1 /* $NetBSD: kern_resource.c,v 1.169 2012/06/09 02:31:15 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.169 2012/06/09 02:31:15 christos Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/kmem.h> 48 #include <sys/namei.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/sysctl.h> 52 #include <sys/timevar.h> 53 #include <sys/kauth.h> 54 #include <sys/atomic.h> 55 #include <sys/mount.h> 56 #include <sys/syscallargs.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Maximum process data and stack limits. 63 * They are variables so they are patchable. 64 */ 65 rlim_t maxdmap = MAXDSIZ; 66 rlim_t maxsmap = MAXSSIZ; 67 68 static pool_cache_t plimit_cache __read_mostly; 69 static pool_cache_t pstats_cache __read_mostly; 70 71 static kauth_listener_t resource_listener; 72 static struct sysctllog *proc_sysctllog; 73 74 static int donice(struct lwp *, struct proc *, int); 75 static void sysctl_proc_setup(void); 76 77 static int 78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 79 void *arg0, void *arg1, void *arg2, void *arg3) 80 { 81 struct proc *p; 82 int result; 83 84 result = KAUTH_RESULT_DEFER; 85 p = arg0; 86 87 switch (action) { 88 case KAUTH_PROCESS_NICE: 89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && 90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { 91 break; 92 } 93 94 if ((u_long)arg1 >= p->p_nice) 95 result = KAUTH_RESULT_ALLOW; 96 97 break; 98 99 case KAUTH_PROCESS_RLIMIT: { 100 enum kauth_process_req req; 101 102 req = (enum kauth_process_req)(unsigned long)arg1; 103 104 switch (req) { 105 case KAUTH_REQ_PROCESS_RLIMIT_GET: 106 result = KAUTH_RESULT_ALLOW; 107 break; 108 109 case KAUTH_REQ_PROCESS_RLIMIT_SET: { 110 struct rlimit *new_rlimit; 111 u_long which; 112 113 if ((p != curlwp->l_proc) && 114 (proc_uidmatch(cred, p->p_cred) != 0)) 115 break; 116 117 new_rlimit = arg2; 118 which = (u_long)arg3; 119 120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) 121 result = KAUTH_RESULT_ALLOW; 122 123 break; 124 } 125 126 default: 127 break; 128 } 129 130 break; 131 } 132 133 default: 134 break; 135 } 136 137 return result; 138 } 139 140 void 141 resource_init(void) 142 { 143 144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 148 149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 150 resource_listener_cb, NULL); 151 152 sysctl_proc_setup(); 153 } 154 155 /* 156 * Resource controls and accounting. 157 */ 158 159 int 160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 161 register_t *retval) 162 { 163 /* { 164 syscallarg(int) which; 165 syscallarg(id_t) who; 166 } */ 167 struct proc *curp = l->l_proc, *p; 168 id_t who = SCARG(uap, who); 169 int low = NZERO + PRIO_MAX + 1; 170 171 mutex_enter(proc_lock); 172 switch (SCARG(uap, which)) { 173 case PRIO_PROCESS: 174 p = who ? proc_find(who) : curp;; 175 if (p != NULL) 176 low = p->p_nice; 177 break; 178 179 case PRIO_PGRP: { 180 struct pgrp *pg; 181 182 if (who == 0) 183 pg = curp->p_pgrp; 184 else if ((pg = pgrp_find(who)) == NULL) 185 break; 186 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 187 if (p->p_nice < low) 188 low = p->p_nice; 189 } 190 break; 191 } 192 193 case PRIO_USER: 194 if (who == 0) 195 who = (int)kauth_cred_geteuid(l->l_cred); 196 PROCLIST_FOREACH(p, &allproc) { 197 mutex_enter(p->p_lock); 198 if (kauth_cred_geteuid(p->p_cred) == 199 (uid_t)who && p->p_nice < low) 200 low = p->p_nice; 201 mutex_exit(p->p_lock); 202 } 203 break; 204 205 default: 206 mutex_exit(proc_lock); 207 return EINVAL; 208 } 209 mutex_exit(proc_lock); 210 211 if (low == NZERO + PRIO_MAX + 1) { 212 return ESRCH; 213 } 214 *retval = low - NZERO; 215 return 0; 216 } 217 218 int 219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 220 register_t *retval) 221 { 222 /* { 223 syscallarg(int) which; 224 syscallarg(id_t) who; 225 syscallarg(int) prio; 