 		cv_broadcast(&p->p_pptr->p_waitcv);
1624 	}
1625 }
1626 
1627 /*
1628  * Stop the current process and switch away when being stopped or traced.
1629  */
1630 static void
1631 sigswitch(bool ppsig, int ppmask, int signo)
1632 {
1633 	struct lwp *l = curlwp;
1634 	struct proc *p = l->l_proc;
1635 	int biglocks;
1636 
1637 	KASSERT(mutex_owned(p->p_lock));
1638 	KASSERT(l->l_stat == LSONPROC);
1639 	KASSERT(p->p_nrlwps > 0);
1640 
1641 	/*
1642 	 * On entry we know that the process needs to stop.  If it's
1643 	 * the result of a 'sideways' stop signal that has been sourced
1644 	 * through issignal(), then stop other LWPs in the process too.
1645 	 */
1646 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1647 		KASSERT(signo != 0);
1648 		proc_stop(p, 1, signo);
1649 		KASSERT(p->p_nrlwps > 0);
1650 	}
1651 
1652 	/*
1653 	 * If we are the last live LWP, and the stop was a result of
1654 	 * a new signal, then signal the parent.
1655 	 */
1656 	if ((p->p_sflag & PS_STOPPING) != 0) {
1657 		if (!mutex_tryenter(proc_lock)) {
1658 			mutex_exit(p->p_lock);
1659 			mutex_enter(proc_lock);
1660 			mutex_enter(p->p_lock);
1661 		}
1662 
1663 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1664 			/*
1665 			 * Note that proc_stop_done() can drop
1666 			 * p->p_lock briefly.
1667 			 */
1668 			proc_stop_done(p, ppsig, ppmask);
1669 		}
1670 
1671 		mutex_exit(proc_lock);
1672 	}
1673 
1674 	/*
1675 	 * Unlock and switch away.
1676 	 */
1677 	KERNEL_UNLOCK_ALL(l, &biglocks);
1678 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1679 		p->p_nrlwps--;
1680 		lwp_lock(l);
1681 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1682 		l->l_stat = LSSTOP;
1683 		lwp_unlock(l);
1684 	}
1685 
1686 	mutex_exit(p->p_lock);
1687 	lwp_lock(l);
1688 	mi_switch(l);
1689 	KERNEL_LOCK(biglocks, l);
1690 	mutex_enter(p->p_lock);
1691 }
1692 
1693 /*
1694  * Check for a signal from the debugger.
1695  */
1696 static int
1697 sigchecktrace(void)
1698 {
1699 	struct lwp *l = curlwp;
1700 	struct proc *p = l->l_proc;
1701 	sigset_t *mask;
1702 	int signo;
1703 
1704 	KASSERT(mutex_owned(p->p_lock));
1705 
1706 	/* If there's a pending SIGKILL, process it immediately. */
1707 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1708 		return 0;
1709 
1710 	/*
1711 	 * If we are no longer being traced, or the parent didn't
1712 	 * give us a signal, look for more signals.
1713 	 */
1714 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1715 		return 0;
1716 
1717 	/*
1718 	 * If the new signal is being masked, look for other signals.
1719 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1720 	 */
1721 	signo = p->p_xstat;
1722 	p->p_xstat = 0;
1723 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1724 	if (sigismember(mask, signo))
1725 		signo = 0;
1726 
1727 	return signo;
1728 }
1729 
1730 /*
1731  * If the current process has received a signal (should be caught or cause
1732  * termination, should interrupt current syscall), return the signal number.
1733  *
1734  * Stop signals with default action are processed immediately, then cleared;
1735  * they aren't returned.  This is checked after each entry to the system for
1736  * a syscall or trap.
1737  *
1738  * We will also return -1 if the process is exiting and the current LWP must
1739  * follow suit.
