1 /* $NetBSD: kern_sig.c,v 1.259 2007/11/27 01:27:30 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1989, 1991, 1993 41 * The Regents of the University of California. All rights reserved. 42 * (c) UNIX System Laboratories, Inc. 43 * All or some portions of this file are derived from material licensed 44 * to the University of California by American Telephone and Telegraph 45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 46 * the permission of UNIX System Laboratories, Inc. 47 * 48 * Redistribution and use in source and binary forms, with or without 49 * modification, are permitted provided that the following conditions 50 * are met: 51 * 1. Redistributions of source code must retain the above copyright 52 * notice, this list of conditions and the following disclaimer. 53 * 2. Redistributions in binary form must reproduce the above copyright 54 * notice, this list of conditions and the following disclaimer in the 55 * documentation and/or other materials provided with the distribution. 56 * 3. Neither the name of the University nor the names of its contributors 57 * may be used to endorse or promote products derived from this software 58 * without specific prior written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 70 * SUCH DAMAGE. 71 * 72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.259 2007/11/27 01:27:30 ad Exp $"); 77 78 #include "opt_ptrace.h" 79 #include "opt_multiprocessor.h" 80 #include "opt_compat_sunos.h" 81 #include "opt_compat_netbsd.h" 82 #include "opt_compat_netbsd32.h" 83 #include "opt_pax.h" 84 85 #define SIGPROP /* include signal properties table */ 86 #include <sys/param.h> 87 #include <sys/signalvar.h> 88 #include <sys/proc.h> 89 #include <sys/systm.h> 90 #include <sys/wait.h> 91 #include <sys/ktrace.h> 92 #include <sys/syslog.h> 93 #include <sys/filedesc.h> 94 #include <sys/file.h> 95 #include <sys/malloc.h> 96 #include <sys/pool.h> 97 #include <sys/ucontext.h> 98 #include <sys/exec.h> 99 #include <sys/kauth.h> 100 #include <sys/acct.h> 101 #include <sys/callout.h> 102 103 #include <sys/cpu.h> 104 105 #ifdef PAX_SEGVGUARD 106 #include <sys/pax.h> 107 #endif /* PAX_SEGVGUARD */ 108 109 #include <uvm/uvm.h> 110 #include <uvm/uvm_extern.h> 111 112 static void ksiginfo_exechook(struct proc *, void *); 113 static void proc_stop_callout(void *); 114 115 int sigunwait(struct proc *, const ksiginfo_t *); 116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *); 117 int sigpost(struct lwp *, sig_t, int, int); 118 int sigchecktrace(sigpend_t **); 119 void sigswitch(bool, int, int); 120 void sigrealloc(ksiginfo_t *); 121 122 sigset_t contsigmask, stopsigmask, sigcantmask; 123 struct pool sigacts_pool; /* memory pool for sigacts structures */ 124 static void sigacts_poolpage_free(struct pool *, void *); 125 static void *sigacts_poolpage_alloc(struct pool *, int); 126 static callout_t proc_stop_ch; 127 128 static struct pool_allocator sigactspool_allocator = { 129 .pa_alloc = sigacts_poolpage_alloc, 130 .pa_free = sigacts_poolpage_free, 131 }; 132 133 #ifdef DEBUG 134 int kern_logsigexit = 1; 135 #else 136 int kern_logsigexit = 0; 137 #endif 138 139 static const char logcoredump[] = 140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 141 static const char lognocoredump[] = 142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 143 144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 145 &pool_allocator_nointr, IPL_NONE); 146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", 147 NULL, IPL_VM); 148 149 /* 150 * signal_init: 151 * 152 * Initialize global signal-related data structures. 153 */ 154 void 155 signal_init(void) 156 { 157 158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2; 159 160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 161 sizeof(struct sigacts) > PAGE_SIZE ? 162 &sigactspool_allocator : &pool_allocator_nointr, 163 IPL_NONE); 164 165 exechook_establish(ksiginfo_exechook, NULL); 166 167 callout_init(&proc_stop_ch, 0); 168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL); 169 } 170 171 /* 172 * sigacts_poolpage_alloc: 173 * 174 * Allocate a page for the sigacts memory pool. 175 */ 176 static void * 177 sigacts_poolpage_alloc(struct pool *pp, int flags) 178 { 179 180 return (void *)uvm_km_alloc(kernel_map, 181 (PAGE_SIZE)*2, (PAGE_SIZE)*2, 182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 183 | UVM_KMF_WIRED); 184 } 185 186 /* 187 * sigacts_poolpage_free: 188 * 189 * Free a page on behalf of the sigacts memory pool. 190 */ 191 static void 192 sigacts_poolpage_free(struct pool *pp, void *v) 193 { 194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED); 195 } 196 197 /* 198 * sigactsinit: 199 * 200 * Create an initial sigctx structure, using the same signal state as 201 * p. If 'share' is set, share the sigctx_proc part, otherwise just 202 * copy it from parent. 203 */ 204 struct sigacts * 205 sigactsinit(struct proc *pp, int share) 206 { 207 struct sigacts *ps, *ps2; 208 209 ps = pp->p_sigacts; 210 211 if (share) { 212 mutex_enter(&ps->sa_mutex); 213 ps->sa_refcnt++; 214 mutex_exit(&ps->sa_mutex); 215 ps2 = ps; 216 } else { 217 ps2 = pool_get(&sigacts_pool, PR_WAITOK); 218 mutex_init(&ps2->sa_mutex, MUTEX_SPIN, IPL_SCHED); 219 mutex_enter(&ps->sa_mutex); 220 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc, 221 sizeof(ps2->sa_sigdesc)); 222 mutex_exit(&ps->sa_mutex); 223 ps2->sa_refcnt = 1; 224 } 225 226 return ps2; 227 } 228 229 /* 230 * sigactsunshare: 231 * 232 * Make this process not share its sigctx, maintaining all 233 * signal state. 234 */ 235 void 236 sigactsunshare(struct proc *p) 237 { 238 struct sigacts *ps, *oldps; 239 240 oldps = p->p_sigacts; 241 if (oldps->sa_refcnt == 1) 242 return; 243 ps = pool_get(&sigacts_pool, PR_WAITOK); 244 mutex_init(&ps->sa_mutex, MUTEX_SPIN, IPL_SCHED); 245 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc)); 246 p->p_sigacts = ps; 247 sigactsfree(oldps); 248 } 249 250 /* 251 * sigactsfree; 252 * 253 * Release a sigctx structure. 254 */ 255 void 256 sigactsfree(struct sigacts *ps) 257 { 258 int refcnt; 259 260 mutex_enter(&ps->sa_mutex); 261 refcnt = --ps->sa_refcnt; 262 mutex_exit(&ps->sa_mutex); 263 264 if (refcnt == 0) { 265 mutex_destroy(&ps->sa_mutex); 266 pool_put(&sigacts_pool, ps); 267 } 268 } 269 270 /* 271 * siginit: 272 * 273 * Initialize signal state for process 0; set to ignore signals that 274 * are ignored by default and disable the signal stack. Locking not 275 * required as the system is still cold. 276 */ 277 void 278 siginit(struct proc *p) 279 { 280 struct lwp *l; 281 struct sigacts *ps; 282 int signo, prop; 283 284 ps = p->p_sigacts; 285 sigemptyset(&contsigmask); 286 sigemptyset(&stopsigmask); 287 sigemptyset(&sigcantmask); 288 for (signo = 1; signo < NSIG; signo++) { 289 prop = sigprop[signo]; 290 if (prop & SA_CONT) 291 sigaddset(&contsigmask, signo); 292 if (prop & SA_STOP) 293 sigaddset(&stopsigmask, signo); 294 if (prop & SA_CANTMASK) 295 sigaddset(&sigcantmask, signo); 296 if (prop & SA_IGNORE && signo != SIGCONT) 297 sigaddset(&p->p_sigctx.ps_sigignore, signo); 298 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 299 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 300 } 301 sigemptyset(&p->p_sigctx.ps_sigcatch); 302 p->p_sflag &= ~PS_NOCLDSTOP; 303 304 ksiginfo_queue_init(&p->p_sigpend.sp_info); 305 sigemptyset(&p->p_sigpend.sp_set); 306 307 /* 308 * Reset per LWP state. 