1 /* $NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/kmem.h> 48 #include <sys/namei.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/sysctl.h> 52 #include <sys/timevar.h> 53 #include <sys/kauth.h> 54 #include <sys/atomic.h> 55 #include <sys/mount.h> 56 #include <sys/syscallargs.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Maximum process data and stack limits. 63 * They are variables so they are patchable. 64 */ 65 rlim_t maxdmap = MAXDSIZ; 66 rlim_t maxsmap = MAXSSIZ; 67 68 static pool_cache_t plimit_cache __read_mostly; 69 static pool_cache_t pstats_cache __read_mostly; 70 71 static kauth_listener_t resource_listener; 72 static struct sysctllog *proc_sysctllog; 73 74 static int donice(struct lwp *, struct proc *, int); 75 static void sysctl_proc_setup(void); 76 77 static int 78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 79 void *arg0, void *arg1, void *arg2, void *arg3) 80 { 81 struct proc *p; 82 int result; 83 84 result = KAUTH_RESULT_DEFER; 85 p = arg0; 86 87 switch (action) { 88 case KAUTH_PROCESS_NICE: 89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && 90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { 91 break; 92 } 93 94 if ((u_long)arg1 >= p->p_nice) 95 result = KAUTH_RESULT_ALLOW; 96 97 break; 98 99 case KAUTH_PROCESS_RLIMIT: { 100 enum kauth_process_req req; 101 102 req = (enum kauth_process_req)(unsigned long)arg1; 103 104 switch (req) { 105 case KAUTH_REQ_PROCESS_RLIMIT_GET: 106 result = KAUTH_RESULT_ALLOW; 107 break; 108 109 case KAUTH_REQ_PROCESS_RLIMIT_SET: { 110 struct rlimit *new_rlimit; 111 u_long which; 112 113 if ((p != curlwp->l_proc) && 114 (proc_uidmatch(cred, p->p_cred) != 0)) 115 break; 116 117 new_rlimit = arg2; 118 which = (u_long)arg3; 119 120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) 121 result = KAUTH_RESULT_ALLOW; 122 123 break; 124 } 125 126 default: 127 break; 128 } 129 130 break; 131 } 132 133 default: 134 break; 135 } 136 137 return result; 138 } 139 140 void 141 resource_init(void) 142 { 143 144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 148 149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 150 resource_listener_cb, NULL); 151 152 sysctl_proc_setup(); 153 } 154 155 /* 156 * Resource controls and accounting. 157 */ 158 159 int 160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 161 register_t *retval) 162 { 163 /* { 164 syscallarg(int) which; 165 syscallarg(id_t) who; 166 } */ 167 struct proc *curp = l->l_proc, *p; 168 id_t who = SCARG(uap, who); 169 int low = NZERO + PRIO_MAX + 1; 170 171 mutex_enter(proc_lock); 172 switch (SCARG(uap, which)) { 173 case PRIO_PROCESS: 174 p = who ? proc_find(who) : curp; 175 if (p != NULL) 176 low = p->p_nice; 177 break; 178 179 case PRIO_PGRP: { 180 struct pgrp *pg; 181 182 if (who == 0) 183 pg = curp->p_pgrp; 184 else if ((pg = pgrp_find(who)) == NULL) 185 break; 186 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 187 if (p->p_nice < low) 188 low = p->p_nice; 189 } 190 break; 191 } 192 193 case PRIO_USER: 194 if (who == 0) 195 who = (int)kauth_cred_geteuid(l->l_cred); 196 PROCLIST_FOREACH(p, &allproc) { 197 mutex_enter(p->p_lock); 198 if (kauth_cred_geteuid(p->p_cred) == 199 (uid_t)who && p->p_nice < low) 200 low = p->p_nice; 201 mutex_exit(p->p_lock); 202 } 203 break; 204 205 default: 206 mutex_exit(proc_lock); 207 return EINVAL; 208 } 209 mutex_exit(proc_lock); 210 211 if (low == NZERO + PRIO_MAX + 1) { 212 return ESRCH; 213 } 214 *retval = low - NZERO; 215 return 0; 216 } 217 218 int 219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 220 register_t *retval) 221 { 222 /* { 223 syscallarg(int) which; 224 syscallarg(id_t) who; 225 syscallarg(int) prio; 226 } */ 227 struct proc *curp = l->l_proc, *p; 228 id_t who = SCARG(uap, who); 229 int found = 0, error = 0; 230 231 