1 /* $NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Kernel reader/writer lock implementation, modeled after those 34 * found in Solaris, a description of which can be found in: 35 * 36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and 37 * Richard McDougall. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $"); 42 43 #define __RWLOCK_PRIVATE 44 45 #include <sys/param.h> 46 #include <sys/proc.h> 47 #include <sys/rwlock.h> 48 #include <sys/sched.h> 49 #include <sys/sleepq.h> 50 #include <sys/systm.h> 51 #include <sys/lockdebug.h> 52 #include <sys/cpu.h> 53 #include <sys/atomic.h> 54 #include <sys/lock.h> 55 56 #include <dev/lockstat.h> 57 58 /* 59 * LOCKDEBUG 60 */ 61 62 #if defined(LOCKDEBUG) 63 64 #define RW_WANTLOCK(rw, op, t) \ 65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \ 66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t); 67 #define RW_LOCKED(rw, op) \ 68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \ 69 (uintptr_t)__builtin_return_address(0), op == RW_READER); 70 #define RW_UNLOCKED(rw, op) \ 71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \ 72 (uintptr_t)__builtin_return_address(0), op == RW_READER); 73 #define RW_DASSERT(rw, cond) \ 74 do { \ 75 if (!(cond)) \ 76 rw_abort(rw, __func__, "assertion failed: " #cond); \ 77 } while (/* CONSTCOND */ 0); 78 79 #else /* LOCKDEBUG */ 80 81 #define RW_WANTLOCK(rw, op, t) /* nothing */ 82 #define RW_LOCKED(rw, op) /* nothing */ 83 #define RW_UNLOCKED(rw, op) /* nothing */ 84 #define RW_DASSERT(rw, cond) /* nothing */ 85 86 #endif /* LOCKDEBUG */ 87 88 /* 89 * DIAGNOSTIC 90 */ 91 92 #if defined(DIAGNOSTIC) 93 94 #define RW_ASSERT(rw, cond) \ 95 do { \ 96 if (!(cond)) \ 97 rw_abort(rw, __func__, "assertion failed: " #cond); \ 98 } while (/* CONSTCOND */ 0) 99 100 #else 101 102 #define RW_ASSERT(rw, cond) /* nothing */ 103 104 #endif /* DIAGNOSTIC */ 105 106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0) 107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0) 108 #if defined(LOCKDEBUG) 109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG 110 #else /* defined(LOCKDEBUG) */ 111 #define RW_INHERITDEBUG(new, old) /* nothing */ 112 #endif /* defined(LOCKDEBUG) */ 113 114 static void rw_abort(krwlock_t *, const char *, const char *); 115 static void rw_dump(volatile void *); 116 static lwp_t *rw_owner(wchan_t); 117 118 static inline uintptr_t 119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n) 120 { 121 122 RW_INHERITDEBUG(n, o); 123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner, 124 (void *)o, (void *)n); 125 } 126 127 static inline void 128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n) 129 { 130 131 RW_INHERITDEBUG(n, o); 132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner, 133 (void *)n); 134 RW_DASSERT(rw, n == o); 135 } 136 137 /* 138 * For platforms that do not provide stubs, or for the LOCKDEBUG case. 139 */ 140 #ifdef LOCKDEBUG 141 #undef __HAVE_RW_STUBS 142 #endif 143 144 #ifndef __HAVE_RW_STUBS 145 __strong_alias(rw_enter,rw_vector_enter); 146 __strong_alias(rw_exit,rw_vector_exit); 147 __strong_alias(rw_tryenter,rw_vector_tryenter); 148 #endif 149 150 lockops_t rwlock_lockops = { 151 "Reader / writer lock", 152 LOCKOPS_SLEEP, 153 rw_dump 154 }; 155 156 syncobj_t rw_syncobj = { 157 SOBJ_SLEEPQ_SORTED, 158 turnstile_unsleep, 159 turnstile_changepri, 160 sleepq_lendpri, 161 rw_owner, 162 }; 163 164 /* Mutex cache */ 165 #define RW_OBJ_MAGIC 0x85d3c85d 166 struct krwobj { 167 krwlock_t ro_lock; 168 u_int ro_magic; 169 u_int ro_refcnt; 170 }; 171 172 static int rw_obj_ctor(void *, void *, int); 173 174 static pool_cache_t rw_obj_cache; 175 176 /* 177 * rw_dump: 178 * 179 * Dump the contents of a rwlock structure. 