226 } */ 227 struct proc *curp = l->l_proc, *p; 228 id_t who = SCARG(uap, who); 229 int found = 0, error = 0; 230 231 mutex_enter(proc_lock); 232 switch (SCARG(uap, which)) { 233 case PRIO_PROCESS: 234 p = who ? proc_find(who) : curp; 235 if (p != NULL) { 236 mutex_enter(p->p_lock); 237 found++; 238 error = donice(l, p, SCARG(uap, prio)); 239 mutex_exit(p->p_lock); 240 } 241 break; 242 243 case PRIO_PGRP: { 244 struct pgrp *pg; 245 246 if (who == 0) 247 pg = curp->p_pgrp; 248 else if ((pg = pgrp_find(who)) == NULL) 249 break; 250 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 251 mutex_enter(p->p_lock); 252 found++; 253 error = donice(l, p, SCARG(uap, prio)); 254 mutex_exit(p->p_lock); 255 if (error) 256 break; 257 } 258 break; 259 } 260 261 case PRIO_USER: 262 if (who == 0) 263 who = (int)kauth_cred_geteuid(l->l_cred); 264 PROCLIST_FOREACH(p, &allproc) { 265 mutex_enter(p->p_lock); 266 if (kauth_cred_geteuid(p->p_cred) == 267 (uid_t)SCARG(uap, who)) { 268 found++; 269 error = donice(l, p, SCARG(uap, prio)); 270 } 271 mutex_exit(p->p_lock); 272 if (error) 273 break; 274 } 275 break; 276 277 default: 278 mutex_exit(proc_lock); 279 return EINVAL; 280 } 281 mutex_exit(proc_lock); 282 283 return (found == 0) ? ESRCH : error; 284 } 285 286 /* 287 * Renice a process. 288 * 289 * Call with the target process' credentials locked. 290 */ 291 static int 292 donice(struct lwp *l, struct proc *chgp, int n) 293 { 294 kauth_cred_t cred = l->l_cred; 295 296 KASSERT(mutex_owned(chgp->p_lock)); 297 298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 301 return EPERM; 302 303 if (n > PRIO_MAX) { 304 n = PRIO_MAX; 305 } 306 if (n < PRIO_MIN) { 307 n = PRIO_MIN; 308 } 309 n += NZERO; 310 311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 312 KAUTH_ARG(n), NULL, NULL)) { 313 return EACCES; 314 } 315 316 sched_nice(chgp, n); 317 return 0; 318 } 319 320 int 321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 322 register_t *retval) 323 { 324 /* { 325 syscallarg(int) which; 326 syscallarg(const struct rlimit *) rlp; 327 } */ 328 int error, which = SCARG(uap, which); 329 struct rlimit alim; 330 331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 332 if (error) { 333 return error; 334 } 335 return dosetrlimit(l, l->l_proc, which, &alim); 336 } 337 338 int 339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 340 { 341 struct rlimit *alimp; 342 int error; 343 344 if ((u_int)which >= RLIM_NLIMITS) 345 return EINVAL; 346 347 if (limp->rlim_cur > limp->rlim_max) { 348 /* 349 * This is programming error. According to SUSv2, we should 350 * return error in this case. 351 */ 352 return EINVAL; 353 } 354 355 alimp = &p->p_rlimit[which]; 356 /* if we don't change the value, no need to limcopy() */ 357 if (limp->rlim_cur == alimp->rlim_cur && 358 limp->rlim_max == alimp->rlim_max) 359 return 0; 360 361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 363 if (error) 364 return error; 365 366 lim_privatise(p); 367 /* p->p_limit is now unchangeable */ 368 alimp = &p->p_rlimit[which]; 369 370 switch (which) { 371 372 case RLIMIT_DATA: 373 if (limp->rlim_cur > maxdmap) 374 limp->rlim_cur = maxdmap; 375 if (limp->rlim_max > maxdmap) 376 limp->rlim_max = maxdmap; 377 break; 378 379 case RLIMIT_STACK: 380 if (limp->rlim_cur > maxsmap) 381 limp->rlim_cur = maxsmap; 382 if (limp->rlim_max > maxsmap) 383 limp->rlim_max = maxsmap; 384 385 /* 386 * Return EINVAL if the new stack size limit is lower than 387 * current usage. Otherwise, the process would get SIGSEGV the 388 * moment it would try to access anything on it's current stack. 389 * This conforms to SUSv2. 390 */ 391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE || 392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 393 return EINVAL; 394 } 395 396 /* 397 * Stack is allocated to the max at exec time with 398 * only "rlim_cur" bytes accessible (In other words, 399 * allocates stack dividing two contiguous regions at 400 * "rlim_cur" bytes boundary). 