309 */ 310 l = LIST_FIRST(&p->p_lwps); 311 l->l_sigwaited = NULL; 312 l->l_sigstk.ss_flags = SS_DISABLE; 313 l->l_sigstk.ss_size = 0; 314 l->l_sigstk.ss_sp = 0; 315 ksiginfo_queue_init(&l->l_sigpend.sp_info); 316 sigemptyset(&l->l_sigpend.sp_set); 317 318 /* One reference. */ 319 ps->sa_refcnt = 1; 320 } 321 322 /* 323 * execsigs: 324 * 325 * Reset signals for an exec of the specified process. 326 */ 327 void 328 execsigs(struct proc *p) 329 { 330 struct sigacts *ps; 331 struct lwp *l; 332 int signo, prop; 333 sigset_t tset; 334 ksiginfoq_t kq; 335 336 KASSERT(p->p_nlwps == 1); 337 338 sigactsunshare(p); 339 ps = p->p_sigacts; 340 341 /* 342 * Reset caught signals. Held signals remain held through 343 * l->l_sigmask (unless they were caught, and are now ignored 344 * by default). 345 * 346 * No need to lock yet, the process has only one LWP and 347 * at this point the sigacts are private to the process. 348 */ 349 sigemptyset(&tset); 350 for (signo = 1; signo < NSIG; signo++) { 351 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 352 prop = sigprop[signo]; 353 if (prop & SA_IGNORE) { 354 if ((prop & SA_CONT) == 0) 355 sigaddset(&p->p_sigctx.ps_sigignore, 356 signo); 357 sigaddset(&tset, signo); 358 } 359 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 360 } 361 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask); 362 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART; 363 } 364 ksiginfo_queue_init(&kq); 365 366 mutex_enter(&p->p_smutex); 367 sigclearall(p, &tset, &kq); 368 sigemptyset(&p->p_sigctx.ps_sigcatch); 369 370 /* 371 * Reset no zombies if child dies flag as Solaris does. 372 */ 373 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN); 374 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN) 375 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL; 376 377 /* 378 * Reset per-LWP state. 379 */ 380 l = LIST_FIRST(&p->p_lwps); 381 l->l_sigwaited = NULL; 382 l->l_sigstk.ss_flags = SS_DISABLE; 383 l->l_sigstk.ss_size = 0; 384 l->l_sigstk.ss_sp = 0; 385 ksiginfo_queue_init(&l->l_sigpend.sp_info); 386 sigemptyset(&l->l_sigpend.sp_set); 387 mutex_exit(&p->p_smutex); 388 389 ksiginfo_queue_drain(&kq); 390 } 391 392 /* 393 * ksiginfo_exechook: 394 * 395 * Free all pending ksiginfo entries from a process on exec. 396 * Additionally, drain any unused ksiginfo structures in the 397 * system back to the pool. 398 * 399 * XXX This should not be a hook, every process has signals. 400 */ 401 static void 402 ksiginfo_exechook(struct proc *p, void *v) 403 { 404 ksiginfoq_t kq; 405 406 ksiginfo_queue_init(&kq); 407 408 mutex_enter(&p->p_smutex); 409 sigclearall(p, NULL, &kq); 410 mutex_exit(&p->p_smutex); 411 412 ksiginfo_queue_drain(&kq); 413 } 414 415 /* 416 * ksiginfo_alloc: 417 * 418 * Allocate a new ksiginfo structure from the pool, and optionally copy 419 * an existing one. If the existing ksiginfo_t is from the pool, and 420 * has not been queued somewhere, then just return it. Additionally, 421 * if the existing ksiginfo_t does not contain any information beyond 422 * the signal number, then just return it. 423 */ 424 ksiginfo_t * 425 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags) 426 { 427 ksiginfo_t *kp; 428 int s; 429 430 if (ok != NULL) { 431 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) == 432 KSI_FROMPOOL) 433 return ok; 434 if (KSI_EMPTY_P(ok)) 435 return ok; 436 } 437 438 s = splvm(); 439 kp = pool_get(&ksiginfo_pool, flags); 440 splx(s); 441 if (kp == NULL) { 442 #ifdef DIAGNOSTIC 443 printf("Out of memory allocating ksiginfo for pid %d\n", 444 p->p_pid); 445 #endif 446 return NULL; 447 } 448 449 if (ok != NULL) { 450 memcpy(kp, ok, sizeof(*kp)); 451 kp->ksi_flags &= ~KSI_QUEUED; 452 } else 453 KSI_INIT_EMPTY(kp); 454 455 kp->ksi_flags |= KSI_FROMPOOL; 456 457 return kp; 458 } 459 460 /* 461 * ksiginfo_free: 462 * 463 * If the given ksiginfo_t is from the pool and has not been queued, 464 * then free it. 465 */ 466 void 467 ksiginfo_free(ksiginfo_t *kp) 468 { 469 int s; 470 471 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL) 472 return; 473 s = splvm(); 474 pool_put(&ksiginfo_pool, kp); 475 splx(s); 476 } 477 478 /* 479 * ksiginfo_queue_drain: 480 * 481 * Drain a non-empty ksiginfo_t queue. 482 */ 483 void 484 ksiginfo_queue_drain0(ksiginfoq_t *kq) 485 { 486 ksiginfo_t *ksi; 487 int s; 488 489 KASSERT(!CIRCLEQ_EMPTY(kq)); 490 491 KERNEL_LOCK(1, curlwp); /* XXXSMP */ 492 while (!CIRCLEQ_EMPTY(kq)) { 493 ksi = CIRCLEQ_FIRST(kq); 494 CIRCLEQ_REMOVE(kq, ksi, ksi_list); 495 s = splvm(); 496 pool_put(&ksiginfo_pool, ksi); 497 splx(s); 498 } 499 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */ 500 } 501 502 /* 503 * sigget: 504 * 505 * Fetch the first pending signal from a set. Optionally, also fetch 506 * or manufacture a ksiginfo element. Returns the number of the first 507 * pending signal, or zero. 508 */ 509 int 510 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask) 511 { 512 ksiginfo_t *ksi; 513 sigset_t tset; 514 515 /* If there's no pending set, the signal is from the debugger. */ 516 if (sp == NULL) { 517 if (out != NULL) { 518 KSI_INIT(out); 519 out->ksi_info._signo = signo; 520 out->ksi_info._code = SI_USER; 521 } 522 return signo; 523 } 524 525 /* Construct mask from signo, and 'mask'. */ 526 if (signo == 0) { 527 if (mask != NULL) { 528 tset = *mask; 529 __sigandset(&sp->sp_set, &tset); 530 } else 531 tset = sp->sp_set; 532 533 /* If there are no signals pending, that's it. */ 534 if ((signo = firstsig(&tset)) == 0) 535 return 0; 536 } else { 537 KASSERT(sigismember(&sp->sp_set, signo)); 538 } 539 540 sigdelset(&sp->sp_set, signo); 541 542 /* Find siginfo and copy it out. */ 543 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) { 544 if (ksi->ksi_signo == signo) { 545 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 546 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 547 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 548 ksi->ksi_flags &= ~KSI_QUEUED; 549 if (out != NULL) { 550 memcpy(out, ksi, sizeof(*out)); 551 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED); 552 } 553 ksiginfo_free(ksi); 554 return signo; 555 } 556 } 557 558 /* If there's no siginfo, then manufacture it. */ 559 if (out != NULL) { 560 KSI_INIT(out); 561 out->ksi_info._signo = signo; 562 out->ksi_info._code = SI_USER; 563 } 564 565 return signo; 566 } 567 568 /* 569 * sigput: 570 * 571 * Append a new ksiginfo element to the list of pending ksiginfo's, if 572 * we need to (e.g. SA_SIGINFO was requested). 573 */ 574 void 575 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi) 576 { 577 ksiginfo_t *kp; 578 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 579 580 KASSERT(mutex_owned(&p->p_smutex)); 581 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 582 583 sigaddset(&sp->sp_set, ksi->ksi_signo); 584 585 /* 586 * If siginfo is not required, or there is none, then just mark the 587 * signal as pending. 