1 /* $NetBSD: kern_proc.c,v 1.143 2008/06/24 10:31:05 gmcgarry Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.143 2008/06/24 10:31:05 gmcgarry Exp $"); 66 67 #include "opt_kstack.h" 68 #include "opt_maxuprc.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> 74 #include <sys/resourcevar.h> 75 #include <sys/buf.h> 76 #include <sys/acct.h> 77 #include <sys/wait.h> 78 #include <sys/file.h> 79 #include <ufs/ufs/quota.h> 80 #include <sys/uio.h> 81 #include <sys/malloc.h> 82 #include <sys/pool.h> 83 #include <sys/mbuf.h> 84 #include <sys/ioctl.h> 85 #include <sys/tty.h> 86 #include <sys/signalvar.h> 87 #include <sys/ras.h> 88 #include <sys/filedesc.h> 89 #include "sys/syscall_stats.h" 90 #include <sys/kauth.h> 91 #include <sys/sleepq.h> 92 #include <sys/atomic.h> 93 #include <sys/kmem.h> 94 95 #include <uvm/uvm.h> 96 #include <uvm/uvm_extern.h> 97 98 /* 99 * Other process lists 100 */ 101 102 struct proclist allproc; 103 struct proclist zombproc; /* resources have been freed */ 104 105 kmutex_t *proc_lock; 106 107 /* 108 * pid to proc lookup is done by indexing the pid_table array. 109 * Since pid numbers are only allocated when an empty slot 110 * has been found, there is no need to search any lists ever. 111 * (an orphaned pgrp will lock the slot, a session will lock 112 * the pgrp with the same number.) 113 * If the table is too small it is reallocated with twice the 114 * previous size and the entries 'unzipped' into the two halves. 115 * A linked list of free entries is passed through the pt_proc 116 * field of 'free' items - set odd to be an invalid ptr. 117 */ 118 119 struct pid_table { 120 struct proc *pt_proc; 121 struct pgrp *pt_pgrp; 122 }; 123 #if 1 /* strongly typed cast - should be a noop */ 124 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 125 #else 126 #define p2u(p) ((uint)p) 127 #endif 128 #define P_VALID(p) (!(p2u(p) & 1)) 129 #define P_NEXT(p) (p2u(p) >> 1) 130 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 131 132 #define INITIAL_PID_TABLE_SIZE (1 << 5) 133 static struct pid_table *pid_table; 134 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 135 static uint pid_alloc_lim; /* max we allocate before growing table */ 136 static uint pid_alloc_cnt; /* number of allocated pids */ 137 138 /* links through free slots - never empty! */ 139 static uint next_free_pt, last_free_pt; 140 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 141 142 /* Components of the first process -- never freed. */ 143 144 extern const struct emul emul_netbsd; /* defined in kern_exec.c */ 145 146 struct session session0 = { 147 .s_count = 1, 148 .s_sid = 0, 149 }; 150 struct pgrp pgrp0 = { 151 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 152 .pg_session = &session0, 153 }; 154 filedesc_t filedesc0; 155 struct cwdinfo cwdi0 = { 156 .cwdi_cmask = CMASK, /* see cmask below */ 157 .cwdi_refcnt = 1, 158 }; 159 struct plimit limit0; 160 struct pstats pstat0; 161 struct vmspace vmspace0; 162 struct sigacts sigacts0; 163 struct turnstile turnstile0; 164 struct proc proc0 = { 165 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 166 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 167 .p_nlwps = 1, 168 .p_nrlwps = 1, 169 .p_nlwpid = 1, /* must match lwp0.l_lid */ 170 .p_pgrp = &pgrp0, 171 .p_comm = "system", 172 /* 173 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 174 * when they exit. init(8) can easily wait them out for us. 175 */ 176 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 177 .p_stat = SACTIVE, 178 .p_nice = NZERO, 179 .p_emul = &emul_netbsd, 180 .p_cwdi = &cwdi0, 181 .p_limit = &limit0, 182 .p_fd = &filedesc0, 183 .p_vmspace = &vmspace0, 184 .p_stats = &pstat0, 185 .p_sigacts = &sigacts0, 186 }; 187 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 188 #ifdef LWP0_CPU_INFO 189 .l_cpu = LWP0_CPU_INFO, 190 #endif 191 .l_proc = &proc0, 192 .l_lid = 1, 193 .l_flag = LW_INMEM | LW_SYSTEM, 194 .l_stat = LSONPROC, 195 .l_ts = &turnstile0, 196 .l_syncobj = &sched_syncobj, 197 .l_refcnt = 1, 198 .l_priority = PRI_USER + NPRI_USER - 1, 199 .l_inheritedprio = -1, 200 .l_class = SCHED_OTHER, 201 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 202 .l_name = __UNCONST("swapper"), 203 }; 204 kauth_cred_t cred0; 205 206 extern struct user *proc0paddr; 207 208 int nofile = NOFILE; 209 int maxuprc = MAXUPRC; 210 int cmask = CMASK; 211 212 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 213 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 214 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 215 216 /* 217 * The process list descriptors, used during pid allocation and 218 * by sysctl. No locking on this data structure is needed since 219 * it is completely static. 