180 */ 181 static void 182 rw_dump(volatile void *cookie) 183 { 184 volatile krwlock_t *rw = cookie; 185 186 printf_nolog("owner/count : %#018lx flags : %#018x\n", 187 (long)RW_OWNER(rw), (int)RW_FLAGS(rw)); 188 } 189 190 /* 191 * rw_abort: 192 * 193 * Dump information about an error and panic the system. This 194 * generates a lot of machine code in the DIAGNOSTIC case, so 195 * we ask the compiler to not inline it. 196 */ 197 static void __noinline 198 rw_abort(krwlock_t *rw, const char *func, const char *msg) 199 { 200 201 if (panicstr != NULL) 202 return; 203 204 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg); 205 } 206 207 /* 208 * rw_init: 209 * 210 * Initialize a rwlock for use. 211 */ 212 void 213 rw_init(krwlock_t *rw) 214 { 215 bool dodebug; 216 217 memset(rw, 0, sizeof(*rw)); 218 219 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops, 220 (uintptr_t)__builtin_return_address(0)); 221 RW_SETDEBUG(rw, dodebug); 222 } 223 224 /* 225 * rw_destroy: 226 * 227 * Tear down a rwlock. 228 */ 229 void 230 rw_destroy(krwlock_t *rw) 231 { 232 233 RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0); 234 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw); 235 } 236 237 /* 238 * rw_onproc: 239 * 240 * Return true if an rwlock owner is running on a CPU in the system. 241 * If the target is waiting on the kernel big lock, then we must 242 * release it. This is necessary to avoid deadlock. 243 * 244 * Note that we can't use the rwlock owner field as an LWP pointer. We 245 * don't have full control over the timing of our execution, and so the 246 * pointer could be completely invalid by the time we dereference it. 247 */ 248 static int 249 rw_onproc(uintptr_t owner, struct cpu_info **cip) 250 { 251 #ifdef MULTIPROCESSOR 252 CPU_INFO_ITERATOR cii; 253 struct cpu_info *ci; 254 lwp_t *l; 255 256 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) 257 return 0; 258 l = (lwp_t *)(owner & RW_THREAD); 259 260 /* See if the target is running on a CPU somewhere. */ 261 if ((ci = *cip) != NULL && ci->ci_curlwp == l) 262 goto run; 263 for (CPU_INFO_FOREACH(cii, ci)) 264 if (ci->ci_curlwp == l) 265 goto run; 266 267 /* No: it may be safe to block now. */ 268 *cip = NULL; 269 return 0; 270 271 run: 272 /* Target is running; do we need to block? */ 273 *cip = ci; 274 return ci->ci_biglock_wanted != l; 275 #else 276 return 0; 277 #endif /* MULTIPROCESSOR */ 278 } 279 280 /* 281 * rw_vector_enter: 282 * 283 * Acquire a rwlock. 284 */ 285 void 286 rw_vector_enter(krwlock_t *rw, const krw_t op) 287 { 288 uintptr_t owner, incr, need_wait, set_wait, curthread, next; 289 struct cpu_info *ci; 290 turnstile_t *ts; 291 int queue; 292 lwp_t *l; 293 LOCKSTAT_TIMER(slptime); 294 LOCKSTAT_TIMER(slpcnt); 295 LOCKSTAT_TIMER(spintime); 296 LOCKSTAT_COUNTER(spincnt); 297 LOCKSTAT_FLAG(lsflag); 298 299 l = curlwp; 300 curthread = (uintptr_t)l; 301 302 RW_ASSERT(rw, !cpu_intr_p()); 303 RW_ASSERT(rw, curthread != 0); 304 RW_WANTLOCK(rw, op, false); 305 306 if (panicstr == NULL) { 307 LOCKDEBUG_BARRIER(&kernel_lock, 1); 308 } 309 310 /* 311 * We play a slight trick here. If we're a reader, we want 312 * increment the read count. If we're a writer, we want to 313 * set the owner field and whe WRITE_LOCKED bit. 314 * 315 * In the latter case, we expect those bits to be zero, 316 * therefore we can use an add operation to set them, which 317 * means an add operation for both cases. 