1 /* $NetBSD: kern_proc.c,v 1.150 2009/04/16 14:56:41 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.150 2009/04/16 14:56:41 rmind Exp $"); 66 67 #include "opt_kstack.h" 68 #include "opt_maxuprc.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> 74 #include <sys/resourcevar.h> 75 #include <sys/buf.h> 76 #include <sys/acct.h> 77 #include <sys/wait.h> 78 #include <sys/file.h> 79 #include <ufs/ufs/quota.h> 80 #include <sys/uio.h> 81 #include <sys/pool.h> 82 #include <sys/pset.h> 83 #include <sys/mbuf.h> 84 #include <sys/ioctl.h> 85 #include <sys/tty.h> 86 #include <sys/signalvar.h> 87 #include <sys/ras.h> 88 #include <sys/sa.h> 89 #include <sys/savar.h> 90 #include <sys/filedesc.h> 91 #include "sys/syscall_stats.h" 92 #include <sys/kauth.h> 93 #include <sys/sleepq.h> 94 #include <sys/atomic.h> 95 #include <sys/kmem.h> 96 97 #include <uvm/uvm.h> 98 #include <uvm/uvm_extern.h> 99 100 /* 101 * Other process lists 102 */ 103 104 struct proclist allproc; 105 struct proclist zombproc; /* resources have been freed */ 106 107 kmutex_t *proc_lock; 108 109 /* 110 * pid to proc lookup is done by indexing the pid_table array. 111 * Since pid numbers are only allocated when an empty slot 112 * has been found, there is no need to search any lists ever. 113 * (an orphaned pgrp will lock the slot, a session will lock 114 * the pgrp with the same number.) 115 * If the table is too small it is reallocated with twice the 116 * previous size and the entries 'unzipped' into the two halves. 117 * A linked list of free entries is passed through the pt_proc 118 * field of 'free' items - set odd to be an invalid ptr. 119 */ 120 121 struct pid_table { 122 struct proc *pt_proc; 123 struct pgrp *pt_pgrp; 124 }; 125 #if 1 /* strongly typed cast - should be a noop */ 126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 127 #else 128 #define p2u(p) ((uint)p) 129 #endif 130 #define P_VALID(p) (!(p2u(p) & 1)) 131 #define P_NEXT(p) (p2u(p) >> 1) 132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 133 134 #define INITIAL_PID_TABLE_SIZE (1 << 5) 135 static struct pid_table *pid_table; 136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 137 static uint pid_alloc_lim; /* max we allocate before growing table */ 138 static uint pid_alloc_cnt; /* number of allocated pids */ 139 140 /* links through free slots - never empty! */ 141 static uint next_free_pt, last_free_pt; 142 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 143 144 /* Components of the first process -- never freed. */ 145 146 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 147 148 struct session session0 = { 149 .s_count = 1, 150 .s_sid = 0, 151 }; 152 struct pgrp pgrp0 = { 153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 154 .pg_session = &session0, 155 }; 156 filedesc_t filedesc0; 157 struct cwdinfo cwdi0 = { 158 .cwdi_cmask = CMASK, /* see cmask below */ 159 .cwdi_refcnt = 1, 160 }; 161 struct plimit limit0; 162 struct pstats pstat0; 163 struct vmspace vmspace0; 164 struct sigacts sigacts0; 165 struct turnstile turnstile0; 166 struct proc proc0 = { 167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 169 .p_nlwps = 1, 170 .p_nrlwps = 1, 171 .p_nlwpid = 1, /* must match lwp0.l_lid */ 172 .p_pgrp = &pgrp0, 173 .p_comm = "system", 174 /* 175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 176 * when they exit. init(8) can easily wait them out for us. 177 */ 178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 179 .p_stat = SACTIVE, 180 .p_nice = NZERO, 181 .p_emul = &emul_netbsd, 182 .p_cwdi = &cwdi0, 183 .p_limit = &limit0, 184 .p_fd = &filedesc0, 185 .p_vmspace = &vmspace0, 186 .p_stats = &pstat0, 187 .p_sigacts = &sigacts0, 188 }; 189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 190 #ifdef LWP0_CPU_INFO 191 .l_cpu = LWP0_CPU_INFO, 192 #endif 193 .l_proc = &proc0, 194 .l_lid = 1, 195 .l_flag = LW_INMEM | LW_SYSTEM, 196 .l_stat = LSONPROC, 197 .l_ts = &turnstile0, 198 .l_syncobj = &sched_syncobj, 199 .l_refcnt = 1, 200 .l_priority = PRI_USER + NPRI_USER - 1, 201 .l_inheritedprio = -1, 202 .l_class = SCHED_OTHER, 203 .l_psid = PS_NONE, 204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 205 .l_name = __UNCONST("swapper"), 206 }; 207 kauth_cred_t cred0; 208 209 extern struct user *proc0paddr; 210 211 int nofile = NOFILE; 212 int maxuprc = MAXUPRC; 213 int cmask = CMASK; 214 215 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 216 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 217 218 /* 219 * The process list descriptors, used during pid allocation and 220 * by sysctl. No locking on this data structure is needed since 221 * it is completely static. 