xref: /netbsd-src/sys/kern/kern_rwlock.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: kern_rwlock.c,v 1.37 2011/03/20 23:19:16 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel reader/writer lock implementation, modeled after those
34  * found in Solaris, a description of which can be found in:
35  *
36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
37  *	    Richard McDougall.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.37 2011/03/20 23:19:16 rmind Exp $");
42 
43 #define	__RWLOCK_PRIVATE
44 
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
55 
56 #include <dev/lockstat.h>
57 
58 /*
59  * LOCKDEBUG
60  */
61 
62 #if defined(LOCKDEBUG)
63 
64 #define	RW_WANTLOCK(rw, op, t)						\
65 	LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw),			\
66 	    (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define	RW_LOCKED(rw, op)						\
68 	LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL,			\
69 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define	RW_UNLOCKED(rw, op)						\
71 	LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw),			\
72 	    (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define	RW_DASSERT(rw, cond)						\
74 do {									\
75 	if (!(cond))							\
76 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
77 } while (/* CONSTCOND */ 0);
78 
79 #else	/* LOCKDEBUG */
80 
81 #define	RW_WANTLOCK(rw, op, t)	/* nothing */
82 #define	RW_LOCKED(rw, op)	/* nothing */
83 #define	RW_UNLOCKED(rw, op)	/* nothing */
84 #define	RW_DASSERT(rw, cond)	/* nothing */
85 
86 #endif	/* LOCKDEBUG */
87 
88 /*
89  * DIAGNOSTIC
90  */
91 
92 #if defined(DIAGNOSTIC)
93 
94 #define	RW_ASSERT(rw, cond)						\
95 do {									\
96 	if (!(cond))							\
97 		rw_abort(rw, __func__, "assertion failed: " #cond);	\
98 } while (/* CONSTCOND */ 0)
99 
100 #else
101 
102 #define	RW_ASSERT(rw, cond)	/* nothing */
103 
104 #endif	/* DIAGNOSTIC */
105 
106 #define	RW_SETDEBUG(rw, on)		((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
107 #define	RW_DEBUG_P(rw)			(((rw)->rw_owner & RW_NODEBUG) == 0)
108 #if defined(LOCKDEBUG)
109 #define	RW_INHERITDEBUG(new, old)	(new) |= (old) & RW_NODEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define	RW_INHERITDEBUG(new, old)	/* nothing */
112 #endif /* defined(LOCKDEBUG) */
113 
114 static void	rw_abort(krwlock_t *, const char *, const char *);
115 static void	rw_dump(volatile void *);
116 static lwp_t	*rw_owner(wchan_t);
117 
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
120 {
121 
122 	RW_INHERITDEBUG(n, o);
123 	return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 	    (void *)o, (void *)n);
125 }
126 
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
129 {
130 
131 	RW_INHERITDEBUG(n, o);
132 	n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 	    (void *)n);
134 	RW_DASSERT(rw, n == o);
135 }
136 
137 /*
138  * For platforms that do not provide stubs, or for the LOCKDEBUG case.
139  */
140 #ifdef LOCKDEBUG
141 #undef	__HAVE_RW_STUBS
142 #endif
143 
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
149 
150 lockops_t rwlock_lockops = {
151 	"Reader / writer lock",
152 	LOCKOPS_SLEEP,
153 	rw_dump
154 };
155 
156 syncobj_t rw_syncobj = {
157 	SOBJ_SLEEPQ_SORTED,
158 	turnstile_unsleep,
159 	turnstile_changepri,
160 	sleepq_lendpri,
161 	rw_owner,
162 };
163 
164 /*
165  * rw_dump:
166  *
167  *	Dump the contents of a rwlock structure.
168  */
169 static void
170 rw_dump(volatile void *cookie)
171 {
172 	volatile krwlock_t *rw = cookie;
173 
174 	printf_nolog("owner/count  : %#018lx flags    : %#018x\n",
175 	    (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
176 }
177 
178 /*
179  * rw_abort:
180  *
181  *	Dump information about an error and panic the system.  This
182  *	generates a lot of machine code in the DIAGNOSTIC case, so
183  *	we ask the compiler to not inline it.
184  */
185 static void __noinline
186 rw_abort(krwlock_t *rw, const char *func, const char *msg)
187 {
188 
189 	if (panicstr != NULL)
190 		return;
191 
192 	LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
193 }
194 
195 /*
196  * rw_init:
197  *
198  *	Initialize a rwlock for use.