220 */ 221 const struct proclist_desc proclists[] = { 222 { &allproc }, 223 { &zombproc }, 224 { NULL }, 225 }; 226 227 static void orphanpg(struct pgrp *); 228 static void pg_delete(pid_t); 229 230 static specificdata_domain_t proc_specificdata_domain; 231 232 static pool_cache_t proc_cache; 233 234 /* 235 * Initialize global process hashing structures. 236 */ 237 void 238 procinit(void) 239 { 240 const struct proclist_desc *pd; 241 int i; 242 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 243 244 for (pd = proclists; pd->pd_list != NULL; pd++) 245 LIST_INIT(pd->pd_list); 246 247 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 248 249 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table, 250 M_PROC, M_WAITOK); 251 /* Set free list running through table... 252 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 253 for (i = 0; i <= pid_tbl_mask; i++) { 254 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 255 pid_table[i].pt_pgrp = 0; 256 } 257 /* slot 0 is just grabbed */ 258 next_free_pt = 1; 259 /* Need to fix last entry. */ 260 last_free_pt = pid_tbl_mask; 261 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 262 /* point at which we grow table - to avoid reusing pids too often */ 263 pid_alloc_lim = pid_tbl_mask - 1; 264 #undef LINK_EMPTY 265 266 proc_specificdata_domain = specificdata_domain_create(); 267 KASSERT(proc_specificdata_domain != NULL); 268 269 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 270 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 271 } 272 273 /* 274 * Initialize process 0. 275 */ 276 void 277 proc0_init(void) 278 { 279 struct proc *p; 280 struct pgrp *pg; 281 struct session *sess; 282 struct lwp *l; 283 rlim_t lim; 284 int i; 285 286 p = &proc0; 287 pg = &pgrp0; 288 sess = &session0; 289 l = &lwp0; 290 291 KASSERT(l->l_lid == p->p_nlwpid); 292 293 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 294 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 295 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 296 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 297 298 rw_init(&p->p_reflock); 299 cv_init(&p->p_waitcv, "wait"); 300 cv_init(&p->p_lwpcv, "lwpwait"); 301 302 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 303 304 pid_table[0].pt_proc = p; 305 LIST_INSERT_HEAD(&allproc, p, p_list); 306 LIST_INSERT_HEAD(&alllwp, l, l_list); 307 308 pid_table[0].pt_pgrp = pg; 309 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 310 311 #ifdef __HAVE_SYSCALL_INTERN 312 (*p->p_emul->e_syscall_intern)(p); 313 #endif 314 315 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 316 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 317 cv_init(&l->l_sigcv, "sigwait"); 318 319 /* Create credentials. */ 320 cred0 = kauth_cred_alloc(); 321 p->p_cred = cred0; 322 kauth_cred_hold(cred0); 323 l->l_cred = cred0; 324 325 /* Create the CWD info. */ 326 rw_init(&cwdi0.cwdi_lock); 327 328 /* Create the limits structures. */ 329 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 330 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 331 limit0.pl_rlimit[i].rlim_cur = 332 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 333 334 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 335 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 336 maxfiles < nofile ? maxfiles : nofile; 337 338 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 339 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 340 maxproc < maxuprc ? maxproc : maxuprc; 341 342 lim = ptoa(uvmexp.free); 343 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 344 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 