222 */ 223 const struct proclist_desc proclists[] = { 224 { &allproc }, 225 { &zombproc }, 226 { NULL }, 227 }; 228 229 static void orphanpg(struct pgrp *); 230 static void pg_delete(pid_t); 231 232 static specificdata_domain_t proc_specificdata_domain; 233 234 static pool_cache_t proc_cache; 235 236 /* 237 * Initialize global process hashing structures. 238 */ 239 void 240 procinit(void) 241 { 242 const struct proclist_desc *pd; 243 u_int i; 244 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 245 246 for (pd = proclists; pd->pd_list != NULL; pd++) 247 LIST_INIT(pd->pd_list); 248 249 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 250 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 251 * sizeof(struct pid_table), KM_SLEEP); 252 253 /* Set free list running through table... 254 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 255 for (i = 0; i <= pid_tbl_mask; i++) { 256 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 257 pid_table[i].pt_pgrp = 0; 258 } 259 /* slot 0 is just grabbed */ 260 next_free_pt = 1; 261 /* Need to fix last entry. */ 262 last_free_pt = pid_tbl_mask; 263 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 264 /* point at which we grow table - to avoid reusing pids too often */ 265 pid_alloc_lim = pid_tbl_mask - 1; 266 #undef LINK_EMPTY 267 268 proc_specificdata_domain = specificdata_domain_create(); 269 KASSERT(proc_specificdata_domain != NULL); 270 271 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 272 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 273 } 274 275 /* 276 * Initialize process 0. 277 */ 278 void 279 proc0_init(void) 280 { 281 struct proc *p; 282 struct pgrp *pg; 283 struct session *sess; 284 struct lwp *l; 285 rlim_t lim; 286 int i; 287 288 p = &proc0; 289 pg = &pgrp0; 290 sess = &session0; 291 l = &lwp0; 292 293 KASSERT(l->l_lid == p->p_nlwpid); 294 295 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 296 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 297 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 298 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 299 300 rw_init(&p->p_reflock); 301 cv_init(&p->p_waitcv, "wait"); 302 cv_init(&p->p_lwpcv, "lwpwait"); 303 304 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 305 306 pid_table[0].pt_proc = p; 307 LIST_INSERT_HEAD(&allproc, p, p_list); 308 LIST_INSERT_HEAD(&alllwp, l, l_list); 309 310 pid_table[0].pt_pgrp = pg; 311 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 312 313 #ifdef __HAVE_SYSCALL_INTERN 314 (*p->p_emul->e_syscall_intern)(p); 315 #endif 316 317 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 318 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 319 cv_init(&l->l_sigcv, "sigwait"); 320 321 /* Create credentials. */ 322 cred0 = kauth_cred_alloc(); 323 p->p_cred = cred0; 324 kauth_cred_hold(cred0); 325 l->l_cred = cred0; 326 327 /* Create the CWD info. */ 328 rw_init(&cwdi0.cwdi_lock); 329 330 /* Create the limits structures. */ 331 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 332 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 333 limit0.pl_rlimit[i].rlim_cur = 334 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 335 336 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 337 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 338 maxfiles < nofile ? maxfiles : nofile; 339 340 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 341 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 342 maxproc < maxuprc ? maxproc : maxuprc; 343 344 lim = ptoa(uvmexp.free); 345 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 346 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 347 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 348 limit0.pl_corename = defcorename; 349 limit0.pl_refcnt = 1; 350 limit0.pl_sv_limit = NULL; 351 352 /* Configure virtual memory system, set vm rlimits. */ 353 uvm_init_limits(p); 354 355 /* Initialize file descriptor table for proc0. */ 356 fd_init(&filedesc0); 357 358 /* 359 * Initialize proc0's vmspace, which uses the kernel pmap. 360 * All kernel processes (which never have user space mappings) 361 * share proc0's vmspace, and thus, the kernel pmap. 362 */ 363 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 364 trunc_page(VM_MAX_ADDRESS)); 365 366 l->l_addr = proc0paddr; /* XXX */ 367 368 /* Initialize signal state for proc0. XXX IPL_SCHED */ 369 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 370 siginit(p); 371 372 proc_initspecific(p); 373 lwp_initspecific(l); 374 375 SYSCALL_TIME_LWP_INIT(l); 376 } 377 378 /* 379 * Check that the specified process group is in the session of the 380 * specified process. 