199  */
200 void
201 rw_init(krwlock_t *rw)
202 {
203 	bool dodebug;
204 
205 	memset(rw, 0, sizeof(*rw));
206 
207 	dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 	    (uintptr_t)__builtin_return_address(0));
209 	RW_SETDEBUG(rw, dodebug);
210 }
211 
212 /*
213  * rw_destroy:
214  *
215  *	Tear down a rwlock.
216  */
217 void
218 rw_destroy(krwlock_t *rw)
219 {
220 
221 	RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
222 	LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
223 }
224 
225 /*
226  * rw_oncpu:
227  *
228  *	Return true if an rwlock owner is running on a CPU in the system.
229  *	If the target is waiting on the kernel big lock, then we must
230  *	release it.  This is necessary to avoid deadlock.
231  */
232 static bool
233 rw_oncpu(uintptr_t owner)
234 {
235 #ifdef MULTIPROCESSOR
236 	struct cpu_info *ci;
237 	lwp_t *l;
238 
239 	KASSERT(kpreempt_disabled());
240 
241 	if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
242 		return false;
243 	}
244 
245 	/*
246 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
247 	 * We must have kernel preemption disabled for that.
248 	 */
249 	l = (lwp_t *)(owner & RW_THREAD);
250 	ci = l->l_cpu;
251 
252 	if (ci && ci->ci_curlwp == l) {
253 		/* Target is running; do we need to block? */
254 		return (ci->ci_biglock_wanted != l);
255 	}
256 #endif
257 	/* Not running.  It may be safe to block now. */
258 	return false;
259 }
260 
261 /*
262  * rw_vector_enter:
263  *
264  *	Acquire a rwlock.
265  */
266 void
267 rw_vector_enter(krwlock_t *rw, const krw_t op)
268 {
269 	uintptr_t owner, incr, need_wait, set_wait, curthread, next;
270 	turnstile_t *ts;
271 	int queue;
272 	lwp_t *l;
273 	LOCKSTAT_TIMER(slptime);
274 	LOCKSTAT_TIMER(slpcnt);
275 	LOCKSTAT_TIMER(spintime);
276 	LOCKSTAT_COUNTER(spincnt);
277 	LOCKSTAT_FLAG(lsflag);
278 
279 	l = curlwp;
280 	curthread = (uintptr_t)l;
281 
282 	RW_ASSERT(rw, !cpu_intr_p());
283 	RW_ASSERT(rw, curthread != 0);
284 	RW_WANTLOCK(rw, op, false);
285 
286 	if (panicstr == NULL) {
287 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
288 	}
289 
290 	/*
291 	 * We play a slight trick here.  If we're a reader, we want
292 	 * increment the read count.  If we're a writer, we want to
293 	 * set the owner field and whe WRITE_LOCKED bit.
294 	 *
295 	 * In the latter case, we expect those bits to be zero,
296 	 * therefore we can use an add operation to set them, which
297 	 * means an add operation for both cases.
298 	 */
299 	if (__predict_true(op == RW_READER)) {
300 		incr = RW_READ_INCR;
301 		set_wait = RW_HAS_WAITERS;
302 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
303 		queue = TS_READER_Q;
304 	} else {
305 		RW_DASSERT(rw, op == RW_WRITER);
306 		incr = curthread | RW_WRITE_LOCKED;
307 		set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
308 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
309 		queue = TS_WRITER_Q;
310 	}
311 
312 	LOCKSTAT_ENTER(lsflag);
313 
314 	KPREEMPT_DISABLE(curlwp);
315 	for (owner = rw->rw_owner; ;) {
316 		/*
317 		 * Read the lock owner field.  If the need-to-wait
318 		 * indicator is clear, then try to acquire the lock.
319 		 */
320 		if ((owner & need_wait) == 0) {
321 			next = rw_cas(rw, owner, (owner + incr) &
322 			    ~RW_WRITE_WANTED);
323 			if (__predict_true(next == owner)) {
324 				/* Got it! */
325 				membar_enter();
326 				break;
327 			}
328 
329 			/*
330 			 * Didn't get it -- spin around again (we'll
331 			 * probably sleep on the next iteration).
332 			 */
333 			owner = next;
334 			continue;
335 		}
336 		if (__predict_false(panicstr != NULL)) {
337 			kpreempt_enable();
338 			return;
339 		}
340 		if (__predict_false(RW_OWNER(rw) == curthread)) {
341 			rw_abort(rw, __func__, "locking against myself");
342 		}
343 		/*
344 		 * If the lock owner is running on another CPU, and
345 		 * there are no existing waiters, then spin.
