xref: /netbsd-src/sys/kern/kern_resource.c (revision 62a8debe1dc62962e18a1c918def78666141273b)
1 /*	$NetBSD: kern_resource.c,v 1.155 2010/03/03 00:47:30 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.155 2010/03/03 00:47:30 yamt Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 /*
63  * Maximum process data and stack limits.
64  * They are variables so they are patchable.
65  */
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
68 
69 static pool_cache_t	plimit_cache;
70 static pool_cache_t	pstats_cache;
71 
72 static kauth_listener_t	resource_listener;
73 
74 static int
75 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
76     void *arg0, void *arg1, void *arg2, void *arg3)
77 {
78 	struct proc *p;
79 	int result;
80 
81 	result = KAUTH_RESULT_DEFER;
82 	p = arg0;
83 
84 	switch (action) {
85 	case KAUTH_PROCESS_NICE:
86 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
87                     kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
88                         break;
89                 }
90 
91                 if ((u_long)arg1 >= p->p_nice)
92                         result = KAUTH_RESULT_ALLOW;
93 
94 		break;
95 
96 	case KAUTH_PROCESS_RLIMIT: {
97 		enum kauth_process_req req;
98 
99 		req = (enum kauth_process_req)(unsigned long)arg1;
100 
101 		switch (req) {
102 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
103 			result = KAUTH_RESULT_ALLOW;
104 			break;
105 
106 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
107 			struct rlimit *new_rlimit;
108 			u_long which;
109 
110 			if ((p != curlwp->l_proc) &&
111 			    (proc_uidmatch(cred, p->p_cred) != 0))
112 				break;
113 
114 			new_rlimit = arg2;
115 			which = (u_long)arg3;
116 
117 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
118 				result = KAUTH_RESULT_ALLOW;
119 
120 			break;
121 			}
122 
123 		default:
124 			break;
125 		}
126 
127 		break;
128 	}
129 
130 	default:
131 		break;
132 	}
133 
134 	return result;
135 }
136 
137 void
138 resource_init(void)
139 {
140 
141 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
142 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
143 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
144 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
145 
146 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
147 	    resource_listener_cb, NULL);
148 }
149 
150 /*
151  * Resource controls and accounting.
152  */
153 
154 int
155 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
156     register_t *retval)
157 {
158 	/* {
159 		syscallarg(int) which;
160 		syscallarg(id_t) who;
161 	} */
162 	struct proc *curp = l->l_proc, *p;
163 	int low = NZERO + PRIO_MAX + 1;
164 	int who = SCARG(uap, who);
165 
166 	mutex_enter(proc_lock);
167 	switch (SCARG(uap, which)) {
168 	case PRIO_PROCESS:
169 		if (who == 0)
170 			p = curp;
171 		else
172 			p = p_find(who, PFIND_LOCKED);
173 		if (p != NULL)
174 			low = p->p_nice;
175 		break;
176 
177 	case PRIO_PGRP: {
178 		struct pgrp *pg;
179 
180 		if (who == 0)
181 			pg = curp->p_pgrp;
182 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
183 			break;
184 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
185 			if (p->p_nice < low)
186 				low = p->p_nice;
187 		}
188 		break;
189 	}
190 
191 	case PRIO_USER:
192 		if (who == 0)
193 			who = (int)kauth_cred_geteuid(l->l_cred);
194 		PROCLIST_FOREACH(p, &allproc) {
195 			mutex_enter(p->p_lock);
196 			if (kauth_cred_geteuid(p->p_cred) ==
197 			    (uid_t)who && p->p_nice < low)
198 				low = p->p_nice;
199 			mutex_exit(p->p_lock);
200 		}
201 		break;
202 
203 	default:
204 		mutex_exit(proc_lock);
205 		return (EINVAL);
206 	}
207 	mutex_exit(proc_lock);
208 
209 	if (low == NZERO + PRIO_MAX + 1)
210 		return (ESRCH);
211 	*retval = low - NZERO;
212 	return (0);
213 }
214 
215 /* ARGSUSED */
216 int
217 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
218     register_t *retval)
219 {
220 	/* {
221 		syscallarg(int) which;
222 		syscallarg(id_t) who;
223 		syscallarg(int) prio;
