1 /* $NetBSD: kern_resource.c,v 1.151 2009/03/29 01:02:50 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.151 2009/03/29 01:02:50 mrg Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/malloc.h> 48 #include <sys/kmem.h> 49 #include <sys/namei.h> 50 #include <sys/pool.h> 51 #include <sys/proc.h> 52 #include <sys/sysctl.h> 53 #include <sys/timevar.h> 54 #include <sys/kauth.h> 55 #include <sys/atomic.h> 56 #include <sys/mount.h> 57 #include <sys/syscallargs.h> 58 #include <sys/atomic.h> 59 60 #include <uvm/uvm_extern.h> 61 62 /* 63 * Maximum process data and stack limits. 64 * They are variables so they are patchable. 65 */ 66 rlim_t maxdmap = MAXDSIZ; 67 rlim_t maxsmap = MAXSSIZ; 68 69 static pool_cache_t plimit_cache; 70 static pool_cache_t pstats_cache; 71 72 void 73 resource_init(void) 74 { 75 76 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 77 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 78 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 79 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 80 } 81 82 /* 83 * Resource controls and accounting. 84 */ 85 86 int 87 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 88 register_t *retval) 89 { 90 /* { 91 syscallarg(int) which; 92 syscallarg(id_t) who; 93 } */ 94 struct proc *curp = l->l_proc, *p; 95 int low = NZERO + PRIO_MAX + 1; 96 int who = SCARG(uap, who); 97 98 mutex_enter(proc_lock); 99 switch (SCARG(uap, which)) { 100 case PRIO_PROCESS: 101 if (who == 0) 102 p = curp; 103 else 104 p = p_find(who, PFIND_LOCKED); 105 if (p != NULL) 106 low = p->p_nice; 107 break; 108 109 case PRIO_PGRP: { 110 struct pgrp *pg; 111 112 if (who == 0) 113 pg = curp->p_pgrp; 114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 115 break; 116 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 117 if (p->p_nice < low) 118 low = p->p_nice; 119 } 120 break; 121 } 122 123 case PRIO_USER: 124 if (who == 0) 125 who = (int)kauth_cred_geteuid(l->l_cred); 126 PROCLIST_FOREACH(p, &allproc) { 127 if ((p->p_flag & PK_MARKER) != 0) 128 continue; 129 mutex_enter(p->p_lock); 130 if (kauth_cred_geteuid(p->p_cred) == 131 (uid_t)who && p->p_nice < low) 132 low = p->p_nice; 133 mutex_exit(p->p_lock); 134 } 135 break; 136 137 default: 138 mutex_exit(proc_lock); 139 return (EINVAL); 140 } 141 mutex_exit(proc_lock); 142 143 if (low == NZERO + PRIO_MAX + 1) 144 return (ESRCH); 145 *retval = low - NZERO; 146 return (0); 147 } 148 149 /* ARGSUSED */ 150 int 151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 152 register_t *retval) 153 { 154 /* { 155 syscallarg(int) which; 156 syscallarg(id_t) who; 157 syscallarg(int) prio; 158 } */ 159 struct proc *curp = l->l_proc, *p; 160 int found = 0, error = 0; 161 int who = SCARG(uap, who); 162 163 mutex_enter(proc_lock); 164 switch (SCARG(uap, which)) { 165 case PRIO_PROCESS: 166 if (who == 0) 167 p = curp; 168 else 169 p = p_find(who, PFIND_LOCKED); 170 if (p != 0) { 171 mutex_enter(p->p_lock); 172 error = donice(l, p, SCARG(uap, prio)); 173 mutex_exit(p->p_lock); 174 found++; 175 } 176 break; 177 178 case PRIO_PGRP: { 179 struct pgrp *pg; 180 181 if (who == 0) 182 pg = curp->p_pgrp; 183 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 184 break; 185 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 186 mutex_enter(p->p_lock); 187 error = donice(l, p, SCARG(uap, prio)); 188 mutex_exit(p->p_lock); 189 found++; 190 } 191 break; 192 } 193 194 case PRIO_USER: 195 if (who == 0) 196 who = (int)kauth_cred_geteuid(l->l_cred); 197 PROCLIST_FOREACH(p, &allproc) { 198 if ((p->p_flag & PK_MARKER) != 0) 199 continue; 200 mutex_enter(p->p_lock); 201 if (kauth_cred_geteuid(p->p_cred) == 202 (uid_t)SCARG(uap, who)) { 203 error = donice(l, p, SCARG(uap, prio)); 204 found++; 205 } 206 mutex_exit(p->p_lock); 207 } 208 break; 209 210 default: 211 mutex_exit(proc_lock); 212 return EINVAL; 213 } 214 mutex_exit(proc_lock); 215 if (found == 0) 216 return (ESRCH); 217 return (error); 218 } 219 220 /* 221 * Renice a process. 