346 		 */
347 		if (rw_oncpu(owner)) {
348 			LOCKSTAT_START_TIMER(lsflag, spintime);
349 			u_int count = SPINLOCK_BACKOFF_MIN;
350 			do {
351 				kpreempt_enable();
352 				SPINLOCK_BACKOFF(count);
353 				kpreempt_disable();
354 				owner = rw->rw_owner;
355 			} while (rw_oncpu(owner));
356 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
357 			LOCKSTAT_COUNT(spincnt, 1);
358 			if ((owner & need_wait) == 0)
359 				continue;
360 		}
361 
362 		/*
363 		 * Grab the turnstile chain lock.  Once we have that, we
364 		 * can adjust the waiter bits and sleep queue.
365 		 */
366 		ts = turnstile_lookup(rw);
367 
368 		/*
369 		 * Mark the rwlock as having waiters.  If the set fails,
370 		 * then we may not need to sleep and should spin again.
371 		 * Reload rw_owner because turnstile_lookup() may have
372 		 * spun on the turnstile chain lock.
373 		 */
374 		owner = rw->rw_owner;
375 		if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
376 			turnstile_exit(rw);
377 			continue;
378 		}
379 		next = rw_cas(rw, owner, owner | set_wait);
380 		if (__predict_false(next != owner)) {
381 			turnstile_exit(rw);
382 			owner = next;
383 			continue;
384 		}
385 
386 		LOCKSTAT_START_TIMER(lsflag, slptime);
387 		turnstile_block(ts, queue, rw, &rw_syncobj);
388 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
389 		LOCKSTAT_COUNT(slpcnt, 1);
390 
391 		/*
392 		 * No need for a memory barrier because of context switch.
393 		 * If not handed the lock, then spin again.
394 		 */
395 		if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
396 			break;
397 	}
398 	KPREEMPT_ENABLE(curlwp);
399 
400 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
401 	    (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
402 	LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
403 	LOCKSTAT_EXIT(lsflag);
404 
405 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
406 	    (op == RW_READER && RW_COUNT(rw) != 0));
407 	RW_LOCKED(rw, op);
408 }
409 
410 /*
411  * rw_vector_exit:
412  *
413  *	Release a rwlock.
414  */
415 void
416 rw_vector_exit(krwlock_t *rw)
417 {
418 	uintptr_t curthread, owner, decr, new, next;
419 	turnstile_t *ts;
420 	int rcnt, wcnt;
421 	lwp_t *l;
422 
423 	curthread = (uintptr_t)curlwp;
424 	RW_ASSERT(rw, curthread != 0);
425 
426 	if (__predict_false(panicstr != NULL))
427 		return;
428 
429 	/*
430 	 * Again, we use a trick.  Since we used an add operation to
431 	 * set the required lock bits, we can use a subtract to clear
432 	 * them, which makes the read-release and write-release path
433 	 * the same.
434 	 */
435 	owner = rw->rw_owner;
436 	if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
437 		RW_UNLOCKED(rw, RW_WRITER);
438 		RW_ASSERT(rw, RW_OWNER(rw) == curthread);
439 		decr = curthread | RW_WRITE_LOCKED;
440 	} else {
441 		RW_UNLOCKED(rw, RW_READER);
442 		RW_ASSERT(rw, RW_COUNT(rw) != 0);
443 		decr = RW_READ_INCR;
444 	}
445 
446 	/*
447 	 * Compute what we expect the new value of the lock to be. Only
448 	 * proceed to do direct handoff if there are waiters, and if the
449 	 * lock would become unowned.
450 	 */
451 	membar_exit();
452 	for (;;) {
453 		new = (owner - decr);
454 		if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
455 			break;
456 		next = rw_cas(rw, owner, new);
457 		if (__predict_true(next == owner))
458 			return;
459 		owner = next;
460 	}
461 
462 	/*
463 	 * Grab the turnstile chain lock.  This gets the interlock
464 	 * on the sleep queue.  Once we have that, we can adjust the
465 	 * waiter bits.
466 	 */
467 	ts = turnstile_lookup(rw);
468 	owner = rw->rw_owner;
469 	RW_DASSERT(rw, ts != NULL);
470 	RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
471 
472 	wcnt = TS_WAITERS(ts, TS_WRITER_Q);
473 	rcnt = TS_WAITERS(ts, TS_READER_Q);
474 
475 	/*
476 	 * Give the lock away.