1740  */
1741 int
1742 issignal(struct lwp *l)
1743 {
1744 	struct proc *p;
1745 	int signo, prop;
1746 	sigpend_t *sp;
1747 	sigset_t ss;
1748 
1749 	p = l->l_proc;
1750 	sp = NULL;
1751 	signo = 0;
1752 
1753 	KASSERT(p == curproc);
1754 	KASSERT(mutex_owned(p->p_lock));
1755 
1756 	for (;;) {
1757 		/* Discard any signals that we have decided not to take. */
1758 		if (signo != 0)
1759 			(void)sigget(sp, NULL, signo, NULL);
1760 
1761 		/* Bail out if we do not own the virtual processor */
1762 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1763 			break;
1764 
1765 		/*
1766 		 * If the process is stopped/stopping, then stop ourselves
1767 		 * now that we're on the kernel/userspace boundary.  When
1768 		 * we awaken, check for a signal from the debugger.
1769 		 */
1770 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1771 			sigswitch(true, PS_NOCLDSTOP, 0);
1772 			signo = sigchecktrace();
1773 		} else
1774 			signo = 0;
1775 
1776 		/* Signals from the debugger are "out of band". */
1777 		sp = NULL;
1778 
1779 		/*
1780 		 * If the debugger didn't provide a signal, find a pending
1781 		 * signal from our set.  Check per-LWP signals first, and
1782 		 * then per-process.
1783 		 */
1784 		if (signo == 0) {
1785 			sp = &l->l_sigpend;
1786 			ss = sp->sp_set;
1787 			if ((p->p_lflag & PL_PPWAIT) != 0)
1788 				sigminusset(&stopsigmask, &ss);
1789 			sigminusset(&l->l_sigmask, &ss);
1790 
1791 			if ((signo = firstsig(&ss)) == 0) {
1792 				sp = &p->p_sigpend;
1793 				ss = sp->sp_set;
1794 				if ((p->p_lflag & PL_PPWAIT) != 0)
1795 					sigminusset(&stopsigmask, &ss);
1796 				sigminusset(&l->l_sigmask, &ss);
1797 
1798 				if ((signo = firstsig(&ss)) == 0) {
1799 					/*
1800 					 * No signal pending - clear the
1801 					 * indicator and bail out.
1802 					 */
1803 					lwp_lock(l);
1804 					l->l_flag &= ~LW_PENDSIG;
1805 					lwp_unlock(l);
1806 					sp = NULL;
1807 					break;
1808 				}
1809 			}
1810 		}
1811 
1812 		/*
1813 		 * We should see pending but ignored signals only if
1814 		 * we are being traced.
1815 		 */
1816 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1817 		    (p->p_slflag & PSL_TRACED) == 0) {
1818 			/* Discard the signal. */
1819 			continue;
1820 		}
1821 
1822 		/*
1823 		 * If traced, always stop, and stay stopped until released
1824 		 * by the debugger.  If the our parent process is waiting
1825 		 * for us, don't hang as we could deadlock.
1826 		 */
1827 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1828 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1829 			/* Take the signal. */
1830 			(void)sigget(sp, NULL, signo, NULL);
1831 			p->p_xstat = signo;
1832 
1833 			/* Emulation-specific handling of signal trace */
1834 			if (p->p_emul->e_tracesig == NULL ||
1835 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1836 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1837 				    signo);
1838 
1839 			/* Check for a signal from the debugger. */
1840 			if ((signo = sigchecktrace()) == 0)
1841 				continue;
1842 
1843 			/* Signals from the debugger are "out of band". */
1844 			sp = NULL;
1845 		}
1846 
1847 		prop = sigprop[signo];
1848 
1849 		/*
1850 		 * Decide whether the signal should be returned.
1851 		 */
1852 		switch ((long)SIGACTION(p, signo).sa_handler) {
1853 		case (long)SIG_DFL:
1854 			/*
1855 			 * Don't take default actions on system processes.
1856 			 */
1857 			if (p->p_pid <= 1) {
1858 #ifdef DIAGNOSTIC
1859 				/*
1860 				 * Are you sure you want to ignore SIGSEGV
1861 				 * in init? XXX
1862 				 */
1863 				printf_nolog("Process (pid %d) got sig %d\n",
1864 				    p->p_pid, signo);
1865 #endif
1866 				continue;
1867 			}
1868 
1869 			/*
1870 			 * If there is a pending stop signal to process with
1871 			 * default action, stop here, then clear the signal.
1872 			 * However, if process is member of an orphaned
1873 			 * process group, ignore tty stop signals.
1874 			 */
1875 			if (prop & SA_STOP) {
1876 				/*
1877 				 * XXX Don't hold proc_lock for p_lflag,
1878 				 * but it's not a big deal.