381 * Treats -ve ids as process ids. 382 * Used to validate TIOCSPGRP requests. 383 */ 384 int 385 pgid_in_session(struct proc *p, pid_t pg_id) 386 { 387 struct pgrp *pgrp; 388 struct session *session; 389 int error; 390 391 mutex_enter(proc_lock); 392 if (pg_id < 0) { 393 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 394 if (p1 == NULL) 395 return EINVAL; 396 pgrp = p1->p_pgrp; 397 } else { 398 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 399 if (pgrp == NULL) 400 return EINVAL; 401 } 402 session = pgrp->pg_session; 403 if (session != p->p_pgrp->pg_session) 404 error = EPERM; 405 else 406 error = 0; 407 mutex_exit(proc_lock); 408 409 return error; 410 } 411 412 /* 413 * p_inferior: is p an inferior of q? 414 */ 415 static inline bool 416 p_inferior(struct proc *p, struct proc *q) 417 { 418 419 KASSERT(mutex_owned(proc_lock)); 420 421 for (; p != q; p = p->p_pptr) 422 if (p->p_pid == 0) 423 return false; 424 return true; 425 } 426 427 /* 428 * Locate a process by number 429 */ 430 struct proc * 431 p_find(pid_t pid, uint flags) 432 { 433 struct proc *p; 434 char stat; 435 436 if (!(flags & PFIND_LOCKED)) 437 mutex_enter(proc_lock); 438 439 p = pid_table[pid & pid_tbl_mask].pt_proc; 440 441 /* Only allow live processes to be found by pid. */ 442 /* XXXSMP p_stat */ 443 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 444 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 445 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 446 if (flags & PFIND_UNLOCK_OK) 447 mutex_exit(proc_lock); 448 return p; 449 } 450 if (flags & PFIND_UNLOCK_FAIL) 451 mutex_exit(proc_lock); 452 return NULL; 453 } 454 455 456 /* 457 * Locate a process group by number 458 */ 459 struct pgrp * 460 pg_find(pid_t pgid, uint flags) 461 { 462 struct pgrp *pg; 463 464 if (!(flags & PFIND_LOCKED)) 465 mutex_enter(proc_lock); 466 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 467 /* 468 * Can't look up a pgrp that only exists because the session 469 * hasn't died yet (traditional) 470 */ 471 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 472 if (flags & PFIND_UNLOCK_FAIL) 473 mutex_exit(proc_lock); 474 return NULL; 475 } 476 477 if (flags & PFIND_UNLOCK_OK) 478 mutex_exit(proc_lock); 479 return pg; 480 } 481 482 static void 483 expand_pid_table(void) 484 { 485 size_t pt_size, tsz; 486 struct pid_table *n_pt, *new_pt; 487 struct proc *proc; 488 struct pgrp *pgrp; 489 pid_t pid; 490 u_int i; 491 492 pt_size = pid_tbl_mask + 1; 493 tsz = pt_size * 2 * sizeof(struct pid_table); 494 new_pt = kmem_alloc(tsz, KM_SLEEP); 495 496 mutex_enter(proc_lock); 497 if (pt_size != pid_tbl_mask + 1) { 498 /* Another process beat us to it... */ 499 mutex_exit(proc_lock); 500 kmem_free(new_pt, tsz); 501 return; 502 } 503 504 /* 505 * Copy entries from old table into new one. 506 * If 'pid' is 'odd' we need to place in the upper half, 507 * even pid's to the lower half. 508 * Free items stay in the low half so we don't have to 509 * fixup the reference to them. 510 * We stuff free items on the front of the freelist 511 * because we can't write to unmodified entries. 