401 * 402 * Since allocation is done in terms of page, roundup 403 * "rlim_cur" (otherwise, contiguous regions 404 * overlap). If stack limit is going up make more 405 * accessible, if going down make inaccessible. 406 */ 407 limp->rlim_cur = round_page(limp->rlim_cur); 408 if (limp->rlim_cur != alimp->rlim_cur) { 409 vaddr_t addr; 410 vsize_t size; 411 vm_prot_t prot; 412 413 if (limp->rlim_cur > alimp->rlim_cur) { 414 prot = VM_PROT_READ | VM_PROT_WRITE; 415 size = limp->rlim_cur - alimp->rlim_cur; 416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 417 limp->rlim_cur; 418 } else { 419 prot = VM_PROT_NONE; 420 size = alimp->rlim_cur - limp->rlim_cur; 421 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 422 alimp->rlim_cur; 423 } 424 (void) uvm_map_protect(&p->p_vmspace->vm_map, 425 addr, addr+size, prot, false); 426 } 427 break; 428 429 case RLIMIT_NOFILE: 430 if (limp->rlim_cur > maxfiles) 431 limp->rlim_cur = maxfiles; 432 if (limp->rlim_max > maxfiles) 433 limp->rlim_max = maxfiles; 434 break; 435 436 case RLIMIT_NPROC: 437 if (limp->rlim_cur > maxproc) 438 limp->rlim_cur = maxproc; 439 if (limp->rlim_max > maxproc) 440 limp->rlim_max = maxproc; 441 break; 442 443 case RLIMIT_NTHR: 444 if (limp->rlim_cur > maxlwp) 445 limp->rlim_cur = maxlwp; 446 if (limp->rlim_max > maxlwp) 447 limp->rlim_max = maxlwp; 448 break; 449 } 450 451 mutex_enter(&p->p_limit->pl_lock); 452 *alimp = *limp; 453 mutex_exit(&p->p_limit->pl_lock); 454 return 0; 455 } 456 457 int 458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 459 register_t *retval) 460 { 461 /* { 462 syscallarg(int) which; 463 syscallarg(struct rlimit *) rlp; 464 } */ 465 struct proc *p = l->l_proc; 466 int which = SCARG(uap, which); 467 struct rlimit rl; 468 469 if ((u_int)which >= RLIM_NLIMITS) 470 return EINVAL; 471 472 mutex_enter(p->p_lock); 473 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 474 mutex_exit(p->p_lock); 475 476 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 477 } 478 479 /* 480 * Transform the running time and tick information in proc p into user, 481 * system, and interrupt time usage. 482 * 483 * Should be called with p->p_lock held unless called from exit1(). 484 */ 485 void 486 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 487 struct timeval *ip, struct timeval *rp) 488 { 489 uint64_t u, st, ut, it, tot; 490 struct lwp *l; 491 struct bintime tm; 492 struct timeval tv; 493 494 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock)); 495 496 mutex_spin_enter(&p->p_stmutex); 497 st = p->p_sticks; 498 ut = p->p_uticks; 499 it = p->p_iticks; 500 mutex_spin_exit(&p->p_stmutex); 501 502 tm = p->p_rtime; 503 504 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 505 lwp_lock(l); 506 bintime_add(&tm, &l->l_rtime); 507 if ((l->l_pflag & LP_RUNNING) != 0) { 508 struct bintime diff; 509 /* 510 * Adjust for the current time slice. This is 511 * actually fairly important since the error 512 * here is on the order of a time quantum, 513 * which is much greater than the sampling 514 * error. 515 */ 516 binuptime(&diff); 517 bintime_sub(&diff, &l->l_stime); 518 bintime_add(&tm, &diff); 519 } 520 lwp_unlock(l); 521 } 522 523 tot = st + ut + it; 524 bintime2timeval(&tm, &tv); 525 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 526 527 if (tot == 0) { 528 /* No ticks, so can't use to share time out, split 50-50 */ 529 st = ut = u / 2; 530 } else { 531 st = (u * st) / tot; 532 ut = (u * ut) / tot; 533 } 534 if (sp != NULL) { 535 sp->tv_sec = st / 1000000; 536 sp->tv_usec = st % 1000000; 537 } 538 if (up != NULL) { 539 up->tv_sec = ut / 1000000; 540 up->tv_usec = ut % 1000000; 541 } 542 if (ip != NULL) { 543 if (it != 0) 544 it = (u * it) / tot; 545 ip->tv_sec = it / 1000000; 546 ip->tv_usec = it % 1000000; 547 } 548 if (rp != NULL) { 549 *rp = tv; 550 } 551 } 552 553 int 554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 555 register_t *retval) 556 { 557 /* { 558 syscallarg(int) who; 559 syscallarg(struct rusage *) rusage; 560 } */ 561 struct rusage ru; 562 struct proc *p = l->l_proc; 563 564 switch (SCARG(uap, who)) { 565 case RUSAGE_SELF: 566 mutex_enter(p->p_lock); 567 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 568 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 569 rulwps(p, &ru); 570 mutex_exit(p->p_lock); 571 break; 572 573 case RUSAGE_CHILDREN: 574 mutex_enter(p->p_lock); 575 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru)); 576 mutex_exit(p->p_lock); 577 break; 578 579 default: 580 return EINVAL; 581 } 582 583 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 584 } 585 586 void 587 ruadd(struct rusage *ru, struct rusage *ru2) 588 { 589 long *ip, *ip2; 590 int i; 591 592 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 593 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 594 if (ru->ru_maxrss < ru2->ru_maxrss) 595 ru->ru_maxrss = ru2->ru_maxrss; 596 ip = &ru->ru_first; ip2 = &ru2->ru_first; 597 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 598 *ip++ += *ip2++; 599 } 600 601 void 602 rulwps(proc_t *p, struct rusage *ru) 603 { 604 lwp_t *l; 605 606 KASSERT(mutex_owned(p->p_lock)); 607 608 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 609 ruadd(ru, &l->l_ru); 610 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 611 ru->ru_nivcsw += l->l_nivcsw; 612 } 613 } 614 615 /* 616 * lim_copy: make a copy of the plimit structure. 617 * 618 * We use copy-on-write after fork, and copy when a limit is changed. 619 */ 620 struct plimit * 621 lim_copy(struct plimit *lim) 622 { 623 struct plimit *newlim; 624 char *corename; 625 size_t alen, len; 626 627 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 628 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 629 newlim->pl_writeable = false; 630 newlim->pl_refcnt = 1; 631 newlim->pl_sv_limit = NULL; 632 633 mutex_enter(&lim->pl_lock); 634 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 635 sizeof(struct rlimit) * RLIM_NLIMITS); 636 637 /* 638 * Note: the common case is a use of default core name. 639 */ 640 alen = 0; 641 corename = NULL; 642 for (;;) { 643 if (lim->pl_corename == defcorename) { 644 newlim->pl_corename = defcorename; 645 newlim->pl_cnlen = 0; 646 break; 647 } 648 len = lim->pl_cnlen; 649 if (len == alen) { 650 newlim->pl_corename = corename; 651 newlim->pl_cnlen = len; 652 memcpy(corename, lim->pl_corename, len); 653 corename = NULL; 654 break; 655 } 656 mutex_exit(&lim->pl_lock); 657 if (corename) { 658 kmem_free(corename, alen); 659 } 660 alen = len; 661 corename = kmem_alloc(alen, KM_SLEEP); 662 mutex_enter(&lim->pl_lock); 663 } 664 mutex_exit(&lim->pl_lock); 665 666 if (corename) { 667 kmem_free(corename, alen); 668 } 669 return newlim; 670 } 671 672 void 673 lim_addref(struct plimit *lim) 674 { 675 atomic_inc_uint(&lim->pl_refcnt); 676 } 677 678 /* 679 * lim_privatise: give a process its own private plimit structure. 