1 /* $NetBSD: kern_resource.c,v 1.155 2010/03/03 00:47:30 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.155 2010/03/03 00:47:30 yamt Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/malloc.h> 48 #include <sys/kmem.h> 49 #include <sys/namei.h> 50 #include <sys/pool.h> 51 #include <sys/proc.h> 52 #include <sys/sysctl.h> 53 #include <sys/timevar.h> 54 #include <sys/kauth.h> 55 #include <sys/atomic.h> 56 #include <sys/mount.h> 57 #include <sys/syscallargs.h> 58 #include <sys/atomic.h> 59 60 #include <uvm/uvm_extern.h> 61 62 /* 63 * Maximum process data and stack limits. 64 * They are variables so they are patchable. 65 */ 66 rlim_t maxdmap = MAXDSIZ; 67 rlim_t maxsmap = MAXSSIZ; 68 69 static pool_cache_t plimit_cache; 70 static pool_cache_t pstats_cache; 71 72 static kauth_listener_t resource_listener; 73 74 static int 75 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 76 void *arg0, void *arg1, void *arg2, void *arg3) 77 { 78 struct proc *p; 79 int result; 80 81 result = KAUTH_RESULT_DEFER; 82 p = arg0; 83 84 switch (action) { 85 case KAUTH_PROCESS_NICE: 86 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && 87 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { 88 break; 89 } 90 91 if ((u_long)arg1 >= p->p_nice) 92 result = KAUTH_RESULT_ALLOW; 93 94 break; 95 96 case KAUTH_PROCESS_RLIMIT: { 97 enum kauth_process_req req; 98 99 req = (enum kauth_process_req)(unsigned long)arg1; 100 101 switch (req) { 102 case KAUTH_REQ_PROCESS_RLIMIT_GET: 103 result = KAUTH_RESULT_ALLOW; 104 break; 105 106 case KAUTH_REQ_PROCESS_RLIMIT_SET: { 107 struct rlimit *new_rlimit; 108 u_long which; 109 110 if ((p != curlwp->l_proc) && 111 (proc_uidmatch(cred, p->p_cred) != 0)) 112 break; 113 114 new_rlimit = arg2; 115 which = (u_long)arg3; 116 117 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) 118 result = KAUTH_RESULT_ALLOW; 119 120 break; 121 } 122 123 default: 124 break; 125 } 126 127 break; 128 } 129 130 default: 131 break; 132 } 133 134 return result; 135 } 136 137 void 138 resource_init(void) 139 { 140 141 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 142 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 143 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 144 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 145 146 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 147 resource_listener_cb, NULL); 148 } 149 150 /* 151 * Resource controls and accounting. 152 */ 153 154 int 155 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 156 register_t *retval) 157 { 158 /* { 159 syscallarg(int) which; 160 syscallarg(id_t) who; 161 } */ 162 struct proc *curp = l->l_proc, *p; 163 int low = NZERO + PRIO_MAX + 1; 164 int who = SCARG(uap, who); 165 166 mutex_enter(proc_lock); 167 switch (SCARG(uap, which)) { 168 case PRIO_PROCESS: 169 if (who == 0) 170 p = curp; 171 else 172 p = p_find(who, PFIND_LOCKED); 173 if (p != NULL) 174 low = p->p_nice; 175 break; 176 177 case PRIO_PGRP: { 178 struct pgrp *pg; 179 180 if (who == 0) 181 pg = curp->p_pgrp; 182 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 183 break; 184 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 185 if (p->p_nice < low) 186 low = p->p_nice; 187 } 188 break; 189 } 190 191 case PRIO_USER: 192 if (who == 0) 193 who = (int)kauth_cred_geteuid(l->l_cred); 194 PROCLIST_FOREACH(p, &allproc) { 195 mutex_enter(p->p_lock); 196 if (kauth_cred_geteuid(p->p_cred) == 197 (uid_t)who && p->p_nice < low) 198 low = p->p_nice; 199 mutex_exit(p->p_lock); 200 } 201 break; 202 203 default: 204 mutex_exit(proc_lock); 205 return (EINVAL); 206 } 207 mutex_exit(proc_lock); 208 209 if (low == NZERO + PRIO_MAX + 1) 210 return (ESRCH); 211 *retval = low - NZERO; 212 return (0); 213 } 214 215 /* ARGSUSED */ 216 int 217 