588 */ 589 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi)) 590 return; 591 592 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 593 594 #ifdef notyet /* XXX: QUEUING */ 595 if (ksi->ksi_signo < SIGRTMIN) 596 #endif 597 { 598 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) { 599 if (kp->ksi_signo == ksi->ksi_signo) { 600 KSI_COPY(ksi, kp); 601 kp->ksi_flags |= KSI_QUEUED; 602 return; 603 } 604 } 605 } 606 607 ksi->ksi_flags |= KSI_QUEUED; 608 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list); 609 } 610 611 /* 612 * sigclear: 613 * 614 * Clear all pending signals in the specified set. 615 */ 616 void 617 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq) 618 { 619 ksiginfo_t *ksi, *next; 620 621 if (mask == NULL) 622 sigemptyset(&sp->sp_set); 623 else 624 sigminusset(mask, &sp->sp_set); 625 626 ksi = CIRCLEQ_FIRST(&sp->sp_info); 627 for (; ksi != (void *)&sp->sp_info; ksi = next) { 628 next = CIRCLEQ_NEXT(ksi, ksi_list); 629 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) { 630 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list); 631 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0); 632 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0); 633 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list); 634 } 635 } 636 } 637 638 /* 639 * sigclearall: 640 * 641 * Clear all pending signals in the specified set from a process and 642 * its LWPs. 643 */ 644 void 645 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq) 646 { 647 struct lwp *l; 648 649 KASSERT(mutex_owned(&p->p_smutex)); 650 651 sigclear(&p->p_sigpend, mask, kq); 652 653 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 654 sigclear(&l->l_sigpend, mask, kq); 655 } 656 } 657 658 /* 659 * sigispending: 660 * 661 * Return true if there are pending signals for the current LWP. May 662 * be called unlocked provided that L_PENDSIG is set, and that the 663 * signal has been posted to the appopriate queue before L_PENDSIG is 664 * set. 665 */ 666 int 667 sigispending(struct lwp *l, int signo) 668 { 669 struct proc *p = l->l_proc; 670 sigset_t tset; 671 672 mb_read(); 673 674 tset = l->l_sigpend.sp_set; 675 sigplusset(&p->p_sigpend.sp_set, &tset); 676 sigminusset(&p->p_sigctx.ps_sigignore, &tset); 677 sigminusset(&l->l_sigmask, &tset); 678 679 if (signo == 0) { 680 if (firstsig(&tset) != 0) 681 return EINTR; 682 } else if (sigismember(&tset, signo)) 683 return EINTR; 684 685 return 0; 686 } 687 688 /* 689 * siginfo_alloc: 690 * 691 * Allocate a new siginfo_t structure from the pool. 692 */ 693 siginfo_t * 694 siginfo_alloc(int flags) 695 { 696 697 return pool_get(&siginfo_pool, flags); 698 } 699 700 /* 701 * siginfo_free: 702 * 703 * Return a siginfo_t structure to the pool. 704 */ 705 void 706 siginfo_free(void *arg) 707 { 708 709 pool_put(&siginfo_pool, arg); 710 } 711 712 void 713 getucontext(struct lwp *l, ucontext_t *ucp) 714 { 715 struct proc *p = l->l_proc; 716 717 KASSERT(mutex_owned(&p->p_smutex)); 718 719 ucp->uc_flags = 0; 720 ucp->uc_link = l->l_ctxlink; 721 722 ucp->uc_sigmask = l->l_sigmask; 723 ucp->uc_flags |= _UC_SIGMASK; 724 725 /* 726 * The (unsupplied) definition of the `current execution stack' 727 * in the System V Interface Definition appears to allow returning 728 * the main context stack. 729 */ 730 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { 731 ucp->uc_stack.ss_sp = (void *)USRSTACK; 732 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize); 733 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 734 } else { 735 /* Simply copy alternate signal execution stack. */ 736 ucp->uc_stack = l->l_sigstk; 737 } 738 ucp->uc_flags |= _UC_STACK; 739 mutex_exit(&p->p_smutex); 740 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 741 mutex_enter(&p->p_smutex); 742 } 743 744 int 745 setucontext(struct lwp *l, const ucontext_t *ucp) 746 { 747 struct proc *p = l->l_proc; 748 int error; 749 750 KASSERT(mutex_owned(&p->p_smutex)); 751 752 if ((ucp->uc_flags & _UC_SIGMASK) != 0) { 753 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); 754 if (error != 0) 755 return error; 756 } 757 758 mutex_exit(&p->p_smutex); 759 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags); 760 mutex_enter(&p->p_smutex); 761 if (error != 0) 762 return (error); 763 764 l->l_ctxlink = ucp->uc_link; 765 766 /* 767 * If there was stack information, update whether or not we are 768 * still running on an alternate signal stack. 769 */ 770 if ((ucp->uc_flags & _UC_STACK) != 0) { 771 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 772 l->l_sigstk.ss_flags |= SS_ONSTACK; 773 else 774 l->l_sigstk.ss_flags &= ~SS_ONSTACK; 775 } 776 777 return 0; 778 } 779 780 /* 781 * Common code for kill process group/broadcast kill. cp is calling 782 * process. 783 */ 784 int 785 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all) 786 { 787 struct proc *p, *cp; 788 kauth_cred_t pc; 789 struct pgrp *pgrp; 790 int nfound; 791 int signo = ksi->ksi_signo; 792 793 cp = l->l_proc; 794 pc = l->l_cred; 795 nfound = 0; 796 797 mutex_enter(&proclist_lock); 798 if (all) { 799 /* 800 * broadcast 801 */ 802 PROCLIST_FOREACH(p, &allproc) { 803 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp) 804 continue; 805 mutex_enter(&p->p_mutex); 806 if (kauth_authorize_process(pc, 807 KAUTH_PROCESS_CANSIGNAL, p, 808 (void *)(uintptr_t)signo, NULL, NULL) == 0) { 809 nfound++; 810 if (signo) { 811 mutex_enter(&proclist_mutex); 812 mutex_enter(&p->p_smutex); 813 kpsignal2(p, ksi); 814 mutex_exit(&p->p_smutex); 815 mutex_exit(&proclist_mutex); 816 } 817 } 818 mutex_exit(&p->p_mutex); 819 } 820 } else { 821 if (pgid == 0) 822 /* 823 * zero pgid means send to my process group. 824 */ 825 pgrp = cp->p_pgrp; 826 else { 827 pgrp = pg_find(pgid, PFIND_LOCKED); 828 if (pgrp == NULL) 829 goto out; 830 } 831 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 832 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM) 833 continue; 834 mutex_enter(&p->p_mutex); 835 if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, 836 p, (void *)(uintptr_t)signo, NULL, NULL) == 0) { 837 nfound++; 838 if (signo) { 839 mutex_enter(&proclist_mutex); 840 mutex_enter(&p->p_smutex); 841 if (P_ZOMBIE(p) == 0) 842 kpsignal2(p, ksi); 843 mutex_exit(&p->p_smutex); 844 mutex_exit(&proclist_mutex); 845 } 846 } 847 mutex_exit(&p->p_mutex); 848 } 849 } 850 out: 851 mutex_exit(&proclist_lock); 852 return (nfound ? 0 : ESRCH); 853 } 854 855 /* 856 * Send a signal to a process group. If checktty is 1, limit to members 857 * which have a controlling terminal. 858 */ 859 void 860 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 861 { 862 ksiginfo_t ksi; 863 864 KASSERT(mutex_owned(&proclist_mutex)); 865 866 KSI_INIT_EMPTY(&ksi); 867 ksi.ksi_signo = sig; 868 kpgsignal(pgrp, &ksi, NULL, checkctty); 869 } 870 871 void 872 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 873 { 874 struct proc *p; 875 876 KASSERT(mutex_owned(&proclist_mutex)); 877 878 if (pgrp) 879 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 880 if (checkctty == 0 || p->p_lflag & PL_CONTROLT) 881 kpsignal(p, ksi, data); 882 } 883 884 /* 885 * Send a signal caused by a trap to the current LWP. If it will be caught 886 * immediately, deliver it with correct code. Otherwise, post it normally. 