1 /* $NetBSD: kern_sig.c,v 1.143 2003/06/29 22:31:22 fvdl Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.143 2003/06/29 22:31:22 fvdl Exp $"); 45 46 #include "opt_ktrace.h" 47 #include "opt_compat_sunos.h" 48 #include "opt_compat_netbsd32.h" 49 50 #define SIGPROP /* include signal properties table */ 51 #include <sys/param.h> 52 #include <sys/signalvar.h> 53 #include <sys/resourcevar.h> 54 #include <sys/namei.h> 55 #include <sys/vnode.h> 56 #include <sys/proc.h> 57 #include <sys/systm.h> 58 #include <sys/timeb.h> 59 #include <sys/times.h> 60 #include <sys/buf.h> 61 #include <sys/acct.h> 62 #include <sys/file.h> 63 #include <sys/kernel.h> 64 #include <sys/wait.h> 65 #include <sys/ktrace.h> 66 #include <sys/syslog.h> 67 #include <sys/stat.h> 68 #include <sys/core.h> 69 #include <sys/filedesc.h> 70 #include <sys/malloc.h> 71 #include <sys/pool.h> 72 #include <sys/ucontext.h> 73 #include <sys/sa.h> 74 #include <sys/savar.h> 75 #include <sys/exec.h> 76 77 #include <sys/mount.h> 78 #include <sys/syscallargs.h> 79 80 #include <machine/cpu.h> 81 82 #include <sys/user.h> /* for coredump */ 83 84 #include <uvm/uvm_extern.h> 85 86 static void proc_stop(struct proc *p); 87 static int build_corename(struct proc *, char [MAXPATHLEN]); 88 sigset_t contsigmask, stopsigmask, sigcantmask; 89 90 struct pool sigacts_pool; /* memory pool for sigacts structures */ 91 struct pool siginfo_pool; /* memory pool for siginfo structures */ 92 93 /* 94 * Can process p, with pcred pc, send the signal signum to process q? 95 */ 96 #define CANSIGNAL(p, pc, q, signum) \ 97 ((pc)->pc_ucred->cr_uid == 0 || \ 98 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 99 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 100 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 101 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 102 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 103 104 /* 105 * Initialize signal-related data structures. 106 */ 107 void 108 signal_init(void) 109 { 110 111 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 112 &pool_allocator_nointr); 113 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 114 &pool_allocator_nointr); 115 } 116 117 /* 118 * Create an initial sigctx structure, using the same signal state 119 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 120 * copy it from parent. 121 */ 122 void 123 sigactsinit(struct proc *np, struct proc *pp, int share) 124 { 125 struct sigacts *ps; 126 127 if (share) { 128 np->p_sigacts = pp->p_sigacts; 129 pp->p_sigacts->sa_refcnt++; 130 } else { 131 ps = pool_get(&sigacts_pool, PR_WAITOK); 132 if (pp) 133 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 134 else 135 memset(ps, '\0', sizeof(struct sigacts)); 136 ps->sa_refcnt = 1; 137 np->p_sigacts = ps; 138 } 139 } 140 141 /* 142 * Make this process not share its sigctx, maintaining all 143 * signal state. 144 */ 145 void 146 sigactsunshare(struct proc *p) 147 { 148 struct sigacts *oldps; 149 150 if (p->p_sigacts->sa_refcnt == 1) 151 return; 152 153 oldps = p->p_sigacts; 154 sigactsinit(p, NULL, 0); 155 156 if (--oldps->sa_refcnt == 0) 157 pool_put(&sigacts_pool, oldps); 158 } 159 160 /* 161 * Release a sigctx structure. 162 */ 163 void 164 sigactsfree(struct proc *p) 165 { 166 struct sigacts *ps; 167 168 ps = p->p_sigacts; 169 if (--ps->sa_refcnt > 0) 170 return; 171 172 pool_put(&sigacts_pool, ps); 173 } 174 175 int 176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 177 struct sigaction *osa, void *tramp, int vers) 178 { 179 struct sigacts *ps; 180 int prop; 181 182 ps = p->p_sigacts; 183 if (signum <= 0 || signum >= NSIG) 184 return (EINVAL); 185 186 /* 187 * Trampoline ABI version 0 is reserved for the legacy 188 * kernel-provided on-stack trampoline. Conversely, if 189 * we are using a non-0 ABI version, we must have a 190 * trampoline. 191 */ 192 if ((vers != 0 && tramp == NULL) || 193 (vers == 0 && tramp != NULL)) 194 return (EINVAL); 195 196 if (osa) 197 *osa = SIGACTION_PS(ps, signum); 198 199 if (nsa) { 200 if (nsa->sa_flags & ~SA_ALLBITS) 201 return (EINVAL); 202 203 prop = sigprop[signum]; 204 if (prop & SA_CANTMASK) 205 return (EINVAL); 206 207 (void) splsched(); /* XXXSMP */ 208 SIGACTION_PS(ps, signum) = *nsa; 209 ps->sa_sigdesc[signum].sd_tramp = tramp; 210 ps->sa_sigdesc[signum].sd_vers = vers; 211 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 212 if ((prop & SA_NORESET) != 0) 213 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 214 if (signum == SIGCHLD) { 215 if (nsa->sa_flags & SA_NOCLDSTOP) 216 p->p_flag |= P_NOCLDSTOP; 217 else 218 p->p_flag &= ~P_NOCLDSTOP; 219 if (nsa->sa_flags & SA_NOCLDWAIT) { 220 /* 221 * Paranoia: since SA_NOCLDWAIT is implemented 222 * by reparenting the dying child to PID 1 (and 223 * trust it to reap the zombie), PID 1 itself 224 * is forbidden to set SA_NOCLDWAIT. 225 */ 226 if (p->p_pid == 1) 227 p->p_flag &= ~P_NOCLDWAIT; 228 else 229 p->p_flag |= P_NOCLDWAIT; 230 } else 231 p->p_flag &= ~P_NOCLDWAIT; 232 } 233 if ((nsa->sa_flags & SA_NODEFER) == 0) 234 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 235 else 236 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 237 /* 238 * Set bit in p_sigctx.ps_sigignore for signals that are set to 239 * SIG_IGN, and for signals set to SIG_DFL where the default is 240 * to ignore. However, don't put SIGCONT in 241 * p_sigctx.ps_sigignore, as we have to restart the process. 242 */ 243 if (nsa->sa_handler == SIG_IGN || 244 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 245 /* never to be seen again */ 246 sigdelset(&p->p_sigctx.ps_siglist, signum); 247 if (signum != SIGCONT) { 248 /* easier in psignal */ 249 sigaddset(&p->p_sigctx.ps_sigignore, signum); 250 } 251 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 252 } else { 253 sigdelset(&p->p_sigctx.ps_sigignore, signum); 254 if (nsa->sa_handler == SIG_DFL) 255 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 256 else 257 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 258 } 259 (void) spl0(); 260 } 261 262 return (0); 263 } 264 265 /* ARGSUSED */ 266 int 267 sys___sigaction14(struct lwp *l, void *v, register_t *retval) 268 { 269 struct sys___sigaction14_args /* { 270 syscallarg(int) signum; 271 syscallarg(const struct sigaction *) nsa; 272 syscallarg(struct sigaction *) osa; 273 } */ *uap = v; 274 struct proc *p; 275 struct sigaction nsa, osa; 276 int error; 277 278 if (SCARG(uap, nsa)) { 279 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 280 if (error) 281 return (error); 282 } 283 p = l->l_proc; 284 error = sigaction1(p, SCARG(uap, signum), 285 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 286 NULL, 0); 287 if (error) 