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 218 register_t *retval) 219 { 220 /* { 221 syscallarg(int) which; 222 syscallarg(id_t) who; 223 syscallarg(int) prio; 224 } */ 225 struct proc *curp = l->l_proc, *p; 226 int found = 0, error = 0; 227 int who = SCARG(uap, who); 228 229 mutex_enter(proc_lock); 230 switch (SCARG(uap, which)) { 231 case PRIO_PROCESS: 232 if (who == 0) 233 p = curp; 234 else 235 p = p_find(who, PFIND_LOCKED); 236 if (p != 0) { 237 mutex_enter(p->p_lock); 238 error = donice(l, p, SCARG(uap, prio)); 239 mutex_exit(p->p_lock); 240 found++; 241 } 242 break; 243 244 case PRIO_PGRP: { 245 struct pgrp *pg; 246 247 if (who == 0) 248 pg = curp->p_pgrp; 249 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 250 break; 251 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 252 mutex_enter(p->p_lock); 253 error = donice(l, p, SCARG(uap, prio)); 254 mutex_exit(p->p_lock); 255 found++; 256 } 257 break; 258 } 259 260 case PRIO_USER: 261 if (who == 0) 262 who = (int)kauth_cred_geteuid(l->l_cred); 263 PROCLIST_FOREACH(p, &allproc) { 264 mutex_enter(p->p_lock); 265 if (kauth_cred_geteuid(p->p_cred) == 266 (uid_t)SCARG(uap, who)) { 267 error = donice(l, p, SCARG(uap, prio)); 268 found++; 269 } 270 mutex_exit(p->p_lock); 271 } 272 break; 273 274 default: 275 mutex_exit(proc_lock); 276 return EINVAL; 277 } 278 mutex_exit(proc_lock); 279 if (found == 0) 280 return (ESRCH); 281 return (error); 282 } 283 284 /* 285 * Renice a process. 286 * 287 * Call with the target process' credentials locked. 288 */ 289 int 290 donice(struct lwp *l, struct proc *chgp, int n) 291 { 292 kauth_cred_t cred = l->l_cred; 293 294 KASSERT(mutex_owned(chgp->p_lock)); 295 296 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 297 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 298 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 299 return (EPERM); 300 301 if (n > PRIO_MAX) 302 n = PRIO_MAX; 303 if (n < PRIO_MIN) 304 n = PRIO_MIN; 305 n += NZERO; 306 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 307 KAUTH_ARG(n), NULL, NULL)) 308 return (EACCES); 309 sched_nice(chgp, n); 310 return (0); 311 } 312 313 /* ARGSUSED */ 314 int 315 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 316 register_t *retval) 317 { 318 /* { 319 syscallarg(int) which; 320 syscallarg(const struct rlimit *) rlp; 321 } */ 322 int which = SCARG(uap, which); 323 struct rlimit alim; 324 int error; 325 326 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 327 if (error) 328 return (error); 329 return (dosetrlimit(l, l->l_proc, which, &alim)); 330 } 331 332 int 333 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 334 { 335 struct rlimit *alimp; 336 int error; 337 338 if ((u_int)which >= RLIM_NLIMITS) 339 return (EINVAL); 340 341 if (limp->rlim_cur > limp->rlim_max) { 342 /* 343 * This is programming error. According to SUSv2, we should 344 * return error in this case. 345 */ 346 return (EINVAL); 347 } 348 349 alimp = &p->p_rlimit[which]; 350 /* if we don't change the value, no need to limcopy() */ 351 if (limp->rlim_cur == alimp->rlim_cur && 352 limp->rlim_max == alimp->rlim_max) 353 return 0; 354 355 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 356 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 357 if (error) 358 return (error); 359 360 lim_privatise(p, false); 361 /* p->p_limit is now unchangeable */ 362 alimp = &p->p_rlimit[which]; 363 364 switch (which) { 365 366 case RLIMIT_DATA: 367 if (limp->rlim_cur > maxdmap) 368 limp->rlim_cur = maxdmap; 369 if (limp->rlim_max > maxdmap) 370 limp->rlim_max = maxdmap; 371 break; 372 373 case RLIMIT_STACK: 374 if (limp->rlim_cur > maxsmap) 375 limp->rlim_cur = maxsmap; 376 if (limp->rlim_max > maxsmap) 377 limp->rlim_max = maxsmap; 378 379 /* 380 * Return EINVAL if the new stack size limit is lower than 381 * current usage. Otherwise, the process would get SIGSEGV the 382 * moment it would try to access anything on it's current stack. 