318 */ 319 if (__predict_true(op == RW_READER)) { 320 incr = RW_READ_INCR; 321 set_wait = RW_HAS_WAITERS; 322 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED; 323 queue = TS_READER_Q; 324 } else { 325 RW_DASSERT(rw, op == RW_WRITER); 326 incr = curthread | RW_WRITE_LOCKED; 327 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED; 328 need_wait = RW_WRITE_LOCKED | RW_THREAD; 329 queue = TS_WRITER_Q; 330 } 331 332 LOCKSTAT_ENTER(lsflag); 333 334 for (ci = NULL, owner = rw->rw_owner;;) { 335 /* 336 * Read the lock owner field. If the need-to-wait 337 * indicator is clear, then try to acquire the lock. 338 */ 339 if ((owner & need_wait) == 0) { 340 next = rw_cas(rw, owner, (owner + incr) & 341 ~RW_WRITE_WANTED); 342 if (__predict_true(next == owner)) { 343 /* Got it! */ 344 membar_enter(); 345 break; 346 } 347 348 /* 349 * Didn't get it -- spin around again (we'll 350 * probably sleep on the next iteration). 351 */ 352 owner = next; 353 continue; 354 } 355 356 if (__predict_false(panicstr != NULL)) 357 return; 358 if (__predict_false(RW_OWNER(rw) == curthread)) 359 rw_abort(rw, __func__, "locking against myself"); 360 361 /* 362 * If the lock owner is running on another CPU, and 363 * there are no existing waiters, then spin. 364 */ 365 if (rw_onproc(owner, &ci)) { 366 LOCKSTAT_START_TIMER(lsflag, spintime); 367 u_int count = SPINLOCK_BACKOFF_MIN; 368 do { 369 SPINLOCK_BACKOFF(count); 370 owner = rw->rw_owner; 371 } while (rw_onproc(owner, &ci)); 372 LOCKSTAT_STOP_TIMER(lsflag, spintime); 373 LOCKSTAT_COUNT(spincnt, 1); 374 if ((owner & need_wait) == 0) 375 continue; 376 } 377 378 /* 379 * Grab the turnstile chain lock. Once we have that, we 380 * can adjust the waiter bits and sleep queue. 381 */ 382 ts = turnstile_lookup(rw); 383 384 /* 385 * Mark the rwlock as having waiters. If the set fails, 386 * then we may not need to sleep and should spin again. 387 * Reload rw_owner because turnstile_lookup() may have 388 * spun on the turnstile chain lock. 389 */ 390 owner = rw->rw_owner; 391 if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) { 392 turnstile_exit(rw); 393 continue; 394 } 395 next = rw_cas(rw, owner, owner | set_wait); 396 if (__predict_false(next != owner)) { 397 turnstile_exit(rw); 398 owner = next; 399 continue; 400 } 401 402 LOCKSTAT_START_TIMER(lsflag, slptime); 403 turnstile_block(ts, queue, rw, &rw_syncobj); 404 LOCKSTAT_STOP_TIMER(lsflag, slptime); 405 LOCKSTAT_COUNT(slpcnt, 1); 406 407 /* 408 * No need for a memory barrier because of context switch. 409 * If not handed the lock, then spin again. 410 */ 411 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread) 412 break; 413 } 414 415 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | 416 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime); 417 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime); 418 LOCKSTAT_EXIT(lsflag); 419 420 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) || 421 (op == RW_READER && RW_COUNT(rw) != 0)); 422 RW_LOCKED(rw, op); 423 } 424 425 /* 426 * rw_vector_exit: 427 * 428 * Release a rwlock. 