288 return (error); 289 if (SCARG(uap, osa)) { 290 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 291 if (error) 292 return (error); 293 } 294 return (0); 295 } 296 297 /* ARGSUSED */ 298 int 299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 300 { 301 struct sys___sigaction_sigtramp_args /* { 302 syscallarg(int) signum; 303 syscallarg(const struct sigaction *) nsa; 304 syscallarg(struct sigaction *) osa; 305 syscallarg(void *) tramp; 306 syscallarg(int) vers; 307 } */ *uap = v; 308 struct proc *p = l->l_proc; 309 struct sigaction nsa, osa; 310 int error; 311 312 if (SCARG(uap, nsa)) { 313 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 314 if (error) 315 return (error); 316 } 317 error = sigaction1(p, SCARG(uap, signum), 318 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 319 SCARG(uap, tramp), SCARG(uap, vers)); 320 if (error) 321 return (error); 322 if (SCARG(uap, osa)) { 323 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 324 if (error) 325 return (error); 326 } 327 return (0); 328 } 329 330 /* 331 * Initialize signal state for process 0; 332 * set to ignore signals that are ignored by default and disable the signal 333 * stack. 334 */ 335 void 336 siginit(struct proc *p) 337 { 338 struct sigacts *ps; 339 int signum, prop; 340 341 ps = p->p_sigacts; 342 sigemptyset(&contsigmask); 343 sigemptyset(&stopsigmask); 344 sigemptyset(&sigcantmask); 345 for (signum = 1; signum < NSIG; signum++) { 346 prop = sigprop[signum]; 347 if (prop & SA_CONT) 348 sigaddset(&contsigmask, signum); 349 if (prop & SA_STOP) 350 sigaddset(&stopsigmask, signum); 351 if (prop & SA_CANTMASK) 352 sigaddset(&sigcantmask, signum); 353 if (prop & SA_IGNORE && signum != SIGCONT) 354 sigaddset(&p->p_sigctx.ps_sigignore, signum); 355 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 356 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 357 } 358 sigemptyset(&p->p_sigctx.ps_sigcatch); 359 p->p_sigctx.ps_sigwaited = 0; 360 p->p_flag &= ~P_NOCLDSTOP; 361 362 /* 363 * Reset stack state to the user stack. 364 */ 365 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 366 p->p_sigctx.ps_sigstk.ss_size = 0; 367 p->p_sigctx.ps_sigstk.ss_sp = 0; 368 369 /* One reference. */ 370 ps->sa_refcnt = 1; 371 } 372 373 /* 374 * Reset signals for an exec of the specified process. 375 */ 376 void 377 execsigs(struct proc *p) 378 { 379 struct sigacts *ps; 380 int signum, prop; 381 382 sigactsunshare(p); 383 384 ps = p->p_sigacts; 385 386 /* 387 * Reset caught signals. Held signals remain held 388 * through p_sigctx.ps_sigmask (unless they were caught, 389 * and are now ignored by default). 390 */ 391 for (signum = 1; signum < NSIG; signum++) { 392 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 393 prop = sigprop[signum]; 394 if (prop & SA_IGNORE) { 395 if ((prop & SA_CONT) == 0) 396 sigaddset(&p->p_sigctx.ps_sigignore, 397 signum); 398 sigdelset(&p->p_sigctx.ps_siglist, signum); 399 } 400 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 401 } 402 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 403 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 404 } 405 sigemptyset(&p->p_sigctx.ps_sigcatch); 406 p->p_sigctx.ps_sigwaited = 0; 407 p->p_flag &= ~P_NOCLDSTOP; 408 409 /* 410 * Reset stack state to the user stack. 411 */ 412 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 413 p->p_sigctx.ps_sigstk.ss_size = 0; 414 p->p_sigctx.ps_sigstk.ss_sp = 0; 415 } 416 417 int 418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 419 { 420 421 if (oss) 422 *oss = p->p_sigctx.ps_sigmask; 423 424 if (nss) { 425 (void)splsched(); /* XXXSMP */ 426 switch (how) { 427 case SIG_BLOCK: 428 sigplusset(nss, &p->p_sigctx.ps_sigmask); 429 break; 430 case SIG_UNBLOCK: 431 sigminusset(nss, &p->p_sigctx.ps_sigmask); 432 CHECKSIGS(p); 433 break; 434 case SIG_SETMASK: 435 p->p_sigctx.ps_sigmask = *nss; 436 CHECKSIGS(p); 437 break; 438 default: 439 (void)spl0(); /* XXXSMP */ 440 return (EINVAL); 441 } 442 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 443 (void)spl0(); /* XXXSMP */ 444 } 445 446 return (0); 447 } 448 449 /* 450 * Manipulate signal mask. 451 * Note that we receive new mask, not pointer, 452 * and return old mask as return value; 453 * the library stub does the rest. 454 */ 455 int 456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 457 { 458 struct sys___sigprocmask14_args /* { 459 syscallarg(int) how; 460 syscallarg(const sigset_t *) set; 461 syscallarg(sigset_t *) oset; 462 } */ *uap = v; 463 struct proc *p; 464 sigset_t nss, oss; 465 int error; 466 467 if (SCARG(uap, set)) { 468 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 469 if (error) 470 return (error); 471 } 472 p = l->l_proc; 473 error = sigprocmask1(p, SCARG(uap, how), 474 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 475 if (error) 476 return (error); 477 if (SCARG(uap, oset)) { 478 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 479 if (error) 480 return (error); 481 } 482 return (0); 483 } 484 485 void 486 sigpending1(struct proc *p, sigset_t *ss) 487 { 488 489 *ss = p->p_sigctx.ps_siglist; 490 sigminusset(&p->p_sigctx.ps_sigmask, ss); 491 } 492 493 /* ARGSUSED */ 494 int 495 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 496 { 497 struct sys___sigpending14_args /* { 498 syscallarg(sigset_t *) set; 499 } */ *uap = v; 500 struct proc *p; 501 sigset_t ss; 502 503 p = l->l_proc; 504 sigpending1(p, &ss); 505 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 506 } 507 508 int 509 sigsuspend1(struct proc *p, const sigset_t *ss) 510 { 511 struct sigacts *ps; 512 513 ps = p->p_sigacts; 514 if (ss) { 515 /* 516 * When returning from sigpause, we want 517 * the old mask to be restored after the 518 * signal handler has finished. Thus, we 519 * save it here and mark the sigctx structure 520 * to indicate this. 521 */ 522 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 523 p->p_sigctx.ps_flags |= SAS_OLDMASK; 524 (void) splsched(); /* XXXSMP */ 525 p->p_sigctx.ps_sigmask = *ss; 526 CHECKSIGS(p); 527 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 528 (void) spl0(); /* XXXSMP */ 529 } 530 531 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 532 /* void */; 533 /* always return EINTR rather than ERESTART... */ 534 return (EINTR); 535 } 536 537 /* 538 * Suspend process until signal, providing mask to be set 539 * in the meantime. Note nonstandard calling convention: 540 * libc stub passes mask, not pointer, to save a copyin. 