xref: /netbsd-src/sys/kern/kern_resource.c (revision a0698ed9d41653d7a2378819ad501a285ca0d401)
1 /*	$NetBSD: kern_resource.c,v 1.181 2018/05/13 14:45:23 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.181 2018/05/13 14:45:23 christos Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Maximum process data and stack limits.
63  * They are variables so they are patchable.
64  */
65 rlim_t			maxdmap = MAXDSIZ;
66 rlim_t			maxsmap = MAXSSIZ;
67 
68 static pool_cache_t	plimit_cache	__read_mostly;
69 static pool_cache_t	pstats_cache	__read_mostly;
70 
71 static kauth_listener_t	resource_listener;
72 static struct sysctllog	*proc_sysctllog;
73 
74 static int	donice(struct lwp *, struct proc *, int);
75 static void	sysctl_proc_setup(void);
76 
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79     void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 	struct proc *p;
82 	int result;
83 
84 	result = KAUTH_RESULT_DEFER;
85 	p = arg0;
86 
87 	switch (action) {
88 	case KAUTH_PROCESS_NICE:
89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 			break;
92 		}
93 
94 		if ((u_long)arg1 >= p->p_nice)
95 			result = KAUTH_RESULT_ALLOW;
96 
97 		break;
98 
99 	case KAUTH_PROCESS_RLIMIT: {
100 		enum kauth_process_req req;
101 
102 		req = (enum kauth_process_req)(unsigned long)arg1;
103 
104 		switch (req) {
105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 			result = KAUTH_RESULT_ALLOW;
107 			break;
108 
109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 			struct rlimit *new_rlimit;
111 			u_long which;
112 
113 			if ((p != curlwp->l_proc) &&
114 			    (proc_uidmatch(cred, p->p_cred) != 0))
115 				break;
116 
117 			new_rlimit = arg2;
118 			which = (u_long)arg3;
119 
120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 				result = KAUTH_RESULT_ALLOW;
122 
123 			break;
124 			}
125 
126 		default:
127 			break;
128 		}
129 
130 		break;
131 	}
132 
133 	default:
134 		break;
135 	}
136 
137 	return result;
138 }
139 
140 void
141 resource_init(void)
142 {
143 
144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148 
149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 	    resource_listener_cb, NULL);
151 
152 	sysctl_proc_setup();
153 }
154 
155 /*
156  * Resource controls and accounting.
157  */
158 
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161     register_t *retval)
162 {
163 	/* {
164 		syscallarg(int) which;
165 		syscallarg(id_t) who;
166 	} */
167 	struct proc *curp = l->l_proc, *p;
168 	id_t who = SCARG(uap, who);
169 	int low = NZERO + PRIO_MAX + 1;
170 
171 	mutex_enter(proc_lock);
172 	switch (SCARG(uap, which)) {
173 	case PRIO_PROCESS:
174 		p = who ? proc_find(who) : curp;
175 		if (p != NULL)
176 			low = p->p_nice;
177 		break;
178 
179 	case PRIO_PGRP: {
180 		struct pgrp *pg;
181 
182 		if (who == 0)
183 			pg = curp->p_pgrp;
184 		else if ((pg = pgrp_find(who)) == NULL)
185 			break;
186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 			if (p->p_nice < low)
188 				low = p->p_nice;
189 		}
190 		break;
191 	}
192 
193 	case PRIO_USER:
194 		if (who == 0)
195 			who = (int)kauth_cred_geteuid(l->l_cred);
196 		PROCLIST_FOREACH(p, &allproc) {
197 			mutex_enter(p->p_lock);
198 			if (kauth_cred_geteuid(p->p_cred) ==
199 			    (uid_t)who && p->p_nice < low)
200 				low = p->p_nice;
201 			mutex_exit(p->p_lock);
202 		}
203 		break;
204 
205 	default:
206 		mutex_exit(proc_lock);
207 		return EINVAL;
208 	}
209 	mutex_exit(proc_lock);
210 
211 	if (low == NZERO + PRIO_MAX + 1) {
212 		return ESRCH;
213 	}
214 	*retval = low - NZERO;
215 	return 0;
216 }
217 
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220     register_t *retval)
221 {
222 	/* {
223 		syscallarg(int) which;
224 		syscallarg(id_t) who;
225 		syscallarg(int) prio;