222 * 223 * Call with the target process' credentials locked. 224 */ 225 int 226 donice(struct lwp *l, struct proc *chgp, int n) 227 { 228 kauth_cred_t cred = l->l_cred; 229 230 KASSERT(mutex_owned(chgp->p_lock)); 231 232 if (n > PRIO_MAX) 233 n = PRIO_MAX; 234 if (n < PRIO_MIN) 235 n = PRIO_MIN; 236 n += NZERO; 237 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 238 KAUTH_ARG(n), NULL, NULL)) 239 return (EACCES); 240 sched_nice(chgp, n); 241 return (0); 242 } 243 244 /* ARGSUSED */ 245 int 246 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 247 register_t *retval) 248 { 249 /* { 250 syscallarg(int) which; 251 syscallarg(const struct rlimit *) rlp; 252 } */ 253 int which = SCARG(uap, which); 254 struct rlimit alim; 255 int error; 256 257 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 258 if (error) 259 return (error); 260 return (dosetrlimit(l, l->l_proc, which, &alim)); 261 } 262 263 int 264 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 265 { 266 struct rlimit *alimp; 267 int error; 268 269 if ((u_int)which >= RLIM_NLIMITS) 270 return (EINVAL); 271 272 if (limp->rlim_cur > limp->rlim_max) { 273 /* 274 * This is programming error. According to SUSv2, we should 275 * return error in this case. 276 */ 277 return (EINVAL); 278 } 279 280 alimp = &p->p_rlimit[which]; 281 /* if we don't change the value, no need to limcopy() */ 282 if (limp->rlim_cur == alimp->rlim_cur && 283 limp->rlim_max == alimp->rlim_max) 284 return 0; 285 286 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 287 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 288 if (error) 289 return (error); 290 291 lim_privatise(p, false); 292 /* p->p_limit is now unchangeable */ 293 alimp = &p->p_rlimit[which]; 294 295 switch (which) { 296 297 case RLIMIT_DATA: 298 if (limp->rlim_cur > maxdmap) 299 limp->rlim_cur = maxdmap; 300 if (limp->rlim_max > maxdmap) 301 limp->rlim_max = maxdmap; 302 break; 303 304 case RLIMIT_STACK: 305 if (limp->rlim_cur > maxsmap) 306 limp->rlim_cur = maxsmap; 307 if (limp->rlim_max > maxsmap) 308 limp->rlim_max = maxsmap; 309 310 /* 311 * Return EINVAL if the new stack size limit is lower than 312 * current usage. Otherwise, the process would get SIGSEGV the 313 * moment it would try to access anything on it's current stack. 314 * This conforms to SUSv2. 315 */ 316 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE 317 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 318 return (EINVAL); 319 } 320 321 /* 322 * Stack is allocated to the max at exec time with 323 * only "rlim_cur" bytes accessible (In other words, 324 * allocates stack dividing two contiguous regions at 325 * "rlim_cur" bytes boundary). 326 * 327 * Since allocation is done in terms of page, roundup 328 * "rlim_cur" (otherwise, contiguous regions 329 * overlap). If stack limit is going up make more 330 * accessible, if going down make inaccessible. 