541 */ 542 /* ARGSUSED */ 543 int 544 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 545 { 546 struct sys___sigsuspend14_args /* { 547 syscallarg(const sigset_t *) set; 548 } */ *uap = v; 549 struct proc *p; 550 sigset_t ss; 551 int error; 552 553 if (SCARG(uap, set)) { 554 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 555 if (error) 556 return (error); 557 } 558 559 p = l->l_proc; 560 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 561 } 562 563 int 564 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 565 struct sigaltstack *oss) 566 { 567 568 if (oss) 569 *oss = p->p_sigctx.ps_sigstk; 570 571 if (nss) { 572 if (nss->ss_flags & ~SS_ALLBITS) 573 return (EINVAL); 574 575 if (nss->ss_flags & SS_DISABLE) { 576 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 577 return (EINVAL); 578 } else { 579 if (nss->ss_size < MINSIGSTKSZ) 580 return (ENOMEM); 581 } 582 p->p_sigctx.ps_sigstk = *nss; 583 } 584 585 return (0); 586 } 587 588 /* ARGSUSED */ 589 int 590 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 591 { 592 struct sys___sigaltstack14_args /* { 593 syscallarg(const struct sigaltstack *) nss; 594 syscallarg(struct sigaltstack *) oss; 595 } */ *uap = v; 596 struct proc *p; 597 struct sigaltstack nss, oss; 598 int error; 599 600 if (SCARG(uap, nss)) { 601 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 602 if (error) 603 return (error); 604 } 605 p = l->l_proc; 606 error = sigaltstack1(p, 607 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 608 if (error) 609 return (error); 610 if (SCARG(uap, oss)) { 611 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 612 if (error) 613 return (error); 614 } 615 return (0); 616 } 617 618 /* ARGSUSED */ 619 int 620 sys_kill(struct lwp *l, void *v, register_t *retval) 621 { 622 struct sys_kill_args /* { 623 syscallarg(int) pid; 624 syscallarg(int) signum; 625 } */ *uap = v; 626 struct proc *cp, *p; 627 struct pcred *pc; 628 629 cp = l->l_proc; 630 pc = cp->p_cred; 631 if ((u_int)SCARG(uap, signum) >= NSIG) 632 return (EINVAL); 633 if (SCARG(uap, pid) > 0) { 634 /* kill single process */ 635 if ((p = pfind(SCARG(uap, pid))) == NULL) 636 return (ESRCH); 637 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 638 return (EPERM); 639 if (SCARG(uap, signum)) 640 psignal(p, SCARG(uap, signum)); 641 return (0); 642 } 643 switch (SCARG(uap, pid)) { 644 case -1: /* broadcast signal */ 645 return (killpg1(cp, SCARG(uap, signum), 0, 1)); 646 case 0: /* signal own process group */ 647 return (killpg1(cp, SCARG(uap, signum), 0, 0)); 648 default: /* negative explicit process group */ 649 return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0)); 650 } 651 /* NOTREACHED */ 652 } 653 654 /* 655 * Common code for kill process group/broadcast kill. 656 * cp is calling process. 657 */ 658 int 659 killpg1(struct proc *cp, int signum, int pgid, int all) 660 { 661 struct proc *p; 662 struct pcred *pc; 663 struct pgrp *pgrp; 664 int nfound; 665 666 pc = cp->p_cred; 667 nfound = 0; 668 if (all) { 669 /* 670 * broadcast 671 */ 672 proclist_lock_read(); 673 LIST_FOREACH(p, &allproc, p_list) { 674 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 675 p == cp || !CANSIGNAL(cp, pc, p, signum)) 676 continue; 677 nfound++; 678 if (signum) 679 psignal(p, signum); 680 } 681 proclist_unlock_read(); 682 } else { 683 if (pgid == 0) 684 /* 685 * zero pgid means send to my process group. 686 */ 687 pgrp = cp->p_pgrp; 688 else { 689 pgrp = pgfind(pgid); 690 if (pgrp == NULL) 691 return (ESRCH); 692 } 693 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 694 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 695 !CANSIGNAL(cp, pc, p, signum)) 696 continue; 697 nfound++; 698 if (signum && P_ZOMBIE(p) == 0) 699 psignal(p, signum); 700 } 701 } 702 return (nfound ? 0 : ESRCH); 703 } 704 705 /* 706 * Send a signal to a process group. 707 */ 708 void 709 gsignal(int pgid, int signum) 710 { 711 struct pgrp *pgrp; 712 713 if (pgid && (pgrp = pgfind(pgid))) 714 pgsignal(pgrp, signum, 0); 715 } 716 717 /* 718 * Send a signal to a process group. If checktty is 1, 719 * limit to members which have a controlling terminal. 720 */ 721 void 722 pgsignal(struct pgrp *pgrp, int signum, int checkctty) 723 { 724 struct proc *p; 725 726 if (pgrp) 727 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 728 if (checkctty == 0 || p->p_flag & P_CONTROLT) 729 psignal(p, signum); 730 } 731 732 /* 733 * Send a signal caused by a trap to the current process. 734 * If it will be caught immediately, deliver it with correct code. 735 * Otherwise, post it normally. 736 */ 737 void 738 trapsignal(struct lwp *l, int signum, u_long code) 739 { 740 struct proc *p; 741 struct sigacts *ps; 742 743 p = l->l_proc; 744 ps = p->p_sigacts; 745 if ((p->p_flag & P_TRACED) == 0 && 746 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 747 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 748 p->p_stats->p_ru.ru_nsignals++; 749 #ifdef KTRACE 750 if (KTRPOINT(p, KTR_PSIG)) 751 ktrpsig(p, signum, 752 SIGACTION_PS(ps, signum).sa_handler, 753 &p->p_sigctx.ps_sigmask, code); 754 #endif 755 psendsig(l, signum, &p->p_sigctx.ps_sigmask, code); 756 (void) splsched(); /* XXXSMP */ 757 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 758 &p->p_sigctx.ps_sigmask); 759 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 760 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 761 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 762 sigaddset(&p->p_sigctx.ps_sigignore, signum); 763 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 764 } 765 (void) spl0(); /* XXXSMP */ 766 } else { 767 p->p_sigctx.ps_code = code; /* XXX for core dump/debugger */ 768 p->p_sigctx.ps_sig = signum; /* XXX to verify code */ 769 p->p_sigctx.ps_lwp = l->l_lid; 770 psignal(p, signum); 771 } 772 } 773 774 /* 775 * Send the signal to the process. If the signal has an action, the action 776 * is usually performed by the target process rather than the caller; we add 777 * the signal to the set of pending signals for the process. 778 * 779 * Exceptions: 780 * o When a stop signal is sent to a sleeping process that takes the 781 * default action, the process is stopped without awakening it. 782 * o SIGCONT restarts stopped processes (or puts them back to sleep) 783 * regardless of the signal action (eg, blocked or ignored). 784 * 785 * Other ignored signals are discarded immediately. 786 * 787 * XXXSMP: Invoked as psignal() or sched_psignal(). 788 */ 789 void 790 psignal1(struct proc *p, int signum, 791 int dolock) /* XXXSMP: works, but icky */ 792 { 793 struct lwp *l, *suspended; 794 int s = 0, prop, allsusp; 795 sig_t action; 796 797 #ifdef DIAGNOSTIC 798 if (signum <= 0 || signum >= NSIG) 799 panic("psignal signal number"); 800 801 /* XXXSMP: works, but icky */ 802 if (dolock) 803 SCHED_ASSERT_UNLOCKED(); 804 else 805 SCHED_ASSERT_LOCKED(); 806 #endif 807 /* 808 * Notify any interested parties in the signal. 