680 */ 681 void 682 lim_privatise(proc_t *p) 683 { 684 struct plimit *lim = p->p_limit, *newlim; 685 686 if (lim->pl_writeable) { 687 return; 688 } 689 690 newlim = lim_copy(lim); 691 692 mutex_enter(p->p_lock); 693 if (p->p_limit->pl_writeable) { 694 /* Other thread won the race. */ 695 mutex_exit(p->p_lock); 696 lim_free(newlim); 697 return; 698 } 699 700 /* 701 * Since p->p_limit can be accessed without locked held, 702 * old limit structure must not be deleted yet. 703 */ 704 newlim->pl_sv_limit = p->p_limit; 705 newlim->pl_writeable = true; 706 p->p_limit = newlim; 707 mutex_exit(p->p_lock); 708 } 709 710 void 711 lim_setcorename(proc_t *p, char *name, size_t len) 712 { 713 struct plimit *lim; 714 char *oname; 715 size_t olen; 716 717 lim_privatise(p); 718 lim = p->p_limit; 719 720 mutex_enter(&lim->pl_lock); 721 oname = lim->pl_corename; 722 olen = lim->pl_cnlen; 723 lim->pl_corename = name; 724 lim->pl_cnlen = len; 725 mutex_exit(&lim->pl_lock); 726 727 if (oname != defcorename) { 728 kmem_free(oname, olen); 729 } 730 } 731 732 void 733 lim_free(struct plimit *lim) 734 { 735 struct plimit *sv_lim; 736 737 do { 738 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) { 739 return; 740 } 741 if (lim->pl_corename != defcorename) { 742 kmem_free(lim->pl_corename, lim->pl_cnlen); 743 } 744 sv_lim = lim->pl_sv_limit; 745 mutex_destroy(&lim->pl_lock); 746 pool_cache_put(plimit_cache, lim); 747 } while ((lim = sv_lim) != NULL); 748 } 749 750 struct pstats * 751 pstatscopy(struct pstats *ps) 752 { 753 struct pstats *nps; 754 size_t len; 755 756 nps = pool_cache_get(pstats_cache, PR_WAITOK); 757 758 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero; 759 memset(&nps->pstat_startzero, 0, len); 760 761 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy; 762 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len); 763 764 return nps; 765 } 766 767 void 768 pstatsfree(struct pstats *ps) 769 { 770 771 pool_cache_put(pstats_cache, ps); 772 } 773 774 /* 775 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that 776 * need to pick a valid process by PID. 777 * 778 * => Hold a reference on the process, on success. 779 */ 780 static int 781 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2) 782 { 783 proc_t *p; 784 int error; 785 786 if (pid == PROC_CURPROC) { 787 p = l->l_proc; 788 } else { 789 mutex_enter(proc_lock); 790 p = proc_find(pid); 791 if (p == NULL) { 792 mutex_exit(proc_lock); 793 return ESRCH; 794 } 795 } 796 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 797 if (pid != PROC_CURPROC) { 798 mutex_exit(proc_lock); 799 } 800 *p2 = p; 801 return error; 802 } 803 804 /* 805 * sysctl_proc_corename: helper routine to get or set the core file name 806 * for a process specified by PID. 807 */ 808 static int 809 sysctl_proc_corename(SYSCTLFN_ARGS) 810 { 811 struct proc *p; 812 struct plimit *lim; 813 char *cnbuf, *cname; 814 struct sysctlnode node; 815 size_t len; 816 int error; 817 818 /* First, validate the request. */ 819 if (namelen != 0 || name[-1] != PROC_PID_CORENAME) 820 return EINVAL; 821 822 /* Find the process. Hold a reference (p_reflock), if found. */ 823 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 824 if (error) 825 return error; 826 827 /* XXX-elad */ 828 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 829 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 830 if (error) { 831 rw_exit(&p->p_reflock); 832 return error; 833 } 834 835 cnbuf = PNBUF_GET(); 836 837 if (oldp) { 838 /* Get case: copy the core name into the buffer. */ 839 error = kauth_authorize_process(l->l_cred, 840 KAUTH_PROCESS_CORENAME, p, 841 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 842 if (error) { 843 goto done; 844 } 845 lim = p->p_limit; 846 mutex_enter(&lim->pl_lock); 847 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN); 848 mutex_exit(&lim->pl_lock); 849 } 850 851 node = *rnode; 852 node.sysctl_data = cnbuf; 853 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 854 855 /* Return if error, or if caller is only getting the core name. */ 856 if (error || newp == NULL) { 857 goto done; 858 } 859 860 /* 861 * Set case. Check permission and then validate new core name. 862 * It must be either "core", "/core", or end in ".core". 