224 	} */
225 	struct proc *curp = l->l_proc, *p;
226 	int found = 0, error = 0;
227 	int who = SCARG(uap, who);
228 
229 	mutex_enter(proc_lock);
230 	switch (SCARG(uap, which)) {
231 	case PRIO_PROCESS:
232 		if (who == 0)
233 			p = curp;
234 		else
235 			p = p_find(who, PFIND_LOCKED);
236 		if (p != 0) {
237 			mutex_enter(p->p_lock);
238 			error = donice(l, p, SCARG(uap, prio));
239 			mutex_exit(p->p_lock);
240 			found++;
241 		}
242 		break;
243 
244 	case PRIO_PGRP: {
245 		struct pgrp *pg;
246 
247 		if (who == 0)
248 			pg = curp->p_pgrp;
249 		else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
250 			break;
251 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
252 			mutex_enter(p->p_lock);
253 			error = donice(l, p, SCARG(uap, prio));
254 			mutex_exit(p->p_lock);
255 			found++;
256 		}
257 		break;
258 	}
259 
260 	case PRIO_USER:
261 		if (who == 0)
262 			who = (int)kauth_cred_geteuid(l->l_cred);
263 		PROCLIST_FOREACH(p, &allproc) {
264 			mutex_enter(p->p_lock);
265 			if (kauth_cred_geteuid(p->p_cred) ==
266 			    (uid_t)SCARG(uap, who)) {
267 				error = donice(l, p, SCARG(uap, prio));
268 				found++;
269 			}
270 			mutex_exit(p->p_lock);
271 		}
272 		break;
273 
274 	default:
275 		mutex_exit(proc_lock);
276 		return EINVAL;
277 	}
278 	mutex_exit(proc_lock);
279 	if (found == 0)
280 		return (ESRCH);
281 	return (error);
282 }
283 
284 /*
285  * Renice a process.
286  *
287  * Call with the target process' credentials locked.
288  */
289 int
290 donice(struct lwp *l, struct proc *chgp, int n)
291 {
292 	kauth_cred_t cred = l->l_cred;
293 
294 	KASSERT(mutex_owned(chgp->p_lock));
295 
296 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
297 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
298 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
299 		return (EPERM);
300 
301 	if (n > PRIO_MAX)
302 		n = PRIO_MAX;
303 	if (n < PRIO_MIN)
304 		n = PRIO_MIN;
305 	n += NZERO;
306 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
307 	    KAUTH_ARG(n), NULL, NULL))
308 		return (EACCES);
309 	sched_nice(chgp, n);
310 	return (0);
311 }
312 
313 /* ARGSUSED */
314 int
315 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
316     register_t *retval)
317 {
318 	/* {
319 		syscallarg(int) which;
320 		syscallarg(const struct rlimit *) rlp;
321 	} */
322 	int which = SCARG(uap, which);
323 	struct rlimit alim;
324 	int error;
325 
326 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
327 	if (error)
328 		return (error);
329 	return (dosetrlimit(l, l->l_proc, which, &alim));
330 }
331 
332 int
333 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
334 {
335 	struct rlimit *alimp;
336 	int error;
337 
338 	if ((u_int)which >= RLIM_NLIMITS)
339 		return (EINVAL);
340 
341 	if (limp->rlim_cur > limp->rlim_max) {
342 		/*
343 		 * This is programming error. According to SUSv2, we should
344 		 * return error in this case.
345 		 */
346 		return (EINVAL);
347 	}
348 
349 	alimp = &p->p_rlimit[which];
350 	/* if we don't change the value, no need to limcopy() */
351 	if (limp->rlim_cur == alimp->rlim_cur &&
352 	    limp->rlim_max == alimp->rlim_max)
353 		return 0;
354 
355 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
356 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
357 	if (error)
358 		return (error);
359 
360 	lim_privatise(p, false);
361 	/* p->p_limit is now unchangeable */
362 	alimp = &p->p_rlimit[which];
363 
364 	switch (which) {
365 
366 	case RLIMIT_DATA:
367 		if (limp->rlim_cur > maxdmap)
368 			limp->rlim_cur = maxdmap;
369 		if (limp->rlim_max > maxdmap)
370 			limp->rlim_max = maxdmap;
371 		break;
372 
373 	case RLIMIT_STACK:
374 		if (limp->rlim_cur > maxsmap)
375 			limp->rlim_cur = maxsmap;
376 		if (limp->rlim_max > maxsmap)
377 			limp->rlim_max = maxsmap;
378 
379 		/*
380 		 * Return EINVAL if the new stack size limit is lower than
381 		 * current usage. Otherwise, the process would get SIGSEGV the
382 		 * moment it would try to access anything on it's current stack.