mutex_enter(proc_lock); 232 switch (SCARG(uap, which)) { 233 case PRIO_PROCESS: 234 p = who ? proc_find(who) : curp; 235 if (p != NULL) { 236 mutex_enter(p->p_lock); 237 found++; 238 error = donice(l, p, SCARG(uap, prio)); 239 mutex_exit(p->p_lock); 240 } 241 break; 242 243 case PRIO_PGRP: { 244 struct pgrp *pg; 245 246 if (who == 0) 247 pg = curp->p_pgrp; 248 else if ((pg = pgrp_find(who)) == NULL) 249 break; 250 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 251 mutex_enter(p->p_lock); 252 found++; 253 error = donice(l, p, SCARG(uap, prio)); 254 mutex_exit(p->p_lock); 255 if (error) 256 break; 257 } 258 break; 259 } 260 261 case PRIO_USER: 262 if (who == 0) 263 who = (int)kauth_cred_geteuid(l->l_cred); 264 PROCLIST_FOREACH(p, &allproc) { 265 mutex_enter(p->p_lock); 266 if (kauth_cred_geteuid(p->p_cred) == 267 (uid_t)SCARG(uap, who)) { 268 found++; 269 error = donice(l, p, SCARG(uap, prio)); 270 } 271 mutex_exit(p->p_lock); 272 if (error) 273 break; 274 } 275 break; 276 277 default: 278 mutex_exit(proc_lock); 279 return EINVAL; 280 } 281 mutex_exit(proc_lock); 282 283 return (found == 0) ? ESRCH : error; 284 } 285 286 /* 287 * Renice a process. 288 * 289 * Call with the target process' credentials locked. 290 */ 291 static int 292 donice(struct lwp *l, struct proc *chgp, int n) 293 { 294 kauth_cred_t cred = l->l_cred; 295 296 KASSERT(mutex_owned(chgp->p_lock)); 297 298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 301 return EPERM; 302 303 if (n > PRIO_MAX) { 304 n = PRIO_MAX; 305 } 306 if (n < PRIO_MIN) { 307 n = PRIO_MIN; 308 } 309 n += NZERO; 310 311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 312 KAUTH_ARG(n), NULL, NULL)) { 313 return EACCES; 314 } 315 316 sched_nice(chgp, n); 317 return 0; 318 } 319 320 int 321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 322 register_t *retval) 323 { 324 /* { 325 syscallarg(int) which; 326 syscallarg(const struct rlimit *) rlp; 327 } */ 328 int error, which = SCARG(uap, which); 329 struct rlimit alim; 330 331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 332 if (error) { 333 return error; 334 } 335 return dosetrlimit(l, l->l_proc, which, &alim); 336 } 337 338 int 339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 340 { 341 struct rlimit *alimp; 342 int error; 343 344 if ((u_int)which >= RLIM_NLIMITS) 345 return EINVAL; 346 347 if (limp->rlim_cur > limp->rlim_max) { 348 /* 349 * This is programming error. According to SUSv2, we should 350 * return error in this case. 351 */ 352 return EINVAL; 353 } 354 355 alimp = &p->p_rlimit[which]; 356 /* if we don't change the value, no need to limcopy() */ 357 if (limp->rlim_cur == alimp->rlim_cur && 358 limp->rlim_max == alimp->rlim_max) 359 return 0; 360 361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 363 if (error) 364 return error; 365 366 lim_privatise(p); 367 /* p->p_limit is now unchangeable */ 368 alimp = &p->p_rlimit[which]; 369 370 switch (which) { 371 372 case RLIMIT_DATA: 373 if (limp->rlim_cur > maxdmap) 374 limp->rlim_cur = maxdmap; 375 if (limp->rlim_max > maxdmap) 376 limp->rlim_max = maxdmap; 377 break; 378 379 case RLIMIT_STACK: 380 if (limp->rlim_cur > maxsmap) 381 limp->rlim_cur = maxsmap; 382 if (limp->rlim_max > maxsmap) 383 limp->rlim_max = maxsmap; 384 385 /* 386 * Return EINVAL if the new stack size limit is lower than 387 * current usage. Otherwise, the process would get SIGSEGV the 388 * moment it would try to access anything on its current stack. 389 * This conforms to SUSv2. 390 */ 391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE || 392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 393 return EINVAL; 394 } 395 396 /* 397 * Stack is allocated to the max at exec time with 398 * only "rlim_cur" bytes accessible (In other words, 399 * allocates stack dividing two contiguous regions at 400 * "rlim_cur" bytes boundary). 