383 * This conforms to SUSv2. 384 */ 385 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE 386 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 387 return (EINVAL); 388 } 389 390 /* 391 * Stack is allocated to the max at exec time with 392 * only "rlim_cur" bytes accessible (In other words, 393 * allocates stack dividing two contiguous regions at 394 * "rlim_cur" bytes boundary). 395 * 396 * Since allocation is done in terms of page, roundup 397 * "rlim_cur" (otherwise, contiguous regions 398 * overlap). If stack limit is going up make more 399 * accessible, if going down make inaccessible. 400 */ 401 limp->rlim_cur = round_page(limp->rlim_cur); 402 if (limp->rlim_cur != alimp->rlim_cur) { 403 vaddr_t addr; 404 vsize_t size; 405 vm_prot_t prot; 406 407 if (limp->rlim_cur > alimp->rlim_cur) { 408 prot = VM_PROT_READ | VM_PROT_WRITE; 409 size = limp->rlim_cur - alimp->rlim_cur; 410 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 411 limp->rlim_cur; 412 } else { 413 prot = VM_PROT_NONE; 414 size = alimp->rlim_cur - limp->rlim_cur; 415 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 416 alimp->rlim_cur; 417 } 418 (void) uvm_map_protect(&p->p_vmspace->vm_map, 419 addr, addr+size, prot, false); 420 } 421 break; 422 423 case RLIMIT_NOFILE: 424 if (limp->rlim_cur > maxfiles) 425 limp->rlim_cur = maxfiles; 426 if (limp->rlim_max > maxfiles) 427 limp->rlim_max = maxfiles; 428 break; 429 430 case RLIMIT_NPROC: 431 if (limp->rlim_cur > maxproc) 432 limp->rlim_cur = maxproc; 433 if (limp->rlim_max > maxproc) 434 limp->rlim_max = maxproc; 435 break; 436 } 437 438 mutex_enter(&p->p_limit->pl_lock); 439 *alimp = *limp; 440 mutex_exit(&p->p_limit->pl_lock); 441 return (0); 442 } 443 444 /* ARGSUSED */ 445 int 446 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 447 register_t *retval) 448 { 449 /* { 450 syscallarg(int) which; 451 syscallarg(struct rlimit *) rlp; 452 } */ 453 struct proc *p = l->l_proc; 454 int which = SCARG(uap, which); 455 struct rlimit rl; 456 457 if ((u_int)which >= RLIM_NLIMITS) 458 return (EINVAL); 459 460 mutex_enter(p->p_lock); 461 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 462 mutex_exit(p->p_lock); 463 464 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 465 } 466 467 /* 468 * Transform the running time and tick information in proc p into user, 469 * system, and interrupt time usage. 470 * 471 * Should be called with p->p_lock held unless called from exit1(). 472 */ 473 void 474 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 475 struct timeval *ip, struct timeval *rp) 476 { 477 uint64_t u, st, ut, it, tot; 478 struct lwp *l; 479 struct bintime tm; 480 struct timeval tv; 481 482 mutex_spin_enter(&p->p_stmutex); 483 st = p->p_sticks; 484 ut = p->p_uticks; 485 it = p->p_iticks; 486 mutex_spin_exit(&p->p_stmutex); 487 488 tm = p->p_rtime; 489 490 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 491 lwp_lock(l); 492 bintime_add(&tm, &l->l_rtime); 493 if ((l->l_pflag & LP_RUNNING) != 0) { 494 struct bintime diff; 495 /* 496 * Adjust for the current time slice. This is 497 * actually fairly important since the error 498 * here is on the order of a time quantum, 499 * which is much greater than the sampling 500 * error. 