331 */ 332 limp->rlim_cur = round_page(limp->rlim_cur); 333 if (limp->rlim_cur != alimp->rlim_cur) { 334 vaddr_t addr; 335 vsize_t size; 336 vm_prot_t prot; 337 338 if (limp->rlim_cur > alimp->rlim_cur) { 339 prot = VM_PROT_READ | VM_PROT_WRITE; 340 size = limp->rlim_cur - alimp->rlim_cur; 341 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 342 limp->rlim_cur; 343 } else { 344 prot = VM_PROT_NONE; 345 size = alimp->rlim_cur - limp->rlim_cur; 346 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 347 alimp->rlim_cur; 348 } 349 (void) uvm_map_protect(&p->p_vmspace->vm_map, 350 addr, addr+size, prot, false); 351 } 352 break; 353 354 case RLIMIT_NOFILE: 355 if (limp->rlim_cur > maxfiles) 356 limp->rlim_cur = maxfiles; 357 if (limp->rlim_max > maxfiles) 358 limp->rlim_max = maxfiles; 359 break; 360 361 case RLIMIT_NPROC: 362 if (limp->rlim_cur > maxproc) 363 limp->rlim_cur = maxproc; 364 if (limp->rlim_max > maxproc) 365 limp->rlim_max = maxproc; 366 break; 367 } 368 369 mutex_enter(&p->p_limit->pl_lock); 370 *alimp = *limp; 371 mutex_exit(&p->p_limit->pl_lock); 372 return (0); 373 } 374 375 /* ARGSUSED */ 376 int 377 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 378 register_t *retval) 379 { 380 /* { 381 syscallarg(int) which; 382 syscallarg(struct rlimit *) rlp; 383 } */ 384 struct proc *p = l->l_proc; 385 int which = SCARG(uap, which); 386 struct rlimit rl; 387 388 if ((u_int)which >= RLIM_NLIMITS) 389 return (EINVAL); 390 391 mutex_enter(p->p_lock); 392 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 393 mutex_exit(p->p_lock); 394 395 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 396 } 397 398 /* 399 * Transform the running time and tick information in proc p into user, 400 * system, and interrupt time usage. 401 * 402 * Should be called with p->p_lock held unless called from exit1(). 403 */ 404 void 405 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 406 struct timeval *ip, struct timeval *rp) 407 { 408 uint64_t u, st, ut, it, tot; 409 struct lwp *l; 410 struct bintime tm; 411 struct timeval tv; 412 413 mutex_spin_enter(&p->p_stmutex); 414 st = p->p_sticks; 415 ut = p->p_uticks; 416 it = p->p_iticks; 417 mutex_spin_exit(&p->p_stmutex); 418 419 tm = p->p_rtime; 420 421 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 422 lwp_lock(l); 423 bintime_add(&tm, &l->l_rtime); 424 if ((l->l_pflag & LP_RUNNING) != 0) { 425 struct bintime diff; 426 /* 427 * Adjust for the current time slice. This is 428 * actually fairly important since the error 429 * here is on the order of a time quantum, 430 * which is much greater than the sampling 431 * error. 432 */ 433 binuptime(&diff); 434 bintime_sub(&diff, &l->l_stime); 435 bintime_add(&tm, &diff); 436 } 437 lwp_unlock(l); 438 } 439 440 tot = st + ut + it; 441 bintime2timeval(&tm, &tv); 442 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 443 444 if (tot == 0) { 445 /* No ticks, so can't use to share time out, split 50-50 */ 446 st = ut = u / 2; 447 } else { 448 st = (u * st) / tot; 449 ut = (u * ut) / tot; 450 } 451 if (sp != NULL) { 452 sp->tv_sec = st / 1000000; 453 sp->tv_usec = st % 1000000; 454 } 455 if (up != NULL) { 456 up->tv_sec = ut / 1000000; 457 up->tv_usec = ut % 1000000; 458 } 459 if (ip != NULL) { 460 if (it != 0) 461 it = (u * it) / tot; 462 ip->tv_sec = it / 1000000; 463 ip->tv_usec = it % 1000000; 464 } 465 if (rp != NULL) { 466 *rp = tv; 467 } 468 } 469 470 /* ARGSUSED */ 471 int 472 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 473 register_t *retval) 474 { 475 /* { 476 syscallarg(int) who; 477 syscallarg(struct rusage *) rusage; 478 } */ 479 struct rusage ru; 480 struct proc *p = l->l_proc; 481 482 switch (SCARG(uap, who)) { 483 case RUSAGE_SELF: 484 mutex_enter(p->p_lock); 485 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 486 