887 */ 888 void 889 trapsignal(struct lwp *l, ksiginfo_t *ksi) 890 { 891 struct proc *p; 892 struct sigacts *ps; 893 int signo = ksi->ksi_signo; 894 895 KASSERT(KSI_TRAP_P(ksi)); 896 897 ksi->ksi_lid = l->l_lid; 898 p = l->l_proc; 899 900 mutex_enter(&proclist_mutex); 901 mutex_enter(&p->p_smutex); 902 ps = p->p_sigacts; 903 if ((p->p_slflag & PSL_TRACED) == 0 && 904 sigismember(&p->p_sigctx.ps_sigcatch, signo) && 905 !sigismember(&l->l_sigmask, signo)) { 906 mutex_exit(&proclist_mutex); 907 p->p_stats->p_ru.ru_nsignals++; 908 kpsendsig(l, ksi, &l->l_sigmask); 909 mutex_exit(&p->p_smutex); 910 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, 911 &l->l_sigmask, ksi); 912 } else { 913 /* XXX for core dump/debugger */ 914 p->p_sigctx.ps_lwp = l->l_lid; 915 p->p_sigctx.ps_signo = ksi->ksi_signo; 916 p->p_sigctx.ps_code = ksi->ksi_trap; 917 kpsignal2(p, ksi); 918 mutex_exit(&proclist_mutex); 919 mutex_exit(&p->p_smutex); 920 } 921 } 922 923 /* 924 * Fill in signal information and signal the parent for a child status change. 925 */ 926 void 927 child_psignal(struct proc *p, int mask) 928 { 929 ksiginfo_t ksi; 930 struct proc *q; 931 int xstat; 932 933 KASSERT(mutex_owned(&proclist_mutex)); 934 KASSERT(mutex_owned(&p->p_smutex)); 935 936 xstat = p->p_xstat; 937 938 KSI_INIT(&ksi); 939 ksi.ksi_signo = SIGCHLD; 940 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED); 941 ksi.ksi_pid = p->p_pid; 942 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred); 943 ksi.ksi_status = xstat; 944 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 945 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 946 947 q = p->p_pptr; 948 949 mutex_exit(&p->p_smutex); 950 mutex_enter(&q->p_smutex); 951 952 if ((q->p_sflag & mask) == 0) 953 kpsignal2(q, &ksi); 954 955 mutex_exit(&q->p_smutex); 956 mutex_enter(&p->p_smutex); 957 } 958 959 void 960 psignal(struct proc *p, int signo) 961 { 962 ksiginfo_t ksi; 963 964 KASSERT(mutex_owned(&proclist_mutex)); 965 966 KSI_INIT_EMPTY(&ksi); 967 ksi.ksi_signo = signo; 968 mutex_enter(&p->p_smutex); 969 kpsignal2(p, &ksi); 970 mutex_exit(&p->p_smutex); 971 } 972 973 void 974 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data) 975 { 976 977 KASSERT(mutex_owned(&proclist_mutex)); 978 979 /* XXXSMP Why is this here? */ 980 if ((p->p_sflag & PS_WEXIT) == 0 && data) { 981 size_t fd; 982 struct filedesc *fdp = p->p_fd; 983 984 ksi->ksi_fd = -1; 985 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 986 struct file *fp = fdp->fd_ofiles[fd]; 987 /* XXX: lock? */ 988 if (fp && fp->f_data == data) { 989 ksi->ksi_fd = fd; 990 break; 991 } 992 } 993 } 994 mutex_enter(&p->p_smutex); 995 kpsignal2(p, ksi); 996 mutex_exit(&p->p_smutex); 997 } 998 999 /* 1000 * sigismasked: 1001 * 1002 * Returns true if signal is ignored or masked for the specified LWP. 1003 */ 1004 int 1005 sigismasked(struct lwp *l, int sig) 1006 { 1007 struct proc *p = l->l_proc; 1008 1009 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 1010 sigismember(&l->l_sigmask, sig)); 1011 } 1012 1013 /* 1014 * sigpost: 1015 * 1016 * Post a pending signal to an LWP. Returns non-zero if the LWP was 1017 * able to take the signal. 1018 */ 1019 int 1020 sigpost(struct lwp *l, sig_t action, int prop, int sig) 1021 { 1022 int rv, masked; 1023 1024 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 1025 1026 /* 1027 * If the LWP is on the way out, sigclear() will be busy draining all 1028 * pending signals. Don't give it more. 1029 */ 1030 if (l->l_refcnt == 0) 1031 return 0; 1032 1033 lwp_lock(l); 1034 1035 /* 1036 * Have the LWP check for signals. This ensures that even if no LWP 1037 * is found to take the signal immediately, it should be taken soon. 1038 */ 1039 l->l_flag |= LW_PENDSIG; 1040 1041 /* 1042 * SIGCONT can be masked, but must always restart stopped LWPs. 1043 */ 1044 masked = sigismember(&l->l_sigmask, sig); 1045 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) { 1046 lwp_unlock(l); 1047 return 0; 1048 } 1049 1050 /* 1051 * If killing the process, make it run fast. 1052 */ 1053 if (__predict_false((prop & SA_KILL) != 0) && 1054 action == SIG_DFL && l->l_priority > PUSER) 1055 lwp_changepri(l, PUSER); 1056 1057 /* 1058 * If the LWP is running or on a run queue, then we win. If it's 1059 * sleeping interruptably, wake it and make it take the signal. If 1060 * the sleep isn't interruptable, then the chances are it will get 1061 * to see the signal soon anyhow. If suspended, it can't take the 1062 * signal right now. If it's LWP private or for all LWPs, save it 1063 * for later; otherwise punt. 1064 */ 1065 rv = 0; 1066 1067 switch (l->l_stat) { 1068 case LSRUN: 1069 case LSONPROC: 1070 lwp_need_userret(l); 1071 rv = 1; 1072 break; 1073 1074 case LSSLEEP: 1075 if ((l->l_flag & LW_SINTR) != 0) { 1076 /* setrunnable() will release the lock. */ 1077 setrunnable(l); 1078 return 1; 1079 } 1080 break; 1081 1082 case LSSUSPENDED: 1083 if ((prop & SA_KILL) != 0) { 1084 /* lwp_continue() will release the lock. */ 1085 lwp_continue(l); 1086 return 1; 1087 } 1088 break; 1089 1090 case LSSTOP: 1091 if ((prop & SA_STOP) != 0) 1092 break; 1093 1094 /* 1095 * If the LWP is stopped and we are sending a continue 1096 * signal, then start it again. 1097 */ 1098 if ((prop & SA_CONT) != 0) { 1099 if (l->l_wchan != NULL) { 1100 l->l_stat = LSSLEEP; 1101 l->l_proc->p_nrlwps++; 1102 rv = 1; 1103 break; 1104 } 1105 /* setrunnable() will release the lock. */ 1106 setrunnable(l); 1107 return 1; 1108 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) { 1109 /* setrunnable() will release the lock. */ 1110 setrunnable(l); 1111 return 1; 1112 } 1113 break; 1114 1115 default: 1116 break; 1117 } 1118 1119 lwp_unlock(l); 1120 return rv; 1121 } 1122 1123 /* 1124 * Notify an LWP that it has a pending signal. 1125 */ 1126 void 1127 signotify(struct lwp *l) 1128 { 1129 KASSERT(lwp_locked(l, NULL)); 1130 1131 l->l_flag |= LW_PENDSIG; 1132 lwp_need_userret(l); 1133 } 1134 1135 /* 1136 * Find an LWP within process p that is waiting on signal ksi, and hand 1137 * it on. 1138 */ 1139 int 1140 sigunwait(struct proc *p, const ksiginfo_t *ksi) 1141 { 1142 struct lwp *l; 1143 int signo; 1144 1145 KASSERT(mutex_owned(&p->p_smutex)); 1146 1147 signo = ksi->ksi_signo; 1148 1149 if (ksi->ksi_lid != 0) { 1150 /* 1151 * Signal came via _lwp_kill(). Find the LWP and see if 1152 * it's interested. 1153 */ 1154 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL) 1155 return 0; 1156 if (l->l_sigwaited == NULL || 1157 !sigismember(&l->l_sigwaitset, signo)) 1158 return 0; 1159 } else { 1160 /* 1161 * Look for any LWP that may be interested. 1162 */ 1163 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) { 1164 KASSERT(l->l_sigwaited != NULL); 1165 if (sigismember(&l->l_sigwaitset, signo)) 1166 break; 1167 } 1168 } 1169 1170 if (l != NULL) { 1171 l->l_sigwaited->ksi_info = ksi->ksi_info; 1172 l->l_sigwaited = NULL; 1173 LIST_REMOVE(l, l_sigwaiter); 1174 cv_signal(&l->l_sigcv); 1175 return 1; 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * Send the signal to the process. If the signal has an action, the action 1183 * is usually performed by the target process rather than the caller; we add 1184 * the signal to the set of pending signals for the process. 