512 * Processing the table backwards maintains a semblance 513 * of issueing pid numbers that increase with time. 514 */ 515 i = pt_size - 1; 516 n_pt = new_pt + i; 517 for (; ; i--, n_pt--) { 518 proc = pid_table[i].pt_proc; 519 pgrp = pid_table[i].pt_pgrp; 520 if (!P_VALID(proc)) { 521 /* Up 'use count' so that link is valid */ 522 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 523 proc = P_FREE(pid); 524 if (pgrp) 525 pid = pgrp->pg_id; 526 } else 527 pid = proc->p_pid; 528 529 /* Save entry in appropriate half of table */ 530 n_pt[pid & pt_size].pt_proc = proc; 531 n_pt[pid & pt_size].pt_pgrp = pgrp; 532 533 /* Put other piece on start of free list */ 534 pid = (pid ^ pt_size) & ~pid_tbl_mask; 535 n_pt[pid & pt_size].pt_proc = 536 P_FREE((pid & ~pt_size) | next_free_pt); 537 n_pt[pid & pt_size].pt_pgrp = 0; 538 next_free_pt = i | (pid & pt_size); 539 if (i == 0) 540 break; 541 } 542 543 /* Save old table size and switch tables */ 544 tsz = pt_size * sizeof(struct pid_table); 545 n_pt = pid_table; 546 pid_table = new_pt; 547 pid_tbl_mask = pt_size * 2 - 1; 548 549 /* 550 * pid_max starts as PID_MAX (= 30000), once we have 16384 551 * allocated pids we need it to be larger! 552 */ 553 if (pid_tbl_mask > PID_MAX) { 554 pid_max = pid_tbl_mask * 2 + 1; 555 pid_alloc_lim |= pid_alloc_lim << 1; 556 } else 557 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 558 559 mutex_exit(proc_lock); 560 kmem_free(n_pt, tsz); 561 } 562 563 struct proc * 564 proc_alloc(void) 565 { 566 struct proc *p; 567 int nxt; 568 pid_t pid; 569 struct pid_table *pt; 570 571 p = pool_cache_get(proc_cache, PR_WAITOK); 572 p->p_stat = SIDL; /* protect against others */ 573 574 proc_initspecific(p); 575 /* allocate next free pid */ 576 577 for (;;expand_pid_table()) { 578 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 579 /* ensure pids cycle through 2000+ values */ 580 continue; 581 mutex_enter(proc_lock); 582 pt = &pid_table[next_free_pt]; 583 #ifdef DIAGNOSTIC 584 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 585 panic("proc_alloc: slot busy"); 586 #endif 587 nxt = P_NEXT(pt->pt_proc); 588 if (nxt & pid_tbl_mask) 589 break; 590 /* Table full - expand (NB last entry not used....) */ 591 mutex_exit(proc_lock); 592 } 593 594 /* pid is 'saved use count' + 'size' + entry */ 595 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 596 if ((uint)pid > (uint)pid_max) 597 pid &= pid_tbl_mask; 598 p->p_pid = pid; 599 next_free_pt = nxt & pid_tbl_mask; 600 601 /* Grab table slot */ 602 pt->pt_proc = p; 603 pid_alloc_cnt++; 604 605 mutex_exit(proc_lock); 606 607 return p; 608 } 609 610 /* 611 * Free a process id - called from proc_free (in kern_exit.c) 612 * 613 * Called with the proc_lock held. 614 */ 615 void 616 proc_free_pid(struct proc *p) 617 { 618 pid_t pid = p->p_pid; 619 struct pid_table *pt; 620 621 KASSERT(mutex_owned(proc_lock)); 622 623 pt = &pid_table[pid & pid_tbl_mask]; 624 #ifdef DIAGNOSTIC 625 if (__predict_false(pt->pt_proc != p)) 626 panic("proc_free: pid_table mismatch, pid %x, proc %p", 627 pid, p); 628 #endif 629 /* save pid use count in slot */ 630 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 631 632 if (pt->pt_pgrp == NULL) { 633 /* link last freed entry onto ours */ 634 pid &= pid_tbl_mask; 635 pt = &pid_table[last_free_pt]; 636 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 637 last_free_pt = pid; 638 pid_alloc_cnt--; 639 } 640 641 atomic_dec_uint(&nprocs); 642 } 643 644 void 645 proc_free_mem(struct proc *p) 646 { 647 648 pool_cache_put(proc_cache, p); 649 } 650 651 /* 652 * Move p to a new or existing process group (and session) 653 * 654 * If we are creating a new pgrp, the pgid should equal 655 * the calling process' pid. 656 * If is only valid to enter a process group that is in the session 657 * of the process. 658 * Also mksess should only be set if we are creating a process group 659 * 660 * Only called from sys_setsid and sys_setpgid. 661 */ 662 int 663 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess) 664 { 665 struct pgrp *new_pgrp, *pgrp; 666 struct session *sess; 667 struct proc *p; 668 int rval; 669 pid_t pg_id = NO_PGID; 670 671 if (mksess) 672 sess = kmem_alloc(sizeof(*sess), KM_SLEEP); 673 else 674 sess = NULL; 675 676 /* Allocate data areas we might need before doing any validity checks */ 677 mutex_enter(proc_lock); /* Because pid_table might change */ 678 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 679 mutex_exit(proc_lock); 680 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 681 mutex_enter(proc_lock); 682 } else 683 new_pgrp = NULL; 684 rval = EPERM; /* most common error (to save typing) */ 685 686 /* Check pgrp exists or can be created */ 687 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 688 if (pgrp != NULL && pgrp->pg_id != pgid) 689 goto done; 690 691 /* Can only set another process under restricted