1879 				 */
1880 				if (p->p_slflag & PSL_TRACED ||
1881 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
1882 				    prop & SA_TTYSTOP)) {
1883 				    	/* Ignore the signal. */
1884 					continue;
1885 				}
1886 				/* Take the signal. */
1887 				(void)sigget(sp, NULL, signo, NULL);
1888 				p->p_xstat = signo;
1889 				signo = 0;
1890 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1891 			} else if (prop & SA_IGNORE) {
1892 				/*
1893 				 * Except for SIGCONT, shouldn't get here.
1894 				 * Default action is to ignore; drop it.
1895 				 */
1896 				continue;
1897 			}
1898 			break;
1899 
1900 		case (long)SIG_IGN:
1901 #ifdef DEBUG_ISSIGNAL
1902 			/*
1903 			 * Masking above should prevent us ever trying
1904 			 * to take action on an ignored signal other
1905 			 * than SIGCONT, unless process is traced.
1906 			 */
1907 			if ((prop & SA_CONT) == 0 &&
1908 			    (p->p_slflag & PSL_TRACED) == 0)
1909 				printf_nolog("issignal\n");
1910 #endif
1911 			continue;
1912 
1913 		default:
1914 			/*
1915 			 * This signal has an action, let postsig() process
1916 			 * it.
1917 			 */
1918 			break;
1919 		}
1920 
1921 		break;
1922 	}
1923 
1924 	l->l_sigpendset = sp;
1925 	return signo;
1926 }
1927 
1928 /*
1929  * Take the action for the specified signal
1930  * from the current set of pending signals.
1931  */
1932 void
1933 postsig(int signo)
1934 {
1935 	struct lwp	*l;
1936 	struct proc	*p;
1937 	struct sigacts	*ps;
1938 	sig_t		action;
1939 	sigset_t	*returnmask;
1940 	ksiginfo_t	ksi;
1941 
1942 	l = curlwp;
1943 	p = l->l_proc;
1944 	ps = p->p_sigacts;
1945 
1946 	KASSERT(mutex_owned(p->p_lock));
1947 	KASSERT(signo > 0);
1948 
1949 	/*
1950 	 * Set the new mask value and also defer further occurrences of this
1951 	 * signal.
1952 	 *
1953 	 * Special case: user has done a sigsuspend.  Here the current mask is
1954 	 * not of interest, but rather the mask from before the sigsuspend is
1955 	 * what we want restored after the signal processing is completed.
1956 	 */
1957 	if (l->l_sigrestore) {
1958 		returnmask = &l->l_sigoldmask;
1959 		l->l_sigrestore = 0;
1960 	} else
1961 		returnmask = &l->l_sigmask;
1962 
1963 	/*
1964 	 * Commit to taking the signal before releasing the mutex.
1965 	 */
1966 	action = SIGACTION_PS(ps, signo).sa_handler;
1967 	l->l_ru.ru_nsignals++;
1968 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1969 
1970 	if (ktrpoint(KTR_PSIG)) {
1971 		mutex_exit(p->p_lock);
1972 		ktrpsig(signo, action, returnmask, &ksi);
1973 		mutex_enter(p->p_lock);
1974 	}
1975 
1976 	if (action == SIG_DFL) {
1977 		/*
1978 		 * Default action, where the default is to kill
1979 		 * the process.  (Other cases were ignored above.)
1980 		 */
1981 		sigexit(l, signo);
1982 		return;
1983 	}
1984 
1985 	/*
1986 	 * If we get here, the signal must be caught.
1987 	 */
1988 #ifdef DIAGNOSTIC
1989 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1990 		panic("postsig action");
1991 #endif
1992 
1993 	kpsendsig(l, &ksi, returnmask);
1994 }
1995 
1996 /*
1997  * sendsig:
1998  *
1999  *	Default signal delivery method for NetBSD.