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 487 rulwps(p, &ru); 488 mutex_exit(p->p_lock); 489 break; 490 491 case RUSAGE_CHILDREN: 492 mutex_enter(p->p_lock); 493 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru)); 494 mutex_exit(p->p_lock); 495 break; 496 497 default: 498 return EINVAL; 499 } 500 501 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 502 } 503 504 void 505 ruadd(struct rusage *ru, struct rusage *ru2) 506 { 507 long *ip, *ip2; 508 int i; 509 510 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 511 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 512 if (ru->ru_maxrss < ru2->ru_maxrss) 513 ru->ru_maxrss = ru2->ru_maxrss; 514 ip = &ru->ru_first; ip2 = &ru2->ru_first; 515 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 516 *ip++ += *ip2++; 517 } 518 519 void 520 rulwps(proc_t *p, struct rusage *ru) 521 { 522 lwp_t *l; 523 524 KASSERT(mutex_owned(p->p_lock)); 525 526 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 527 ruadd(ru, &l->l_ru); 528 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 529 ru->ru_nivcsw += l->l_nivcsw; 530 } 531 } 532 533 /* 534 * Make a copy of the plimit structure. 535 * We share these structures copy-on-write after fork, 536 * and copy when a limit is changed. 537 * 538 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure 539 * we are copying to change beneath our feet! 540 */ 541 struct plimit * 542 lim_copy(struct plimit *lim) 543 { 544 struct plimit *newlim; 545 char *corename; 546 size_t alen, len; 547 548 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 549 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 550 newlim->pl_flags = 0; 551 newlim->pl_refcnt = 1; 552 newlim->pl_sv_limit = NULL; 553 554 mutex_enter(&lim->pl_lock); 555 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 556 sizeof(struct rlimit) * RLIM_NLIMITS); 557 558 alen = 0; 559 corename = NULL; 560 for (;;) { 561 if (lim->pl_corename == defcorename) { 562 newlim->pl_corename = defcorename; 563 break; 564 } 565 len = strlen(lim->pl_corename) + 1; 566 if (len <= alen) { 567 newlim->pl_corename = corename; 568 memcpy(corename, lim->pl_corename, len); 569 corename = NULL; 570 break; 571 } 572 mutex_exit(&lim->pl_lock); 573 if (corename != NULL) 574 free(corename, M_TEMP); 575 alen = len; 576 corename = malloc(alen, M_TEMP, M_WAITOK); 577 mutex_enter(&lim->pl_lock); 578 } 579 mutex_exit(&lim->pl_lock); 580 if (corename != NULL) 581 free(corename, M_TEMP); 582 return newlim; 583 } 584 585 void 586 lim_addref(struct plimit *lim) 587 { 588 atomic_inc_uint(&lim->pl_refcnt); 589 } 590 591 /* 592 * Give a process it's own private plimit structure. 593 * This will only be shared (in fork) if modifications are to be shared. 594 */ 595 void 596 lim_privatise(struct proc *p, bool set_shared) 597 { 598 struct plimit *lim, *newlim; 599 600 lim = p->p_limit; 601 if (lim->pl_flags & PL_WRITEABLE) { 602 if (set_shared) 603 lim->pl_flags |= PL_SHAREMOD; 604 return; 605 } 606 607 if (set_shared && lim->pl_flags & PL_SHAREMOD) 608 return; 609 610 newlim = lim_copy(lim); 611 612 mutex_enter(p->p_lock); 613 if (p->p_limit->pl_flags & PL_WRITEABLE) { 614 /* Someone crept in while we were busy */ 615 mutex_exit(p->p_lock); 616 limfree(newlim); 617 if (set_shared) 618 p->p_limit->pl_flags |= PL_SHAREMOD; 619 return; 620 } 621 622 /* 623 * Since most accesses to p->p_limit aren't locked, we must not 624 * delete the old limit structure yet. 625 */ 626 newlim->pl_sv_limit = p->p_limit; 627 newlim->pl_flags |= PL_WRITEABLE; 628 if (set_shared) 629 newlim->pl_flags |= PL_SHAREMOD; 630 p->p_limit = newlim; 631 mutex_exit(p->p_lock); 632 } 633 634 void 635 limfree(struct plimit *lim) 636 { 637 struct plimit *sv_lim; 638 639 do { 640 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) 641 return; 642 if (lim->pl_corename != defcorename) 643 free(lim->pl_corename, M_TEMP); 644 sv_lim = lim->pl_sv_limit; 645 mutex_destroy(&lim->pl_lock); 646 pool_cache_put(plimit_cache, lim); 647 } while ((lim = sv_lim) != NULL); 648 } 649 650 struct pstats * 651 pstatscopy(struct pstats *ps) 652 { 653 654 struct pstats *newps; 655 656 newps = pool_cache_get(pstats_cache, PR_WAITOK); 657 658 memset(&newps->pstat_startzero, 0, 659 (unsigned) ((char *)&newps->pstat_endzero - 660 (char *)&newps->pstat_startzero)); 661 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy, 662 ((char *)&newps->pstat_endcopy - 663 (char *)&newps->pstat_startcopy)); 664 665 return (newps); 666 667 } 668 669 void 670 pstatsfree(struct pstats *ps) 671 { 672 673 pool_cache_put(pstats_cache, ps); 674 } 675 676 /* 677 * sysctl interface in five parts 678 */ 679 680 /* 681 * a routine for sysctl proc subtree helpers that need to pick a valid 682 * process by pid. 683 */ 684 static int 685 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid) 686 { 687 struct proc *ptmp; 688 int error = 0; 689 690 if (pid == PROC_CURPROC) 691 ptmp = l->l_proc; 692 else if ((ptmp = pfind(pid)) == NULL) 693 error = ESRCH; 694 695 *p2 = ptmp; 696 return (error); 697 } 698 699 /* 700 * sysctl helper routine for setting a process's specific corefile 701 * name. picks the process based on the given pid and checks the 702 * correctness of the new value. 703 */ 704 static int 705 sysctl_proc_corename(SYSCTLFN_ARGS) 706 { 707 struct proc *ptmp; 708 struct plimit *lim; 709 int error = 0, len; 710 char *cname; 711 char *ocore; 712 char *tmp; 713 struct sysctlnode node; 714 715 /* 716 * is this all correct? 717 */ 718 if (namelen != 0) 719 return (EINVAL); 720 if (name[-1] != PROC_PID_CORENAME) 721 return (EINVAL); 722 723 /* 724 * whom are we tweaking? 725 */ 726 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 727 if (error) 728 return (error); 729 730 /* XXX-elad */ 731 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 732 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 733 if (error) 734 return (error); 735 736 if (newp == NULL) { 737 error = kauth_authorize_process(l->l_cred, 738 KAUTH_PROCESS_CORENAME, ptmp, 739 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 740 if (error) 741 return (error); 742 } 743 744 /* 745 * let them modify a temporary copy of the core name 746 */ 747 cname = PNBUF_GET(); 748 lim = ptmp->p_limit; 749 mutex_enter(&lim->pl_lock); 750 strlcpy(cname, lim->pl_corename, MAXPATHLEN); 751 mutex_exit(&lim->pl_lock); 752 753 node = *rnode; 754 node.sysctl_data = cname; 755 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 756 757 /* 758 * if that failed, or they have nothing new to say, or we've 759 * heard it before... 760 */ 761 if (error || newp == NULL) 762 goto done; 763 lim = ptmp->p_limit; 764 mutex_enter(&lim->pl_lock); 765 error = strcmp(cname, lim->pl_corename); 766 mutex_exit(&lim->pl_lock); 767 if (error == 0) 768 /* Unchanged */ 769 goto done; 770 771 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 772 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL); 773 if (error) 774 return (error); 775 776 /* 777 * no error yet and cname now has the new core name in it. 778 * let's see if it looks acceptable. it must be either "core" 779 * or end in ".core" or "/core". 