501 */ 502 binuptime(&diff); 503 bintime_sub(&diff, &l->l_stime); 504 bintime_add(&tm, &diff); 505 } 506 lwp_unlock(l); 507 } 508 509 tot = st + ut + it; 510 bintime2timeval(&tm, &tv); 511 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 512 513 if (tot == 0) { 514 /* No ticks, so can't use to share time out, split 50-50 */ 515 st = ut = u / 2; 516 } else { 517 st = (u * st) / tot; 518 ut = (u * ut) / tot; 519 } 520 if (sp != NULL) { 521 sp->tv_sec = st / 1000000; 522 sp->tv_usec = st % 1000000; 523 } 524 if (up != NULL) { 525 up->tv_sec = ut / 1000000; 526 up->tv_usec = ut % 1000000; 527 } 528 if (ip != NULL) { 529 if (it != 0) 530 it = (u * it) / tot; 531 ip->tv_sec = it / 1000000; 532 ip->tv_usec = it % 1000000; 533 } 534 if (rp != NULL) { 535 *rp = tv; 536 } 537 } 538 539 /* ARGSUSED */ 540 int 541 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 542 register_t *retval) 543 { 544 /* { 545 syscallarg(int) who; 546 syscallarg(struct rusage *) rusage; 547 } */ 548 struct rusage ru; 549 struct proc *p = l->l_proc; 550 551 switch (SCARG(uap, who)) { 552 case RUSAGE_SELF: 553 mutex_enter(p->p_lock); 554 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 555 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 556 rulwps(p, &ru); 557 mutex_exit(p->p_lock); 558 break; 559 560 case RUSAGE_CHILDREN: 561 mutex_enter(p->p_lock); 562 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru)); 563 mutex_exit(p->p_lock); 564 break; 565 566 default: 567 return EINVAL; 568 } 569 570 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 571 } 572 573 void 574 ruadd(struct rusage *ru, struct rusage *ru2) 575 { 576 long *ip, *ip2; 577 int i; 578 579 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 580 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 581 if (ru->ru_maxrss < ru2->ru_maxrss) 582 ru->ru_maxrss = ru2->ru_maxrss; 583 ip = &ru->ru_first; ip2 = &ru2->ru_first; 584 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 585 *ip++ += *ip2++; 586 } 587 588 void 589 rulwps(proc_t *p, struct rusage *ru) 590 { 591 lwp_t *l; 592 593 KASSERT(mutex_owned(p->p_lock)); 594 595 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 596 ruadd(ru, &l->l_ru); 597 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 598 ru->ru_nivcsw += l->l_nivcsw; 599 } 600 } 601 602 /* 603 * Make a copy of the plimit structure. 604 * We share these structures copy-on-write after fork, 605 * and copy when a limit is changed. 606 * 607 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure 608 * we are copying to change beneath our feet! 609 */ 610 struct plimit * 611 lim_copy(struct plimit *lim) 612 { 613 struct plimit *newlim; 614 char *corename; 615 size_t alen, len; 616 617 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 618 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 619 newlim->pl_flags = 0; 620 newlim->pl_refcnt = 1; 621 newlim->pl_sv_limit = NULL; 622 623 mutex_enter(&lim->pl_lock); 624 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 625 sizeof(struct rlimit) * RLIM_NLIMITS); 626 627 alen = 0; 628 corename = NULL; 629 for (;;) { 630 if (lim->pl_corename == defcorename) { 631 newlim->pl_corename = defcorename; 632 break; 633 } 634 len = strlen(lim->pl_corename) + 1; 635 if (len <= alen) { 636 newlim->pl_corename = corename; 637 memcpy(corename, lim->pl_corename, len); 638 corename = NULL; 639 break; 640 } 641 mutex_exit(&lim->pl_lock); 642 if (corename != NULL) 643 free(corename, M_TEMP); 644 alen = len; 645 corename = malloc(alen, M_TEMP, M_WAITOK); 646 mutex_enter(&lim->pl_lock); 647 } 648 mutex_exit(&lim->pl_lock); 649 if (corename != NULL) 650 free(corename, M_TEMP); 651 return newlim; 652 } 653 654 void 655 lim_addref(struct plimit *lim) 656 { 657 atomic_inc_uint(&lim->pl_refcnt); 658 } 659 660 /* 661 * Give a process it's own private plimit structure. 662 * This will only be shared (in fork) if modifications are to be shared. 