2000  */
2001 void
2002 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2003 {
2004 	struct sigacts *sa;
2005 	int sig;
2006 
2007 	sig = ksi->ksi_signo;
2008 	sa = curproc->p_sigacts;
2009 
2010 	switch (sa->sa_sigdesc[sig].sd_vers)  {
2011 	case 0:
2012 	case 1:
2013 		/* Compat for 1.6 and earlier. */
2014 		if (sendsig_sigcontext_vec == NULL) {
2015 			break;
2016 		}
2017 		(*sendsig_sigcontext_vec)(ksi, mask);
2018 		return;
2019 	case 2:
2020 	case 3:
2021 		sendsig_siginfo(ksi, mask);
2022 		return;
2023 	default:
2024 		break;
2025 	}
2026 
2027 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2028 	sigexit(curlwp, SIGILL);
2029 }
2030 
2031 /*
2032  * sendsig_reset:
2033  *
2034  *	Reset the signal action.  Called from emulation specific sendsig()
2035  *	before unlocking to deliver the signal.
2036  */
2037 void
2038 sendsig_reset(struct lwp *l, int signo)
2039 {
2040 	struct proc *p = l->l_proc;
2041 	struct sigacts *ps = p->p_sigacts;
2042 	sigset_t *mask;
2043 
2044 	KASSERT(mutex_owned(p->p_lock));
2045 
2046 	p->p_sigctx.ps_lwp = 0;
2047 	p->p_sigctx.ps_code = 0;
2048 	p->p_sigctx.ps_signo = 0;
2049 
2050 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2051 
2052 	mutex_enter(&ps->sa_mutex);
2053 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2054 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2055 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2056 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2057 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
2058 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2059 	}
2060 	mutex_exit(&ps->sa_mutex);
2061 }
2062 
2063 /*
2064  * Kill the current process for stated reason.
2065  */
2066 void
2067 killproc(struct proc *p, const char *why)
2068 {
2069 
2070 	KASSERT(mutex_owned(proc_lock));
2071 
2072 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2073 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2074 	psignal(p, SIGKILL);
2075 }
2076 
2077 /*
2078  * Force the current process to exit with the specified signal, dumping core
2079  * if appropriate.  We bypass the normal tests for masked and caught
2080  * signals, allowing unrecoverable failures to terminate the process without
2081  * changing signal state.  Mark the accounting record with the signal
2082  * termination.  If dumping core, save the signal number for the debugger.
2083  * Calls exit and does not return.
2084  */
2085 void
2086 sigexit(struct lwp *l, int signo)
2087 {
2088 	int exitsig, error, docore;
2089 	struct proc *p;
2090 	struct lwp *t;
2091 
2092 	p = l->l_proc;
2093 
2094 	KASSERT(mutex_owned(p->p_lock));
2095 	KERNEL_UNLOCK_ALL(l, NULL);
2096 
2097 	/*
2098 	 * Don't permit coredump() multiple times in the same process.
2099 	 * Call back into sigexit, where we will be suspended until
2100 	 * the deed is done.  Note that this is a recursive call, but
2101 	 * LW_WCORE will prevent us from coming back this way.
2102 	 */
2103 	if ((p->p_sflag & PS_WCORE) != 0) {
2104 		lwp_lock(l);
2105 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2106 		lwp_unlock(l);
2107 		mutex_exit(p->p_lock);
2108 		lwp_userret(l);
2109 		panic("sigexit 1");
2110 		/* NOTREACHED */
2111 	}
2112 
2113 	/* If process is already on the way out, then bail now. */
2114 	if ((p->p_sflag & PS_WEXIT) != 0) {
2115 		mutex_exit(p->p_lock);
2116 		lwp_exit(l);
2117 		panic("sigexit 2");
2118 		/* NOTREACHED */
2119 	}
2120 
2121 	/*
2122 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
2123 	 * so that their registers are available long enough to be dumped.
2124  	 */
2125 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2126 		p->p_sflag |= PS_WCORE;
2127 		for (;;) {
2128 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2129 				lwp_lock(t);
2130 				if (t == l) {
2131 					t->l_flag &= ~LW_WSUSPEND;
2132 					lwp_unlock(t);
2133 					continue;
2134 				}
2135 				t->l_flag |= (LW_WCORE | LW_WEXIT);
2136 				lwp_suspend(l, t);
2137 			}
2138 
2139 			if (p->p_nrlwps == 1)
2140 				break;
2141 
2142 			/*
2143 			 * Kick any LWPs sitting in lwp_wait1(), and wait
2144 			 * for everyone else to stop before proceeding.