401 * 402 * Since allocation is done in terms of page, roundup 403 * "rlim_cur" (otherwise, contiguous regions 404 * overlap). If stack limit is going up make more 405 * accessible, if going down make inaccessible. 406 */ 407 limp->rlim_max = round_page(limp->rlim_max); 408 limp->rlim_cur = round_page(limp->rlim_cur); 409 if (limp->rlim_cur != alimp->rlim_cur) { 410 vaddr_t addr; 411 vsize_t size; 412 vm_prot_t prot; 413 char *base, *tmp; 414 415 base = p->p_vmspace->vm_minsaddr; 416 if (limp->rlim_cur > alimp->rlim_cur) { 417 prot = VM_PROT_READ | VM_PROT_WRITE; 418 size = limp->rlim_cur - alimp->rlim_cur; 419 tmp = STACK_GROW(base, alimp->rlim_cur); 420 } else { 421 prot = VM_PROT_NONE; 422 size = alimp->rlim_cur - limp->rlim_cur; 423 tmp = STACK_GROW(base, limp->rlim_cur); 424 } 425 addr = (vaddr_t)STACK_ALLOC(tmp, size); 426 (void) uvm_map_protect(&p->p_vmspace->vm_map, 427 addr, addr + size, prot, false); 428 } 429 break; 430 431 case RLIMIT_NOFILE: 432 if (limp->rlim_cur > maxfiles) 433 limp->rlim_cur = maxfiles; 434 if (limp->rlim_max > maxfiles) 435 limp->rlim_max = maxfiles; 436 break; 437 438 case RLIMIT_NPROC: 439 if (limp->rlim_cur > maxproc) 440 limp->rlim_cur = maxproc; 441 if (limp->rlim_max > maxproc) 442 limp->rlim_max = maxproc; 443 break; 444 445 case RLIMIT_NTHR: 446 if (limp->rlim_cur > maxlwp) 447 limp->rlim_cur = maxlwp; 448 if (limp->rlim_max > maxlwp) 449 limp->rlim_max = maxlwp; 450 break; 451 } 452 453 mutex_enter(&p->p_limit->pl_lock); 454 *alimp = *limp; 455 mutex_exit(&p->p_limit->pl_lock); 456 return 0; 457 } 458 459 int 460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 461 register_t *retval) 462 { 463 /* { 464 syscallarg(int) which; 465 syscallarg(struct rlimit *) rlp; 466 } */ 467 struct proc *p = l->l_proc; 468 int which = SCARG(uap, which); 469 struct rlimit rl; 470 471 if ((u_int)which >= RLIM_NLIMITS) 472 return EINVAL; 473 474 mutex_enter(p->p_lock); 475 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 476 mutex_exit(p->p_lock); 477 478 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 479 } 480 481 /* 482 * Transform the running time and tick information in proc p into user, 483 * system, and interrupt time usage. 484 * 485 * Should be called with p->p_lock held unless called from exit1(). 486 */ 487 void 488 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 489 struct timeval *ip, struct timeval *rp) 490 { 491 uint64_t u, st, ut, it, tot; 492 struct lwp *l; 493 struct bintime tm; 494 struct timeval tv; 495 496 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock)); 497 498 mutex_spin_enter(&p->p_stmutex); 499 st = p->p_sticks; 500 ut = p->p_uticks; 501 it = p->p_iticks; 502 mutex_spin_exit(&p->p_stmutex); 503 504 tm = p->p_rtime; 505 506 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 507 lwp_lock(l); 508 bintime_add(&tm, &l->l_rtime); 509 if ((l->l_pflag & LP_RUNNING) != 0) { 510 struct bintime diff; 511 /* 512 * Adjust for the current time slice. This is 513 * actually fairly important since the error 514 * here is on the order of a time quantum, 515 * which is much greater than the sampling 516 * error. 517 */ 518 binuptime(&diff); 519 bintime_sub(&diff, &l->l_stime); 520 bintime_add(&tm, &diff); 521 } 522 lwp_unlock(l); 523 } 524 525 tot = st + ut + it; 526 bintime2timeval(&tm, &tv); 527 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 528 529 if (tot == 0) { 530 /* No ticks, so can't use to share time out, split 50-50 */ 531 st = ut = u / 2; 532 } else { 533 st = (u * st) / tot; 534 ut = (u * ut) / tot; 535 } 536 if (sp != NULL) { 537 sp->tv_sec = st / 1000000; 538 sp->tv_usec = st % 1000000; 539 } 540 if (up != NULL) { 541 up->tv_sec = ut / 1000000; 542 up->tv_usec = ut % 1000000; 543 } 544 if (ip != NULL) { 545 