809 */ 810 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 811 812 prop = sigprop[signum]; 813 814 /* 815 * If proc is traced, always give parent a chance. 816 */ 817 if (p->p_flag & P_TRACED) 818 action = SIG_DFL; 819 else { 820 /* 821 * If the signal is being ignored, 822 * then we forget about it immediately. 823 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 824 * and if it is set to SIG_IGN, 825 * action will be SIG_DFL here.) 826 */ 827 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 828 return; 829 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 830 action = SIG_HOLD; 831 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 832 action = SIG_CATCH; 833 else { 834 action = SIG_DFL; 835 836 if (prop & SA_KILL && p->p_nice > NZERO) 837 p->p_nice = NZERO; 838 839 /* 840 * If sending a tty stop signal to a member of an 841 * orphaned process group, discard the signal here if 842 * the action is default; don't stop the process below 843 * if sleeping, and don't clear any pending SIGCONT. 844 */ 845 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 846 return; 847 } 848 } 849 850 if (prop & SA_CONT) 851 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 852 853 if (prop & SA_STOP) 854 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 855 856 sigaddset(&p->p_sigctx.ps_siglist, signum); 857 858 /* CHECKSIGS() is "inlined" here. */ 859 p->p_sigctx.ps_sigcheck = 1; 860 861 /* 862 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 863 * please!), check if anything waits on it. If yes, clear the 864 * pending signal from siglist set, save it to ps_sigwaited, 865 * clear sigwait list, and wakeup any sigwaiters. 866 * The signal won't be processed further here. 867 */ 868 if ((prop & SA_CANTMASK) == 0 869 && p->p_sigctx.ps_sigwaited < 0 870 && sigismember(&p->p_sigctx.ps_sigwait, signum)) { 871 sigdelset(&p->p_sigctx.ps_siglist, signum); 872 p->p_sigctx.ps_sigwaited = signum; 873 sigemptyset(&p->p_sigctx.ps_sigwait); 874 875 if (dolock) 876 wakeup_one(&p->p_sigctx.ps_sigwait); 877 else 878 sched_wakeup(&p->p_sigctx.ps_sigwait); 879 return; 880 } 881 882 /* 883 * Defer further processing for signals which are held, 884 * except that stopped processes must be continued by SIGCONT. 885 */ 886 if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) 887 return; 888 /* XXXSMP: works, but icky */ 889 if (dolock) 890 SCHED_LOCK(s); 891 892 if (p->p_nrlwps > 0) { 893 /* 894 * At least one LWP is running or on a run queue. 895 * The signal will be noticed when one of them returns 896 * to userspace. 897 */ 898 signotify(p); 899 /* 900 * The signal will be noticed very soon. 901 */ 902 goto out; 903 } else { 904 /* Process is sleeping or stopped */ 905 if (p->p_flag & P_SA) { 906 l = p->p_sa->sa_idle; 907 } else { 908 /* 909 * Find out if any of the sleeps are interruptable, 910 * and if all the live LWPs remaining are suspended. 911 */ 912 allsusp = 1; 913 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 914 if (l->l_stat == LSSLEEP && 915 l->l_flag & L_SINTR) 916 break; 917 if (l->l_stat == LSSUSPENDED) 918 suspended = l; 919 else if ((l->l_stat != LSZOMB) && 920 (l->l_stat != LSDEAD)) 921 allsusp = 0; 922 } 923 } 924 if (p->p_stat == SACTIVE) { 925 /* All LWPs must be sleeping */ 926 KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL)); 927 928 if (l != NULL && (p->p_flag & P_TRACED)) 929 goto run; 930 931 /* 932 * If SIGCONT is default (or ignored) and process is 933 * asleep, we are finished; the process should not 934 * be awakened. 935 */ 936 if ((prop & SA_CONT) && action == SIG_DFL) { 937 sigdelset(&p->p_sigctx.ps_siglist, signum); 938 goto out; 939 } 940 941 /* 942 * When a sleeping process receives a stop 943 * signal, process immediately if possible. 944 */ 945 if ((prop & SA_STOP) && action == SIG_DFL) { 946 /* 947 * If a child holding parent blocked, 948 * stopping could cause deadlock. 949 */ 950 if (p->p_flag & P_PPWAIT) 951 goto out; 952 sigdelset(&p->p_sigctx.ps_siglist, signum); 953 p->p_xstat = signum; 954 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 955 /* 956 * XXXSMP: recursive call; don't lock 957 * the second time around. 958 */ 959 sched_psignal(p->p_pptr, SIGCHLD); 960 } 961 proc_stop(p); /* XXXSMP: recurse? */ 962 goto out; 963 } 964 965 if (l == NULL) { 966 /* 967 * Special case: SIGKILL of a process 968 * which is entirely composed of 969 * suspended LWPs should succeed. We 970 * make this happen by unsuspending one of 971 * them. 972 */ 973 if (allsusp && (signum == SIGKILL)) 974 lwp_continue(suspended); 975 goto out; 976 } 977 /* 978 * All other (caught or default) signals 979 * cause the process to run. 980 */ 981 goto runfast; 982 /*NOTREACHED*/ 983 } else if (p->p_stat == SSTOP) { 984 /* Process is stopped */ 985 /* 986 * If traced process is already stopped, 987 * then no further action is necessary. 988 */ 989 if (p->p_flag & P_TRACED) 990 goto out; 991 992 /* 993 * Kill signal always sets processes running, 994 * if possible. 995 */ 996 if (signum == SIGKILL) { 997 l = proc_unstop(p); 998 if (l) 999 goto runfast; 1000 goto out; 1001 } 1002 1003 if (prop & SA_CONT) { 1004 /* 1005 * If SIGCONT is default (or ignored), 1006 * we continue the process but don't 1007 * leave the signal in ps_siglist, as 1008 * it has no further action. If 1009 * SIGCONT is held, we continue the 1010 * process and leave the signal in 1011 * ps_siglist. If the process catches 1012 * SIGCONT, let it handle the signal 1013 * itself. If it isn't waiting on an 1014 * event, then it goes back to run 1015 * state. Otherwise, process goes 1016 * back to sleep state. 1017 */ 1018 if (action == SIG_DFL) 1019 sigdelset(&p->p_sigctx.ps_siglist, 1020 signum); 1021 l = proc_unstop(p); 1022 if (l && (action == SIG_CATCH)) 1023 goto runfast; 1024 goto out; 1025 } 1026 1027 if (prop & SA_STOP) { 1028 /* 1029 * Already stopped, don't need to stop again. 1030 * (If we did the shell could get confused.) 1031 */ 1032 sigdelset(&p->p_sigctx.ps_siglist, signum); 1033 goto out; 1034 } 1035 1036 /* 1037 * If a lwp is sleeping interruptibly, then 1038 * wake it up; it will run until the kernel 1039 * boundary, where it will stop in issignal(), 1040 * since p->p_stat is still SSTOP. When the 1041 * process is continued, it will be made 1042 * runnable and can look at the signal. 1043 */ 1044 if (l) 1045 goto run; 1046 goto out; 1047 } else { 1048 /* Else what? */ 1049 panic("psignal: Invalid process state %d.", 1050 p->p_stat); 1051 } 1052 } 1053 /*NOTREACHED*/ 1054 1055 runfast: 1056 /* 1057 * Raise priority to at least PUSER. 