345 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 346 limit0.pl_corename = defcorename; 347 limit0.pl_refcnt = 1; 348 limit0.pl_sv_limit = NULL; 349 350 /* Configure virtual memory system, set vm rlimits. */ 351 uvm_init_limits(p); 352 353 /* Initialize file descriptor table for proc0. */ 354 fd_init(&filedesc0); 355 356 /* 357 * Initialize proc0's vmspace, which uses the kernel pmap. 358 * All kernel processes (which never have user space mappings) 359 * share proc0's vmspace, and thus, the kernel pmap. 360 */ 361 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 362 trunc_page(VM_MAX_ADDRESS)); 363 364 l->l_addr = proc0paddr; /* XXX */ 365 366 /* Initialize signal state for proc0. XXX IPL_SCHED */ 367 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 368 siginit(p); 369 370 proc_initspecific(p); 371 lwp_initspecific(l); 372 373 SYSCALL_TIME_LWP_INIT(l); 374 } 375 376 /* 377 * Check that the specified process group is in the session of the 378 * specified process. 379 * Treats -ve ids as process ids. 380 * Used to validate TIOCSPGRP requests. 381 */ 382 int 383 pgid_in_session(struct proc *p, pid_t pg_id) 384 { 385 struct pgrp *pgrp; 386 struct session *session; 387 int error; 388 389 mutex_enter(proc_lock); 390 if (pg_id < 0) { 391 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 392 if (p1 == NULL) 393 return EINVAL; 394 pgrp = p1->p_pgrp; 395 } else { 396 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 397 if (pgrp == NULL) 398 return EINVAL; 399 } 400 session = pgrp->pg_session; 401 if (session != p->p_pgrp->pg_session) 402 error = EPERM; 403 else 404 error = 0; 405 mutex_exit(proc_lock); 406 407 return error; 408 } 409 410 /* 411 * Is p an inferior of q? 412 * 413 * Call with the proc_lock held. 414 */ 415 int 416 inferior(struct proc *p, struct proc *q) 417 { 418 419 for (; p != q; p = p->p_pptr) 420 if (p->p_pid == 0) 421 return 0; 422 return 1; 423 } 424 425 /* 426 * Locate a process by number 427 */ 428 struct proc * 429 p_find(pid_t pid, uint flags) 430 { 431 struct proc *p; 432 char stat; 433 434 if (!(flags & PFIND_LOCKED)) 435 mutex_enter(proc_lock); 436 437 p = pid_table[pid & pid_tbl_mask].pt_proc; 438 439 /* Only allow live processes to be found by pid. */ 440 /* XXXSMP p_stat */ 441 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 442 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 443 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 444 if (flags & PFIND_UNLOCK_OK) 445 mutex_exit(proc_lock); 446 return p; 447 } 448 if (flags & PFIND_UNLOCK_FAIL) 449 mutex_exit(proc_lock); 450 return NULL; 451 } 452 453 454 /* 455 * Locate a process group by number 456 */ 457 struct pgrp * 458 pg_find(pid_t pgid, uint flags) 459 { 460 struct pgrp *pg; 461 462 if (!(flags & PFIND_LOCKED)) 463 mutex_enter(proc_lock); 464 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 465 /* 466 * Can't look up a pgrp that only exists because the session 467 * hasn't died yet (traditional) 468 */ 469 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 470 if (flags & PFIND_UNLOCK_FAIL) 471 mutex_exit(proc_lock); 472 return NULL; 473 } 474 475 if (flags & PFIND_UNLOCK_OK) 476 mutex_exit(proc_lock); 477 return pg; 478 } 479 480 static void 481 expand_pid_table(void) 482 { 483 uint pt_size = pid_tbl_mask + 1; 484 struct pid_table *n_pt, *new_pt; 485 struct proc *proc; 486 struct pgrp *pgrp; 487 int i; 488 pid_t pid; 489 490 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK); 491 492 mutex_enter(proc_lock); 493 if (pt_size != pid_tbl_mask + 1) { 494 /* Another process beat us to it... */ 495 mutex_exit(proc_lock); 496 FREE(new_pt, M_PROC); 497 return; 498 } 499 500 /* 501 * Copy entries from old table into new one. 502 * If 'pid' is 'odd' we need to place in the upper half, 503 * even pid's to the lower half. 504 * Free items stay in the low half so we don't have to 505 * fixup the reference to them. 506 * We stuff free items on the front of the freelist 507 * because we can't write to unmodified entries. 