383 		 * This conforms to SUSv2.
384 		 */
385 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
386 		    || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
387 			return (EINVAL);
388 		}
389 
390 		/*
391 		 * Stack is allocated to the max at exec time with
392 		 * only "rlim_cur" bytes accessible (In other words,
393 		 * allocates stack dividing two contiguous regions at
394 		 * "rlim_cur" bytes boundary).
395 		 *
396 		 * Since allocation is done in terms of page, roundup
397 		 * "rlim_cur" (otherwise, contiguous regions
398 		 * overlap).  If stack limit is going up make more
399 		 * accessible, if going down make inaccessible.
400 		 */
401 		limp->rlim_cur = round_page(limp->rlim_cur);
402 		if (limp->rlim_cur != alimp->rlim_cur) {
403 			vaddr_t addr;
404 			vsize_t size;
405 			vm_prot_t prot;
406 
407 			if (limp->rlim_cur > alimp->rlim_cur) {
408 				prot = VM_PROT_READ | VM_PROT_WRITE;
409 				size = limp->rlim_cur - alimp->rlim_cur;
410 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
411 				    limp->rlim_cur;
412 			} else {
413 				prot = VM_PROT_NONE;
414 				size = alimp->rlim_cur - limp->rlim_cur;
415 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
416 				     alimp->rlim_cur;
417 			}
418 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
419 			    addr, addr+size, prot, false);
420 		}
421 		break;
422 
423 	case RLIMIT_NOFILE:
424 		if (limp->rlim_cur > maxfiles)
425 			limp->rlim_cur = maxfiles;
426 		if (limp->rlim_max > maxfiles)
427 			limp->rlim_max = maxfiles;
428 		break;
429 
430 	case RLIMIT_NPROC:
431 		if (limp->rlim_cur > maxproc)
432 			limp->rlim_cur = maxproc;
433 		if (limp->rlim_max > maxproc)
434 			limp->rlim_max = maxproc;
435 		break;
436 	}
437 
438 	mutex_enter(&p->p_limit->pl_lock);
439 	*alimp = *limp;
440 	mutex_exit(&p->p_limit->pl_lock);
441 	return (0);
442 }
443 
444 /* ARGSUSED */
445 int
446 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
447     register_t *retval)
448 {
449 	/* {
450 		syscallarg(int) which;
451 		syscallarg(struct rlimit *) rlp;
452 	} */
453 	struct proc *p = l->l_proc;
454 	int which = SCARG(uap, which);
455 	struct rlimit rl;
456 
457 	if ((u_int)which >= RLIM_NLIMITS)
458 		return (EINVAL);
459 
460 	mutex_enter(p->p_lock);
461 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
462 	mutex_exit(p->p_lock);
463 
464 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
465 }
466 
467 /*
468  * Transform the running time and tick information in proc p into user,
469  * system, and interrupt time usage.
470  *
471  * Should be called with p->p_lock held unless called from exit1().
472  */
473 void
474 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
475     struct timeval *ip, struct timeval *rp)
476 {
477 	uint64_t u, st, ut, it, tot;
478 	struct lwp *l;
479 	struct bintime tm;
480 	struct timeval tv;
481 
482 	mutex_spin_enter(&p->p_stmutex);
483 	st = p->p_sticks;
484 	ut = p->p_uticks;
485 	it = p->p_iticks;
486 	mutex_spin_exit(&p->p_stmutex);
487 
488 	tm = p->p_rtime;
489 
490 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
491 		lwp_lock(l);
492 		bintime_add(&tm, &l->l_rtime);
493 		if ((l->l_pflag & LP_RUNNING) != 0) {
494 			struct bintime diff;
495 			/*
496 			 * Adjust for the current time slice.  This is
497 			 * actually fairly important since the error
498 			 * here is on the order of a time quantum,
499 			 * which is much greater than the sampling
500 			 * error.