if (it != 0) 546 it = (u * it) / tot; 547 ip->tv_sec = it / 1000000; 548 ip->tv_usec = it % 1000000; 549 } 550 if (rp != NULL) { 551 *rp = tv; 552 } 553 } 554 555 int 556 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 557 register_t *retval) 558 { 559 /* { 560 syscallarg(int) who; 561 syscallarg(struct rusage *) rusage; 562 } */ 563 int error; 564 struct rusage ru; 565 struct proc *p = l->l_proc; 566 567 error = getrusage1(p, SCARG(uap, who), &ru); 568 if (error != 0) 569 return error; 570 571 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 572 } 573 574 int 575 getrusage1(struct proc *p, int who, struct rusage *ru) { 576 577 switch (who) { 578 case RUSAGE_SELF: 579 mutex_enter(p->p_lock); 580 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru)); 581 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL); 582 rulwps(p, ru); 583 mutex_exit(p->p_lock); 584 break; 585 case RUSAGE_CHILDREN: 586 mutex_enter(p->p_lock); 587 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru)); 588 mutex_exit(p->p_lock); 589 break; 590 default: 591 return EINVAL; 592 } 593 594 return 0; 595 } 596 597 void 598 ruadd(struct rusage *ru, struct rusage *ru2) 599 { 600 long *ip, *ip2; 601 int i; 602 603 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 604 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 605 if (ru->ru_maxrss < ru2->ru_maxrss) 606 ru->ru_maxrss = ru2->ru_maxrss; 607 ip = &ru->ru_first; ip2 = &ru2->ru_first; 608 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 609 *ip++ += *ip2++; 610 } 611 612 void 613 rulwps(proc_t *p, struct rusage *ru) 614 { 615 lwp_t *l; 616 617 KASSERT(mutex_owned(p->p_lock)); 618 619 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 620 ruadd(ru, &l->l_ru); 621 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 622 ru->ru_nivcsw += l->l_nivcsw; 623 } 624 } 625 626 /* 627 * lim_copy: make a copy of the plimit structure. 628 * 629 * We use copy-on-write after fork, and copy when a limit is changed. 630 */ 631 struct plimit * 632 lim_copy(struct plimit *lim) 633 { 634 struct plimit *newlim; 635 char *corename; 636 size_t alen, len; 637 638 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 639 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 640 newlim->pl_writeable = false; 641 newlim->pl_refcnt = 1; 642 newlim->pl_sv_limit = NULL; 643 644 mutex_enter(&lim->pl_lock); 645 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 646 sizeof(struct rlimit) * RLIM_NLIMITS); 647 648 /* 649 * Note: the common case is a use of default core name. 650 */ 651 alen = 0; 652 corename = NULL; 653 for (;;) { 654 if (lim->pl_corename == defcorename) { 655 newlim->pl_corename = defcorename; 656 newlim->pl_cnlen = 0; 657 break; 658 } 659 len = lim->pl_cnlen; 660 if (len == alen) { 661 newlim->pl_corename = corename; 662 newlim->pl_cnlen = len; 663 memcpy(corename, lim->pl_corename, len); 664 corename = NULL; 665 break; 666 } 667 mutex_exit(&lim->pl_lock); 668 if (corename) { 669 kmem_free(corename, alen); 670 } 671 alen = len; 672 corename = kmem_alloc(alen, KM_SLEEP); 673 mutex_enter(&lim->pl_lock); 674 } 675 mutex_exit(&lim->pl_lock); 676 677 if (corename) { 678 kmem_free(corename, alen); 679 } 680 return newlim; 681 } 682 683 void 684 lim_addref(struct plimit *lim) 685 { 686 atomic_inc_uint(&lim->pl_refcnt); 687 } 688 689 /* 690 * lim_privatise: give a process its own private plimit structure. 