508 * Processing the table backwards maintains a semblance 509 * of issueing pid numbers that increase with time. 510 */ 511 i = pt_size - 1; 512 n_pt = new_pt + i; 513 for (; ; i--, n_pt--) { 514 proc = pid_table[i].pt_proc; 515 pgrp = pid_table[i].pt_pgrp; 516 if (!P_VALID(proc)) { 517 /* Up 'use count' so that link is valid */ 518 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 519 proc = P_FREE(pid); 520 if (pgrp) 521 pid = pgrp->pg_id; 522 } else 523 pid = proc->p_pid; 524 525 /* Save entry in appropriate half of table */ 526 n_pt[pid & pt_size].pt_proc = proc; 527 n_pt[pid & pt_size].pt_pgrp = pgrp; 528 529 /* Put other piece on start of free list */ 530 pid = (pid ^ pt_size) & ~pid_tbl_mask; 531 n_pt[pid & pt_size].pt_proc = 532 P_FREE((pid & ~pt_size) | next_free_pt); 533 n_pt[pid & pt_size].pt_pgrp = 0; 534 next_free_pt = i | (pid & pt_size); 535 if (i == 0) 536 break; 537 } 538 539 /* Switch tables */ 540 n_pt = pid_table; 541 pid_table = new_pt; 542 pid_tbl_mask = pt_size * 2 - 1; 543 544 /* 545 * pid_max starts as PID_MAX (= 30000), once we have 16384 546 * allocated pids we need it to be larger! 547 */ 548 if (pid_tbl_mask > PID_MAX) { 549 pid_max = pid_tbl_mask * 2 + 1; 550 pid_alloc_lim |= pid_alloc_lim << 1; 551 } else 552 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 553 554 mutex_exit(proc_lock); 555 FREE(n_pt, M_PROC); 556 } 557 558 struct proc * 559 proc_alloc(void) 560 { 561 struct proc *p; 562 int nxt; 563 pid_t pid; 564 struct pid_table *pt; 565 566 p = pool_cache_get(proc_cache, PR_WAITOK); 567 p->p_stat = SIDL; /* protect against others */ 568 569 proc_initspecific(p); 570 /* allocate next free pid */ 571 572 for (;;expand_pid_table()) { 573 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 574 /* ensure pids cycle through 2000+ values */ 575 continue; 576 mutex_enter(proc_lock); 577 pt = &pid_table[next_free_pt]; 578 #ifdef DIAGNOSTIC 579 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 580 panic("proc_alloc: slot busy"); 581 #endif 582 nxt = P_NEXT(pt->pt_proc); 583 if (nxt & pid_tbl_mask) 584 break; 585 /* Table full - expand (NB last entry not used....) */ 586 mutex_exit(proc_lock); 587 } 588 589 /* pid is 'saved use count' + 'size' + entry */ 590 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 591 if ((uint)pid > (uint)pid_max) 592 pid &= pid_tbl_mask; 593 p->p_pid = pid; 594 next_free_pt = nxt & pid_tbl_mask; 595 596 /* Grab table slot */ 597 pt->pt_proc = p; 598 pid_alloc_cnt++; 599 600 mutex_exit(proc_lock); 601 602 return p; 603 } 604 605 /* 606 * Free a process id - called from proc_free (in kern_exit.c) 607 * 608 * Called with the proc_lock held. 609 */ 610 void 611 proc_free_pid(struct proc *p) 612 { 613 pid_t pid = p->p_pid; 614 struct pid_table *pt; 615 616 KASSERT(mutex_owned(proc_lock)); 617 618 pt = &pid_table[pid & pid_tbl_mask]; 619 #ifdef DIAGNOSTIC 620 if (__predict_false(pt->pt_proc != p)) 621 panic("proc_free: pid_table mismatch, pid %x, proc %p", 622 pid, p); 623 #endif 624 /* save pid use count in slot */ 625 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 626 627 if (pt->pt_pgrp == NULL) { 628 /* link last freed entry onto ours */ 629 pid &= pid_tbl_mask; 630 pt = &pid_table[last_free_pt]; 631 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 632 last_free_pt = pid; 633 pid_alloc_cnt--; 634 } 635 636 atomic_dec_uint(&nprocs); 637 } 638 639 void 640 proc_free_mem(struct proc *p) 641 { 642 643 pool_cache_put(proc_cache, p); 644 } 645 646 /* 647 * Move p to a new or existing process group (and session) 648 * 649 * If we are creating a new pgrp, the pgid should equal 650 * the calling process' pid. 651 * If is only valid to enter a process group that is in the session 652 * of the process. 653 * Also mksess should only be set if we are creating a process group 654 * 655 * Only called from sys_setsid and sys_setpgid. 