501 			 */
502 			binuptime(&diff);
503 			bintime_sub(&diff, &l->l_stime);
504 			bintime_add(&tm, &diff);
505 		}
506 		lwp_unlock(l);
507 	}
508 
509 	tot = st + ut + it;
510 	bintime2timeval(&tm, &tv);
511 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
512 
513 	if (tot == 0) {
514 		/* No ticks, so can't use to share time out, split 50-50 */
515 		st = ut = u / 2;
516 	} else {
517 		st = (u * st) / tot;
518 		ut = (u * ut) / tot;
519 	}
520 	if (sp != NULL) {
521 		sp->tv_sec = st / 1000000;
522 		sp->tv_usec = st % 1000000;
523 	}
524 	if (up != NULL) {
525 		up->tv_sec = ut / 1000000;
526 		up->tv_usec = ut % 1000000;
527 	}
528 	if (ip != NULL) {
529 		if (it != 0)
530 			it = (u * it) / tot;
531 		ip->tv_sec = it / 1000000;
532 		ip->tv_usec = it % 1000000;
533 	}
534 	if (rp != NULL) {
535 		*rp = tv;
536 	}
537 }
538 
539 /* ARGSUSED */
540 int
541 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
542     register_t *retval)
543 {
544 	/* {
545 		syscallarg(int) who;
546 		syscallarg(struct rusage *) rusage;
547 	} */
548 	struct rusage ru;
549 	struct proc *p = l->l_proc;
550 
551 	switch (SCARG(uap, who)) {
552 	case RUSAGE_SELF:
553 		mutex_enter(p->p_lock);
554 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
555 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
556 		rulwps(p, &ru);
557 		mutex_exit(p->p_lock);
558 		break;
559 
560 	case RUSAGE_CHILDREN:
561 		mutex_enter(p->p_lock);
562 		memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
563 		mutex_exit(p->p_lock);
564 		break;
565 
566 	default:
567 		return EINVAL;
568 	}
569 
570 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
571 }
572 
573 void
574 ruadd(struct rusage *ru, struct rusage *ru2)
575 {
576 	long *ip, *ip2;
577 	int i;
578 
579 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
580 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
581 	if (ru->ru_maxrss < ru2->ru_maxrss)
582 		ru->ru_maxrss = ru2->ru_maxrss;
583 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
584 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
585 		*ip++ += *ip2++;
586 }
587 
588 void
589 rulwps(proc_t *p, struct rusage *ru)
590 {
591 	lwp_t *l;
592 
593 	KASSERT(mutex_owned(p->p_lock));
594 
595 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
596 		ruadd(ru, &l->l_ru);
597 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
598 		ru->ru_nivcsw += l->l_nivcsw;
599 	}
600 }
601 
602 /*
603  * Make a copy of the plimit structure.
604  * We share these structures copy-on-write after fork,
605  * and copy when a limit is changed.
606  *
607  * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
608  * we are copying to change beneath our feet!
609  */
610 struct plimit *
611 lim_copy(struct plimit *lim)
612 {
613 	struct plimit *newlim;
614 	char *corename;
615 	size_t alen, len;
616 
617 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
618 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
619 	newlim->pl_flags = 0;
620 	newlim->pl_refcnt = 1;
621 	newlim->pl_sv_limit = NULL;
622 
623 	mutex_enter(&lim->pl_lock);
624 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
625 	    sizeof(struct rlimit) * RLIM_NLIMITS);
626 
627 	alen = 0;
628 	corename = NULL;
629 	for (;;) {
630 		if (lim->pl_corename == defcorename) {
631 			newlim->pl_corename = defcorename;
632 			break;
633 		}
634 		len = strlen(lim->pl_corename) + 1;
635 		if (len <= alen) {
636 			newlim->pl_corename = corename;
637 			memcpy(corename, lim->pl_corename, len);
638 			corename = NULL;
639 			break;
640 		}
641 		mutex_exit(&lim->pl_lock);
642 		if (corename != NULL)
643 			free(corename, M_TEMP);
644 		alen = len;
645 		corename = malloc(alen, M_TEMP, M_WAITOK);
646 		mutex_enter(&lim->pl_lock);
647 	}
648 	mutex_exit(&lim->pl_lock);
649 	if (corename != NULL)
650 		free(corename, M_TEMP);
651 	return newlim;
652 }
653 
654 void
655 lim_addref(struct plimit *lim)
656 {
657 	atomic_inc_uint(&lim->pl_refcnt);
658 }
659 
660 /*
661  * Give a process it's own private plimit structure.
662  * This will only be shared (in fork) if modifications are to be shared.