1185 * 1186 * Exceptions: 1187 * o When a stop signal is sent to a sleeping process that takes the 1188 * default action, the process is stopped without awakening it. 1189 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1190 * regardless of the signal action (eg, blocked or ignored). 1191 * 1192 * Other ignored signals are discarded immediately. 1193 */ 1194 void 1195 kpsignal2(struct proc *p, ksiginfo_t *ksi) 1196 { 1197 int prop, lid, toall, signo = ksi->ksi_signo; 1198 struct sigacts *sa; 1199 struct lwp *l; 1200 ksiginfo_t *kp; 1201 ksiginfoq_t kq; 1202 sig_t action; 1203 1204 KASSERT(mutex_owned(&proclist_mutex)); 1205 KASSERT(mutex_owned(&p->p_smutex)); 1206 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0); 1207 KASSERT(signo > 0 && signo < NSIG); 1208 1209 /* 1210 * If the process is being created by fork, is a zombie or is 1211 * exiting, then just drop the signal here and bail out. 1212 */ 1213 if (p->p_stat != SACTIVE && p->p_stat != SSTOP) 1214 return; 1215 1216 /* 1217 * Notify any interested parties of the signal. 1218 */ 1219 KNOTE(&p->p_klist, NOTE_SIGNAL | signo); 1220 1221 /* 1222 * Some signals including SIGKILL must act on the entire process. 1223 */ 1224 kp = NULL; 1225 prop = sigprop[signo]; 1226 toall = ((prop & SA_TOALL) != 0); 1227 1228 if (toall) 1229 lid = 0; 1230 else 1231 lid = ksi->ksi_lid; 1232 1233 /* 1234 * If proc is traced, always give parent a chance. 1235 */ 1236 if (p->p_slflag & PSL_TRACED) { 1237 action = SIG_DFL; 1238 1239 if (lid == 0) { 1240 /* 1241 * If the process is being traced and the signal 1242 * is being caught, make sure to save any ksiginfo. 1243 */ 1244 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1245 return; 1246 sigput(&p->p_sigpend, p, kp); 1247 } 1248 } else { 1249 /* 1250 * If the signal was the result of a trap and is not being 1251 * caught, then reset it to default action so that the 1252 * process dumps core immediately. 1253 */ 1254 if (KSI_TRAP_P(ksi)) { 1255 sa = p->p_sigacts; 1256 mutex_enter(&sa->sa_mutex); 1257 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) { 1258 sigdelset(&p->p_sigctx.ps_sigignore, signo); 1259 SIGACTION(p, signo).sa_handler = SIG_DFL; 1260 } 1261 mutex_exit(&sa->sa_mutex); 1262 } 1263 1264 /* 1265 * If the signal is being ignored, then drop it. Note: we 1266 * don't set SIGCONT in ps_sigignore, and if it is set to 1267 * SIG_IGN, action will be SIG_DFL here. 1268 */ 1269 if (sigismember(&p->p_sigctx.ps_sigignore, signo)) 1270 return; 1271 1272 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) 1273 action = SIG_CATCH; 1274 else { 1275 action = SIG_DFL; 1276 1277 /* 1278 * If sending a tty stop signal to a member of an 1279 * orphaned process group, discard the signal here if 1280 * the action is default; don't stop the process below 1281 * if sleeping, and don't clear any pending SIGCONT. 1282 */ 1283 if (prop & SA_TTYSTOP && 1284 (p->p_sflag & PS_ORPHANPG) != 0) 1285 return; 1286 1287 if (prop & SA_KILL && p->p_nice > NZERO) 1288 p->p_nice = NZERO; 1289 } 1290 } 1291 1292 /* 1293 * If stopping or continuing a process, discard any pending 1294 * signals that would do the inverse. 1295 */ 1296 if ((prop & (SA_CONT | SA_STOP)) != 0) { 1297 ksiginfo_queue_init(&kq); 1298 if ((prop & SA_CONT) != 0) 1299 sigclear(&p->p_sigpend, &stopsigmask, &kq); 1300 if ((prop & SA_STOP) != 0) 1301 sigclear(&p->p_sigpend, &contsigmask, &kq); 1302 ksiginfo_queue_drain(&kq); /* XXXSMP */ 1303 } 1304 1305 /* 1306 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1307 * please!), check if any LWPs are waiting on it. If yes, pass on 1308 * the signal info. The signal won't be processed further here. 1309 */ 1310 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) && 1311 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 && 1312 sigunwait(p, ksi)) 1313 return; 1314 1315 /* 1316 * XXXSMP Should be allocated by the caller, we're holding locks 1317 * here. 1318 */ 1319 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL) 1320 return; 1321 1322 /* 1323 * LWP private signals are easy - just find the LWP and post 1324 * the signal to it. 1325 */ 1326 if (lid != 0) { 1327 l = lwp_find(p, lid); 1328 if (l != NULL) { 1329 sigput(&l->l_sigpend, p, kp); 1330 mb_write(); 1331 (void)sigpost(l, action, prop, kp->ksi_signo); 1332 } 1333 goto out; 1334 } 1335 1336 /* 1337 * Some signals go to all LWPs, even if posted with _lwp_kill(). 1338 */ 1339 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1340 if ((p->p_slflag & PSL_TRACED) != 0) 1341 goto deliver; 1342 1343 /* 1344 * If SIGCONT is default (or ignored) and process is 1345 * asleep, we are finished; the process should not 1346 * be awakened. 1347 */ 1348 if ((prop & SA_CONT) != 0 && action == SIG_DFL) 1349 goto out; 1350 1351 if ((prop & SA_STOP) != 0 && action == SIG_DFL) { 1352 /* 1353 * If a child holding parent blocked, stopping could 1354 * cause deadlock: discard the signal. 1355 */ 1356 if ((p->p_sflag & PS_PPWAIT) == 0) { 1357 p->p_xstat = signo; 1358 proc_stop(p, 1, signo); 1359 } 1360 goto out; 1361 } else { 1362 /* 1363 * Stop signals with the default action are handled 1364 * specially in issignal(), and so are not enqueued. 1365 */ 1366 sigput(&p->p_sigpend, p, kp); 1367 } 1368 } else { 1369 /* 1370 * Process is stopped or stopping. If traced, then no 1371 * further action is necessary. 1372 */ 1373 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) 1374 goto out; 1375 1376 if ((prop & (SA_CONT | SA_KILL)) != 0) { 1377 /* 1378 * Re-adjust p_nstopchild if the process wasn't 1379 * collected by its parent. 1380 */ 1381 p->p_stat = SACTIVE; 1382 p->p_sflag &= ~PS_STOPPING; 1383 if (!p->p_waited) 1384 p->p_pptr->p_nstopchild--; 1385 1386 /* 1387 * If SIGCONT is default (or ignored), we continue 1388 * the process but don't leave the signal in 1389 * ps_siglist, as it has no further action. If 1390 * SIGCONT is held, we continue the process and 1391 * leave the signal in ps_siglist. If the process 1392 * catches SIGCONT, let it handle the signal itself. 1393 * If it isn't waiting on an event, then it goes 1394 * back to run state. Otherwise, process goes back 1395 * to sleep state. 1396 */ 1397 if ((prop & SA_CONT) == 0 || action != SIG_DFL) 1398 sigput(&p->p_sigpend, p, kp); 1399 } else if ((prop & SA_STOP) != 0) { 1400 /* 1401 * Already stopped, don't need to stop again. 1402 * (If we did the shell could get confused.) 1403 */ 1404 goto out; 1405 } else 1406 sigput(&p->p_sigpend, p, kp); 1407 } 1408 1409 deliver: 1410 /* 1411 * Before we set L_PENDSIG on any LWP, ensure that the signal is 1412 * visible on the per process list (for sigispending()). This 1413 * is unlikely to be needed in practice, but... 1414 */ 1415 mb_write(); 1416 1417 /* 1418 * Try to find an LWP that can take the signal. 