1058 */ 1059 if (l->l_priority > PUSER) 1060 l->l_priority = PUSER; 1061 run: 1062 setrunnable(l); /* XXXSMP: recurse? */ 1063 out: 1064 /* XXXSMP: works, but icky */ 1065 if (dolock) 1066 SCHED_UNLOCK(s); 1067 } 1068 1069 void 1070 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code) 1071 { 1072 struct proc *p = l->l_proc; 1073 struct lwp *le, *li; 1074 siginfo_t *si; 1075 1076 if (p->p_flag & P_SA) { 1077 si = pool_get(&siginfo_pool, PR_WAITOK); 1078 si->si_signo = sig; 1079 si->si_errno = 0; 1080 si->si_code = code; 1081 le = li = NULL; 1082 if (code) 1083 le = l; 1084 else 1085 li = l; 1086 1087 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1088 sizeof(siginfo_t), si); 1089 return; 1090 } 1091 1092 (*p->p_emul->e_sendsig)(sig, mask, code); 1093 } 1094 1095 static __inline int firstsig(const sigset_t *); 1096 1097 static __inline int 1098 firstsig(const sigset_t *ss) 1099 { 1100 int sig; 1101 1102 sig = ffs(ss->__bits[0]); 1103 if (sig != 0) 1104 return (sig); 1105 #if NSIG > 33 1106 sig = ffs(ss->__bits[1]); 1107 if (sig != 0) 1108 return (sig + 32); 1109 #endif 1110 #if NSIG > 65 1111 sig = ffs(ss->__bits[2]); 1112 if (sig != 0) 1113 return (sig + 64); 1114 #endif 1115 #if NSIG > 97 1116 sig = ffs(ss->__bits[3]); 1117 if (sig != 0) 1118 return (sig + 96); 1119 #endif 1120 return (0); 1121 } 1122 1123 /* 1124 * If the current process has received a signal (should be caught or cause 1125 * termination, should interrupt current syscall), return the signal number. 1126 * Stop signals with default action are processed immediately, then cleared; 1127 * they aren't returned. This is checked after each entry to the system for 1128 * a syscall or trap (though this can usually be done without calling issignal 1129 * by checking the pending signal masks in the CURSIG macro.) The normal call 1130 * sequence is 1131 * 1132 * while (signum = CURSIG(curlwp)) 1133 * postsig(signum); 1134 */ 1135 int 1136 issignal(struct lwp *l) 1137 { 1138 struct proc *p = l->l_proc; 1139 int s = 0, signum, prop; 1140 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1141 sigset_t ss; 1142 1143 if (p->p_stat == SSTOP) { 1144 /* 1145 * The process is stopped/stopping. Stop ourselves now that 1146 * we're on the kernel/userspace boundary. 1147 */ 1148 if (dolock) 1149 SCHED_LOCK(s); 1150 l->l_stat = LSSTOP; 1151 p->p_nrlwps--; 1152 if (p->p_flag & P_TRACED) 1153 goto sigtraceswitch; 1154 else 1155 goto sigswitch; 1156 } 1157 for (;;) { 1158 sigpending1(p, &ss); 1159 if (p->p_flag & P_PPWAIT) 1160 sigminusset(&stopsigmask, &ss); 1161 signum = firstsig(&ss); 1162 if (signum == 0) { /* no signal to send */ 1163 p->p_sigctx.ps_sigcheck = 0; 1164 if (locked && dolock) 1165 SCHED_LOCK(s); 1166 return (0); 1167 } 1168 /* take the signal! */ 1169 sigdelset(&p->p_sigctx.ps_siglist, signum); 1170 1171 /* 1172 * We should see pending but ignored signals 1173 * only if P_TRACED was on when they were posted. 1174 */ 1175 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1176 (p->p_flag & P_TRACED) == 0) 1177 continue; 1178 1179 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1180 /* 1181 * If traced, always stop, and stay 1182 * stopped until released by the debugger. 1183 */ 1184 p->p_xstat = signum; 1185 if ((p->p_flag & P_FSTRACE) == 0) 1186 psignal1(p->p_pptr, SIGCHLD, dolock); 1187 if (dolock) 1188 SCHED_LOCK(s); 1189 proc_stop(p); 1190 sigtraceswitch: 1191 mi_switch(l, NULL); 1192 SCHED_ASSERT_UNLOCKED(); 1193 if (dolock) 1194 splx(s); 1195 else 1196 dolock = 1; 1197 1198 /* 1199 * If we are no longer being traced, or the parent 1200 * didn't give us a signal, look for more signals. 1201 */ 1202 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1203 continue; 1204 1205 /* 1206 * If the new signal is being masked, look for other 1207 * signals. 1208 */ 1209 signum = p->p_xstat; 1210 p->p_xstat = 0; 1211 /* 1212 * `p->p_sigctx.ps_siglist |= mask' is done 1213 * in setrunnable(). 1214 */ 1215 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1216 continue; 1217 /* take the signal! */ 1218 sigdelset(&p->p_sigctx.ps_siglist, signum); 1219 } 1220 1221 prop = sigprop[signum]; 1222 1223 /* 1224 * Decide whether the signal should be returned. 1225 * Return the signal's number, or fall through 1226 * to clear it from the pending mask. 1227 */ 1228 switch ((long)SIGACTION(p, signum).sa_handler) { 1229 1230 case (long)SIG_DFL: 1231 /* 1232 * Don't take default actions on system processes. 1233 */ 1234 if (p->p_pid <= 1) { 1235 #ifdef DIAGNOSTIC 1236 /* 1237 * Are you sure you want to ignore SIGSEGV 1238 * in init? XXX 1239 */ 1240 printf("Process (pid %d) got signal %d\n", 1241 p->p_pid, signum); 1242 #endif 1243 break; /* == ignore */ 1244 } 1245 /* 1246 * If there is a pending stop signal to process 1247 * with default action, stop here, 1248 * then clear the signal. However, 1249 * if process is member of an orphaned 1250 * process group, ignore tty stop signals. 1251 */ 1252 if (prop & SA_STOP) { 1253 if (p->p_flag & P_TRACED || 1254 (p->p_pgrp->pg_jobc == 0 && 1255 prop & SA_TTYSTOP)) 1256 break; /* == ignore */ 1257 p->p_xstat = signum; 1258 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1259 psignal1(p->p_pptr, SIGCHLD, dolock); 1260 if (dolock) 1261 SCHED_LOCK(s); 1262 proc_stop(p); 1263 sigswitch: 1264 mi_switch(l, NULL); 1265 SCHED_ASSERT_UNLOCKED(); 1266 if (dolock) 1267 splx(s); 1268 else 1269 dolock = 1; 1270 break; 1271 } else if (prop & SA_IGNORE) { 1272 /* 1273 * Except for SIGCONT, shouldn't get here. 1274 * Default action is to ignore; drop it. 1275 */ 1276 break; /* == ignore */ 1277 } else 1278 goto keep; 1279 /*NOTREACHED*/ 1280 1281 case (long)SIG_IGN: 1282 /* 1283 * Masking above should prevent us ever trying 1284 * to take action on an ignored signal other 1285 * than SIGCONT, unless process is traced. 1286 */ 1287 #ifdef DEBUG_ISSIGNAL 1288 if ((prop & SA_CONT) == 0 && 1289 (p->p_flag & P_TRACED) == 0) 1290 printf("issignal\n"); 1291 #endif 1292 break; /* == ignore */ 1293 1294 default: 1295 /* 1296 * This signal has an action, let 1297 * postsig() process it. 1298 */ 1299 goto keep; 1300 } 1301 } 1302 /* NOTREACHED */ 1303 1304 keep: 1305 /* leave the signal for later */ 1306 sigaddset(&p->p_sigctx.ps_siglist, signum); 1307 CHECKSIGS(p); 1308 if (locked && dolock) 1309 SCHED_LOCK(s); 1310 return (signum); 1311 } 1312 1313 /* 1314 * Put the argument process into the stopped state and notify the parent 1315 * via wakeup. Signals are handled elsewhere. The process must not be 1316 * on the run queue. 1317 */ 1318 static void 1319 proc_stop(struct proc *p) 1320 { 1321 struct lwp *l; 1322 1323 SCHED_ASSERT_LOCKED(); 1324 1325 /* XXX lock process LWP state */ 1326 p->p_stat = SSTOP; 1327 p->p_flag &= ~P_WAITED; 1328 1329 /* 1330 * Put as many LWP's as possible in stopped state. 