780 */ 781 len = strlen(cname); 782 if (len < 4) { 783 error = EINVAL; 784 } else if (strcmp(cname + len - 4, "core") != 0) { 785 error = EINVAL; 786 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') { 787 error = EINVAL; 788 } 789 if (error != 0) { 790 goto done; 791 } 792 793 /* 794 * hmm...looks good. now...where do we put it? 795 */ 796 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL); 797 if (tmp == NULL) { 798 error = ENOMEM; 799 goto done; 800 } 801 memcpy(tmp, cname, len + 1); 802 803 lim_privatise(ptmp, false); 804 lim = ptmp->p_limit; 805 mutex_enter(&lim->pl_lock); 806 ocore = lim->pl_corename; 807 lim->pl_corename = tmp; 808 mutex_exit(&lim->pl_lock); 809 if (ocore != defcorename) 810 free(ocore, M_TEMP); 811 812 done: 813 PNBUF_PUT(cname); 814 return error; 815 } 816 817 /* 818 * sysctl helper routine for checking/setting a process's stop flags, 819 * one for fork and one for exec. 820 */ 821 static int 822 sysctl_proc_stop(SYSCTLFN_ARGS) 823 { 824 struct proc *ptmp; 825 int i, f, error = 0; 826 struct sysctlnode node; 827 828 if (namelen != 0) 829 return (EINVAL); 830 831 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 832 if (error) 833 return (error); 834 835 /* XXX-elad */ 836 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 837 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 838 if (error) 839 return (error); 840 841 switch (rnode->sysctl_num) { 842 case PROC_PID_STOPFORK: 843 f = PS_STOPFORK; 844 break; 845 case PROC_PID_STOPEXEC: 846 f = PS_STOPEXEC; 847 break; 848 case PROC_PID_STOPEXIT: 849 f = PS_STOPEXIT; 850 break; 851 default: 852 return (EINVAL); 853 } 854 855 i = (ptmp->p_flag & f) ? 1 : 0; 856 node = *rnode; 857 node.sysctl_data = &i; 858 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 859 if (error || newp == NULL) 860 return (error); 861 862 mutex_enter(ptmp->p_lock); 863 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 864 ptmp, KAUTH_ARG(f), NULL, NULL); 865 if (!error) { 866 if (i) { 867 ptmp->p_sflag |= f; 868 } else { 869 ptmp->p_sflag &= ~f; 870 } 871 } 872 mutex_exit(ptmp->p_lock); 873 874 return error; 875 } 876 877 /* 878 * sysctl helper routine for a process's rlimits as exposed by sysctl. 879 */ 880 static int 881 sysctl_proc_plimit(SYSCTLFN_ARGS) 882 { 883 struct proc *ptmp; 884 u_int limitno; 885 int which, error = 0; 886 struct rlimit alim; 887 struct sysctlnode node; 888 889 if (namelen != 0) 890 return (EINVAL); 891 892 which = name[-1]; 893 if (which != PROC_PID_LIMIT_TYPE_SOFT && 894 which != PROC_PID_LIMIT_TYPE_HARD) 895 return (EINVAL); 896 897 limitno = name[-2] - 1; 898 if (limitno >= RLIM_NLIMITS) 899 return (EINVAL); 900 901 if (name[-3] != PROC_PID_LIMIT) 902 return (EINVAL); 903 904 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]); 905 if (error) 906 return (error); 907 908 /* XXX-elad */ 909 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 910 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 911 if (error) 912 return (error); 913 914 /* Check if we can view limits. */ 915 if (newp == NULL) { 916 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 917 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 918 KAUTH_ARG(which)); 919 if (error) 920 return (error); 921 } 922 923 node = *rnode; 924 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim)); 925 if (which == PROC_PID_LIMIT_TYPE_HARD) 926 node.sysctl_data = &alim.rlim_max; 927 else 928 node.sysctl_data = &alim.rlim_cur; 929 930 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 931 if (error || newp == NULL) 932 return (error); 933 934 return (dosetrlimit(l, ptmp, limitno, &alim)); 935 } 936 937 /* 938 * and finally, the actually glue that sticks it to the tree 939 */ 940 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup") 941 { 942 943 sysctl_createv(clog, 0, NULL, NULL, 944 CTLFLAG_PERMANENT, 945 CTLTYPE_NODE, "proc", NULL, 946 NULL, 0, NULL, 0, 947 CTL_PROC, CTL_EOL); 948 sysctl_createv(clog, 0, NULL, NULL, 949 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 950 CTLTYPE_NODE, "curproc", 951 SYSCTL_DESCR("Per-process settings"), 952 NULL, 0, NULL, 0, 953 CTL_PROC, PROC_CURPROC, CTL_EOL); 954 955 sysctl_createv(clog, 0, NULL, NULL, 956 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 957 CTLTYPE_STRING, "corename", 958 SYSCTL_DESCR("Core file name"), 959 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 960 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 961 sysctl_createv(clog, 0, NULL, NULL, 962 CTLFLAG_PERMANENT, 963 CTLTYPE_NODE, "rlimit", 964 SYSCTL_DESCR("Process limits"), 965 NULL, 0, NULL, 0, 966 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 967 968 #define create_proc_plimit(s, n) do { \ 969 sysctl_createv(clog, 0, NULL, NULL, \ 970 CTLFLAG_PERMANENT, \ 971 CTLTYPE_NODE, s, \ 972 SYSCTL_DESCR("Process " s " limits"), \ 973 NULL, 0, NULL, 0, \ 974 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 975 CTL_EOL); \ 976 sysctl_createv(clog, 0, NULL, NULL, \ 977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 978 CTLTYPE_QUAD, "soft", \ 979 SYSCTL_DESCR("Process soft " s " limit"), \ 980 sysctl_proc_plimit, 0, NULL, 0, \ 981 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 982 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 983 sysctl_createv(clog, 0, NULL, NULL, \ 984 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 985 CTLTYPE_QUAD, "hard", \ 986 SYSCTL_DESCR("Process hard " s " limit"), \ 987 sysctl_proc_plimit, 0, NULL, 0, \ 988 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 989 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 990 } while (0/*CONSTCOND*/) 991 992 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 993 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 994 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 995 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 996 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 997 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 998 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 999 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1000 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1001 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1002 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1003 1004 #undef create_proc_plimit 1005 1006 sysctl_createv(clog, 0, NULL, NULL, 1007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1008 CTLTYPE_INT, "stopfork", 1009 SYSCTL_DESCR("Stop process at fork(2)"), 1010 sysctl_proc_stop, 0, NULL, 0, 1011 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1012 sysctl_createv(clog, 0, NULL, NULL, 1013 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1014 CTLTYPE_INT, "stopexec", 1015 SYSCTL_DESCR("Stop process at execve(2)"), 1016 sysctl_proc_stop, 0, NULL, 0, 1017 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1018 sysctl_createv(clog, 0, NULL, NULL, 1019 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1020 CTLTYPE_INT, "stopexit", 1021 SYSCTL_DESCR("Stop process before completing exit"), 1022 sysctl_proc_stop, 0, NULL, 0, 1023 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1024 } 1025