226 	} */
227 	struct proc *curp = l->l_proc, *p;
228 	id_t who = SCARG(uap, who);
229 	int found = 0, error = 0;
230 
231 	mutex_enter(proc_lock);
232 	switch (SCARG(uap, which)) {
233 	case PRIO_PROCESS:
234 		p = who ? proc_find(who) : curp;
235 		if (p != NULL) {
236 			mutex_enter(p->p_lock);
237 			found++;
238 			error = donice(l, p, SCARG(uap, prio));
239 			mutex_exit(p->p_lock);
240 		}
241 		break;
242 
243 	case PRIO_PGRP: {
244 		struct pgrp *pg;
245 
246 		if (who == 0)
247 			pg = curp->p_pgrp;
248 		else if ((pg = pgrp_find(who)) == NULL)
249 			break;
250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 			mutex_enter(p->p_lock);
252 			found++;
253 			error = donice(l, p, SCARG(uap, prio));
254 			mutex_exit(p->p_lock);
255 			if (error)
256 				break;
257 		}
258 		break;
259 	}
260 
261 	case PRIO_USER:
262 		if (who == 0)
263 			who = (int)kauth_cred_geteuid(l->l_cred);
264 		PROCLIST_FOREACH(p, &allproc) {
265 			mutex_enter(p->p_lock);
266 			if (kauth_cred_geteuid(p->p_cred) ==
267 			    (uid_t)SCARG(uap, who)) {
268 				found++;
269 				error = donice(l, p, SCARG(uap, prio));
270 			}
271 			mutex_exit(p->p_lock);
272 			if (error)
273 				break;
274 		}
275 		break;
276 
277 	default:
278 		mutex_exit(proc_lock);
279 		return EINVAL;
280 	}
281 	mutex_exit(proc_lock);
282 
283 	return (found == 0) ? ESRCH : error;
284 }
285 
286 /*
287  * Renice a process.
288  *
289  * Call with the target process' credentials locked.
290  */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 	kauth_cred_t cred = l->l_cred;
295 
296 	KASSERT(mutex_owned(chgp->p_lock));
297 
298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 		return EPERM;
302 
303 	if (n > PRIO_MAX) {
304 		n = PRIO_MAX;
305 	}
306 	if (n < PRIO_MIN) {
307 		n = PRIO_MIN;
308 	}
309 	n += NZERO;
310 
311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 	    KAUTH_ARG(n), NULL, NULL)) {
313 		return EACCES;
314 	}
315 
316 	sched_nice(chgp, n);
317 	return 0;
318 }
319 
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322     register_t *retval)
323 {
324 	/* {
325 		syscallarg(int) which;
326 		syscallarg(const struct rlimit *) rlp;
327 	} */
328 	int error, which = SCARG(uap, which);
329 	struct rlimit alim;
330 
331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 	if (error) {
333 		return error;
334 	}
335 	return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337 
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 	struct rlimit *alimp;
342 	int error;
343 
344 	if ((u_int)which >= RLIM_NLIMITS)
345 		return EINVAL;
346 
347 	if (limp->rlim_cur > limp->rlim_max) {
348 		/*
349 		 * This is programming error. According to SUSv2, we should
350 		 * return error in this case.
351 		 */
352 		return EINVAL;
353 	}
354 
355 	alimp = &p->p_rlimit[which];
356 	/* if we don't change the value, no need to limcopy() */
357 	if (limp->rlim_cur == alimp->rlim_cur &&
358 	    limp->rlim_max == alimp->rlim_max)
359 		return 0;
360 
361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 	if (error)
364 		return error;
365 
366 	lim_privatise(p);
367 	/* p->p_limit is now unchangeable */
368 	alimp = &p->p_rlimit[which];
369 
370 	switch (which) {
371 
372 	case RLIMIT_DATA:
373 		if (limp->rlim_cur > maxdmap)
374 			limp->rlim_cur = maxdmap;
375 		if (limp->rlim_max > maxdmap)
376 			limp->rlim_max = maxdmap;
377 		break;
378 
379 	case RLIMIT_STACK:
380 		if (limp->rlim_cur > maxsmap)
381 			limp->rlim_cur = maxsmap;
382 		if (limp->rlim_max > maxsmap)
383 			limp->rlim_max = maxsmap;
384 
385 		/*
386 		 * Return EINVAL if the new stack size limit is lower than
387 		 * current usage. Otherwise, the process would get SIGSEGV the
388 		 * moment it would try to access anything on its current stack.