1331 * Sleeping ones will notice the stopped state as they try to 1332 * return to userspace. 1333 */ 1334 1335 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1336 if (l->l_stat == LSONPROC) { 1337 /* XXX SMP this assumes that a LWP that is LSONPROC 1338 * is curlwp and hence is about to be mi_switched 1339 * away; the only callers of proc_stop() are: 1340 * - psignal 1341 * - issignal() 1342 * For the former, proc_stop() is only called when 1343 * no processes are running, so we don't worry. 1344 * For the latter, proc_stop() is called right 1345 * before mi_switch(). 1346 */ 1347 l->l_stat = LSSTOP; 1348 p->p_nrlwps--; 1349 } else if (l->l_stat == LSRUN) { 1350 /* Remove LWP from the run queue */ 1351 remrunqueue(l); 1352 l->l_stat = LSSTOP; 1353 p->p_nrlwps--; 1354 } else if ((l->l_stat == LSSLEEP) || 1355 (l->l_stat == LSSUSPENDED) || 1356 (l->l_stat == LSZOMB) || 1357 (l->l_stat == LSDEAD)) { 1358 /* 1359 * Don't do anything; let sleeping LWPs 1360 * discover the stopped state of the process 1361 * on their way out of the kernel; otherwise, 1362 * things like NFS threads that sleep with 1363 * locks will block the rest of the system 1364 * from getting any work done. 1365 * 1366 * Suspended/dead/zombie LWPs aren't going 1367 * anywhere, so we don't need to touch them. 1368 */ 1369 } 1370 #ifdef DIAGNOSTIC 1371 else { 1372 panic("proc_stop: process %d lwp %d " 1373 "in unstoppable state %d.\n", 1374 p->p_pid, l->l_lid, l->l_stat); 1375 } 1376 #endif 1377 } 1378 /* XXX unlock process LWP state */ 1379 1380 sched_wakeup((caddr_t)p->p_pptr); 1381 } 1382 1383 /* 1384 * Given a process in state SSTOP, set the state back to SACTIVE and 1385 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1386 * 1387 * If no LWPs ended up runnable (and therefore able to take a signal), 1388 * return a LWP that is sleeping interruptably. The caller can wake 1389 * that LWP up to take a signal. 1390 */ 1391 struct lwp * 1392 proc_unstop(struct proc *p) 1393 { 1394 struct lwp *l, *lr = NULL; 1395 int cantake = 0; 1396 1397 SCHED_ASSERT_LOCKED(); 1398 1399 /* 1400 * Our caller wants to be informed if there are only sleeping 1401 * and interruptable LWPs left after we have run so that it 1402 * can invoke setrunnable() if required - return one of the 1403 * interruptable LWPs if this is the case. 1404 */ 1405 1406 p->p_stat = SACTIVE; 1407 if (p->p_flag & P_SA) { 1408 /* 1409 * Preferentially select the idle LWP as the interruptable 1410 * LWP to return if it exists. 1411 */ 1412 lr = p->p_sa->sa_idle; 1413 if (lr != NULL) 1414 cantake = 1; 1415 } 1416 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1417 if (l->l_stat == LSRUN) { 1418 lr = NULL; 1419 cantake = 1; 1420 } 1421 if (l->l_stat != LSSTOP) 1422 continue; 1423 1424 if (l->l_wchan != NULL) { 1425 l->l_stat = LSSLEEP; 1426 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1427 lr = l; 1428 cantake = 1; 1429 } 1430 } else { 1431 setrunnable(l); 1432 lr = NULL; 1433 cantake = 1; 1434 } 1435 } 1436 1437 return lr; 1438 } 1439 1440 /* 1441 * Take the action for the specified signal 1442 * from the current set of pending signals. 1443 */ 1444 void 1445 postsig(int signum) 1446 { 1447 struct lwp *l; 1448 struct proc *p; 1449 struct sigacts *ps; 1450 sig_t action; 1451 u_long code; 1452 sigset_t *returnmask; 1453 1454 l = curlwp; 1455 p = l->l_proc; 1456 ps = p->p_sigacts; 1457 #ifdef DIAGNOSTIC 1458 if (signum == 0) 1459 panic("postsig"); 1460 #endif 1461 1462 KERNEL_PROC_LOCK(l); 1463 1464 sigdelset(&p->p_sigctx.ps_siglist, signum); 1465 action = SIGACTION_PS(ps, signum).sa_handler; 1466 #ifdef KTRACE 1467 if (KTRPOINT(p, KTR_PSIG)) 1468 ktrpsig(p, 1469 signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ? 1470 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0); 1471 #endif 1472 if (action == SIG_DFL) { 1473 /* 1474 * Default action, where the default is to kill 1475 * the process. (Other cases were ignored above.) 1476 */ 1477 sigexit(l, signum); 1478 /* NOTREACHED */ 1479 } else { 1480 /* 1481 * If we get here, the signal must be caught. 1482 */ 1483 #ifdef DIAGNOSTIC 1484 if (action == SIG_IGN || 1485 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1486 panic("postsig action"); 1487 #endif 1488 /* 1489 * Set the new mask value and also defer further 1490 * occurrences of this signal. 1491 * 1492 * Special case: user has done a sigpause. Here the 1493 * current mask is not of interest, but rather the 1494 * mask from before the sigpause is what we want 1495 * restored after the signal processing is completed. 1496 */ 1497 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1498 returnmask = &p->p_sigctx.ps_oldmask; 1499 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1500 } else 1501 returnmask = &p->p_sigctx.ps_sigmask; 1502 p->p_stats->p_ru.ru_nsignals++; 1503 if (p->p_sigctx.ps_sig != signum) { 1504 code = 0; 1505 } else { 1506 code = p->p_sigctx.ps_code; 1507 p->p_sigctx.ps_code = 0; 1508 p->p_sigctx.ps_lwp = 0; 1509 p->p_sigctx.ps_sig = 0; 1510 } 1511 psendsig(l, signum, returnmask, code); 1512 (void) splsched(); /* XXXSMP */ 1513 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1514 &p->p_sigctx.ps_sigmask); 1515 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1516 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1517 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1518 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1519 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1520 } 1521 (void) spl0(); /* XXXSMP */ 1522 } 1523 1524 KERNEL_PROC_UNLOCK(l); 1525 } 1526 1527 /* 1528 * Kill the current process for stated reason. 1529 */ 1530 void 1531 killproc(struct proc *p, const char *why) 1532 { 1533 1534 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1535 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1536 psignal(p, SIGKILL); 1537 } 1538 1539 /* 1540 * Force the current process to exit with the specified signal, dumping core 1541 * if appropriate. We bypass the normal tests for masked and caught signals, 1542 * allowing unrecoverable failures to terminate the process without changing 1543 * signal state. Mark the accounting record with the signal termination. 1544 * If dumping core, save the signal number for the debugger. Calls exit and 1545 * does not return. 