2145 			 */
2146 			p->p_nlwpwait++;
2147 			cv_broadcast(&p->p_lwpcv);
2148 			cv_wait(&p->p_lwpcv, p->p_lock);
2149 			p->p_nlwpwait--;
2150 		}
2151 	}
2152 
2153 	exitsig = signo;
2154 	p->p_acflag |= AXSIG;
2155 	p->p_sigctx.ps_signo = signo;
2156 
2157 	if (docore) {
2158 		mutex_exit(p->p_lock);
2159 		if ((error = (*coredump_vec)(l, NULL)) == 0)
2160 			exitsig |= WCOREFLAG;
2161 
2162 		if (kern_logsigexit) {
2163 			int uid = l->l_cred ?
2164 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
2165 
2166 			if (error)
2167 				log(LOG_INFO, lognocoredump, p->p_pid,
2168 				    p->p_comm, uid, signo, error);
2169 			else
2170 				log(LOG_INFO, logcoredump, p->p_pid,
2171 				    p->p_comm, uid, signo);
2172 		}
2173 
2174 #ifdef PAX_SEGVGUARD
2175 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
2176 #endif /* PAX_SEGVGUARD */
2177 		/* Acquire the sched state mutex.  exit1() will release it. */
2178 		mutex_enter(p->p_lock);
2179 	}
2180 
2181 	/* No longer dumping core. */
2182 	p->p_sflag &= ~PS_WCORE;
2183 
2184 	exit1(l, W_EXITCODE(0, exitsig));
2185 	/* NOTREACHED */
2186 }
2187 
2188 /*
2189  * Put process 'p' into the stopped state and optionally, notify the parent.
2190  */
2191 void
2192 proc_stop(struct proc *p, int notify, int signo)
2193 {
2194 	struct lwp *l;
2195 
2196 	KASSERT(mutex_owned(p->p_lock));
2197 
2198 	/*
2199 	 * First off, set the stopping indicator and bring all sleeping
2200 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
2201 	 * unlock between here and the p->p_nrlwps check below.
2202 	 */
2203 	p->p_sflag |= PS_STOPPING;
2204 	if (notify)
2205 		p->p_sflag |= PS_NOTIFYSTOP;
2206 	else
2207 		p->p_sflag &= ~PS_NOTIFYSTOP;
2208 	membar_producer();
2209 
2210 	proc_stop_lwps(p);
2211 
2212 	/*
2213 	 * If there are no LWPs available to take the signal, then we
2214 	 * signal the parent process immediately.  Otherwise, the last
2215 	 * LWP to stop will take care of it.
2216 	 */
2217 
2218 	if (p->p_nrlwps == 0) {
2219 		proc_stop_done(p, true, PS_NOCLDSTOP);
2220 	} else {
2221 		/*
2222 		 * Have the remaining LWPs come to a halt, and trigger
2223 		 * proc_stop_callout() to ensure that they do.
2224 		 */
2225 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2226 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2227 		callout_schedule(&proc_stop_ch, 1);
2228 	}
2229 }
2230 
2231 /*
2232  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2233  * but wait for them to come to a halt at the kernel-user boundary.  This is
2234  * to allow LWPs to release any locks that they may hold before stopping.
2235  *
2236  * Non-interruptable sleeps can be long, and there is the potential for an
2237  * LWP to begin sleeping interruptably soon after the process has been set
2238  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2239  * stopping, and so complete halt of the process and the return of status
2240  * information to the parent could be delayed indefinitely.
2241  *
2242  * To handle this race, proc_stop_callout() runs once per tick while there
2243  * are stopping processes in the system.  It sets LWPs that are sleeping
2244  * interruptably into the LSSTOP state.
2245  *
2246  * Note that we are not concerned about keeping all LWPs stopped while the
2247  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2248  * What we do need to ensure is that all LWPs in a stopping process have
2249  * stopped at least once, so that notification can be sent to the parent
2250  * process.