663 */ 664 void 665 lim_privatise(struct proc *p, bool set_shared) 666 { 667 struct plimit *lim, *newlim; 668 669 lim = p->p_limit; 670 if (lim->pl_flags & PL_WRITEABLE) { 671 if (set_shared) 672 lim->pl_flags |= PL_SHAREMOD; 673 return; 674 } 675 676 if (set_shared && lim->pl_flags & PL_SHAREMOD) 677 return; 678 679 newlim = lim_copy(lim); 680 681 mutex_enter(p->p_lock); 682 if (p->p_limit->pl_flags & PL_WRITEABLE) { 683 /* Someone crept in while we were busy */ 684 mutex_exit(p->p_lock); 685 limfree(newlim); 686 if (set_shared) 687 p->p_limit->pl_flags |= PL_SHAREMOD; 688 return; 689 } 690 691 /* 692 * Since most accesses to p->p_limit aren't locked, we must not 693 * delete the old limit structure yet. 694 */ 695 newlim->pl_sv_limit = p->p_limit; 696 newlim->pl_flags |= PL_WRITEABLE; 697 if (set_shared) 698 newlim->pl_flags |= PL_SHAREMOD; 699 p->p_limit = newlim; 700 mutex_exit(p->p_lock); 701 } 702 703 void 704 limfree(struct plimit *lim) 705 { 706 struct plimit *sv_lim; 707 708 do { 709 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) 710 return; 711 if (lim->pl_corename != defcorename) 712 free(lim->pl_corename, M_TEMP); 713 sv_lim = lim->pl_sv_limit; 714 mutex_destroy(&lim->pl_lock); 715 pool_cache_put(plimit_cache, lim); 716 } while ((lim = sv_lim) != NULL); 717 } 718 719 struct pstats * 720 pstatscopy(struct pstats *ps) 721 { 722 723 struct pstats *newps; 724 725 newps = pool_cache_get(pstats_cache, PR_WAITOK); 726 727 memset(&newps->pstat_startzero, 0, 728 (unsigned) ((char *)&newps->pstat_endzero - 729 (char *)&newps->pstat_startzero)); 730 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy, 731 ((char *)&newps->pstat_endcopy - 732 (char *)&newps->pstat_startcopy)); 733 734 return (newps); 735 736 } 737 738 void 739 pstatsfree(struct pstats *ps) 740 { 741 742 pool_cache_put(pstats_cache, ps); 743 } 744 745 /* 746 * sysctl interface in five parts 747 */ 748 749 /* 750 * a routine for sysctl proc subtree helpers that need to pick a valid 751 * process by pid. 752 */ 753 static int 754 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid) 755 { 756 struct proc *ptmp; 757 int error = 0; 758 759 if (pid == PROC_CURPROC) 760 ptmp = l->l_proc; 761 else if ((ptmp = pfind(pid)) == NULL) 762 error = ESRCH; 763 764 *p2 = ptmp; 765 return (error); 766 } 767 768 /* 769 * sysctl helper routine for setting a process's specific corefile 770 * name. picks the process based on the given pid and checks the 771 * correctness of the new value. 772 */ 773 static int 774 sysctl_proc_corename(SYSCTLFN_ARGS) 775 { 776 struct proc *ptmp; 777 struct plimit *lim; 778 int error = 0, len; 779 char *cname; 780 char *ocore; 781 char *tmp; 782 struct sysctlnode node; 783 784 /* 785 * is this all correct? 786 */ 787 if (namelen != 0) 788 return (EINVAL); 789 if (name[-1] != PROC_PID_CORENAME) 790 return (EINVAL); 791 792 /* 793 * whom are we tweaking? 794 */ 795 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 796 if (error) 797 return (error); 798 799 /* XXX-elad */ 800 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 801 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 802 if (error) 803 return (error); 804 805 if (newp == NULL) { 806 error = kauth_authorize_process(l->l_cred, 807 KAUTH_PROCESS_CORENAME, ptmp, 808 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 809 if (error) 810 return (error); 811 } 812 813 /* 814 * let them modify a temporary copy of the core name 815 */ 816 cname = PNBUF_GET(); 817 lim = ptmp->p_limit; 818 mutex_enter(&lim->pl_lock); 819 strlcpy(cname, lim->pl_corename, MAXPATHLEN); 820 mutex_exit(&lim->pl_lock); 821 822 node = *rnode; 823 node.sysctl_data = cname; 824 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 825 826 /* 827 * if that failed, or they have nothing new to say, or we've 828 * heard it before... 