1546 */ 1547 1548 #if defined(DEBUG) 1549 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1550 #else 1551 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1552 #endif 1553 1554 static const char logcoredump[] = 1555 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1556 static const char lognocoredump[] = 1557 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1558 1559 /* Wrapper function for use in p_userret */ 1560 static void 1561 lwp_coredump_hook(struct lwp *l, void *arg) 1562 { 1563 int s; 1564 1565 /* 1566 * Suspend ourselves, so that the kernel stack and therefore 1567 * the userland registers saved in the trapframe are around 1568 * for coredump() to write them out. 1569 */ 1570 KERNEL_PROC_LOCK(l); 1571 l->l_flag &= ~L_DETACHED; 1572 SCHED_LOCK(s); 1573 l->l_stat = LSSUSPENDED; 1574 l->l_proc->p_nrlwps--; 1575 /* XXX NJWLWP check if this makes sense here: */ 1576 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1577 mi_switch(l, NULL); 1578 SCHED_ASSERT_UNLOCKED(); 1579 splx(s); 1580 1581 lwp_exit(l); 1582 } 1583 1584 void 1585 sigexit(struct lwp *l, int signum) 1586 { 1587 struct proc *p; 1588 struct lwp *l2; 1589 int error, exitsig; 1590 1591 p = l->l_proc; 1592 1593 /* 1594 * Don't permit coredump() or exit1() multiple times 1595 * in the same process. 1596 */ 1597 if (p->p_flag & P_WEXIT) { 1598 KERNEL_PROC_UNLOCK(l); 1599 (*p->p_userret)(l, p->p_userret_arg); 1600 } 1601 p->p_flag |= P_WEXIT; 1602 /* We don't want to switch away from exiting. */ 1603 /* XXX multiprocessor: stop LWPs on other processors. */ 1604 if (p->p_flag & P_SA) { 1605 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 1606 l2->l_flag &= ~L_SA; 1607 p->p_flag &= ~P_SA; 1608 } 1609 1610 /* Make other LWPs stick around long enough to be dumped */ 1611 p->p_userret = lwp_coredump_hook; 1612 p->p_userret_arg = NULL; 1613 1614 exitsig = signum; 1615 p->p_acflag |= AXSIG; 1616 if (sigprop[signum] & SA_CORE) { 1617 p->p_sigctx.ps_sig = signum; 1618 if ((error = coredump(l)) == 0) 1619 exitsig |= WCOREFLAG; 1620 1621 if (kern_logsigexit) { 1622 /* XXX What if we ever have really large UIDs? */ 1623 int uid = p->p_cred && p->p_ucred ? 1624 (int) p->p_ucred->cr_uid : -1; 1625 1626 if (error) 1627 log(LOG_INFO, lognocoredump, p->p_pid, 1628 p->p_comm, uid, signum, error); 1629 else 1630 log(LOG_INFO, logcoredump, p->p_pid, 1631 p->p_comm, uid, signum); 1632 } 1633 1634 } 1635 1636 exit1(l, W_EXITCODE(0, exitsig)); 1637 /* NOTREACHED */ 1638 } 1639 1640 /* 1641 * Dump core, into a file named "progname.core" or "core" (depending on the 1642 * value of shortcorename), unless the process was setuid/setgid. 1643 */ 1644 int 1645 coredump(struct lwp *l) 1646 { 1647 struct vnode *vp; 1648 struct proc *p; 1649 struct vmspace *vm; 1650 struct ucred *cred; 1651 struct nameidata nd; 1652 struct vattr vattr; 1653 int error, error1; 1654 char name[MAXPATHLEN]; 1655 1656 p = l->l_proc; 1657 vm = p->p_vmspace; 1658 cred = p->p_cred->pc_ucred; 1659 1660 /* 1661 * Make sure the process has not set-id, to prevent data leaks. 1662 */ 1663 if (p->p_flag & P_SUGID) 1664 return (EPERM); 1665 1666 /* 1667 * Refuse to core if the data + stack + user size is larger than 1668 * the core dump limit. XXX THIS IS WRONG, because of mapped 1669 * data. 1670 */ 1671 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 1672 p->p_rlimit[RLIMIT_CORE].rlim_cur) 1673 return (EFBIG); /* better error code? */ 1674 1675 /* 1676 * The core dump will go in the current working directory. Make 1677 * sure that the directory is still there and that the mount flags 1678 * allow us to write core dumps there. 1679 */ 1680 vp = p->p_cwdi->cwdi_cdir; 1681 if (vp->v_mount == NULL || 1682 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) 1683 return (EPERM); 1684 1685 error = build_corename(p, name); 1686 if (error) 1687 return error; 1688 1689 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p); 1690 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 1691 if (error) 1692 return (error); 1693 vp = nd.ni_vp; 1694 1695 /* Don't dump to non-regular files or files with links. */ 1696 if (vp->v_type != VREG || 1697 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) { 1698 error = EINVAL; 1699 goto out; 1700 } 1701 VATTR_NULL(&vattr); 1702 vattr.va_size = 0; 1703 VOP_LEASE(vp, p, cred, LEASE_WRITE); 1704 VOP_SETATTR(vp, &vattr, cred, p); 1705 p->p_acflag |= ACORE; 1706 1707 /* Now dump the actual core file. */ 1708 error = (*p->p_execsw->es_coredump)(l, vp, cred); 1709 out: 1710 VOP_UNLOCK(vp, 0); 1711 error1 = vn_close(vp, FWRITE, cred, p); 1712 if (error == 0) 1713 error = error1; 1714 return (error); 1715 } 1716 1717 /* 1718 * Nonexistent system call-- signal process (may want to handle it). 1719 * Flag error in case process won't see signal immediately (blocked or ignored). 1720 */ 1721 /* ARGSUSED */ 1722 int 1723 sys_nosys(struct lwp *l, void *v, register_t *retval) 1724 { 1725 struct proc *p; 1726 1727 p = l->l_proc; 1728 psignal(p, SIGSYS); 1729 return (ENOSYS); 1730 } 1731 1732 static int 1733 build_corename(struct proc *p, char dst[MAXPATHLEN]) 1734 { 1735 const char *s; 1736 char *d, *end; 1737 int i; 1738 1739 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN; 1740 *s != '\0'; s++) { 1741 if (*s == '%') { 1742 switch (*(s + 1)) { 1743 case 'n': 1744 i = snprintf(d, end - d, "%s", p->p_comm); 1745 break; 1746 case 'p': 1747 i = snprintf(d, end - d, "%d", p->p_pid); 1748 break; 1749 case 'u': 1750 i = snprintf(d, end - d, "%.*s", 1751 (int)sizeof p->p_pgrp->pg_session->s_login, 1752 p->p_pgrp->pg_session->s_login); 1753 break; 1754 case 't': 1755 i = snprintf(d, end - d, "%ld", 1756 p->p_stats->p_start.tv_sec); 1757 break; 1758 default: 1759 goto copy; 1760 } 1761 d += i; 1762 s++; 1763 } else { 1764 copy: *d = *s; 1765 d++; 1766 } 1767 if (d >= end) 1768 return (ENAMETOOLONG); 1769 } 1770 *d = '\0'; 1771 return 0; 1772 } 1773 1774 void 1775 getucontext(struct lwp *l, ucontext_t *ucp) 1776 { 1777 struct proc *p; 1778 1779 p = l->l_proc; 1780 1781 ucp->uc_flags = 0; 1782 ucp->uc_link = l->l_ctxlink; 1783 1784 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 1785 ucp->uc_flags |= _UC_SIGMASK; 1786 1787 /* 1788 * The (unsupplied) definition of the `current execution stack' 1789 * in the System V Interface Definition appears to allow returning 1790 * the main context stack. 