389 		 * This conforms to SUSv2.
390 		 */
391 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
392 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
393 			return EINVAL;
394 		}
395 
396 		/*
397 		 * Stack is allocated to the max at exec time with
398 		 * only "rlim_cur" bytes accessible (In other words,
399 		 * allocates stack dividing two contiguous regions at
400 		 * "rlim_cur" bytes boundary).
401 		 *
402 		 * Since allocation is done in terms of page, roundup
403 		 * "rlim_cur" (otherwise, contiguous regions
404 		 * overlap).  If stack limit is going up make more
405 		 * accessible, if going down make inaccessible.
406 		 */
407 		limp->rlim_max = round_page(limp->rlim_max);
408 		limp->rlim_cur = round_page(limp->rlim_cur);
409 		if (limp->rlim_cur != alimp->rlim_cur) {
410 			vaddr_t addr;
411 			vsize_t size;
412 			vm_prot_t prot;
413 			char *base, *tmp;
414 
415 			base = p->p_vmspace->vm_minsaddr;
416 			if (limp->rlim_cur > alimp->rlim_cur) {
417 				prot = VM_PROT_READ | VM_PROT_WRITE;
418 				size = limp->rlim_cur - alimp->rlim_cur;
419 				tmp = STACK_GROW(base, alimp->rlim_cur);
420 			} else {
421 				prot = VM_PROT_NONE;
422 				size = alimp->rlim_cur - limp->rlim_cur;
423 				tmp = STACK_GROW(base, limp->rlim_cur);
424 			}
425 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
427 			    addr, addr + size, prot, false);
428 		}
429 		break;
430 
431 	case RLIMIT_NOFILE:
432 		if (limp->rlim_cur > maxfiles)
433 			limp->rlim_cur = maxfiles;
434 		if (limp->rlim_max > maxfiles)
435 			limp->rlim_max = maxfiles;
436 		break;
437 
438 	case RLIMIT_NPROC:
439 		if (limp->rlim_cur > maxproc)
440 			limp->rlim_cur = maxproc;
441 		if (limp->rlim_max > maxproc)
442 			limp->rlim_max = maxproc;
443 		break;
444 
445 	case RLIMIT_NTHR:
446 		if (limp->rlim_cur > maxlwp)
447 			limp->rlim_cur = maxlwp;
448 		if (limp->rlim_max > maxlwp)
449 			limp->rlim_max = maxlwp;
450 		break;
451 	}
452 
453 	mutex_enter(&p->p_limit->pl_lock);
454 	*alimp = *limp;
455 	mutex_exit(&p->p_limit->pl_lock);
456 	return 0;
457 }
458 
459 int
460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461     register_t *retval)
462 {
463 	/* {
464 		syscallarg(int) which;
465 		syscallarg(struct rlimit *) rlp;
466 	} */
467 	struct proc *p = l->l_proc;
468 	int which = SCARG(uap, which);
469 	struct rlimit rl;
470 
471 	if ((u_int)which >= RLIM_NLIMITS)
472 		return EINVAL;
473 
474 	mutex_enter(p->p_lock);
475 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 	mutex_exit(p->p_lock);
477 
478 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 }
480 
481 /*
482  * Transform the running time and tick information in proc p into user,
483  * system, and interrupt time usage.
484  *
485  * Should be called with p->p_lock held unless called from exit1().