477 	 *
478 	 * If we are releasing a write lock, then prefer to wake all
479 	 * outstanding readers.  Otherwise, wake one writer if there
480 	 * are outstanding readers, or all writers if there are no
481 	 * pending readers.  If waking one specific writer, the writer
482 	 * is handed the lock here.  If waking multiple writers, we
483 	 * set WRITE_WANTED to block out new readers, and let them
484 	 * do the work of acquring the lock in rw_vector_enter().
485 	 */
486 	if (rcnt == 0 || decr == RW_READ_INCR) {
487 		RW_DASSERT(rw, wcnt != 0);
488 		RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
489 
490 		if (rcnt != 0) {
491 			/* Give the lock to the longest waiting writer. */
492 			l = TS_FIRST(ts, TS_WRITER_Q);
493 			new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
494 			if (wcnt > 1)
495 				new |= RW_WRITE_WANTED;
496 			rw_swap(rw, owner, new);
497 			turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
498 		} else {
499 			/* Wake all writers and let them fight it out. */
500 			rw_swap(rw, owner, RW_WRITE_WANTED);
501 			turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
502 		}
503 	} else {
504 		RW_DASSERT(rw, rcnt != 0);
505 
506 		/*
507 		 * Give the lock to all blocked readers.  If there
508 		 * is a writer waiting, new readers that arrive
509 		 * after the release will be blocked out.
510 		 */
511 		new = rcnt << RW_READ_COUNT_SHIFT;
512 		if (wcnt != 0)
513 			new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
514 
515 		/* Wake up all sleeping readers. */
516 		rw_swap(rw, owner, new);
517 		turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
518 	}
519 }
520 
521 /*
522  * rw_vector_tryenter:
523  *
524  *	Try to acquire a rwlock.
525  */
526 int
527 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
528 {
529 	uintptr_t curthread, owner, incr, need_wait, next;
530 
531 	curthread = (uintptr_t)curlwp;
532 
533 	RW_ASSERT(rw, curthread != 0);
534 
535 	if (op == RW_READER) {
536 		incr = RW_READ_INCR;
537 		need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
538 	} else {
539 		RW_DASSERT(rw, op == RW_WRITER);
540 		incr = curthread | RW_WRITE_LOCKED;
541 		need_wait = RW_WRITE_LOCKED | RW_THREAD;
542 	}
543 
544 	for (owner = rw->rw_owner;; owner = next) {
545 		owner = rw->rw_owner;
546 		if (__predict_false((owner & need_wait) != 0))
547 			return 0;
548 		next = rw_cas(rw, owner, owner + incr);
549 		if (__predict_true(next == owner)) {
550 			/* Got it! */
551 			membar_enter();
552 			break;
553 		}
554 	}
555 
556 	RW_WANTLOCK(rw, op, true);
557 	RW_LOCKED(rw, op);
558 	RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
559 	    (op == RW_READER && RW_COUNT(rw) != 0));
560 
561 	return 1;
562 }
563 
564 /*
565  * rw_downgrade:
566  *
567  *	Downgrade a write lock to a read lock.
568  */
569 void
570 rw_downgrade(krwlock_t *rw)
571 {
572 	uintptr_t owner, curthread, new, next;
573 	turnstile_t *ts;
574 	int rcnt, wcnt;
575 
576 	curthread = (uintptr_t)curlwp;
577 	RW_ASSERT(rw, curthread != 0);
578 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
579 	RW_ASSERT(rw, RW_OWNER(rw) == curthread);
580 	RW_UNLOCKED(rw, RW_WRITER);
581 
582 	membar_producer();
583 	owner = rw->rw_owner;
584 	if ((owner & RW_HAS_WAITERS) == 0) {
585 		/*
586 		 * There are no waiters, so we can do this the easy way.
587 		 * Try swapping us down to one read hold.  If it fails, the
588 		 * lock condition has changed and we most likely now have
589 		 * waiters.
590 		 */
591 		next = rw_cas(rw, owner, RW_READ_INCR);
592 		if (__predict_true(next == owner)) {
593 			RW_LOCKED(rw, RW_READER);
594 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
595 			RW_DASSERT(rw, RW_COUNT(rw) != 0);
596 			return;
597 		}
598 		owner = next;
599 	}
600 
601 	/*
602 	 * Grab the turnstile chain lock.  This gets the interlock
603 	 * on the sleep queue.  Once we have that, we can adjust the
604 	 * waiter bits.
605 	 */
606 	for (;; owner = next) {
607 		ts = turnstile_lookup(rw);
608 		RW_DASSERT(rw, ts != NULL);
609 
610 		rcnt = TS_WAITERS(ts, TS_READER_Q);
611 		wcnt = TS_WAITERS(ts, TS_WRITER_Q);
612 
613 		/*
614 		 * If there are no readers, just preserve the waiters
615 		 * bits, swap us down to one read hold and return.