663  */
664 void
665 lim_privatise(struct proc *p, bool set_shared)
666 {
667 	struct plimit *lim, *newlim;
668 
669 	lim = p->p_limit;
670 	if (lim->pl_flags & PL_WRITEABLE) {
671 		if (set_shared)
672 			lim->pl_flags |= PL_SHAREMOD;
673 		return;
674 	}
675 
676 	if (set_shared && lim->pl_flags & PL_SHAREMOD)
677 		return;
678 
679 	newlim = lim_copy(lim);
680 
681 	mutex_enter(p->p_lock);
682 	if (p->p_limit->pl_flags & PL_WRITEABLE) {
683 		/* Someone crept in while we were busy */
684 		mutex_exit(p->p_lock);
685 		limfree(newlim);
686 		if (set_shared)
687 			p->p_limit->pl_flags |= PL_SHAREMOD;
688 		return;
689 	}
690 
691 	/*
692 	 * Since most accesses to p->p_limit aren't locked, we must not
693 	 * delete the old limit structure yet.
694 	 */
695 	newlim->pl_sv_limit = p->p_limit;
696 	newlim->pl_flags |= PL_WRITEABLE;
697 	if (set_shared)
698 		newlim->pl_flags |= PL_SHAREMOD;
699 	p->p_limit = newlim;
700 	mutex_exit(p->p_lock);
701 }
702 
703 void
704 limfree(struct plimit *lim)
705 {
706 	struct plimit *sv_lim;
707 
708 	do {
709 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
710 			return;
711 		if (lim->pl_corename != defcorename)
712 			free(lim->pl_corename, M_TEMP);
713 		sv_lim = lim->pl_sv_limit;
714 		mutex_destroy(&lim->pl_lock);
715 		pool_cache_put(plimit_cache, lim);
716 	} while ((lim = sv_lim) != NULL);
717 }
718 
719 struct pstats *
720 pstatscopy(struct pstats *ps)
721 {
722 
723 	struct pstats *newps;
724 
725 	newps = pool_cache_get(pstats_cache, PR_WAITOK);
726 
727 	memset(&newps->pstat_startzero, 0,
728 	(unsigned) ((char *)&newps->pstat_endzero -
729 		    (char *)&newps->pstat_startzero));
730 	memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
731 	((char *)&newps->pstat_endcopy -
732 	 (char *)&newps->pstat_startcopy));
733 
734 	return (newps);
735 
736 }
737 
738 void
739 pstatsfree(struct pstats *ps)
740 {
741 
742 	pool_cache_put(pstats_cache, ps);
743 }
744 
745 /*
746  * sysctl interface in five parts
747  */
748 
749 /*
750  * a routine for sysctl proc subtree helpers that need to pick a valid
751  * process by pid.
752  */
753 static int
754 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
755 {
756 	struct proc *ptmp;
757 	int error = 0;
758 
759 	if (pid == PROC_CURPROC)
760 		ptmp = l->l_proc;
761 	else if ((ptmp = pfind(pid)) == NULL)
762 		error = ESRCH;
763 
764 	*p2 = ptmp;
765 	return (error);
766 }
767 
768 /*
769  * sysctl helper routine for setting a process's specific corefile
770  * name.  picks the process based on the given pid and checks the
771  * correctness of the new value.
772  */
773 static int
774 sysctl_proc_corename(SYSCTLFN_ARGS)
775 {
776 	struct proc *ptmp;
777 	struct plimit *lim;
778 	int error = 0, len;
779 	char *cname;
780 	char *ocore;
781 	char *tmp;
782 	struct sysctlnode node;
783 
784 	/*
785 	 * is this all correct?
786 	 */
787 	if (namelen != 0)
788 		return (EINVAL);
789 	if (name[-1] != PROC_PID_CORENAME)
790 		return (EINVAL);
791 
792 	/*
793 	 * whom are we tweaking?
794 	 */
795 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
796 	if (error)
797 		return (error);
798 
799 	/* XXX-elad */
800 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
801 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
802 	if (error)
803 		return (error);
804 
805 	if (newp == NULL) {
806 		error = kauth_authorize_process(l->l_cred,
807 		    KAUTH_PROCESS_CORENAME, ptmp,
808 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
809 		if (error)
810 			return (error);
811 	}
812 
813 	/*
814 	 * let them modify a temporary copy of the core name
815 	 */
816 	cname = PNBUF_GET();
817 	lim = ptmp->p_limit;
818 	mutex_enter(&lim->pl_lock);
819 	strlcpy(cname, lim->pl_corename, MAXPATHLEN);
820 	mutex_exit(&lim->pl_lock);
821 
822 	node = *rnode;
823 	node.sysctl_data = cname;
824 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
825 
826 	/*
827 	 * if that failed, or they have nothing new to say, or we've
828 	 * heard it before...