1419 */ 1420 LIST_FOREACH(l, &p->p_lwps, l_sibling) 1421 if (sigpost(l, action, prop, kp->ksi_signo) && !toall) 1422 break; 1423 1424 out: 1425 /* 1426 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory 1427 * with locks held. The caller should take care of this. 1428 */ 1429 ksiginfo_free(kp); 1430 } 1431 1432 void 1433 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1434 { 1435 struct proc *p = l->l_proc; 1436 1437 KASSERT(mutex_owned(&p->p_smutex)); 1438 1439 (*p->p_emul->e_sendsig)(ksi, mask); 1440 } 1441 1442 /* 1443 * Stop the current process and switch away when being stopped or traced. 1444 */ 1445 void 1446 sigswitch(bool ppsig, int ppmask, int signo) 1447 { 1448 struct lwp *l = curlwp, *l2; 1449 struct proc *p = l->l_proc; 1450 #ifdef MULTIPROCESSOR 1451 int biglocks; 1452 #endif 1453 1454 KASSERT(mutex_owned(&p->p_smutex)); 1455 KASSERT(l->l_stat == LSONPROC); 1456 KASSERT(p->p_nrlwps > 0); 1457 1458 /* 1459 * On entry we know that the process needs to stop. If it's 1460 * the result of a 'sideways' stop signal that has been sourced 1461 * through issignal(), then stop other LWPs in the process too. 1462 */ 1463 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) { 1464 /* 1465 * Set the stopping indicator and bring all sleeping LWPs 1466 * to a halt so they are included in p->p_nrlwps 1467 */ 1468 p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP); 1469 mb_write(); 1470 1471 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1472 lwp_lock(l2); 1473 if (l2->l_stat == LSSLEEP && 1474 (l2->l_flag & LW_SINTR) != 0) { 1475 l2->l_stat = LSSTOP; 1476 p->p_nrlwps--; 1477 } 1478 lwp_unlock(l2); 1479 } 1480 1481 /* 1482 * Have the remaining LWPs come to a halt, and trigger 1483 * proc_stop_callout() to ensure that they do. 1484 */ 1485 KASSERT(signo != 0); 1486 KASSERT(p->p_nrlwps > 0); 1487 1488 if (p->p_nrlwps > 1) { 1489 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 1490 sigpost(l2, SIG_DFL, SA_STOP, signo); 1491 callout_schedule(&proc_stop_ch, 1); 1492 } 1493 } 1494 1495 /* 1496 * If we are the last live LWP, and the stop was a result of 1497 * a new signal, then signal the parent. 1498 */ 1499 if ((p->p_sflag & PS_STOPPING) != 0) { 1500 if (!mutex_tryenter(&proclist_mutex)) { 1501 mutex_exit(&p->p_smutex); 1502 mutex_enter(&proclist_mutex); 1503 mutex_enter(&p->p_smutex); 1504 } 1505 1506 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) { 1507 p->p_sflag &= ~PS_STOPPING; 1508 p->p_stat = SSTOP; 1509 p->p_waited = 0; 1510 p->p_pptr->p_nstopchild++; 1511 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 1512 /* 1513 * Note that child_psignal() will drop 1514 * p->p_smutex briefly. 1515 */ 1516 if (ppsig) 1517 child_psignal(p, ppmask); 1518 cv_broadcast(&p->p_pptr->p_waitcv); 1519 } 1520 } 1521 1522 mutex_exit(&proclist_mutex); 1523 } 1524 1525 /* 1526 * Unlock and switch away. 1527 */ 1528 KERNEL_UNLOCK_ALL(l, &biglocks); 1529 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1530 p->p_nrlwps--; 1531 lwp_lock(l); 1532 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP); 1533 l->l_stat = LSSTOP; 1534 lwp_unlock(l); 1535 } 1536 1537 mutex_exit(&p->p_smutex); 1538 lwp_lock(l); 1539 mi_switch(l); 1540 KERNEL_LOCK(biglocks, l); 1541 mutex_enter(&p->p_smutex); 1542 } 1543 1544 /* 1545 * Check for a signal from the debugger. 1546 */ 1547 int 1548 sigchecktrace(sigpend_t **spp) 1549 { 1550 struct lwp *l = curlwp; 1551 struct proc *p = l->l_proc; 1552 int signo; 1553 1554 KASSERT(mutex_owned(&p->p_smutex)); 1555 1556 /* 1557 * If we are no longer being traced, or the parent didn't 1558 * give us a signal, look for more signals. 1559 */ 1560 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0) 1561 return 0; 1562 1563 /* If there's a pending SIGKILL, process it immediately. */ 1564 if (sigismember(&p->p_sigpend.sp_set, SIGKILL)) 1565 return 0; 1566 1567 /* 1568 * If the new signal is being masked, look for other signals. 1569 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable(). 1570 */ 1571 signo = p->p_xstat; 1572 p->p_xstat = 0; 1573 if ((sigprop[signo] & SA_TOLWP) != 0) 1574 *spp = &l->l_sigpend; 1575 else 1576 *spp = &p->p_sigpend; 1577 if (sigismember(&l->l_sigmask, signo)) 1578 signo = 0; 1579 1580 return signo; 1581 } 1582 1583 /* 1584 * If the current process has received a signal (should be caught or cause 1585 * termination, should interrupt current syscall), return the signal number. 1586 * 1587 * Stop signals with default action are processed immediately, then cleared; 1588 * they aren't returned. This is checked after each entry to the system for 1589 * a syscall or trap. 1590 * 1591 * We will also return -1 if the process is exiting and the current LWP must 1592 * follow suit. 1593 * 1594 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We 1595 * can switch away, though. 1596 */ 1597 int 1598 issignal(struct lwp *l) 1599 { 1600 struct proc *p = l->l_proc; 1601 int signo = 0, prop; 1602 sigpend_t *sp = NULL; 1603 sigset_t ss; 1604 1605 KASSERT(mutex_owned(&p->p_smutex)); 1606 1607 for (;;) { 1608 /* Discard any signals that we have decided not to take. */ 1609 if (signo != 0) 1610 (void)sigget(sp, NULL, signo, NULL); 1611 1612 /* 1613 * If the process is stopped/stopping, then stop ourselves 1614 * now that we're on the kernel/userspace boundary. When 1615 * we awaken, check for a signal from the debugger. 1616 */ 1617 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1618 sigswitch(true, PS_NOCLDSTOP, 0); 1619 signo = sigchecktrace(&sp); 1620 } else 1621 signo = 0; 1622 1623 /* 1624 * If the debugger didn't provide a signal, find a pending 1625 * signal from our set. Check per-LWP signals first, and 1626 * then per-process. 1627 */ 1628 if (signo == 0) { 1629 sp = &l->l_sigpend; 1630 ss = sp->sp_set; 1631 if ((p->p_sflag & PS_PPWAIT) != 0) 1632 sigminusset(&stopsigmask, &ss); 1633 sigminusset(&l->l_sigmask, &ss); 1634 1635 if ((signo = firstsig(&ss)) == 0) { 1636 sp = &p->p_sigpend; 1637 ss = sp->sp_set; 1638 if ((p->p_sflag & PS_PPWAIT) != 0) 1639 sigminusset(&stopsigmask, &ss); 1640 sigminusset(&l->l_sigmask, &ss); 1641 1642 if ((signo = firstsig(&ss)) == 0) { 1643 /* 1644 * No signal pending - clear the 1645 * indicator and bail out. 1646 */ 1647 lwp_lock(l); 1648 l->l_flag &= ~LW_PENDSIG; 1649 lwp_unlock(l); 1650 sp = NULL; 1651 break; 1652 } 1653 } 1654 } 1655 1656 /* 1657 * We should see pending but ignored signals only if 1658 * we are being traced. 1659 */ 1660 if (sigismember(&p->p_sigctx.ps_sigignore, signo) && 1661 (p->p_slflag & PSL_TRACED) == 0) { 1662 /* Discard the signal. */ 1663 continue; 1664 } 1665 1666 /* 1667 * If traced, always stop, and stay stopped until released 1668 * by the debugger. If the our parent process is waiting 1669 * for us, don't hang as we could deadlock. 1670 */ 1671 if ((p->p_slflag & PSL_TRACED) != 0 && 1672 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) { 1673 /* Take the signal. */ 1674 (void)sigget(sp, NULL, signo, NULL); 1675 p->p_xstat = signo; 1676 1677 /* Emulation-specific handling of signal trace */ 1678 if (p->p_emul->e_tracesig == NULL || 1679 (*p->p_emul->e_tracesig)(p, signo) == 0) 1680 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0, 1681 signo); 1682 1683 /* Check for a signal from the debugger. */ 1684 if ((signo = sigchecktrace(&sp)) == 0) 1685 continue; 1686 } 1687 1688 prop = sigprop[signo]; 1689 1690 /* 1691 * Decide whether the signal should be returned. 