circumstances. */ 692 if (pid != curp->p_pid) { 693 /* must exist and be one of our children... */ 694 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 695 !p_inferior(p, curp)) { 696 rval = ESRCH; 697 goto done; 698 } 699 /* ... in the same session... */ 700 if (sess != NULL || p->p_session != curp->p_session) 701 goto done; 702 /* ... existing pgid must be in same session ... */ 703 if (pgrp != NULL && pgrp->pg_session != p->p_session) 704 goto done; 705 /* ... and not done an exec. */ 706 if (p->p_flag & PK_EXEC) { 707 rval = EACCES; 708 goto done; 709 } 710 } else { 711 /* ... setsid() cannot re-enter a pgrp */ 712 if (mksess && (curp->p_pgid == curp->p_pid || 713 pg_find(curp->p_pid, PFIND_LOCKED))) 714 goto done; 715 p = curp; 716 } 717 718 /* Changing the process group/session of a session 719 leader is definitely off limits. */ 720 if (SESS_LEADER(p)) { 721 if (sess == NULL && p->p_pgrp == pgrp) 722 /* unless it's a definite noop */ 723 rval = 0; 724 goto done; 725 } 726 727 /* Can only create a process group with id of process */ 728 if (pgrp == NULL && pgid != pid) 729 goto done; 730 731 /* Can only create a session if creating pgrp */ 732 if (sess != NULL && pgrp != NULL) 733 goto done; 734 735 /* Check we allocated memory for a pgrp... */ 736 if (pgrp == NULL && new_pgrp == NULL) 737 goto done; 738 739 /* Don't attach to 'zombie' pgrp */ 740 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 741 goto done; 742 743 /* Expect to succeed now */ 744 rval = 0; 745 746 if (pgrp == p->p_pgrp) 747 /* nothing to do */ 748 goto done; 749 750 /* Ok all setup, link up required structures */ 751 752 if (pgrp == NULL) { 753 pgrp = new_pgrp; 754 new_pgrp = NULL; 755 if (sess != NULL) { 756 sess->s_sid = p->p_pid; 757 sess->s_leader = p; 758 sess->s_count = 1; 759 sess->s_ttyvp = NULL; 760 sess->s_ttyp = NULL; 761 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 762 memcpy(sess->s_login, p->p_session->s_login, 763 sizeof(sess->s_login)); 764 p->p_lflag &= ~PL_CONTROLT; 765 } else { 766 sess = p->p_pgrp->pg_session; 767 SESSHOLD(sess); 768 } 769 pgrp->pg_session = sess; 770 sess = NULL; 771 772 pgrp->pg_id = pgid; 773 LIST_INIT(&pgrp->pg_members); 774 #ifdef DIAGNOSTIC 775 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 776 panic("enterpgrp: pgrp table slot in use"); 777 if (__predict_false(mksess && p != curp)) 778 panic("enterpgrp: mksession and p != curproc"); 779 #endif 780 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 781 pgrp->pg_jobc = 0; 782 } 783 784 /* 785 * Adjust eligibility of affected pgrps to participate in job control. 786 * Increment eligibility counts before decrementing, otherwise we 787 * could reach 0 spuriously during the first call. 788 */ 789 fixjobc(p, pgrp, 1); 790 fixjobc(p, p->p_pgrp, 0); 791 792 /* Interlock with ttread(). */ 793 mutex_spin_enter(&tty_lock); 794 795 /* Move process to requested group. */ 796 LIST_REMOVE(p, p_pglist); 797 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 798 /* defer delete until we've dumped the lock */ 799 pg_id = p->p_pgrp->pg_id; 800 p->p_pgrp = pgrp; 801 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 802 803 /* Done with the swap; we can release the tty mutex. */ 804 mutex_spin_exit(&tty_lock); 805 806 done: 807 if (pg_id != NO_PGID) 808 pg_delete(pg_id); 809 mutex_exit(proc_lock); 810 if (sess != NULL) 811 kmem_free(sess, sizeof(*sess)); 812 if (new_pgrp != NULL) 813 kmem_free(new_pgrp, sizeof(*new_pgrp)); 814 #ifdef DEBUG_PGRP 815 if (__predict_false(rval)) 816 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 817 pid, pgid, mksess, curp->p_pid, rval); 818 #endif 819 return rval; 820 } 821 822 /* 823 * Remove a process from its process group. Must be called with the 824 * proc_lock held. 825 */ 826 void 827 leavepgrp(struct proc *p) 828 { 829 struct pgrp *pgrp; 830 831 KASSERT(mutex_owned(proc_lock)); 832 833 /* Interlock with ttread() */ 834 mutex_spin_enter(&tty_lock); 835 pgrp = p->p_pgrp; 836 LIST_REMOVE(p, p_pglist); 837 p->p_pgrp = NULL; 838 mutex_spin_exit(&tty_lock); 839 840 if (LIST_EMPTY(&pgrp->pg_members)) 841 pg_delete(pgrp->pg_id); 842 } 843 844 /* 845 * Free a process group. Must be called with the proc_lock held. 846 */ 847 static void 848 pg_free(pid_t pg_id) 849 { 850 struct pgrp *pgrp; 851 struct pid_table *pt; 852 853 