429 */ 430 void 431 rw_vector_exit(krwlock_t *rw) 432 { 433 uintptr_t curthread, owner, decr, new, next; 434 turnstile_t *ts; 435 int rcnt, wcnt; 436 lwp_t *l; 437 438 curthread = (uintptr_t)curlwp; 439 RW_ASSERT(rw, curthread != 0); 440 441 if (__predict_false(panicstr != NULL)) 442 return; 443 444 /* 445 * Again, we use a trick. Since we used an add operation to 446 * set the required lock bits, we can use a subtract to clear 447 * them, which makes the read-release and write-release path 448 * the same. 449 */ 450 owner = rw->rw_owner; 451 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) { 452 RW_UNLOCKED(rw, RW_WRITER); 453 RW_ASSERT(rw, RW_OWNER(rw) == curthread); 454 decr = curthread | RW_WRITE_LOCKED; 455 } else { 456 RW_UNLOCKED(rw, RW_READER); 457 RW_ASSERT(rw, RW_COUNT(rw) != 0); 458 decr = RW_READ_INCR; 459 } 460 461 /* 462 * Compute what we expect the new value of the lock to be. Only 463 * proceed to do direct handoff if there are waiters, and if the 464 * lock would become unowned. 465 */ 466 membar_exit(); 467 for (;;) { 468 new = (owner - decr); 469 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS) 470 break; 471 next = rw_cas(rw, owner, new); 472 if (__predict_true(next == owner)) 473 return; 474 owner = next; 475 } 476 477 /* 478 * Grab the turnstile chain lock. This gets the interlock 479 * on the sleep queue. Once we have that, we can adjust the 480 * waiter bits. 481 */ 482 ts = turnstile_lookup(rw); 483 owner = rw->rw_owner; 484 RW_DASSERT(rw, ts != NULL); 485 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0); 486 487 wcnt = TS_WAITERS(ts, TS_WRITER_Q); 488 rcnt = TS_WAITERS(ts, TS_READER_Q); 489 490 /* 491 * Give the lock away. 492 * 493 * If we are releasing a write lock, then prefer to wake all 494 * outstanding readers. Otherwise, wake one writer if there 495 * are outstanding readers, or all writers if there are no 496 * pending readers. If waking one specific writer, the writer 497 * is handed the lock here. If waking multiple writers, we 498 * set WRITE_WANTED to block out new readers, and let them 499 * do the work of acquring the lock in rw_vector_enter(). 500 */ 501 if (rcnt == 0 || decr == RW_READ_INCR) { 502 RW_DASSERT(rw, wcnt != 0); 503 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0); 504 505 if (rcnt != 0) { 506 /* Give the lock to the longest waiting writer. */ 507 l = TS_FIRST(ts, TS_WRITER_Q); 508 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS; 509 if (wcnt > 1) 510 new |= RW_WRITE_WANTED; 511 rw_swap(rw, owner, new); 512 turnstile_wakeup(ts, TS_WRITER_Q, 1, l); 513 } else { 514 /* Wake all writers and let them fight it out. */ 515 rw_swap(rw, owner, RW_WRITE_WANTED); 516 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL); 517 } 518 } else { 519 RW_DASSERT(rw, rcnt != 0); 520 521 /* 522 * Give the lock to all blocked readers. If there 523 * is a writer waiting, new readers that arrive 524 * after the release will be blocked out. 525 */ 526 new = rcnt << RW_READ_COUNT_SHIFT; 527 if (wcnt != 0) 528 new |= RW_HAS_WAITERS | RW_WRITE_WANTED; 529 530 /* Wake up all sleeping readers. */ 531 rw_swap(rw, owner, new); 532 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL); 533 } 534 } 535 536 /* 537 * rw_vector_tryenter: 538 * 539 * Try to acquire a rwlock. 540 */ 541 int 542 rw_vector_tryenter(krwlock_t *rw, const krw_t op) 543 { 544 uintptr_t curthread, owner, incr, need_wait, next; 545 546 curthread = (uintptr_t)curlwp; 547 548 RW_ASSERT(rw, curthread != 0); 549 550 if (op == RW_READER) { 551 incr = RW_READ_INCR; 552 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED; 553 } else { 554 RW_DASSERT(rw, op == RW_WRITER); 555 incr = curthread | RW_WRITE_LOCKED; 556 need_wait = RW_WRITE_LOCKED | RW_THREAD; 557 } 558 559 for (owner = rw->rw_owner;; owner = next) { 560 owner = rw->rw_owner; 561 if (__predict_false((owner & need_wait) != 0)) 562 return 0; 563 next = rw_cas(rw, owner, owner + incr); 564 if (__predict_true(next == owner)) { 565 /* Got it! */ 566 membar_enter(); 567 break; 568 } 569 } 570 571 RW_WANTLOCK(rw, op, true); 