1692 */ 1693 switch ((long)SIGACTION(p, signo).sa_handler) { 1694 case (long)SIG_DFL: 1695 /* 1696 * Don't take default actions on system processes. 1697 */ 1698 if (p->p_pid <= 1) { 1699 #ifdef DIAGNOSTIC 1700 /* 1701 * Are you sure you want to ignore SIGSEGV 1702 * in init? XXX 1703 */ 1704 printf_nolog("Process (pid %d) got sig %d\n", 1705 p->p_pid, signo); 1706 #endif 1707 continue; 1708 } 1709 1710 /* 1711 * If there is a pending stop signal to process with 1712 * default action, stop here, then clear the signal. 1713 * However, if process is member of an orphaned 1714 * process group, ignore tty stop signals. 1715 */ 1716 if (prop & SA_STOP) { 1717 if (p->p_slflag & PSL_TRACED || 1718 ((p->p_sflag & PS_ORPHANPG) != 0 && 1719 prop & SA_TTYSTOP)) { 1720 /* Ignore the signal. */ 1721 continue; 1722 } 1723 /* Take the signal. */ 1724 (void)sigget(sp, NULL, signo, NULL); 1725 p->p_xstat = signo; 1726 signo = 0; 1727 sigswitch(true, PS_NOCLDSTOP, p->p_xstat); 1728 } else if (prop & SA_IGNORE) { 1729 /* 1730 * Except for SIGCONT, shouldn't get here. 1731 * Default action is to ignore; drop it. 1732 */ 1733 continue; 1734 } 1735 break; 1736 1737 case (long)SIG_IGN: 1738 #ifdef DEBUG_ISSIGNAL 1739 /* 1740 * Masking above should prevent us ever trying 1741 * to take action on an ignored signal other 1742 * than SIGCONT, unless process is traced. 1743 */ 1744 if ((prop & SA_CONT) == 0 && 1745 (p->p_slflag & PSL_TRACED) == 0) 1746 printf_nolog("issignal\n"); 1747 #endif 1748 continue; 1749 1750 default: 1751 /* 1752 * This signal has an action, let postsig() process 1753 * it. 1754 */ 1755 break; 1756 } 1757 1758 break; 1759 } 1760 1761 l->l_sigpendset = sp; 1762 return signo; 1763 } 1764 1765 /* 1766 * Take the action for the specified signal 1767 * from the current set of pending signals. 1768 */ 1769 void 1770 postsig(int signo) 1771 { 1772 struct lwp *l; 1773 struct proc *p; 1774 struct sigacts *ps; 1775 sig_t action; 1776 sigset_t *returnmask; 1777 ksiginfo_t ksi; 1778 1779 l = curlwp; 1780 p = l->l_proc; 1781 ps = p->p_sigacts; 1782 1783 KASSERT(mutex_owned(&p->p_smutex)); 1784 KASSERT(signo > 0); 1785 1786 /* 1787 * Set the new mask value and also defer further occurrences of this 1788 * signal. 1789 * 1790 * Special case: user has done a sigpause. Here the current mask is 1791 * not of interest, but rather the mask from before the sigpause is 1792 * what we want restored after the signal processing is completed. 1793 */ 1794 if (l->l_sigrestore) { 1795 returnmask = &l->l_sigoldmask; 1796 l->l_sigrestore = 0; 1797 } else 1798 returnmask = &l->l_sigmask; 1799 1800 /* 1801 * Commit to taking the signal before releasing the mutex. 1802 */ 1803 action = SIGACTION_PS(ps, signo).sa_handler; 1804 p->p_stats->p_ru.ru_nsignals++; 1805 sigget(l->l_sigpendset, &ksi, signo, NULL); 1806 1807 if (ktrpoint(KTR_PSIG)) { 1808 mutex_exit(&p->p_smutex); 1809 ktrpsig(signo, action, returnmask, NULL); 1810 mutex_enter(&p->p_smutex); 1811 } 1812 1813 if (action == SIG_DFL) { 1814 /* 1815 * Default action, where the default is to kill 1816 * the process. (Other cases were ignored above.) 1817 */ 1818 sigexit(l, signo); 1819 return; 1820 } 1821 1822 /* 1823 * If we get here, the signal must be caught. 1824 */ 1825 #ifdef DIAGNOSTIC 1826 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo)) 1827 panic("postsig action"); 1828 #endif 1829 1830 kpsendsig(l, &ksi, returnmask); 1831 } 1832 1833 /* 1834 * sendsig_reset: 1835 * 1836 * Reset the signal action. Called from emulation specific sendsig() 1837 * before unlocking to deliver the signal. 1838 */ 1839 void 1840 sendsig_reset(struct lwp *l, int signo) 1841 { 1842 struct proc *p = l->l_proc; 1843 struct sigacts *ps = p->p_sigacts; 1844 1845 KASSERT(mutex_owned(&p->p_smutex)); 1846 1847 p->p_sigctx.ps_lwp = 0; 1848 p->p_sigctx.ps_code = 0; 1849 p->p_sigctx.ps_signo = 0; 1850 1851 mutex_enter(&ps->sa_mutex); 1852 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask); 1853 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) { 1854 sigdelset(&p->p_sigctx.ps_sigcatch, signo); 1855 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE) 1856 sigaddset(&p->p_sigctx.ps_sigignore, signo); 1857 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL; 1858 } 1859 mutex_exit(&ps->sa_mutex); 1860 } 1861 1862 /* 1863 * Kill the current process for stated reason. 1864 */ 1865 void 1866 killproc(struct proc *p, const char *why) 1867 { 1868 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1869 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why); 1870 mutex_enter(&proclist_mutex); /* XXXSMP */ 1871 psignal(p, SIGKILL); 1872 mutex_exit(&proclist_mutex); /* XXXSMP */ 1873 } 1874 1875 /* 1876 * Force the current process to exit with the specified signal, dumping core 1877 * if appropriate. We bypass the normal tests for masked and caught 1878 * signals, allowing unrecoverable failures to terminate the process without 1879 * changing signal state. Mark the accounting record with the signal 1880 * termination. If dumping core, save the signal number for the debugger. 1881 * Calls exit and does not return. 1882 */ 1883 void 1884 sigexit(struct lwp *l, int signo) 1885 { 1886 int exitsig, error, docore; 1887 struct proc *p; 1888 struct lwp *t; 1889 1890 p = l->l_proc; 1891 1892 KASSERT(mutex_owned(&p->p_smutex)); 1893 KERNEL_UNLOCK_ALL(l, NULL); 1894 1895 /* 1896 * Don't permit coredump() multiple times in the same process. 1897 * Call back into sigexit, where we will be suspended until 1898 * the deed is done. Note that this is a recursive call, but 1899 * LW_WCORE will prevent us from coming back this way. 1900 */ 1901 if ((p->p_sflag & PS_WCORE) != 0) { 1902 lwp_lock(l); 1903 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND); 1904 lwp_unlock(l); 1905 mutex_exit(&p->p_smutex); 1906 lwp_userret(l); 1907 #ifdef DIAGNOSTIC 1908 panic("sigexit"); 1909 #endif 1910 /* NOTREACHED */ 1911 } 1912 1913 /* 1914 * Prepare all other LWPs for exit. If dumping core, suspend them 1915 * so that their registers are available long enough to be dumped. 1916 */ 1917 if ((docore = (sigprop[signo] & SA_CORE)) != 0) { 1918 p->p_sflag |= PS_WCORE; 1919 for (;;) { 1920 LIST_FOREACH(t, &p->p_lwps, l_sibling) { 1921 lwp_lock(t); 1922 if (t == l) { 1923 t->l_flag &= ~LW_WSUSPEND; 1924 lwp_unlock(t); 1925 continue; 1926 } 1927 t->l_flag |= (LW_WCORE | LW_WEXIT); 1928 lwp_suspend(l, t); 1929 } 1930 1931 if (p->p_nrlwps == 1) 1932 break; 1933 1934 /* 1935 * Kick any LWPs sitting in lwp_wait1(), and wait 1936 * for everyone else to stop before proceeding. 1937 */ 1938 p->p_nlwpwait++; 1939 cv_broadcast(&p->p_lwpcv); 1940 cv_wait(&p->p_lwpcv, &p->p_smutex); 1941 p->p_nlwpwait--; 1942 } 1943 } 1944 1945 exitsig = signo; 1946 p->p_acflag |= AXSIG; 1947 p->p_sigctx.ps_signo = signo; 1948 mutex_exit(&p->p_smutex); 1949 1950 KERNEL_LOCK(1, l); 1951 1952 if (docore) { 1953 if ((error = coredump(l, NULL)) == 0) 1954 exitsig |= WCOREFLAG; 1955 1956 if (kern_logsigexit) { 1957 int uid = l->l_cred ? 