829 */ 830 if (error || newp == NULL) 831 goto done; 832 lim = ptmp->p_limit; 833 mutex_enter(&lim->pl_lock); 834 error = strcmp(cname, lim->pl_corename); 835 mutex_exit(&lim->pl_lock); 836 if (error == 0) 837 /* Unchanged */ 838 goto done; 839 840 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 841 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL); 842 if (error) 843 return (error); 844 845 /* 846 * no error yet and cname now has the new core name in it. 847 * let's see if it looks acceptable. it must be either "core" 848 * or end in ".core" or "/core". 849 */ 850 len = strlen(cname); 851 if (len < 4) { 852 error = EINVAL; 853 } else if (strcmp(cname + len - 4, "core") != 0) { 854 error = EINVAL; 855 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') { 856 error = EINVAL; 857 } 858 if (error != 0) { 859 goto done; 860 } 861 862 /* 863 * hmm...looks good. now...where do we put it? 864 */ 865 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL); 866 if (tmp == NULL) { 867 error = ENOMEM; 868 goto done; 869 } 870 memcpy(tmp, cname, len + 1); 871 872 lim_privatise(ptmp, false); 873 lim = ptmp->p_limit; 874 mutex_enter(&lim->pl_lock); 875 ocore = lim->pl_corename; 876 lim->pl_corename = tmp; 877 mutex_exit(&lim->pl_lock); 878 if (ocore != defcorename) 879 free(ocore, M_TEMP); 880 881 done: 882 PNBUF_PUT(cname); 883 return error; 884 } 885 886 /* 887 * sysctl helper routine for checking/setting a process's stop flags, 888 * one for fork and one for exec. 889 */ 890 static int 891 sysctl_proc_stop(SYSCTLFN_ARGS) 892 { 893 struct proc *ptmp; 894 int i, f, error = 0; 895 struct sysctlnode node; 896 897 if (namelen != 0) 898 return (EINVAL); 899 900 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 901 if (error) 902 return (error); 903 904 /* XXX-elad */ 905 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 906 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 907 if (error) 908 return (error); 909 910 switch (rnode->sysctl_num) { 911 case PROC_PID_STOPFORK: 912 f = PS_STOPFORK; 913 break; 914 case PROC_PID_STOPEXEC: 915 f = PS_STOPEXEC; 916 break; 917 case PROC_PID_STOPEXIT: 918 f = PS_STOPEXIT; 919 break; 920 default: 921 return (EINVAL); 922 } 923 924 i = (ptmp->p_flag & f) ? 1 : 0; 925 node = *rnode; 926 node.sysctl_data = &i; 927 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 928 if (error || newp == NULL) 929 return (error); 930 931 mutex_enter(ptmp->p_lock); 932 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 933 ptmp, KAUTH_ARG(f), NULL, NULL); 934 if (!error) { 935 if (i) { 936 ptmp->p_sflag |= f; 937 } else { 938 ptmp->p_sflag &= ~f; 939 } 940 } 941 mutex_exit(ptmp->p_lock); 942 943 return error; 944 } 945 946 /* 947 * sysctl helper routine for a process's rlimits as exposed by sysctl. 948 */ 949 static int 950 sysctl_proc_plimit(SYSCTLFN_ARGS) 951 { 952 struct proc *ptmp; 953 u_int limitno; 954 int which, error = 0; 955 struct rlimit alim; 956 struct sysctlnode node; 957 958 if (namelen != 0) 959 return (EINVAL); 960 961 which = name[-1]; 962 if (which != PROC_PID_LIMIT_TYPE_SOFT && 963 which != PROC_PID_LIMIT_TYPE_HARD) 964 return (EINVAL); 965 966 limitno = name[-2] - 1; 967 if (limitno >= RLIM_NLIMITS) 968 return (EINVAL); 969 970 if (name[-3] != PROC_PID_LIMIT) 971 return (EINVAL); 972 973 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]); 974 if (error) 975 return (error); 976 977 /* XXX-elad */ 978 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 979 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 980 if (error) 981 return (error); 982 983 /* Check if we can view limits. */ 984 if (newp == NULL) { 985 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 986 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 987 KAUTH_ARG(which)); 988 if (error) 989 return (error); 990 } 991 992 node = *rnode; 993 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim)); 994 if (which == PROC_PID_LIMIT_TYPE_HARD) 995 node.sysctl_data = &alim.rlim_max; 