572 RW_LOCKED(rw, op); 573 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) || 574 (op == RW_READER && RW_COUNT(rw) != 0)); 575 576 return 1; 577 } 578 579 /* 580 * rw_downgrade: 581 * 582 * Downgrade a write lock to a read lock. 583 */ 584 void 585 rw_downgrade(krwlock_t *rw) 586 { 587 uintptr_t owner, curthread, new, next; 588 turnstile_t *ts; 589 int rcnt, wcnt; 590 591 curthread = (uintptr_t)curlwp; 592 RW_ASSERT(rw, curthread != 0); 593 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0); 594 RW_ASSERT(rw, RW_OWNER(rw) == curthread); 595 RW_UNLOCKED(rw, RW_WRITER); 596 597 membar_producer(); 598 owner = rw->rw_owner; 599 if ((owner & RW_HAS_WAITERS) == 0) { 600 /* 601 * There are no waiters, so we can do this the easy way. 602 * Try swapping us down to one read hold. If it fails, the 603 * lock condition has changed and we most likely now have 604 * waiters. 605 */ 606 next = rw_cas(rw, owner, RW_READ_INCR); 607 if (__predict_true(next == owner)) { 608 RW_LOCKED(rw, RW_READER); 609 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0); 610 RW_DASSERT(rw, RW_COUNT(rw) != 0); 611 return; 612 } 613 owner = next; 614 } 615 616 /* 617 * Grab the turnstile chain lock. This gets the interlock 618 * on the sleep queue. Once we have that, we can adjust the 619 * waiter bits. 620 */ 621 for (;; owner = next) { 622 ts = turnstile_lookup(rw); 623 RW_DASSERT(rw, ts != NULL); 624 625 rcnt = TS_WAITERS(ts, TS_READER_Q); 626 wcnt = TS_WAITERS(ts, TS_WRITER_Q); 627 628 /* 629 * If there are no readers, just preserve the waiters 630 * bits, swap us down to one read hold and return. 631 */ 632 if (rcnt == 0) { 633 RW_DASSERT(rw, wcnt != 0); 634 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0); 635 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0); 636 637 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED; 638 next = rw_cas(rw, owner, new); 639 turnstile_exit(rw); 640 if (__predict_true(next == owner)) 641 break; 642 } else { 643 /* 644 * Give the lock to all blocked readers. We may 645 * retain one read hold if downgrading. If there 646 * is a writer waiting, new readers will be blocked 647 * out. 648 */ 649 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR; 650 if (wcnt != 0) 651 new |= RW_HAS_WAITERS | RW_WRITE_WANTED; 652 653 next = rw_cas(rw, owner, new); 654 if (__predict_true(next == owner)) { 655 /* Wake up all sleeping readers. */ 656 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL); 657 break; 658 } 659 turnstile_exit(rw); 660 } 661 } 662 663 RW_WANTLOCK(rw, RW_READER, false); 664 RW_LOCKED(rw, RW_READER); 665 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0); 666 RW_DASSERT(rw, RW_COUNT(rw) != 0); 667 } 668 669 /* 670 * rw_tryupgrade: 671 * 672 * Try to upgrade a read lock to a write lock. We must be the 673 * only reader. 674 */ 675 int 676 rw_tryupgrade(krwlock_t *rw) 677 { 678 uintptr_t owner, curthread, new, next; 679 680 curthread = (uintptr_t)curlwp; 681 RW_ASSERT(rw, curthread != 0); 682 RW_ASSERT(rw, rw_read_held(rw)); 683 684 for (owner = rw->rw_owner;; owner = next) { 685 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0); 686 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) { 687 RW_ASSERT(rw, (owner & RW_THREAD) != 0); 688 return 0; 689 } 690 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD); 691 next = rw_cas(rw, owner, new); 692 if (__predict_true(next == owner)) { 693 membar_producer(); 694 break; 695 } 696 } 697 698 RW_UNLOCKED(rw, RW_READER); 699 RW_WANTLOCK(rw, RW_WRITER, true); 700 RW_LOCKED(rw, RW_WRITER); 701 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED); 702 RW_DASSERT(rw, RW_OWNER(rw) == curthread); 703 704 return 1; 705 } 706 707 /* 708 * rw_read_held: 709 * 710 * Returns true if the rwlock is held for reading. Must only be 711 * used for diagnostic assertions, and never be used to make 712 * decisions about how to use a rwlock. 