656 */ 657 int 658 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess) 659 { 660 struct pgrp *new_pgrp, *pgrp; 661 struct session *sess; 662 struct proc *p; 663 int rval; 664 pid_t pg_id = NO_PGID; 665 666 if (mksess) 667 sess = kmem_alloc(sizeof(*sess), KM_SLEEP); 668 else 669 sess = NULL; 670 671 /* Allocate data areas we might need before doing any validity checks */ 672 mutex_enter(proc_lock); /* Because pid_table might change */ 673 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 674 mutex_exit(proc_lock); 675 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 676 mutex_enter(proc_lock); 677 } else 678 new_pgrp = NULL; 679 rval = EPERM; /* most common error (to save typing) */ 680 681 /* Check pgrp exists or can be created */ 682 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 683 if (pgrp != NULL && pgrp->pg_id != pgid) 684 goto done; 685 686 /* Can only set another process under restricted circumstances. */ 687 if (pid != curp->p_pid) { 688 /* must exist and be one of our children... */ 689 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 690 !inferior(p, curp)) { 691 rval = ESRCH; 692 goto done; 693 } 694 /* ... in the same session... */ 695 if (sess != NULL || p->p_session != curp->p_session) 696 goto done; 697 /* ... existing pgid must be in same session ... */ 698 if (pgrp != NULL && pgrp->pg_session != p->p_session) 699 goto done; 700 /* ... and not done an exec. */ 701 if (p->p_flag & PK_EXEC) { 702 rval = EACCES; 703 goto done; 704 } 705 } else { 706 /* ... setsid() cannot re-enter a pgrp */ 707 if (mksess && (curp->p_pgid == curp->p_pid || 708 pg_find(curp->p_pid, PFIND_LOCKED))) 709 goto done; 710 p = curp; 711 } 712 713 /* Changing the process group/session of a session 714 leader is definitely off limits. */ 715 if (SESS_LEADER(p)) { 716 if (sess == NULL && p->p_pgrp == pgrp) 717 /* unless it's a definite noop */ 718 rval = 0; 719 goto done; 720 } 721 722 /* Can only create a process group with id of process */ 723 if (pgrp == NULL && pgid != pid) 724 goto done; 725 726 /* Can only create a session if creating pgrp */ 727 if (sess != NULL && pgrp != NULL) 728 goto done; 729 730 /* Check we allocated memory for a pgrp... */ 731 if (pgrp == NULL && new_pgrp == NULL) 732 goto done; 733 734 /* Don't attach to 'zombie' pgrp */ 735 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 736 goto done; 737 738 /* Expect to succeed now */ 739 rval = 0; 740 741 if (pgrp == p->p_pgrp) 742 /* nothing to do */ 743 goto done; 744 745 /* Ok all setup, link up required structures */ 746 747 if (pgrp == NULL) { 748 pgrp = new_pgrp; 749 new_pgrp = NULL; 750 if (sess != NULL) { 751 sess->s_sid = p->p_pid; 752 sess->s_leader = p; 753 sess->s_count = 1; 754 sess->s_ttyvp = NULL; 755 sess->s_ttyp = NULL; 756 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 757 memcpy(sess->s_login, p->p_session->s_login, 758 sizeof(sess->s_login)); 759 p->p_lflag &= ~PL_CONTROLT; 760 } else { 761 sess = p->p_pgrp->pg_session; 762 SESSHOLD(sess); 763 } 764 pgrp->pg_session = sess; 765 sess = NULL; 766 767 pgrp->pg_id = pgid; 768 LIST_INIT(&pgrp->pg_members); 769 #ifdef DIAGNOSTIC 770 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 771 panic("enterpgrp: pgrp table slot in use"); 772 if (__predict_false(mksess && p != curp)) 773 panic("enterpgrp: mksession and p != curproc"); 774 #endif 775 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 776 pgrp->pg_jobc = 0; 777 } 778 779 /* 780 * Adjust eligibility of affected pgrps to participate in job control. 781 * Increment eligibility counts before decrementing, otherwise we 782 * could reach 0 spuriously during the first call. 783 */ 784 fixjobc(p, pgrp, 1); 785 fixjobc(p, p->p_pgrp, 0); 786 787 /* Interlock with ttread(). */ 788 mutex_spin_enter(&tty_lock); 789 790 /* Move process to requested group. */ 791 LIST_REMOVE(p, p_pglist); 792 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 793 /* defer delete until we've dumped the lock */ 794 pg_id = p->p_pgrp->pg_id; 795 p->p_pgrp = pgrp; 796 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 797 798 /* Done with the swap; we can release the tty mutex. */ 799 mutex_spin_exit(&tty_lock); 800 801 done: 802 if (pg_id != NO_PGID) 803 pg_delete(pg_id); 804 mutex_exit(proc_lock); 805 if (sess != NULL) 806 kmem_free(sess, sizeof(*sess)); 807 if (new_pgrp != NULL) 808 kmem_free(new_pgrp, sizeof(*new_pgrp)); 809 #ifdef DEBUG_PGRP 810 if (__predict_false(rval)) 811 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 812 pid, pgid, mksess, curp->p_pid, rval); 813 #endif 814 