1958 (int)kauth_cred_geteuid(l->l_cred) : -1; 1959 1960 if (error) 1961 log(LOG_INFO, lognocoredump, p->p_pid, 1962 p->p_comm, uid, signo, error); 1963 else 1964 log(LOG_INFO, logcoredump, p->p_pid, 1965 p->p_comm, uid, signo); 1966 } 1967 1968 #ifdef PAX_SEGVGUARD 1969 pax_segvguard(l, p->p_textvp, p->p_comm, true); 1970 #endif /* PAX_SEGVGUARD */ 1971 } 1972 1973 /* Acquire the sched state mutex. exit1() will release it. */ 1974 mutex_enter(&p->p_smutex); 1975 1976 /* No longer dumping core. */ 1977 p->p_sflag &= ~PS_WCORE; 1978 1979 exit1(l, W_EXITCODE(0, exitsig)); 1980 /* NOTREACHED */ 1981 } 1982 1983 /* 1984 * Put process 'p' into the stopped state and optionally, notify the parent. 1985 */ 1986 void 1987 proc_stop(struct proc *p, int notify, int signo) 1988 { 1989 struct lwp *l; 1990 1991 KASSERT(mutex_owned(&proclist_mutex)); 1992 KASSERT(mutex_owned(&p->p_smutex)); 1993 1994 /* 1995 * First off, set the stopping indicator and bring all sleeping 1996 * LWPs to a halt so they are included in p->p_nrlwps. We musn't 1997 * unlock between here and the p->p_nrlwps check below. 1998 */ 1999 p->p_sflag |= PS_STOPPING; 2000 mb_write(); 2001 2002 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2003 lwp_lock(l); 2004 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { 2005 l->l_stat = LSSTOP; 2006 p->p_nrlwps--; 2007 } 2008 lwp_unlock(l); 2009 } 2010 2011 /* 2012 * If there are no LWPs available to take the signal, then we 2013 * signal the parent process immediately. Otherwise, the last 2014 * LWP to stop will take care of it. 2015 */ 2016 if (notify) 2017 p->p_sflag |= PS_NOTIFYSTOP; 2018 else 2019 p->p_sflag &= ~PS_NOTIFYSTOP; 2020 2021 if (p->p_nrlwps == 0) { 2022 p->p_sflag &= ~PS_STOPPING; 2023 p->p_stat = SSTOP; 2024 p->p_waited = 0; 2025 p->p_pptr->p_nstopchild++; 2026 2027 if (notify) { 2028 child_psignal(p, PS_NOCLDSTOP); 2029 cv_broadcast(&p->p_pptr->p_waitcv); 2030 } 2031 } else { 2032 /* 2033 * Have the remaining LWPs come to a halt, and trigger 2034 * proc_stop_callout() to ensure that they do. 2035 */ 2036 LIST_FOREACH(l, &p->p_lwps, l_sibling) 2037 sigpost(l, SIG_DFL, SA_STOP, signo); 2038 callout_schedule(&proc_stop_ch, 1); 2039 } 2040 } 2041 2042 /* 2043 * When stopping a process, we do not immediatly set sleeping LWPs stopped, 2044 * but wait for them to come to a halt at the kernel-user boundary. This is 2045 * to allow LWPs to release any locks that they may hold before stopping. 2046 * 2047 * Non-interruptable sleeps can be long, and there is the potential for an 2048 * LWP to begin sleeping interruptably soon after the process has been set 2049 * stopping (PS_STOPPING). These LWPs will not notice that the process is 2050 * stopping, and so complete halt of the process and the return of status 2051 * information to the parent could be delayed indefinitely. 2052 * 2053 * To handle this race, proc_stop_callout() runs once per tick while there 2054 * are stopping processes in the system. It sets LWPs that are sleeping 2055 * interruptably into the LSSTOP state. 2056 * 2057 * Note that we are not concerned about keeping all LWPs stopped while the 2058 * process is stopped: stopped LWPs can awaken briefly to handle signals. 2059 * What we do need to ensure is that all LWPs in a stopping process have 2060 * stopped at least once, so that notification can be sent to the parent 2061 * process. 2062 */ 2063 static void 2064 proc_stop_callout(void *cookie) 2065 { 2066 bool more, restart; 2067 struct proc *p; 2068 struct lwp *l; 2069 2070 (void)cookie; 2071 2072 do { 2073 restart = false; 2074 more = false; 2075 2076 mutex_enter(&proclist_mutex); 2077 PROCLIST_FOREACH(p, &allproc) { 2078 mutex_enter(&p->p_smutex); 2079 2080 if ((p->p_sflag & PS_STOPPING) == 0) { 2081 mutex_exit(&p->p_smutex); 2082 continue; 2083 } 2084 2085 /* Stop any LWPs sleeping interruptably. */ 2086 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2087 lwp_lock(l); 2088 if (l->l_stat == LSSLEEP && 2089 (l->l_flag & LW_SINTR) != 0) { 2090 l->l_stat = LSSTOP; 2091 p->p_nrlwps--; 2092 } 2093 lwp_unlock(l); 2094 } 2095 2096 if (p->p_nrlwps == 0) { 2097 /* 2098 * We brought the process to a halt. 2099 * Mark it as stopped and notify the 2100 * parent. 2101 */ 2102 p->p_sflag &= ~PS_STOPPING; 2103 p->p_stat = SSTOP; 2104 p->p_waited = 0; 2105 p->p_pptr->p_nstopchild++; 2106 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) { 2107 /* 2108 * Note that child_psignal() will 2109 * drop p->p_smutex briefly. 2110 * Arrange to restart and check 2111 * all processes again. 2112 */ 2113 restart = true; 2114 child_psignal(p, PS_NOCLDSTOP); 2115 cv_broadcast(&p->p_pptr->p_waitcv); 2116 } 2117 } else 2118 more = true; 2119 2120 mutex_exit(&p->p_smutex); 2121 if (restart) 2122 break; 2123 } 2124 mutex_exit(&proclist_mutex); 2125 } while (restart); 2126 2127 /* 2128 * If we noted processes that are stopping but still have 2129 * running LWPs, then arrange to check again in 1 tick. 2130 */ 2131 if (more) 2132 callout_schedule(&proc_stop_ch, 1); 2133 } 2134 2135 /* 2136 * Given a process in state SSTOP, set the state back to SACTIVE and 2137 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 2138 */ 2139 void 2140 proc_unstop(struct proc *p) 2141 { 2142 struct lwp *l; 2143 int sig; 2144 2145 KASSERT(mutex_owned(&proclist_mutex)); 2146 KASSERT(mutex_owned(&p->p_smutex)); 2147 2148 p->p_stat = SACTIVE; 2149 p->p_sflag &= ~PS_STOPPING; 2150 sig = p->p_xstat; 2151 2152 if (!p->p_waited) 2153 p->p_pptr->p_nstopchild--; 2154 2155 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2156 lwp_lock(l); 2157 if (l->l_stat != LSSTOP) { 2158 lwp_unlock(l); 2159 continue; 2160 } 2161 if (l->l_wchan == NULL) { 2162 setrunnable(l); 2163 continue; 2164 } 2165 if (sig && (l->l_flag & LW_SINTR) != 0) { 2166 setrunnable(l); 2167 sig = 0; 2168 } else { 2169 l->l_stat = LSSLEEP; 2170 p->p_nrlwps++; 2171 lwp_unlock(l); 2172 } 2173 } 2174 } 2175 2176 static int 2177 filt_sigattach(struct knote *kn) 2178 { 2179 struct proc *p = curproc; 2180 2181 kn->kn_ptr.p_proc = p; 2182 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2183 2184 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2185 2186 return (0); 2187 } 2188 2189 static void 2190 filt_sigdetach(struct knote *kn) 2191 { 2192 struct proc *p = kn->kn_ptr.p_proc; 2193 2194 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2195 } 2196 2197 /* 2198 * signal knotes are shared with proc knotes, so we apply a mask to 2199 * the hint in order to differentiate them from process hints. This 2200 * could be avoided by using a signal-specific knote list, but probably 2201 * isn't worth the trouble. 2202 */ 2203 static int 2204 filt_signal(struct knote *kn, long hint) 2205 { 2206 2207 if (hint & NOTE_SIGNAL) { 2208 hint &= ~NOTE_SIGNAL; 2209 2210 if (kn->kn_id == hint) 2211 kn->kn_data++; 2212 } 2213 return (kn->kn_data != 0); 2214 } 2215 2216 const struct filterops sig_filtops = { 2217 0, filt_sigattach, filt_sigdetach, filt_signal 2218 }; 2219