486  */
487 void
488 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
489     struct timeval *ip, struct timeval *rp)
490 {
491 	uint64_t u, st, ut, it, tot;
492 	struct lwp *l;
493 	struct bintime tm;
494 	struct timeval tv;
495 
496 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
497 
498 	mutex_spin_enter(&p->p_stmutex);
499 	st = p->p_sticks;
500 	ut = p->p_uticks;
501 	it = p->p_iticks;
502 	mutex_spin_exit(&p->p_stmutex);
503 
504 	tm = p->p_rtime;
505 
506 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
507 		lwp_lock(l);
508 		bintime_add(&tm, &l->l_rtime);
509 		if ((l->l_pflag & LP_RUNNING) != 0) {
510 			struct bintime diff;
511 			/*
512 			 * Adjust for the current time slice.  This is
513 			 * actually fairly important since the error
514 			 * here is on the order of a time quantum,
515 			 * which is much greater than the sampling
516 			 * error.
517 			 */
518 			binuptime(&diff);
519 			bintime_sub(&diff, &l->l_stime);
520 			bintime_add(&tm, &diff);
521 		}
522 		lwp_unlock(l);
523 	}
524 
525 	tot = st + ut + it;
526 	bintime2timeval(&tm, &tv);
527 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
528 
529 	if (tot == 0) {
530 		/* No ticks, so can't use to share time out, split 50-50 */
531 		st = ut = u / 2;
532 	} else {
533 		st = (u * st) / tot;
534 		ut = (u * ut) / tot;
535 	}
536 
537 	/*
538 	 * Try to avoid lying to the users (too much)
539 	 *
540 	 * Of course, user/sys time are based on sampling (ie: statistics)
541 	 * so that would be impossible, but convincing the mark
542 	 * that we have used less ?time this call than we had
543 	 * last time, is beyond reasonable...  (the con fails!)
544 	 *
545 	 * Note that since actual used time cannot decrease, either
546 	 * utime or stime (or both) must be greater now than last time
547 	 * (or both the same) - if one seems to have decreased, hold
548 	 * it constant and steal the necessary bump from the other
549 	 * which must have increased.
550 	 */
551 	if (p->p_xutime > ut) {
552 		st -= p->p_xutime - ut;
553 		ut = p->p_xutime;
554 	} else if (p->p_xstime > st) {
555 		ut -= p->p_xstime - st;
556 		st = p->p_xstime;
557 	}
558 
559 	if (sp != NULL) {
560 		p->p_xstime = st;
561 		sp->tv_sec = st / 1000000;
562 		sp->tv_usec = st % 1000000;
563 	}
564 	if (up != NULL) {
565 		p->p_xutime = ut;
566 		up->tv_sec = ut / 1000000;
567 		up->tv_usec = ut % 1000000;
568 	}
569 	if (ip != NULL) {
570 		if (it != 0)		/* it != 0 --> tot != 0 */
571 			it = (u * it) / tot;
572 		ip->tv_sec = it / 1000000;
573 		ip->tv_usec = it % 1000000;
574 	}
575 	if (rp != NULL) {
576 		*rp = tv;
577 	}
578 }
579 
580 int
581 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
582     register_t *retval)
583 {
584 	/* {
585 		syscallarg(int) who;
586 		syscallarg(struct rusage *) rusage;
587 	} */
588 	int error;
589 	struct rusage ru;
590 	struct proc *p = l->l_proc;
591 
592 	error = getrusage1(p, SCARG(uap, who), &ru);
593 	if (error != 0)
594 		return error;
595 
596 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
597 }
598 
599 int
600 getrusage1(struct proc *p, int who, struct rusage *ru) {
601 
602 	switch (who) {
603 	case RUSAGE_SELF:
604 		mutex_enter(p->p_lock);
605 		ruspace(p);
606 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
607 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
608 		rulwps(p, ru);
609 		mutex_exit(p->p_lock);
610 		break;
611 	case RUSAGE_CHILDREN:
612 		mutex_enter(p->p_lock);
613 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
614 		mutex_exit(p->p_lock);
615 		break;
616 	default:
617 		return EINVAL;
618 	}
619 
620 	return 0;
621 }
622 
623 void
624 ruspace(struct proc *p)
625 {
626 	struct vmspace *vm = p->p_vmspace;
627 	struct rusage *ru = &p->p_stats->p_ru;
628 
629 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
630 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
631 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
632 #ifdef __HAVE_NO_PMAP_STATS
633 	/* We don't keep track of the max so we get the current */
634 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
635 #else
636 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
637 #endif
638 }
639 
640 void
641 ruadd(struct rusage *ru, struct rusage *ru2)
642 {
643 	long *ip, *ip2;
644 	int i;
645 
646 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
647 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
648 	if (ru->ru_maxrss < ru2->ru_maxrss)
649 		ru->ru_maxrss = ru2->ru_maxrss;
650 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
651 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
652 		*ip++ += *ip2++;
653 }
654 
655 void
656 rulwps(proc_t *p, struct rusage *ru)
657 {
658 	lwp_t *l;
659 
660 	KASSERT(mutex_owned(p->p_lock));
661 
662 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
663 		ruadd(ru, &l->l_ru);
664 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
665 		ru->ru_nivcsw += l->l_nivcsw;
666 	}
667 }
668 
669 /*
670  * lim_copy: make a copy of the plimit structure.