996 else 997 node.sysctl_data = &alim.rlim_cur; 998 999 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1000 if (error || newp == NULL) 1001 return (error); 1002 1003 return (dosetrlimit(l, ptmp, limitno, &alim)); 1004 } 1005 1006 /* 1007 * and finally, the actually glue that sticks it to the tree 1008 */ 1009 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup") 1010 { 1011 1012 sysctl_createv(clog, 0, NULL, NULL, 1013 CTLFLAG_PERMANENT, 1014 CTLTYPE_NODE, "proc", NULL, 1015 NULL, 0, NULL, 0, 1016 CTL_PROC, CTL_EOL); 1017 sysctl_createv(clog, 0, NULL, NULL, 1018 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 1019 CTLTYPE_NODE, "curproc", 1020 SYSCTL_DESCR("Per-process settings"), 1021 NULL, 0, NULL, 0, 1022 CTL_PROC, PROC_CURPROC, CTL_EOL); 1023 1024 sysctl_createv(clog, 0, NULL, NULL, 1025 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1026 CTLTYPE_STRING, "corename", 1027 SYSCTL_DESCR("Core file name"), 1028 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 1029 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 1030 sysctl_createv(clog, 0, NULL, NULL, 1031 CTLFLAG_PERMANENT, 1032 CTLTYPE_NODE, "rlimit", 1033 SYSCTL_DESCR("Process limits"), 1034 NULL, 0, NULL, 0, 1035 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 1036 1037 #define create_proc_plimit(s, n) do { \ 1038 sysctl_createv(clog, 0, NULL, NULL, \ 1039 CTLFLAG_PERMANENT, \ 1040 CTLTYPE_NODE, s, \ 1041 SYSCTL_DESCR("Process " s " limits"), \ 1042 NULL, 0, NULL, 0, \ 1043 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1044 CTL_EOL); \ 1045 sysctl_createv(clog, 0, NULL, NULL, \ 1046 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1047 CTLTYPE_QUAD, "soft", \ 1048 SYSCTL_DESCR("Process soft " s " limit"), \ 1049 sysctl_proc_plimit, 0, NULL, 0, \ 1050 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1051 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 1052 sysctl_createv(clog, 0, NULL, NULL, \ 1053 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1054 CTLTYPE_QUAD, "hard", \ 1055 SYSCTL_DESCR("Process hard " s " limit"), \ 1056 sysctl_proc_plimit, 0, NULL, 0, \ 1057 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1058 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 1059 } while (0/*CONSTCOND*/) 1060 1061 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 1062 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 1063 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1064 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1065 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1066 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1067 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1068 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1069 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1070 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1071 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1072 1073 #undef create_proc_plimit 1074 1075 sysctl_createv(clog, 0, NULL, NULL, 1076 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1077 CTLTYPE_INT, "stopfork", 1078 SYSCTL_DESCR("Stop process at fork(2)"), 1079 sysctl_proc_stop, 0, NULL, 0, 1080 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1081 sysctl_createv(clog, 0, NULL, NULL, 1082 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1083 CTLTYPE_INT, "stopexec", 1084 SYSCTL_DESCR("Stop process at execve(2)"), 1085 sysctl_proc_stop, 0, NULL, 0, 1086 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1087 sysctl_createv(clog, 0, NULL, NULL, 1088 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1089 CTLTYPE_INT, "stopexit", 1090 SYSCTL_DESCR("Stop process before completing exit"), 1091 sysctl_proc_stop, 0, NULL, 0, 1092 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1093 } 1094