829 	 */
830 	if (error || newp == NULL)
831 		goto done;
832 	lim = ptmp->p_limit;
833 	mutex_enter(&lim->pl_lock);
834 	error = strcmp(cname, lim->pl_corename);
835 	mutex_exit(&lim->pl_lock);
836 	if (error == 0)
837 		/* Unchanged */
838 		goto done;
839 
840 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
841 	    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
842 	if (error)
843 		return (error);
844 
845 	/*
846 	 * no error yet and cname now has the new core name in it.
847 	 * let's see if it looks acceptable.  it must be either "core"
848 	 * or end in ".core" or "/core".
849 	 */
850 	len = strlen(cname);
851 	if (len < 4) {
852 		error = EINVAL;
853 	} else if (strcmp(cname + len - 4, "core") != 0) {
854 		error = EINVAL;
855 	} else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
856 		error = EINVAL;
857 	}
858 	if (error != 0) {
859 		goto done;
860 	}
861 
862 	/*
863 	 * hmm...looks good.  now...where do we put it?
864 	 */
865 	tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
866 	if (tmp == NULL) {
867 		error = ENOMEM;
868 		goto done;
869 	}
870 	memcpy(tmp, cname, len + 1);
871 
872 	lim_privatise(ptmp, false);
873 	lim = ptmp->p_limit;
874 	mutex_enter(&lim->pl_lock);
875 	ocore = lim->pl_corename;
876 	lim->pl_corename = tmp;
877 	mutex_exit(&lim->pl_lock);
878 	if (ocore != defcorename)
879 		free(ocore, M_TEMP);
880 
881 done:
882 	PNBUF_PUT(cname);
883 	return error;
884 }
885 
886 /*
887  * sysctl helper routine for checking/setting a process's stop flags,
888  * one for fork and one for exec.
889  */
890 static int
891 sysctl_proc_stop(SYSCTLFN_ARGS)
892 {
893 	struct proc *ptmp;
894 	int i, f, error = 0;
895 	struct sysctlnode node;
896 
897 	if (namelen != 0)
898 		return (EINVAL);
899 
900 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
901 	if (error)
902 		return (error);
903 
904 	/* XXX-elad */
905 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
906 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
907 	if (error)
908 		return (error);
909 
910 	switch (rnode->sysctl_num) {
911 	case PROC_PID_STOPFORK:
912 		f = PS_STOPFORK;
913 		break;
914 	case PROC_PID_STOPEXEC:
915 		f = PS_STOPEXEC;
916 		break;
917 	case PROC_PID_STOPEXIT:
918 		f = PS_STOPEXIT;
919 		break;
920 	default:
921 		return (EINVAL);
922 	}
923 
924 	i = (ptmp->p_flag & f) ? 1 : 0;
925 	node = *rnode;
926 	node.sysctl_data = &i;
927 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
928 	if (error || newp == NULL)
929 		return (error);
930 
931 	mutex_enter(ptmp->p_lock);
932 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
933 	    ptmp, KAUTH_ARG(f), NULL, NULL);
934 	if (!error) {
935 		if (i) {
936 			ptmp->p_sflag |= f;
937 		} else {
938 			ptmp->p_sflag &= ~f;
939 		}
940 	}
941 	mutex_exit(ptmp->p_lock);
942 
943 	return error;
944 }
945 
946 /*
947  * sysctl helper routine for a process's rlimits as exposed by sysctl.