671  *
672  * We use copy-on-write after fork, and copy when a limit is changed.
673  */
674 struct plimit *
675 lim_copy(struct plimit *lim)
676 {
677 	struct plimit *newlim;
678 	char *corename;
679 	size_t alen, len;
680 
681 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
682 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
683 	newlim->pl_writeable = false;
684 	newlim->pl_refcnt = 1;
685 	newlim->pl_sv_limit = NULL;
686 
687 	mutex_enter(&lim->pl_lock);
688 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
689 	    sizeof(struct rlimit) * RLIM_NLIMITS);
690 
691 	/*
692 	 * Note: the common case is a use of default core name.
693 	 */
694 	alen = 0;
695 	corename = NULL;
696 	for (;;) {
697 		if (lim->pl_corename == defcorename) {
698 			newlim->pl_corename = defcorename;
699 			newlim->pl_cnlen = 0;
700 			break;
701 		}
702 		len = lim->pl_cnlen;
703 		if (len == alen) {
704 			newlim->pl_corename = corename;
705 			newlim->pl_cnlen = len;
706 			memcpy(corename, lim->pl_corename, len);
707 			corename = NULL;
708 			break;
709 		}
710 		mutex_exit(&lim->pl_lock);
711 		if (corename) {
712 			kmem_free(corename, alen);
713 		}
714 		alen = len;
715 		corename = kmem_alloc(alen, KM_SLEEP);
716 		mutex_enter(&lim->pl_lock);
717 	}
718 	mutex_exit(&lim->pl_lock);
719 
720 	if (corename) {
721 		kmem_free(corename, alen);
722 	}
723 	return newlim;
724 }
725 
726 void
727 lim_addref(struct plimit *lim)
728 {
729 	atomic_inc_uint(&lim->pl_refcnt);
730 }
731 
732 /*
733  * lim_privatise: give a process its own private plimit structure.
734  */
735 void
736 lim_privatise(proc_t *p)
737 {
738 	struct plimit *lim = p->p_limit, *newlim;
739 
740 	if (lim->pl_writeable) {
741 		return;
742 	}
743 
744 	newlim = lim_copy(lim);
745 
746 	mutex_enter(p->p_lock);
747 	if (p->p_limit->pl_writeable) {
748 		/* Other thread won the race. */
749 		mutex_exit(p->p_lock);
750 		lim_free(newlim);
751 		return;
752 	}
753 
754 	/*
755 	 * Since p->p_limit can be accessed without locked held,
756 	 * old limit structure must not be deleted yet.