return rval; 815 } 816 817 /* 818 * Remove a process from its process group. Must be called with the 819 * proc_lock held. 820 */ 821 void 822 leavepgrp(struct proc *p) 823 { 824 struct pgrp *pgrp; 825 826 KASSERT(mutex_owned(proc_lock)); 827 828 /* Interlock with ttread() */ 829 mutex_spin_enter(&tty_lock); 830 pgrp = p->p_pgrp; 831 LIST_REMOVE(p, p_pglist); 832 p->p_pgrp = NULL; 833 mutex_spin_exit(&tty_lock); 834 835 if (LIST_EMPTY(&pgrp->pg_members)) 836 pg_delete(pgrp->pg_id); 837 } 838 839 /* 840 * Free a process group. Must be called with the proc_lock held. 841 */ 842 static void 843 pg_free(pid_t pg_id) 844 { 845 struct pgrp *pgrp; 846 struct pid_table *pt; 847 848 KASSERT(mutex_owned(proc_lock)); 849 850 pt = &pid_table[pg_id & pid_tbl_mask]; 851 pgrp = pt->pt_pgrp; 852 #ifdef DIAGNOSTIC 853 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 854 || !LIST_EMPTY(&pgrp->pg_members))) 855 panic("pg_free: process group absent or has members"); 856 #endif 857 pt->pt_pgrp = 0; 858 859 if (!P_VALID(pt->pt_proc)) { 860 /* orphaned pgrp, put slot onto free list */ 861 #ifdef DIAGNOSTIC 862 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 863 panic("pg_free: process slot on free list"); 864 #endif 865 pg_id &= pid_tbl_mask; 866 pt = &pid_table[last_free_pt]; 867 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 868 last_free_pt = pg_id; 869 pid_alloc_cnt--; 870 } 871 kmem_free(pgrp, sizeof(*pgrp)); 872 } 873 874 /* 875 * Delete a process group. Must be called with the proc_lock held. 876 */ 877 static void 878 pg_delete(pid_t pg_id) 879 { 880 struct pgrp *pgrp; 881 struct tty *ttyp; 882 struct session *ss; 883 int is_pgrp_leader; 884 885 KASSERT(mutex_owned(proc_lock)); 886 887 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 888 if (pgrp == NULL || pgrp->pg_id != pg_id || 889 !LIST_EMPTY(&pgrp->pg_members)) 890 return; 891 892 ss = pgrp->pg_session; 893 894 /* Remove reference (if any) from tty to this process group */ 895 mutex_spin_enter(&tty_lock); 896 ttyp = ss->s_ttyp; 897 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 898 ttyp->t_pgrp = NULL; 899 #ifdef DIAGNOSTIC 900 if (ttyp->t_session != ss) 901 panic("pg_delete: wrong session on terminal"); 902 #endif 903 } 904 mutex_spin_exit(&tty_lock); 905 906 /* 907 * The leading process group in a session is freed 908 * by sessdelete() if last reference. 909 */ 910 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 911 SESSRELE(ss); 912 913 if (is_pgrp_leader) 914 return; 915 916 pg_free(pg_id); 917 } 918 919 /* 920 * Delete session - called from SESSRELE when s_count becomes zero. 921 * Must be called with the proc_lock held. 922 */ 923 void 924 sessdelete(struct session *ss) 925 { 926 927 KASSERT(mutex_owned(proc_lock)); 928 929 /* 930 * We keep the pgrp with the same id as the session in 931 * order to stop a process being given the same pid. 932 * Since the pgrp holds a reference to the session, it 933 * must be a 'zombie' pgrp by now. 934 */ 935 pg_free(ss->s_sid); 936 kmem_free(ss, sizeof(*ss)); 937 } 938 939 /* 940 * Adjust pgrp jobc counters when specified process changes process group. 941 * We count the number of processes in each process group that "qualify" 942 * the group for terminal job control (those with a parent in a different 943 * process group of the same session). If that count reaches zero, the 944 * process group becomes orphaned. Check both the specified process' 945 * process group and that of its children. 946 * entering == 0 => p is leaving specified group. 947 * entering == 1 => p is entering specified group. 948 * 949 * Call with proc_lock held. 950 */ 951 void 952 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 953 { 954 struct pgrp *hispgrp; 955 struct session *mysession = pgrp->pg_session; 956 struct proc *child; 957 958 KASSERT(mutex_owned(proc_lock)); 959 960 /* 961 * Check p's parent to see whether p qualifies its own process 962 * group; if so, adjust count for p's process group. 