713 */ 714 int 715 rw_read_held(krwlock_t *rw) 716 { 717 uintptr_t owner; 718 719 if (panicstr != NULL) 720 return 1; 721 if (rw == NULL) 722 return 0; 723 owner = rw->rw_owner; 724 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0; 725 } 726 727 /* 728 * rw_write_held: 729 * 730 * Returns true if the rwlock is held for writing. Must only be 731 * used for diagnostic assertions, and never be used to make 732 * decisions about how to use a rwlock. 733 */ 734 int 735 rw_write_held(krwlock_t *rw) 736 { 737 738 if (panicstr != NULL) 739 return 1; 740 if (rw == NULL) 741 return 0; 742 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) == 743 (RW_WRITE_LOCKED | (uintptr_t)curlwp); 744 } 745 746 /* 747 * rw_lock_held: 748 * 749 * Returns true if the rwlock is held for reading or writing. Must 750 * only be used for diagnostic assertions, and never be used to make 751 * decisions about how to use a rwlock. 752 */ 753 int 754 rw_lock_held(krwlock_t *rw) 755 { 756 757 if (panicstr != NULL) 758 return 1; 759 if (rw == NULL) 760 return 0; 761 return (rw->rw_owner & RW_THREAD) != 0; 762 } 763 764 /* 765 * rw_owner: 766 * 767 * Return the current owner of an RW lock, but only if it is write 768 * held. Used for priority inheritance. 769 */ 770 static lwp_t * 771 rw_owner(wchan_t obj) 772 { 773 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */ 774 uintptr_t owner = rw->rw_owner; 775 776 if ((owner & RW_WRITE_LOCKED) == 0) 777 return NULL; 778 779 return (void *)(owner & RW_THREAD); 780 } 781 782 /* 783 * rw_obj_init: 784 * 785 * Initialize the rw object store. 786 */ 787 void 788 rw_obj_init(void) 789 { 790 791 rw_obj_cache = pool_cache_init(sizeof(struct krwobj), 792 coherency_unit, 0, 0, "rwlock", NULL, IPL_NONE, rw_obj_ctor, 793 NULL, NULL); 794 } 795 796 /* 797 * rw_obj_ctor: 798 * 799 * Initialize a new lock for the cache. 800 */ 801 static int 802 rw_obj_ctor(void *arg, void *obj, int flags) 803 { 804 struct krwobj * ro = obj; 805 806 ro->ro_magic = RW_OBJ_MAGIC; 807 808 return 0; 809 } 810 811 /* 812 * rw_obj_alloc: 813 * 814 * Allocate a single lock object. 815 */ 816 krwlock_t * 817 rw_obj_alloc(void) 818 { 819 struct krwobj *ro; 820 821 ro = pool_cache_get(rw_obj_cache, PR_WAITOK); 822 rw_init(&ro->ro_lock); 823 ro->ro_refcnt = 1; 824 825 return (krwlock_t *)ro; 826 } 827 828 /* 829 * rw_obj_hold: 830 * 831 * Add a single reference to a lock object. A reference to the object 832 * must already be held, and must be held across this call. 833 */ 834 void 835 rw_obj_hold(krwlock_t *lock) 836 { 837 struct krwobj *ro = (struct krwobj *)lock; 838 839 KASSERT(ro->ro_magic == RW_OBJ_MAGIC); 840 KASSERT(ro->ro_refcnt > 0); 841 842 atomic_inc_uint(&ro->ro_refcnt); 843 } 844 845 /* 846 * rw_obj_free: 847 * 848 * Drop a reference from a lock object. If the last reference is being 849 * dropped, free the object and return true. Otherwise, return false. 850 */ 851 bool 852 rw_obj_free(krwlock_t *lock) 853 { 854 struct krwobj *ro = (struct krwobj *)lock; 855 856 KASSERT(ro->ro_magic == RW_OBJ_MAGIC); 857 KASSERT(ro->ro_refcnt > 0); 858 859 if (atomic_dec_uint_nv(&ro->ro_refcnt) > 0) { 860 return false; 861 } 862 rw_destroy(&ro->ro_lock); 863 pool_cache_put(rw_obj_cache, ro); 864 return true; 865 } 866