757 	 */
758 	newlim->pl_sv_limit = p->p_limit;
759 	newlim->pl_writeable = true;
760 	p->p_limit = newlim;
761 	mutex_exit(p->p_lock);
762 }
763 
764 void
765 lim_setcorename(proc_t *p, char *name, size_t len)
766 {
767 	struct plimit *lim;
768 	char *oname;
769 	size_t olen;
770 
771 	lim_privatise(p);
772 	lim = p->p_limit;
773 
774 	mutex_enter(&lim->pl_lock);
775 	oname = lim->pl_corename;
776 	olen = lim->pl_cnlen;
777 	lim->pl_corename = name;
778 	lim->pl_cnlen = len;
779 	mutex_exit(&lim->pl_lock);
780 
781 	if (oname != defcorename) {
782 		kmem_free(oname, olen);
783 	}
784 }
785 
786 void
787 lim_free(struct plimit *lim)
788 {
789 	struct plimit *sv_lim;
790 
791 	do {
792 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
793 			return;
794 		}
795 		if (lim->pl_corename != defcorename) {
796 			kmem_free(lim->pl_corename, lim->pl_cnlen);
797 		}
798 		sv_lim = lim->pl_sv_limit;
799 		mutex_destroy(&lim->pl_lock);
800 		pool_cache_put(plimit_cache, lim);
801 	} while ((lim = sv_lim) != NULL);
802 }
803 
804 struct pstats *
805 pstatscopy(struct pstats *ps)
806 {
807 	struct pstats *nps;
808 	size_t len;
809 
810 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
811 
812 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
813 	memset(&nps->pstat_startzero, 0, len);
814 
815 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
816 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
817 
818 	return nps;
819 }
820 
821 void
822 pstatsfree(struct pstats *ps)
823 {
824 
825 	pool_cache_put(pstats_cache, ps);
826 }
827 
828 /*
829  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
830  * need to pick a valid process by PID.
831  *
832  * => Hold a reference on the process, on success.
833  */
834 static int
835 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
836 {
837 	proc_t *p;
838 	int error;
839 
840 	if (pid == PROC_CURPROC) {
841 		p = l->l_proc;
842 	} else {
843 		mutex_enter(proc_lock);
844 		p = proc_find(pid);
845 		if (p == NULL) {
846 			mutex_exit(proc_lock);
847 			return ESRCH;
848 		}
849 	}
850 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
851 	if (pid != PROC_CURPROC) {
852 		mutex_exit(proc_lock);
853 	}
854 	*p2 = p;
855 	return error;
856 }
857 
858 /*
859  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
860  */
861 static int
862 sysctl_proc_paxflags(SYSCTLFN_ARGS)
863 {
864 	struct proc *p;
865 	struct sysctlnode node;
866 	int paxflags;
867 	int error;
868 
869 	/* First, validate the request. */
870 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
871 		return EINVAL;
872 
873 	/* Find the process.  Hold a reference (p_reflock), if found. */
874 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
875 	if (error)
876 		return error;
877 
878 	/* XXX-elad */
879 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
880 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
881 	if (error) {
882 		rw_exit(&p->p_reflock);
883 		return error;
884 	}
885 
886 	/* Retrieve the limits. */
887 	node = *rnode;
888 	paxflags = p->p_pax;
889 	node.sysctl_data = &paxflags;
890 
891 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
892 
893 	/* If attempting to write new value, it's an error */
894 	if (error == 0 && newp != NULL)
895 		error = EACCES;
896 
897 	rw_exit(&p->p_reflock);
898 	return error;
899 }
900 
901 /*
902  * sysctl_proc_corename: helper routine to get or set the core file name
903  * for a process specified by PID.
904  */
905 static int
906 sysctl_proc_corename(SYSCTLFN_ARGS)
907 {
908 	struct proc *p;
909 	struct plimit *lim;
910 	char *cnbuf, *cname;
911 	struct sysctlnode node;
912 	size_t len;
913 	int error;
914 
915 	/* First, validate the request. */
916 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
917 		return EINVAL;
918 
919 	/* Find the process.  Hold a reference (p_reflock), if found. */
920 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
921 	if (error)
922 		return error;
923 
924 	/* XXX-elad */
925 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
926 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
927 	if (error) {
928 		rw_exit(&p->p_reflock);
929 		return error;
930 	}
931 
932 	cnbuf = PNBUF_GET();
933 
934 	if (oldp) {
935 		/* Get case: copy the core name into the buffer. */
936 		error = kauth_authorize_process(l->l_cred,
937 		    KAUTH_PROCESS_CORENAME, p,
938 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
939 		if (error) {
940 			goto done;
941 		}
942 		lim = p->p_limit;
943 		mutex_enter(&lim->pl_lock);
944 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
945 		mutex_exit(&lim->pl_lock);
946 	}
947 
948 	node = *rnode;
949 	node.sysctl_data = cnbuf;
950 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
951 
952 	/* Return if error, or if caller is only getting the core name. */
953 	if (error || newp == NULL) {
954 		goto done;
955 	}
956 
957 	/*
958 	 * Set case.  Check permission and then validate new core name.