691 */ 692 void 693 lim_privatise(proc_t *p) 694 { 695 struct plimit *lim = p->p_limit, *newlim; 696 697 if (lim->pl_writeable) { 698 return; 699 } 700 701 newlim = lim_copy(lim); 702 703 mutex_enter(p->p_lock); 704 if (p->p_limit->pl_writeable) { 705 /* Other thread won the race. */ 706 mutex_exit(p->p_lock); 707 lim_free(newlim); 708 return; 709 } 710 711 /* 712 * Since p->p_limit can be accessed without locked held, 713 * old limit structure must not be deleted yet. 714 */ 715 newlim->pl_sv_limit = p->p_limit; 716 newlim->pl_writeable = true; 717 p->p_limit = newlim; 718 mutex_exit(p->p_lock); 719 } 720 721 void 722 lim_setcorename(proc_t *p, char *name, size_t len) 723 { 724 struct plimit *lim; 725 char *oname; 726 size_t olen; 727 728 lim_privatise(p); 729 lim = p->p_limit; 730 731 mutex_enter(&lim->pl_lock); 732 oname = lim->pl_corename; 733 olen = lim->pl_cnlen; 734 lim->pl_corename = name; 735 lim->pl_cnlen = len; 736 mutex_exit(&lim->pl_lock); 737 738 if (oname != defcorename) { 739 kmem_free(oname, olen); 740 } 741 } 742 743 void 744 lim_free(struct plimit *lim) 745 { 746 struct plimit *sv_lim; 747 748 do { 749 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) { 750 return; 751 } 752 if (lim->pl_corename != defcorename) { 753 kmem_free(lim->pl_corename, lim->pl_cnlen); 754 } 755 sv_lim = lim->pl_sv_limit; 756 mutex_destroy(&lim->pl_lock); 757 pool_cache_put(plimit_cache, lim); 758 } while ((lim = sv_lim) != NULL); 759 } 760 761 struct pstats * 762 pstatscopy(struct pstats *ps) 763 { 764 struct pstats *nps; 765 size_t len; 766 767 nps = pool_cache_get(pstats_cache, PR_WAITOK); 768 769 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero; 770 memset(&nps->pstat_startzero, 0, len); 771 772 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy; 773 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len); 774 775 return nps; 776 } 777 778 void 779 pstatsfree(struct pstats *ps) 780 { 781 782 pool_cache_put(pstats_cache, ps); 783 } 784 785 /* 786 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that 787 * need to pick a valid process by PID. 788 * 789 * => Hold a reference on the process, on success. 790 */ 791 static int 792 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2) 793 { 794 proc_t *p; 795 int error; 796 797 if (pid == PROC_CURPROC) { 798 p = l->l_proc; 799 } else { 800 mutex_enter(proc_lock); 801 p = proc_find(pid); 802 if (p == NULL) { 803 mutex_exit(proc_lock); 804 return ESRCH; 805 } 806 } 807 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 808 if (pid != PROC_CURPROC) { 809 mutex_exit(proc_lock); 810 } 811 *p2 = p; 812 return error; 813 } 814 815 /* 816 * sysctl_proc_corename: helper routine to get or set the core file name 817 * for a process specified by PID. 818 */ 819 static int 820 sysctl_proc_corename(SYSCTLFN_ARGS) 821 { 822 struct proc *p; 823 struct plimit *lim; 824 char *cnbuf, *cname; 825 struct sysctlnode node; 826 size_t len; 827 int error; 828 829 /* First, validate the request. */ 830 if (namelen != 0 || name[-1] != PROC_PID_CORENAME) 831 return EINVAL; 832 833 /* Find the process. Hold a reference (p_reflock), if found. */ 834 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 835 if (error) 836 return error; 837 838 /* XXX-elad */ 839 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 840 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 841 if (error) { 842 rw_exit(&p->p_reflock); 843 return error; 844 } 845 846 cnbuf = PNBUF_GET(); 847 848 if (oldp) { 849 /* Get case: copy the core name into the buffer. */ 850 error = kauth_authorize_process(l->l_cred, 851 KAUTH_PROCESS_CORENAME, p, 852 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 853 if (error) { 854 goto done; 855 } 856 lim = p->p_limit; 857 mutex_enter(&lim->pl_lock); 858 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN); 859 mutex_exit(&lim->pl_lock); 860 } 861 862 node = *rnode; 863 node.sysctl_data = cnbuf; 864 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 865 866 /* Return if error, or if caller is only getting the core name. */ 867 if (error || newp == NULL) { 868 goto done; 869 } 870 871 /* 872 * Set case. Check permission and then validate new core name. 873 * It must be either "core", "/core", or end in ".core". 