KASSERT(mutex_owned(proc_lock)); 854 855 pt = &pid_table[pg_id & pid_tbl_mask]; 856 pgrp = pt->pt_pgrp; 857 #ifdef DIAGNOSTIC 858 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 859 || !LIST_EMPTY(&pgrp->pg_members))) 860 panic("pg_free: process group absent or has members"); 861 #endif 862 pt->pt_pgrp = 0; 863 864 if (!P_VALID(pt->pt_proc)) { 865 /* orphaned pgrp, put slot onto free list */ 866 #ifdef DIAGNOSTIC 867 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 868 panic("pg_free: process slot on free list"); 869 #endif 870 pg_id &= pid_tbl_mask; 871 pt = &pid_table[last_free_pt]; 872 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 873 last_free_pt = pg_id; 874 pid_alloc_cnt--; 875 } 876 kmem_free(pgrp, sizeof(*pgrp)); 877 } 878 879 /* 880 * Delete a process group. Must be called with the proc_lock held. 881 */ 882 static void 883 pg_delete(pid_t pg_id) 884 { 885 struct pgrp *pgrp; 886 struct tty *ttyp; 887 struct session *ss; 888 int is_pgrp_leader; 889 890 KASSERT(mutex_owned(proc_lock)); 891 892 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 893 if (pgrp == NULL || pgrp->pg_id != pg_id || 894 !LIST_EMPTY(&pgrp->pg_members)) 895 return; 896 897 ss = pgrp->pg_session; 898 899 /* Remove reference (if any) from tty to this process group */ 900 mutex_spin_enter(&tty_lock); 901 ttyp = ss->s_ttyp; 902 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 903 ttyp->t_pgrp = NULL; 904 #ifdef DIAGNOSTIC 905 if (ttyp->t_session != ss) 906 panic("pg_delete: wrong session on terminal"); 907 #endif 908 } 909 mutex_spin_exit(&tty_lock); 910 911 /* 912 * The leading process group in a session is freed 913 * by sessdelete() if last reference. 914 */ 915 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 916 SESSRELE(ss); 917 918 if (is_pgrp_leader) 919 return; 920 921 pg_free(pg_id); 922 } 923 924 /* 925 * Delete session - called from SESSRELE when s_count becomes zero. 926 * Must be called with the proc_lock held. 927 */ 928 void 929 sessdelete(struct session *ss) 930 { 931 932 KASSERT(mutex_owned(proc_lock)); 933 934 /* 935 * We keep the pgrp with the same id as the session in 936 * order to stop a process being given the same pid. 937 * Since the pgrp holds a reference to the session, it 938 * must be a 'zombie' pgrp by now. 939 */ 940 pg_free(ss->s_sid); 941 kmem_free(ss, sizeof(*ss)); 942 } 943 944 /* 945 * Adjust pgrp jobc counters when specified process changes process group. 946 * We count the number of processes in each process group that "qualify" 947 * the group for terminal job control (those with a parent in a different 948 * process group of the same session). If that count reaches zero, the 949 * process group becomes orphaned. Check both the specified process' 950 * process group and that of its children. 951 * entering == 0 => p is leaving specified group. 952 * entering == 1 => p is entering specified group. 953 * 954 * Call with proc_lock held. 955 */ 956 void 957 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 958 { 959 struct pgrp *hispgrp; 960 struct session *mysession = pgrp->pg_session; 961 struct proc *child; 962 963 KASSERT(mutex_owned(proc_lock)); 964 965 /* 966 * Check p's parent to see whether p qualifies its own process 967 * group; if so, adjust count for p's process group. 968 */ 969 hispgrp = p->p_pptr->p_pgrp; 970 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 971 if (entering) { 972 pgrp->pg_jobc++; 973 p->p_lflag &= ~PL_ORPHANPG; 974 } else if (--pgrp->pg_jobc == 0) 975 orphanpg(pgrp); 976 } 977 978 /* 979 * Check this process' children to see whether they qualify 980 * their process groups; if so, adjust counts for children's 981 * process groups. 982 */ 983 LIST_FOREACH(child, &p->p_children, p_sibling) { 984 hispgrp = child->p_pgrp; 985 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 986 !P_ZOMBIE(child)) { 987 if (entering) { 988 child->p_lflag &= ~PL_ORPHANPG; 989 hispgrp->pg_jobc++; 990 } else if (--hispgrp->pg_jobc == 0) 991 orphanpg(hispgrp); 992 } 993 } 994 } 995 996 /* 997 * A process group has become orphaned; 998 * if there are any stopped processes in the group, 999 * hang-up all process in that group. 