616 		 */
617 		if (rcnt == 0) {
618 			RW_DASSERT(rw, wcnt != 0);
619 			RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
620 			RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
621 
622 			new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
623 			next = rw_cas(rw, owner, new);
624 			turnstile_exit(rw);
625 			if (__predict_true(next == owner))
626 				break;
627 		} else {
628 			/*
629 			 * Give the lock to all blocked readers.  We may
630 			 * retain one read hold if downgrading.  If there
631 			 * is a writer waiting, new readers will be blocked
632 			 * out.
633 			 */
634 			new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
635 			if (wcnt != 0)
636 				new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
637 
638 			next = rw_cas(rw, owner, new);
639 			if (__predict_true(next == owner)) {
640 				/* Wake up all sleeping readers. */
641 				turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
642 				break;
643 			}
644 			turnstile_exit(rw);
645 		}
646 	}
647 
648 	RW_WANTLOCK(rw, RW_READER, false);
649 	RW_LOCKED(rw, RW_READER);
650 	RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
651 	RW_DASSERT(rw, RW_COUNT(rw) != 0);
652 }
653 
654 /*
655  * rw_tryupgrade:
656  *
657  *	Try to upgrade a read lock to a write lock.  We must be the
658  *	only reader.
659  */
660 int
661 rw_tryupgrade(krwlock_t *rw)
662 {
663 	uintptr_t owner, curthread, new, next;
664 
665 	curthread = (uintptr_t)curlwp;
666 	RW_ASSERT(rw, curthread != 0);
667 	RW_ASSERT(rw, rw_read_held(rw));
668 
669 	for (owner = rw->rw_owner;; owner = next) {
670 		RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
671 		if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
672 			RW_ASSERT(rw, (owner & RW_THREAD) != 0);
673 			return 0;
674 		}
675 		new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
676 		next = rw_cas(rw, owner, new);
677 		if (__predict_true(next == owner)) {
678 			membar_producer();
679 			break;
680 		}
681 	}
682 
683 	RW_UNLOCKED(rw, RW_READER);
684 	RW_WANTLOCK(rw, RW_WRITER, true);
685 	RW_LOCKED(rw, RW_WRITER);
686 	RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
687 	RW_DASSERT(rw, RW_OWNER(rw) == curthread);
688 
689 	return 1;
690 }
691 
692 /*
693  * rw_read_held:
694  *
695  *	Returns true if the rwlock is held for reading.  Must only be
696  *	used for diagnostic assertions, and never be used to make
697  * 	decisions about how to use a rwlock.
698  */
699 int
700 rw_read_held(krwlock_t *rw)
701 {
702 	uintptr_t owner;
703 
704 	if (panicstr != NULL)
705 		return 1;
706 	if (rw == NULL)
707 		return 0;
708 	owner = rw->rw_owner;
709 	return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
710 }
711 
712 /*
713  * rw_write_held:
714  *
715  *	Returns true if the rwlock is held for writing.  Must only be
716  *	used for diagnostic assertions, and never be used to make
717  *	decisions about how to use a rwlock.
718  */
719 int
720 rw_write_held(krwlock_t *rw)
721 {
722 
723 	if (panicstr != NULL)
724 		return 1;
725 	if (rw == NULL)
726 		return 0;
727 	return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
728 	    (RW_WRITE_LOCKED | (uintptr_t)curlwp);
729 }
730 
731 /*
732  * rw_lock_held:
733  *
734  *	Returns true if the rwlock is held for reading or writing.  Must
735  *	only be used for diagnostic assertions, and never be used to make
736  *	decisions about how to use a rwlock.
737  */
738 int
739 rw_lock_held(krwlock_t *rw)
740 {
741 
742 	if (panicstr != NULL)
743 		return 1;
744 	if (rw == NULL)
745 		return 0;
746 	return (rw->rw_owner & RW_THREAD) != 0;
747 }
748 
749 /*
750  * rw_owner:
751  *
752  *	Return the current owner of an RW lock, but only if it is write
753  *	held.  Used for priority inheritance.
754  */
755 static lwp_t *
756 rw_owner(wchan_t obj)
757 {
758 	krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
759 	uintptr_t owner = rw->rw_owner;
760 
761 	if ((owner & RW_WRITE_LOCKED) == 0)
762 		return NULL;
763 
764 	return (void *)(owner & RW_THREAD);
765 }
766