959 	 * It must be either "core", "/core", or end in ".core".
960 	 */
961 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
962 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
963 	if (error) {
964 		goto done;
965 	}
966 	len = strlen(cnbuf);
967 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
968 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
969 		error = EINVAL;
970 		goto done;
971 	}
972 
973 	/* Allocate, copy and set the new core name for plimit structure. */
974 	cname = kmem_alloc(++len, KM_NOSLEEP);
975 	if (cname == NULL) {
976 		error = ENOMEM;
977 		goto done;
978 	}
979 	memcpy(cname, cnbuf, len);
980 	lim_setcorename(p, cname, len);
981 done:
982 	rw_exit(&p->p_reflock);
983 	PNBUF_PUT(cnbuf);
984 	return error;
985 }
986 
987 /*
988  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
989  */
990 static int
991 sysctl_proc_stop(SYSCTLFN_ARGS)
992 {
993 	struct proc *p;
994 	int isset, flag, error = 0;
995 	struct sysctlnode node;
996 
997 	if (namelen != 0)
998 		return EINVAL;
999 
1000 	/* Find the process.  Hold a reference (p_reflock), if found. */
1001 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
1002 	if (error)
1003 		return error;
1004 
1005 	/* XXX-elad */
1006 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1007 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1008 	if (error) {
1009 		goto out;
1010 	}
1011 
1012 	/* Determine the flag. */
1013 	switch (rnode->sysctl_num) {
1014 	case PROC_PID_STOPFORK:
1015 		flag = PS_STOPFORK;
1016 		break;
1017 	case PROC_PID_STOPEXEC:
1018 		flag = PS_STOPEXEC;
1019 		break;
1020 	case PROC_PID_STOPEXIT:
1021 		flag = PS_STOPEXIT;
1022 		break;
1023 	default:
1024 		error = EINVAL;
1025 		goto out;
1026 	}
1027 	isset = (p->p_flag & flag) ? 1 : 0;
1028 	node = *rnode;
1029 	node.sysctl_data = &isset;
1030 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1031 
1032 	/* Return if error, or if callers is only getting the flag. */
1033 	if (error || newp == NULL) {
1034 		goto out;
1035 	}
1036 
1037 	/* Check if caller can set the flags. */
1038 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
1039 	    p, KAUTH_ARG(flag), NULL, NULL);
1040 	if (error) {
1041 		goto out;
1042 	}
1043 	mutex_enter(p->p_lock);
1044 	if (isset) {
1045 		p->p_sflag |= flag;
1046 	} else {
1047 		p->p_sflag &= ~flag;
1048 	}
1049 	mutex_exit(p->p_lock);
1050 out:
1051 	rw_exit(&p->p_reflock);
1052 	return error;
1053 }
1054 
1055 /*
1056  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
1057  */
1058 static int
1059 sysctl_proc_plimit(SYSCTLFN_ARGS)
1060 {
1061 	struct proc *p;
1062 	u_int limitno;
1063 	int which, error = 0;
1064         struct rlimit alim;
1065 	struct sysctlnode node;
1066 
1067 	if (namelen != 0)
1068 		return EINVAL;
1069 
1070 	which = name[-1];
1071 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
1072 	    which != PROC_PID_LIMIT_TYPE_HARD)
1073 		return EINVAL;
1074 
1075 	limitno = name[-2] - 1;
1076 	if (limitno >= RLIM_NLIMITS)
1077 		return EINVAL;
1078 
1079 	if (name[-3] != PROC_PID_LIMIT)
1080 		return EINVAL;
1081 
1082 	/* Find the process.  Hold a reference (p_reflock), if found. */
1083 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
1084 	if (error)
1085 		return error;
1086 
1087 	/* XXX-elad */
1088 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1089 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1090 	if (error)
1091 		goto out;
1092 
1093 	/* Check if caller can retrieve the limits. */
1094 	if (newp == NULL) {
1095 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1096 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1097 		    KAUTH_ARG(which));
1098 		if (error)
1099 			goto out;
1100 	}
1101 
1102 	/* Retrieve the limits. */
1103 	node = *rnode;
1104 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1105 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
1106 		node.sysctl_data = &alim.rlim_max;
1107 	} else {
1108 		node.sysctl_data = &alim.rlim_cur;
1109 	}
1110 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1111 
1112 	/* Return if error, or if we are only retrieving the limits. */
1113 	if (error || newp == NULL) {
1114 		goto out;
1115 	}
1116 	error = dosetrlimit(l, p, limitno, &alim);
1117 out:
1118 	rw_exit(&p->p_reflock);
1119 	return error;
1120 }
1121 
1122 /*
1123  * Setup sysctl nodes.
1124  */
1125 static void
1126 sysctl_proc_setup(void)
1127 {
1128 
1129 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1130 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1131 		       CTLTYPE_NODE, "curproc",
1132 		       SYSCTL_DESCR("Per-process settings"),
1133 		       NULL, 0, NULL, 0,
1134 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
1135 
1136 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1137 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1138 		       CTLTYPE_INT, "paxflags",
1139 		       SYSCTL_DESCR("Process PAX control flags"),
1140 		       sysctl_proc_paxflags, 0, NULL, 0,
1141 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
1142 
1143 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1144 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1145 		       CTLTYPE_STRING, "corename",
1146 		       SYSCTL_DESCR("Core file name"),
1147 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1148 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1149 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1150 		       CTLFLAG_PERMANENT,
1151 		       CTLTYPE_NODE, "rlimit",
1152 		       SYSCTL_DESCR("Process limits"),
1153 		       NULL, 0, NULL, 0,
1154 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1155 
1156 #define create_proc_plimit(s, n) do {					\
1157 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1158 		       CTLFLAG_PERMANENT,				\
1159 		       CTLTYPE_NODE, s,					\
1160 		       SYSCTL_DESCR("Process " s " limits"),		\
1161 		       NULL, 0, NULL, 0,				\
1162 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1163 		       CTL_EOL);					\
1164 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1165 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1166 		       CTLTYPE_QUAD, "soft",				\
1167 		       SYSCTL_DESCR("Process soft " s " limit"),	\
1168 		       sysctl_proc_plimit, 0, NULL, 0,			\
1169 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1170 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
1171 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1172 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1173 		       CTLTYPE_QUAD, "hard",				\
1174 		       SYSCTL_DESCR("Process hard " s " limit"),	\
1175 		       sysctl_proc_plimit, 0, NULL, 0,			\
1176 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1177 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
1178 	} while (0/*CONSTCOND*/)
1179 
1180 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
1181 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
1182 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
1183 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
1184 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
1185 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
1186 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
1187 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
1188 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
1189 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
1190 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
1191 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
1192 
1193 #undef create_proc_plimit
1194 
1195 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1196 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1197 		       CTLTYPE_INT, "stopfork",
1198 		       SYSCTL_DESCR("Stop process at fork(2)"),
1199 		       sysctl_proc_stop, 0, NULL, 0,
1200 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1201 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1202 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1203 		       CTLTYPE_INT, "stopexec",
1204 		       SYSCTL_DESCR("Stop process at execve(2)"),
1205 		       sysctl_proc_stop, 0, NULL, 0,
1206 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1207 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1208 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1209 		       CTLTYPE_INT, "stopexit",
1210 		       SYSCTL_DESCR("Stop process before completing exit"),
1211 		       sysctl_proc_stop, 0, NULL, 0,
1212 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1213 }
1214