1000 * 1001 * Call with proc_lock held. 1002 */ 1003 static void 1004 orphanpg(struct pgrp *pg) 1005 { 1006 struct proc *p; 1007 int doit; 1008 1009 KASSERT(mutex_owned(proc_lock)); 1010 1011 doit = 0; 1012 1013 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1014 if (p->p_stat == SSTOP) { 1015 p->p_lflag |= PL_ORPHANPG; 1016 psignal(p, SIGHUP); 1017 psignal(p, SIGCONT); 1018 } 1019 } 1020 } 1021 1022 #ifdef DDB 1023 #include <ddb/db_output.h> 1024 void pidtbl_dump(void); 1025 void 1026 pidtbl_dump(void) 1027 { 1028 struct pid_table *pt; 1029 struct proc *p; 1030 struct pgrp *pgrp; 1031 int id; 1032 1033 db_printf("pid table %p size %x, next %x, last %x\n", 1034 pid_table, pid_tbl_mask+1, 1035 next_free_pt, last_free_pt); 1036 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1037 p = pt->pt_proc; 1038 if (!P_VALID(p) && !pt->pt_pgrp) 1039 continue; 1040 db_printf(" id %x: ", id); 1041 if (P_VALID(p)) 1042 db_printf("proc %p id %d (0x%x) %s\n", 1043 p, p->p_pid, p->p_pid, p->p_comm); 1044 else 1045 db_printf("next %x use %x\n", 1046 P_NEXT(p) & pid_tbl_mask, 1047 P_NEXT(p) & ~pid_tbl_mask); 1048 if ((pgrp = pt->pt_pgrp)) { 1049 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1050 pgrp->pg_session, pgrp->pg_session->s_sid, 1051 pgrp->pg_session->s_count, 1052 pgrp->pg_session->s_login); 1053 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1054 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1055 LIST_FIRST(&pgrp->pg_members)); 1056 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1057 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1058 p->p_pid, p, p->p_pgrp, p->p_comm); 1059 } 1060 } 1061 } 1062 } 1063 #endif /* DDB */ 1064 1065 #ifdef KSTACK_CHECK_MAGIC 1066 #include <sys/user.h> 1067 1068 #define KSTACK_MAGIC 0xdeadbeaf 1069 1070 /* XXX should be per process basis? */ 1071 static int kstackleftmin = KSTACK_SIZE; 1072 static int kstackleftthres = KSTACK_SIZE / 8; 1073 1074 void 1075 kstack_setup_magic(const struct lwp *l) 1076 { 1077 uint32_t *ip; 1078 uint32_t const *end; 1079 1080 KASSERT(l != NULL); 1081 KASSERT(l != &lwp0); 1082 1083 /* 1084 * fill all the stack with magic number 1085 * so that later modification on it can be detected. 1086 */ 1087 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1088 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1089 for (; ip < end; ip++) { 1090 *ip = KSTACK_MAGIC; 1091 } 1092 } 1093 1094 void 1095 kstack_check_magic(const struct lwp *l) 1096 { 1097 uint32_t const *ip, *end; 1098 int stackleft; 1099 1100 KASSERT(l != NULL); 1101 1102 /* don't check proc0 */ /*XXX*/ 1103 if (l == &lwp0) 1104 return; 1105 1106 #ifdef __MACHINE_STACK_GROWS_UP 1107 /* stack grows upwards (eg. hppa) */ 1108 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1109 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1110 for (ip--; ip >= end; ip--) 1111 if (*ip != KSTACK_MAGIC) 1112 break; 1113 1114 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1115 #else /* __MACHINE_STACK_GROWS_UP */ 1116 /* stack grows downwards (eg. i386) */ 1117 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1118 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1119 for (; ip < end; ip++) 1120 if (*ip != KSTACK_MAGIC) 1121 break; 1122 1123 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1124 #endif /* __MACHINE_STACK_GROWS_UP */ 1125 1126 if (kstackleftmin > stackleft) { 1127 kstackleftmin = stackleft; 1128 if (stackleft < kstackleftthres) 1129 printf("warning: kernel stack left %d bytes" 1130 "(pid %u:lid %u)\n", stackleft, 1131 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1132 } 1133 1134 if (stackleft <= 0) { 1135 panic("magic on the top of kernel stack changed for " 1136 "pid %u, lid %u: maybe kernel stack overflow", 1137 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1138 } 1139 } 1140 #endif /* KSTACK_CHECK_MAGIC */ 1141 1142 int 1143 proclist_foreach_call(struct proclist *list, 1144 int (*callback)(struct proc *, void *arg), void *arg) 1145 { 1146 struct proc marker; 1147 struct proc *p; 1148 struct lwp * const l = curlwp; 1149 int ret = 0; 1150 1151 marker.p_flag = PK_MARKER; 1152 uvm_lwp_hold(l); 1153 mutex_enter(proc_lock); 1154 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1155 if (p->p_flag & PK_MARKER) { 1156 p = LIST_NEXT(p, p_list); 1157 continue; 1158 } 1159 LIST_INSERT_AFTER(p, &marker, p_list); 1160 ret = (*callback)(p, arg); 1161 KASSERT(mutex_owned(proc_lock)); 1162 p = LIST_NEXT(&marker, p_list); 1163 LIST_REMOVE(&marker, p_list); 1164 } 1165 mutex_exit(proc_lock); 1166 uvm_lwp_rele(l); 1167 1168 return ret; 1169 } 1170 1171 int 1172 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1173 { 1174 1175 /* XXXCDC: how should locking work here? */ 1176 1177 /* curproc exception is for coredump. */ 1178 1179 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1180 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1181 return EFAULT; 1182 } 1183 1184 uvmspace_addref(p->p_vmspace); 1185 *vm = p->p_vmspace; 1186 1187 return 0; 1188 } 1189 1190 /* 1191 * Acquire a write lock on the process credential. 