1791 */ 1792 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 1793 ucp->uc_stack.ss_sp = (void *)USRSTACK; 1794 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 1795 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 1796 } else { 1797 /* Simply copy alternate signal execution stack. */ 1798 ucp->uc_stack = p->p_sigctx.ps_sigstk; 1799 } 1800 ucp->uc_flags |= _UC_STACK; 1801 1802 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 1803 } 1804 1805 /* ARGSUSED */ 1806 int 1807 sys_getcontext(struct lwp *l, void *v, register_t *retval) 1808 { 1809 struct sys_getcontext_args /* { 1810 syscallarg(struct __ucontext *) ucp; 1811 } */ *uap = v; 1812 ucontext_t uc; 1813 1814 getucontext(l, &uc); 1815 1816 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 1817 } 1818 1819 int 1820 setucontext(struct lwp *l, const ucontext_t *ucp) 1821 { 1822 struct proc *p; 1823 int error; 1824 1825 p = l->l_proc; 1826 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 1827 return (error); 1828 l->l_ctxlink = ucp->uc_link; 1829 /* 1830 * We might want to take care of the stack portion here but currently 1831 * don't; see the comment in getucontext(). 1832 */ 1833 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 1834 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 1835 1836 return 0; 1837 } 1838 1839 /* ARGSUSED */ 1840 int 1841 sys_setcontext(struct lwp *l, void *v, register_t *retval) 1842 { 1843 struct sys_setcontext_args /* { 1844 syscallarg(const ucontext_t *) ucp; 1845 } */ *uap = v; 1846 ucontext_t uc; 1847 int error; 1848 1849 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 1850 exit1(l, W_EXITCODE(0, 0)); 1851 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 1852 (error = setucontext(l, &uc)) != 0) 1853 return (error); 1854 1855 return (EJUSTRETURN); 1856 } 1857 1858 /* 1859 * sigtimedwait(2) system call, used also for implementation 1860 * of sigwaitinfo() and sigwait(). 1861 * 1862 * This only handles single LWP in signal wait. libpthread provides 1863 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 1864 * 1865 * XXX no support for queued signals, si_code is always SI_USER. 1866 */ 1867 int 1868 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 1869 { 1870 struct sys___sigtimedwait_args /* { 1871 syscallarg(const sigset_t *) set; 1872 syscallarg(siginfo_t *) info; 1873 syscallarg(struct timespec *) timeout; 1874 } */ *uap = v; 1875 sigset_t waitset, twaitset; 1876 struct proc *p = l->l_proc; 1877 int error, signum, s; 1878 int timo = 0; 1879 struct timeval tvstart; 1880 struct timespec ts; 1881 1882 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset)))) 1883 return (error); 1884 1885 /* 1886 * Silently ignore SA_CANTMASK signals. psignal1() would 1887 * ignore SA_CANTMASK signals in waitset, we do this 1888 * only for the below siglist check. 1889 */ 1890 sigminusset(&sigcantmask, &waitset); 1891 1892 /* 1893 * First scan siglist and check if there is signal from 1894 * our waitset already pending. 1895 */ 1896 twaitset = waitset; 1897 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 1898 if ((signum = firstsig(&twaitset))) { 1899 /* found pending signal */ 1900 sigdelset(&p->p_sigctx.ps_siglist, signum); 1901 goto sig; 1902 } 1903 1904 /* 1905 * Calculate timeout, if it was specified. 1906 */ 1907 if (SCARG(uap, timeout)) { 1908 uint64_t ms; 1909 1910 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts)))) 1911 return (error); 1912 1913 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 1914 timo = mstohz(ms); 1915 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 1916 timo = 1; 1917 if (timo <= 0) 1918 return (EAGAIN); 1919 1920 /* 1921 * Remember current mono_time, it would be used in 1922 * ECANCELED/ERESTART case. 1923 */ 1924 s = splclock(); 1925 tvstart = mono_time; 1926 splx(s); 1927 } 1928 1929 /* 1930 * Setup ps_sigwait list. 1931 */ 1932 p->p_sigctx.ps_sigwaited = -1; 1933 p->p_sigctx.ps_sigwait = waitset; 1934 1935 /* 1936 * Wait for signal to arrive. We can either be woken up or 1937 * time out. 1938 */ 1939 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 1940 1941 /* 1942 * Check if a signal from our wait set has arrived, or if it 1943 * was mere wakeup. 1944 */ 1945 if (!error) { 1946 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) { 1947 /* wakeup via _lwp_wakeup() */ 1948 error = ECANCELED; 1949 } 1950 } 1951 1952 /* 1953 * On error, clear sigwait indication. psignal1() sets it 1954 * in !error case. 1955 */ 1956 if (error) { 1957 p->p_sigctx.ps_sigwaited = 0; 1958 1959 /* 1960 * If the sleep was interrupted (either by signal or wakeup), 1961 * update the timeout and copyout new value back. 1962 * It would be used when the syscall would be restarted 1963 * or called again. 1964 */ 1965 if (timo && (error == ERESTART || error == ECANCELED)) { 1966 struct timeval tvnow, tvtimo; 1967 int err; 1968 1969 s = splclock(); 1970 tvnow = mono_time; 1971 splx(s); 1972 1973 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 1974 1975 /* compute how much time has passed since start */ 1976 timersub(&tvnow, &tvstart, &tvnow); 1977 /* substract passed time from timeout */ 1978 timersub(&tvtimo, &tvnow, &tvtimo); 1979 1980 if (tvtimo.tv_sec < 0) 1981 return (EAGAIN); 1982 1983 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 1984 1985 /* copy updated timeout to userland */ 1986 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) 1987 return (err); 1988 } 1989 1990 return (error); 1991 } 1992 1993 /* 1994 * If a signal from the wait set arrived, copy it to userland. 1995 * XXX no queued signals for now 1996 */ 1997 if (signum > 0) { 1998 siginfo_t si; 1999 2000 sig: 2001 memset(&si, 0, sizeof(si)); 2002 si.si_signo = signum; 2003 si.si_code = SI_USER; 2004 2005 error = copyout(&si, SCARG(uap, info), sizeof(si)); 2006 if (error) 2007 return (error); 2008 } 2009 2010 return (0); 2011 } 2012 2013 /* 2014 * Returns true if signal is ignored or masked for passed process. 2015 */ 2016 int 2017 sigismasked(struct proc *p, int sig) 2018 { 2019 2020 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2021 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2022 } 2023 2024 static int 2025 filt_sigattach(struct knote *kn) 2026 { 2027 struct proc *p = curproc; 2028 2029 kn->kn_ptr.p_proc = p; 2030 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2031 2032 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2033 2034 return (0); 2035 } 2036 2037 static void 2038 filt_sigdetach(struct knote *kn) 2039 { 2040 struct proc *p = kn->kn_ptr.p_proc; 2041 2042 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2043 } 2044 2045 /* 2046 * signal knotes are shared with proc knotes, so we apply a mask to 2047 * the hint in order to differentiate them from process hints. This 2048 * could be avoided by using a signal-specific knote list, but probably 2049 * isn't worth the trouble. 2050 */ 2051 static int 2052 filt_signal(struct knote *kn, long hint) 2053 { 2054 2055 if (hint & NOTE_SIGNAL) { 2056 hint &= ~NOTE_SIGNAL; 2057 2058 if (kn->kn_id == hint) 2059 kn->kn_data++; 2060 } 2061 return (kn->kn_data != 0); 2062 } 2063 2064 const struct filterops sig_filtops = { 2065 0, filt_sigattach, filt_sigdetach, filt_signal 2066 }; 2067