963 */ 964 hispgrp = p->p_pptr->p_pgrp; 965 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 966 if (entering) { 967 pgrp->pg_jobc++; 968 p->p_lflag &= ~PL_ORPHANPG; 969 } else if (--pgrp->pg_jobc == 0) 970 orphanpg(pgrp); 971 } 972 973 /* 974 * Check this process' children to see whether they qualify 975 * their process groups; if so, adjust counts for children's 976 * process groups. 977 */ 978 LIST_FOREACH(child, &p->p_children, p_sibling) { 979 hispgrp = child->p_pgrp; 980 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 981 !P_ZOMBIE(child)) { 982 if (entering) { 983 child->p_lflag &= ~PL_ORPHANPG; 984 hispgrp->pg_jobc++; 985 } else if (--hispgrp->pg_jobc == 0) 986 orphanpg(hispgrp); 987 } 988 } 989 } 990 991 /* 992 * A process group has become orphaned; 993 * if there are any stopped processes in the group, 994 * hang-up all process in that group. 995 * 996 * Call with proc_lock held. 997 */ 998 static void 999 orphanpg(struct pgrp *pg) 1000 { 1001 struct proc *p; 1002 int doit; 1003 1004 KASSERT(mutex_owned(proc_lock)); 1005 1006 doit = 0; 1007 1008 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1009 if (p->p_stat == SSTOP) { 1010 p->p_lflag |= PL_ORPHANPG; 1011 psignal(p, SIGHUP); 1012 psignal(p, SIGCONT); 1013 } 1014 } 1015 } 1016 1017 #ifdef DDB 1018 #include <ddb/db_output.h> 1019 void pidtbl_dump(void); 1020 void 1021 pidtbl_dump(void) 1022 { 1023 struct pid_table *pt; 1024 struct proc *p; 1025 struct pgrp *pgrp; 1026 int id; 1027 1028 db_printf("pid table %p size %x, next %x, last %x\n", 1029 pid_table, pid_tbl_mask+1, 1030 next_free_pt, last_free_pt); 1031 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1032 p = pt->pt_proc; 1033 if (!P_VALID(p) && !pt->pt_pgrp) 1034 continue; 1035 db_printf(" id %x: ", id); 1036 if (P_VALID(p)) 1037 db_printf("proc %p id %d (0x%x) %s\n", 1038 p, p->p_pid, p->p_pid, p->p_comm); 1039 else 1040 db_printf("next %x use %x\n", 1041 P_NEXT(p) & pid_tbl_mask, 1042 P_NEXT(p) & ~pid_tbl_mask); 1043 if ((pgrp = pt->pt_pgrp)) { 1044 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1045 pgrp->pg_session, pgrp->pg_session->s_sid, 1046 pgrp->pg_session->s_count, 1047 pgrp->pg_session->s_login); 1048 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1049 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1050 LIST_FIRST(&pgrp->pg_members)); 1051 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1052 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1053 p->p_pid, p, p->p_pgrp, p->p_comm); 1054 } 1055 } 1056 } 1057 } 1058 #endif /* DDB */ 1059 1060 #ifdef KSTACK_CHECK_MAGIC 1061 #include <sys/user.h> 1062 1063 #define KSTACK_MAGIC 0xdeadbeaf 1064 1065 /* XXX should be per process basis? */ 1066 int kstackleftmin = KSTACK_SIZE; 1067 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is 1068 less than this */ 1069 1070 void 1071 kstack_setup_magic(const struct lwp *l) 1072 { 1073 uint32_t *ip; 1074 uint32_t const *end; 1075 1076 KASSERT(l != NULL); 1077 KASSERT(l != &lwp0); 1078 1079 /* 1080 * fill all the stack with magic number 1081 * so that later modification on it can be detected. 1082 */ 1083 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1084 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1085 for (; ip < end; ip++) { 1086 *ip = KSTACK_MAGIC; 1087 } 1088 } 1089 1090 void 1091 kstack_check_magic(const struct lwp *l) 1092 { 1093 uint32_t const *ip, *end; 1094 int stackleft; 1095 1096 KASSERT(l != NULL); 1097 1098 /* don't check proc0 */ /*XXX*/ 1099 if (l == &lwp0) 1100 return; 1101 1102 #ifdef __MACHINE_STACK_GROWS_UP 1103 /* stack grows upwards (eg. hppa) */ 1104 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1105 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1106 for (ip--; ip >= end; ip--) 1107 if (*ip != KSTACK_MAGIC) 1108 break; 1109 1110 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1111 #else /* __MACHINE_STACK_GROWS_UP */ 1112 /* stack grows downwards (eg. i386) */ 1113 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1114 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1115 for (; ip < end; ip++) 1116 if (*ip != KSTACK_MAGIC) 1117 break; 1118 1119 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1120 #endif /* __MACHINE_STACK_GROWS_UP */ 1121 1122 if (kstackleftmin > stackleft) { 1123 kstackleftmin = stackleft; 1124 if (stackleft < kstackleftthres) 