1192 */ 1193 void 1194 proc_crmod_enter(void) 1195 { 1196 struct lwp *l = curlwp; 1197 struct proc *p = l->l_proc; 1198 struct plimit *lim; 1199 kauth_cred_t oc; 1200 char *cn; 1201 1202 /* Reset what needs to be reset in plimit. */ 1203 if (p->p_limit->pl_corename != defcorename) { 1204 lim_privatise(p, false); 1205 lim = p->p_limit; 1206 mutex_enter(&lim->pl_lock); 1207 cn = lim->pl_corename; 1208 lim->pl_corename = defcorename; 1209 mutex_exit(&lim->pl_lock); 1210 if (cn != defcorename) 1211 free(cn, M_TEMP); 1212 } 1213 1214 mutex_enter(p->p_lock); 1215 1216 /* Ensure the LWP cached credentials are up to date. */ 1217 if ((oc = l->l_cred) != p->p_cred) { 1218 kauth_cred_hold(p->p_cred); 1219 l->l_cred = p->p_cred; 1220 kauth_cred_free(oc); 1221 } 1222 1223 } 1224 1225 /* 1226 * Set in a new process credential, and drop the write lock. The credential 1227 * must have a reference already. Optionally, free a no-longer required 1228 * credential. The scheduler also needs to inspect p_cred, so we also 1229 * briefly acquire the sched state mutex. 1230 */ 1231 void 1232 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1233 { 1234 struct lwp *l = curlwp, *l2; 1235 struct proc *p = l->l_proc; 1236 kauth_cred_t oc; 1237 1238 KASSERT(mutex_owned(p->p_lock)); 1239 1240 /* Is there a new credential to set in? */ 1241 if (scred != NULL) { 1242 p->p_cred = scred; 1243 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1244 if (l2 != l) 1245 l2->l_prflag |= LPR_CRMOD; 1246 } 1247 1248 /* Ensure the LWP cached credentials are up to date. */ 1249 if ((oc = l->l_cred) != scred) { 1250 kauth_cred_hold(scred); 1251 l->l_cred = scred; 1252 } 1253 } else 1254 oc = NULL; /* XXXgcc */ 1255 1256 if (sugid) { 1257 /* 1258 * Mark process as having changed credentials, stops 1259 * tracing etc. 1260 */ 1261 p->p_flag |= PK_SUGID; 1262 } 1263 1264 mutex_exit(p->p_lock); 1265 1266 /* If there is a credential to be released, free it now. */ 1267 if (fcred != NULL) { 1268 KASSERT(scred != NULL); 1269 kauth_cred_free(fcred); 1270 if (oc != scred) 1271 kauth_cred_free(oc); 1272 } 1273 } 1274 1275 /* 1276 * proc_specific_key_create -- 1277 * Create a key for subsystem proc-specific data. 1278 */ 1279 int 1280 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1281 { 1282 1283 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1284 } 1285 1286 /* 1287 * proc_specific_key_delete -- 1288 * Delete a key for subsystem proc-specific data. 1289 */ 1290 void 1291 proc_specific_key_delete(specificdata_key_t key) 1292 { 1293 1294 specificdata_key_delete(proc_specificdata_domain, key); 1295 } 1296 1297 /* 1298 * proc_initspecific -- 1299 * Initialize a proc's specificdata container. 1300 */ 1301 void 1302 proc_initspecific(struct proc *p) 1303 { 1304 int error; 1305 1306 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1307 KASSERT(error == 0); 1308 } 1309 1310 /* 1311 * proc_finispecific -- 1312 * Finalize a proc's specificdata container. 1313 */ 1314 void 1315 proc_finispecific(struct proc *p) 1316 { 1317 1318 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1319 } 1320 1321 /* 1322 * proc_getspecific -- 1323 * Return proc-specific data corresponding to the specified key. 1324 */ 1325 void * 1326 proc_getspecific(struct proc *p, specificdata_key_t key) 1327 { 1328 1329 return (specificdata_getspecific(proc_specificdata_domain, 1330 &p->p_specdataref, key)); 1331 } 1332 1333 /* 1334 * proc_setspecific -- 1335 * Set proc-specific data corresponding to the specified key. 1336 */ 1337 void 1338 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1339 { 1340 1341 specificdata_setspecific(proc_specificdata_domain, 1342 &p->p_specdataref, key, data); 1343 } 1344