874 */ 875 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 876 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL); 877 if (error) { 878 goto done; 879 } 880 len = strlen(cnbuf); 881 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) || 882 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) { 883 error = EINVAL; 884 goto done; 885 } 886 887 /* Allocate, copy and set the new core name for plimit structure. */ 888 cname = kmem_alloc(++len, KM_NOSLEEP); 889 if (cname == NULL) { 890 error = ENOMEM; 891 goto done; 892 } 893 memcpy(cname, cnbuf, len); 894 lim_setcorename(p, cname, len); 895 done: 896 rw_exit(&p->p_reflock); 897 PNBUF_PUT(cnbuf); 898 return error; 899 } 900 901 /* 902 * sysctl_proc_stop: helper routine for checking/setting the stop flags. 903 */ 904 static int 905 sysctl_proc_stop(SYSCTLFN_ARGS) 906 { 907 struct proc *p; 908 int isset, flag, error = 0; 909 struct sysctlnode node; 910 911 if (namelen != 0) 912 return EINVAL; 913 914 /* Find the process. Hold a reference (p_reflock), if found. */ 915 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 916 if (error) 917 return error; 918 919 /* XXX-elad */ 920 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 921 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 922 if (error) { 923 goto out; 924 } 925 926 /* Determine the flag. */ 927 switch (rnode->sysctl_num) { 928 case PROC_PID_STOPFORK: 929 flag = PS_STOPFORK; 930 break; 931 case PROC_PID_STOPEXEC: 932 flag = PS_STOPEXEC; 933 break; 934 case PROC_PID_STOPEXIT: 935 flag = PS_STOPEXIT; 936 break; 937 default: 938 error = EINVAL; 939 goto out; 940 } 941 isset = (p->p_flag & flag) ? 1 : 0; 942 node = *rnode; 943 node.sysctl_data = &isset; 944 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 945 946 /* Return if error, or if callers is only getting the flag. */ 947 if (error || newp == NULL) { 948 goto out; 949 } 950 951 /* Check if caller can set the flags. */ 952 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 953 p, KAUTH_ARG(flag), NULL, NULL); 954 if (error) { 955 goto out; 956 } 957 mutex_enter(p->p_lock); 958 if (isset) { 959 p->p_sflag |= flag; 960 } else { 961 p->p_sflag &= ~flag; 962 } 963 mutex_exit(p->p_lock); 964 out: 965 rw_exit(&p->p_reflock); 966 return error; 967 } 968 969 /* 970 * sysctl_proc_plimit: helper routine to get/set rlimits of a process. 971 */ 972 static int 973 sysctl_proc_plimit(SYSCTLFN_ARGS) 974 { 975 struct proc *p; 976 u_int limitno; 977 int which, error = 0; 978 struct rlimit alim; 979 struct sysctlnode node; 980 981 if (namelen != 0) 982 return EINVAL; 983 984 which = name[-1]; 985 if (which != PROC_PID_LIMIT_TYPE_SOFT && 986 which != PROC_PID_LIMIT_TYPE_HARD) 987 return EINVAL; 988 989 limitno = name[-2] - 1; 990 if (limitno >= RLIM_NLIMITS) 991 return EINVAL; 992 993 if (name[-3] != PROC_PID_LIMIT) 994 return EINVAL; 995 996 /* Find the process. Hold a reference (p_reflock), if found. */ 997 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p); 998 if (error) 999 return error; 1000 1001 /* XXX-elad */ 1002 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 1003 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1004 if (error) 1005 goto out; 1006 1007 /* Check if caller can retrieve the limits. */ 1008 if (newp == NULL) { 1009 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 1010 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 1011 KAUTH_ARG(which)); 1012 if (error) 1013 goto out; 1014 } 1015 1016 /* Retrieve the limits. */ 1017 node = *rnode; 1018 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim)); 1019 if (which == PROC_PID_LIMIT_TYPE_HARD) { 1020 node.sysctl_data = &alim.rlim_max; 1021 } else { 1022 node.sysctl_data = &alim.rlim_cur; 1023 } 1024 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1025 1026 /* Return if error, or if we are only retrieving the limits. */ 1027 if (error || newp == NULL) { 1028 goto out; 1029 } 1030 error = dosetrlimit(l, p, limitno, &alim); 1031 out: 1032 rw_exit(&p->p_reflock); 1033 return error; 1034 } 1035 1036 /* 1037 * Setup sysctl nodes. 