948  */
949 static int
950 sysctl_proc_plimit(SYSCTLFN_ARGS)
951 {
952 	struct proc *ptmp;
953 	u_int limitno;
954 	int which, error = 0;
955         struct rlimit alim;
956 	struct sysctlnode node;
957 
958 	if (namelen != 0)
959 		return (EINVAL);
960 
961 	which = name[-1];
962 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
963 	    which != PROC_PID_LIMIT_TYPE_HARD)
964 		return (EINVAL);
965 
966 	limitno = name[-2] - 1;
967 	if (limitno >= RLIM_NLIMITS)
968 		return (EINVAL);
969 
970 	if (name[-3] != PROC_PID_LIMIT)
971 		return (EINVAL);
972 
973 	error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
974 	if (error)
975 		return (error);
976 
977 	/* XXX-elad */
978 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
979 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
980 	if (error)
981 		return (error);
982 
983 	/* Check if we can view limits. */
984 	if (newp == NULL) {
985 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
986 		    ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
987 		    KAUTH_ARG(which));
988 		if (error)
989 			return (error);
990 	}
991 
992 	node = *rnode;
993 	memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
994 	if (which == PROC_PID_LIMIT_TYPE_HARD)
995 		node.sysctl_data = &alim.rlim_max;
996 	else
997 		node.sysctl_data = &alim.rlim_cur;
998 
999 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1000 	if (error || newp == NULL)
1001 		return (error);
1002 
1003 	return (dosetrlimit(l, ptmp, limitno, &alim));
1004 }
1005 
1006 /*
1007  * and finally, the actually glue that sticks it to the tree
1008  */
1009 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
1010 {
1011 
1012 	sysctl_createv(clog, 0, NULL, NULL,
1013 		       CTLFLAG_PERMANENT,
1014 		       CTLTYPE_NODE, "proc", NULL,
1015 		       NULL, 0, NULL, 0,
1016 		       CTL_PROC, CTL_EOL);
1017 	sysctl_createv(clog, 0, NULL, NULL,
1018 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1019 		       CTLTYPE_NODE, "curproc",
1020 		       SYSCTL_DESCR("Per-process settings"),
1021 		       NULL, 0, NULL, 0,
1022 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
1023 
1024 	sysctl_createv(clog, 0, NULL, NULL,
1025 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1026 		       CTLTYPE_STRING, "corename",
1027 		       SYSCTL_DESCR("Core file name"),
1028 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1029 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1030 	sysctl_createv(clog, 0, NULL, NULL,
1031 		       CTLFLAG_PERMANENT,
1032 		       CTLTYPE_NODE, "rlimit",
1033 		       SYSCTL_DESCR("Process limits"),
1034 		       NULL, 0, NULL, 0,
1035 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1036 
1037 #define create_proc_plimit(s, n) do {					\
1038 	sysctl_createv(clog, 0, NULL, NULL,				\
1039 		       CTLFLAG_PERMANENT,				\
1040 		       CTLTYPE_NODE, s,					\
1041 		       SYSCTL_DESCR("Process " s " limits"),		\
1042 		       NULL, 0, NULL, 0,				\
1043 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1044 		       CTL_EOL);					\
1045 	sysctl_createv(clog, 0, NULL, NULL,				\
1046 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1047 		       CTLTYPE_QUAD, "soft",				\
1048 		       SYSCTL_DESCR("Process soft " s " limit"),	\
1049 		       sysctl_proc_plimit, 0, NULL, 0,			\
1050 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1051 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
1052 	sysctl_createv(clog, 0, NULL, NULL,				\
1053 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1054 		       CTLTYPE_QUAD, "hard",				\
1055 		       SYSCTL_DESCR("Process hard " s " limit"),	\
1056 		       sysctl_proc_plimit, 0, NULL, 0,			\
1057 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1058 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
1059 	} while (0/*CONSTCOND*/)
1060 
1061 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
1062 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
1063 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
1064 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
1065 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
1066 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
1067 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
1068 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
1069 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
1070 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
1071 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
1072 
1073 #undef create_proc_plimit
1074 
1075 	sysctl_createv(clog, 0, NULL, NULL,
1076 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1077 		       CTLTYPE_INT, "stopfork",
1078 		       SYSCTL_DESCR("Stop process at fork(2)"),
1079 		       sysctl_proc_stop, 0, NULL, 0,
1080 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1081 	sysctl_createv(clog, 0, NULL, NULL,
1082 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1083 		       CTLTYPE_INT, "stopexec",
1084 		       SYSCTL_DESCR("Stop process at execve(2)"),
1085 		       sysctl_proc_stop, 0, NULL, 0,
1086 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1087 	sysctl_createv(clog, 0, NULL, NULL,
1088 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1089 		       CTLTYPE_INT, "stopexit",
1090 		       SYSCTL_DESCR("Stop process before completing exit"),
1091 		       sysctl_proc_stop, 0, NULL, 0,
1092 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1093 }
1094