863 */ 864 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 865 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL); 866 if (error) { 867 goto done; 868 } 869 len = strlen(cnbuf); 870 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) || 871 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) { 872 error = EINVAL; 873 goto done; 874 } 875 876 /* Allocate, copy and set the new core name for plimit structure. */ 877 cname = kmem_alloc(++len, KM_NOSLEEP); 878 if (cname == NULL) { 879 error = ENOMEM; 880 goto done; 881 } 882 memcpy(cname, cnbuf, len); 883 lim_setcorename(p, cname, len); 884 done: 885 rw_exit(&p->p_reflock); 886 PNBUF_PUT(cnbuf); 887 return error; 888 } 889 890 /* 891 * sysctl_proc_stop: helper routine for checking/setting the stop flags. 892 */ 893 static int 894 sysctl_proc_stop(SYSCTLFN_ARGS) 895 { 896 struct proc *p; 897 int isset, flag, error = 0; 898 struct sysctlnode node; 899 900 if (namelen != 0) 901 return EINVAL; 902 903 /* Find the process. Hold a reference (p_reflock), if found. */ 904 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 905 if (error) 906 return error; 907 908 /* XXX-elad */ 909 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 910 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 911 if (error) { 912 goto out; 913 } 914 915 /* Determine the flag. */ 916 switch (rnode->sysctl_num) { 917 case PROC_PID_STOPFORK: 918 flag = PS_STOPFORK; 919 break; 920 case PROC_PID_STOPEXEC: 921 flag = PS_STOPEXEC; 922 break; 923 case PROC_PID_STOPEXIT: 924 flag = PS_STOPEXIT; 925 break; 926 default: 927 error = EINVAL; 928 goto out; 929 } 930 isset = (p->p_flag & flag) ? 1 : 0; 931 node = *rnode; 932 node.sysctl_data = &isset; 933 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 934 935 /* Return if error, or if callers is only getting the flag. */ 936 if (error || newp == NULL) { 937 goto out; 938 } 939 940 /* Check if caller can set the flags. */ 941 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 942 p, KAUTH_ARG(flag), NULL, NULL); 943 if (error) { 944 goto out; 945 } 946 mutex_enter(p->p_lock); 947 if (isset) { 948 p->p_sflag |= flag; 949 } else { 950 p->p_sflag &= ~flag; 951 } 952 mutex_exit(p->p_lock); 953 out: 954 rw_exit(&p->p_reflock); 955 return error; 956 } 957 958 /* 959 * sysctl_proc_plimit: helper routine to get/set rlimits of a process. 960 */ 961 static int 962 sysctl_proc_plimit(SYSCTLFN_ARGS) 963 { 964 struct proc *p; 965 u_int limitno; 966 int which, error = 0; 967 struct rlimit alim; 968 struct sysctlnode node; 969 970 if (namelen != 0) 971 return EINVAL; 972 973 which = name[-1]; 974 if (which != PROC_PID_LIMIT_TYPE_SOFT && 975 which != PROC_PID_LIMIT_TYPE_HARD) 976 return EINVAL; 977 978 limitno = name[-2] - 1; 979 if (limitno >= RLIM_NLIMITS) 980 return EINVAL; 981 982 if (name[-3] != PROC_PID_LIMIT) 983 return EINVAL; 984 985 /* Find the process. Hold a reference (p_reflock), if found. */ 986 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p); 987 if (error) 988 return error; 989 990 /* XXX-elad */ 991 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 992 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 993 if (error) 994 goto out; 995 996 /* Check if caller can retrieve the limits. */ 997 if (newp == NULL) { 998 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 999 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 1000 KAUTH_ARG(which)); 1001 if (error) 1002 goto out; 1003 } 1004 1005 /* Retrieve the limits. */ 1006 node = *rnode; 1007 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim)); 1008 if (which == PROC_PID_LIMIT_TYPE_HARD) { 1009 node.sysctl_data = &alim.rlim_max; 1010 } else { 1011 node.sysctl_data = &alim.rlim_cur; 1012 } 1013 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1014 1015 /* Return if error, or if we are only retrieving the limits. */ 1016 if (error || newp == NULL) { 1017 goto out; 1018 } 1019 error = dosetrlimit(l, p, limitno, &alim); 1020 out: 1021 rw_exit(&p->p_reflock); 1022 return error; 1023 } 1024 1025 /* 1026 * Setup sysctl nodes. 