1038 */ 1039 static void 1040 sysctl_proc_setup(void) 1041 { 1042 1043 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1044 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 1045 CTLTYPE_NODE, "curproc", 1046 SYSCTL_DESCR("Per-process settings"), 1047 NULL, 0, NULL, 0, 1048 CTL_PROC, PROC_CURPROC, CTL_EOL); 1049 1050 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1051 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1052 CTLTYPE_STRING, "corename", 1053 SYSCTL_DESCR("Core file name"), 1054 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 1055 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 1056 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1057 CTLFLAG_PERMANENT, 1058 CTLTYPE_NODE, "rlimit", 1059 SYSCTL_DESCR("Process limits"), 1060 NULL, 0, NULL, 0, 1061 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 1062 1063 #define create_proc_plimit(s, n) do { \ 1064 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1065 CTLFLAG_PERMANENT, \ 1066 CTLTYPE_NODE, s, \ 1067 SYSCTL_DESCR("Process " s " limits"), \ 1068 NULL, 0, NULL, 0, \ 1069 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1070 CTL_EOL); \ 1071 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1072 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1073 CTLTYPE_QUAD, "soft", \ 1074 SYSCTL_DESCR("Process soft " s " limit"), \ 1075 sysctl_proc_plimit, 0, NULL, 0, \ 1076 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1077 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 1078 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1079 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1080 CTLTYPE_QUAD, "hard", \ 1081 SYSCTL_DESCR("Process hard " s " limit"), \ 1082 sysctl_proc_plimit, 0, NULL, 0, \ 1083 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1084 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 1085 } while (0/*CONSTCOND*/) 1086 1087 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 1088 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 1089 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1090 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1091 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1092 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1093 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1094 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1095 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1096 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1097 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1098 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR); 1099 1100 #undef create_proc_plimit 1101 1102 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1103 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1104 CTLTYPE_INT, "stopfork", 1105 SYSCTL_DESCR("Stop process at fork(2)"), 1106 sysctl_proc_stop, 0, NULL, 0, 1107 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1108 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1109 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1110 CTLTYPE_INT, "stopexec", 1111 SYSCTL_DESCR("Stop process at execve(2)"), 1112 sysctl_proc_stop, 0, NULL, 0, 1113 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1114 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1115 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1116 CTLTYPE_INT, "stopexit", 1117 SYSCTL_DESCR("Stop process before completing exit"), 1118 sysctl_proc_stop, 0, NULL, 0, 1119 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1120 } 1121