2251  */
2252 static void
2253 proc_stop_callout(void *cookie)
2254 {
2255 	bool more, restart;
2256 	struct proc *p;
2257 
2258 	(void)cookie;
2259 
2260 	do {
2261 		restart = false;
2262 		more = false;
2263 
2264 		mutex_enter(proc_lock);
2265 		PROCLIST_FOREACH(p, &allproc) {
2266 			if ((p->p_flag & PK_MARKER) != 0)
2267 				continue;
2268 			mutex_enter(p->p_lock);
2269 
2270 			if ((p->p_sflag & PS_STOPPING) == 0) {
2271 				mutex_exit(p->p_lock);
2272 				continue;
2273 			}
2274 
2275 			/* Stop any LWPs sleeping interruptably. */
2276 			proc_stop_lwps(p);
2277 			if (p->p_nrlwps == 0) {
2278 				/*
2279 				 * We brought the process to a halt.
2280 				 * Mark it as stopped and notify the
2281 				 * parent.
2282 				 */
2283 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2284 					/*
2285 					 * Note that proc_stop_done() will
2286 					 * drop p->p_lock briefly.
2287 					 * Arrange to restart and check
2288 					 * all processes again.
2289 					 */
2290 					restart = true;
2291 				}
2292 				proc_stop_done(p, true, PS_NOCLDSTOP);
2293 			} else
2294 				more = true;
2295 
2296 			mutex_exit(p->p_lock);
2297 			if (restart)
2298 				break;
2299 		}
2300 		mutex_exit(proc_lock);
2301 	} while (restart);
2302 
2303 	/*
2304 	 * If we noted processes that are stopping but still have
2305 	 * running LWPs, then arrange to check again in 1 tick.
2306 	 */
2307 	if (more)
2308 		callout_schedule(&proc_stop_ch, 1);
2309 }
2310 
2311 /*
2312  * Given a process in state SSTOP, set the state back to SACTIVE and
2313  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2314  */
2315 void
2316 proc_unstop(struct proc *p)
2317 {
2318 	struct lwp *l;
2319 	int sig;
2320 
2321 	KASSERT(mutex_owned(proc_lock));
2322 	KASSERT(mutex_owned(p->p_lock));
2323 
2324 	p->p_stat = SACTIVE;
2325 	p->p_sflag &= ~PS_STOPPING;
2326 	sig = p->p_xstat;
2327 
2328 	if (!p->p_waited)
2329 		p->p_pptr->p_nstopchild--;
2330 
2331 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2332 		lwp_lock(l);
2333 		if (l->l_stat != LSSTOP) {
2334 			lwp_unlock(l);
2335 			continue;
2336 		}
2337 		if (l->l_wchan == NULL) {
2338 			setrunnable(l);
2339 			continue;
2340 		}
2341 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2342 		        setrunnable(l);
2343 		        sig = 0;
2344 		} else {
2345 			l->l_stat = LSSLEEP;
2346 			p->p_nrlwps++;
2347 			lwp_unlock(l);
2348 		}
2349 	}
2350 }
2351 
2352 static int
2353 filt_sigattach(struct knote *kn)
2354 {
2355 	struct proc *p = curproc;
2356 
2357 	kn->kn_obj = p;
2358 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2359 
2360 	mutex_enter(p->p_lock);
2361 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2362 	mutex_exit(p->p_lock);
2363 
2364 	return (0);
2365 }
2366 
2367 static void
2368 filt_sigdetach(struct knote *kn)
2369 {
2370 	struct proc *p = kn->kn_obj;
2371 
2372 	mutex_enter(p->p_lock);
2373 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2374 	mutex_exit(p->p_lock);
2375 }
2376 
2377 /*
2378  * signal knotes are shared with proc knotes, so we apply a mask to
2379  * the hint in order to differentiate them from process hints.  This
2380  * could be avoided by using a signal-specific knote list, but probably
2381  * isn't worth the trouble.
2382  */
2383 static int
2384 filt_signal(struct knote *kn, long hint)
2385 {
2386 
2387 	if (hint & NOTE_SIGNAL) {
2388 		hint &= ~NOTE_SIGNAL;
2389 
2390 		if (kn->kn_id == hint)
2391 			kn->kn_data++;
2392 	}
2393 	return (kn->kn_data != 0);
2394 }
2395 
2396 const struct filterops sig_filtops = {
2397 	0, filt_sigattach, filt_sigdetach, filt_signal
2398 };
2399