1027 */ 1028 static void 1029 sysctl_proc_setup(void) 1030 { 1031 1032 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1033 CTLFLAG_PERMANENT, 1034 CTLTYPE_NODE, "proc", NULL, 1035 NULL, 0, NULL, 0, 1036 CTL_PROC, CTL_EOL); 1037 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1038 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 1039 CTLTYPE_NODE, "curproc", 1040 SYSCTL_DESCR("Per-process settings"), 1041 NULL, 0, NULL, 0, 1042 CTL_PROC, PROC_CURPROC, CTL_EOL); 1043 1044 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1045 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1046 CTLTYPE_STRING, "corename", 1047 SYSCTL_DESCR("Core file name"), 1048 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 1049 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 1050 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1051 CTLFLAG_PERMANENT, 1052 CTLTYPE_NODE, "rlimit", 1053 SYSCTL_DESCR("Process limits"), 1054 NULL, 0, NULL, 0, 1055 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 1056 1057 #define create_proc_plimit(s, n) do { \ 1058 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1059 CTLFLAG_PERMANENT, \ 1060 CTLTYPE_NODE, s, \ 1061 SYSCTL_DESCR("Process " s " limits"), \ 1062 NULL, 0, NULL, 0, \ 1063 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1064 CTL_EOL); \ 1065 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1066 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1067 CTLTYPE_QUAD, "soft", \ 1068 SYSCTL_DESCR("Process soft " s " limit"), \ 1069 sysctl_proc_plimit, 0, NULL, 0, \ 1070 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1071 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 1072 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1073 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1074 CTLTYPE_QUAD, "hard", \ 1075 SYSCTL_DESCR("Process hard " s " limit"), \ 1076 sysctl_proc_plimit, 0, NULL, 0, \ 1077 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1078 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 1079 } while (0/*CONSTCOND*/) 1080 1081 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 1082 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 1083 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1084 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1085 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1086 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1087 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1088 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1089 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1090 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1091 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1092 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR); 1093 1094 #undef create_proc_plimit 1095 1096 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1097 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1098 CTLTYPE_INT, "stopfork", 1099 SYSCTL_DESCR("Stop process at fork(2)"), 1100 sysctl_proc_stop, 0, NULL, 0, 1101 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1102 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1103 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1104 CTLTYPE_INT, "stopexec", 1105 SYSCTL_DESCR("Stop process at execve(2)"), 1106 sysctl_proc_stop, 0, NULL, 0, 1107 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1108 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1109 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1110 CTLTYPE_INT, "stopexit", 1111 SYSCTL_DESCR("Stop process before completing exit"), 1112 sysctl_proc_stop, 0, NULL, 0, 1113 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1114 } 1115