1125 printf("warning: kernel stack left %d bytes" 1126 "(pid %u:lid %u)\n", stackleft, 1127 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1128 } 1129 1130 if (stackleft <= 0) { 1131 panic("magic on the top of kernel stack changed for " 1132 "pid %u, lid %u: maybe kernel stack overflow", 1133 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1134 } 1135 } 1136 #endif /* KSTACK_CHECK_MAGIC */ 1137 1138 int 1139 proclist_foreach_call(struct proclist *list, 1140 int (*callback)(struct proc *, void *arg), void *arg) 1141 { 1142 struct proc marker; 1143 struct proc *p; 1144 struct lwp * const l = curlwp; 1145 int ret = 0; 1146 1147 marker.p_flag = PK_MARKER; 1148 uvm_lwp_hold(l); 1149 mutex_enter(proc_lock); 1150 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1151 if (p->p_flag & PK_MARKER) { 1152 p = LIST_NEXT(p, p_list); 1153 continue; 1154 } 1155 LIST_INSERT_AFTER(p, &marker, p_list); 1156 ret = (*callback)(p, arg); 1157 KASSERT(mutex_owned(proc_lock)); 1158 p = LIST_NEXT(&marker, p_list); 1159 LIST_REMOVE(&marker, p_list); 1160 } 1161 mutex_exit(proc_lock); 1162 uvm_lwp_rele(l); 1163 1164 return ret; 1165 } 1166 1167 int 1168 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1169 { 1170 1171 /* XXXCDC: how should locking work here? */ 1172 1173 /* curproc exception is for coredump. */ 1174 1175 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1176 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1177 return EFAULT; 1178 } 1179 1180 uvmspace_addref(p->p_vmspace); 1181 *vm = p->p_vmspace; 1182 1183 return 0; 1184 } 1185 1186 /* 1187 * Acquire a write lock on the process credential. 1188 */ 1189 void 1190 proc_crmod_enter(void) 1191 { 1192 struct lwp *l = curlwp; 1193 struct proc *p = l->l_proc; 1194 struct plimit *lim; 1195 kauth_cred_t oc; 1196 char *cn; 1197 1198 /* Reset what needs to be reset in plimit. */ 1199 if (p->p_limit->pl_corename != defcorename) { 1200 lim_privatise(p, false); 1201 lim = p->p_limit; 1202 mutex_enter(&lim->pl_lock); 1203 cn = lim->pl_corename; 1204 lim->pl_corename = defcorename; 1205 mutex_exit(&lim->pl_lock); 1206 if (cn != defcorename) 1207 free(cn, M_TEMP); 1208 } 1209 1210 mutex_enter(p->p_lock); 1211 1212 /* Ensure the LWP cached credentials are up to date. */ 1213 if ((oc = l->l_cred) != p->p_cred) { 1214 kauth_cred_hold(p->p_cred); 1215 l->l_cred = p->p_cred; 1216 kauth_cred_free(oc); 1217 } 1218 1219 } 1220 1221 /* 1222 * Set in a new process credential, and drop the write lock. The credential 1223 * must have a reference already. Optionally, free a no-longer required 1224 * credential. The scheduler also needs to inspect p_cred, so we also 1225 * briefly acquire the sched state mutex. 1226 */ 1227 void 1228 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1229 { 1230 struct lwp *l = curlwp, *l2; 1231 struct proc *p = l->l_proc; 1232 kauth_cred_t oc; 1233 1234 KASSERT(mutex_owned(p->p_lock)); 1235 1236 /* Is there a new credential to set in? */ 1237 if (scred != NULL) { 1238 p->p_cred = scred; 1239 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1240 if (l2 != l) 1241 l2->l_prflag |= LPR_CRMOD; 1242 } 1243 1244 /* Ensure the LWP cached credentials are up to date. */ 1245 if ((oc = l->l_cred) != scred) { 1246 kauth_cred_hold(scred); 1247 l->l_cred = scred; 1248 } 1249 } else 1250 oc = NULL; /* XXXgcc */ 1251 1252 if (sugid) { 1253 /* 1254 * Mark process as having changed credentials, stops 1255 * tracing etc. 1256 */ 1257 p->p_flag |= PK_SUGID; 1258 } 1259 1260 mutex_exit(p->p_lock); 1261 1262 /* If there is a credential to be released, free it now. */ 1263 if (fcred != NULL) { 1264 KASSERT(scred != NULL); 1265 kauth_cred_free(fcred); 1266 if (oc != scred) 1267 kauth_cred_free(oc); 1268 } 1269 } 1270 1271 /* 1272 * proc_specific_key_create -- 1273 * Create a key for subsystem proc-specific data. 1274 */ 1275 int 1276 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1277 { 1278 1279 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1280 } 1281 1282 /* 1283 * proc_specific_key_delete -- 1284 * Delete a key for subsystem proc-specific data. 1285 */ 1286 void 1287 proc_specific_key_delete(specificdata_key_t key) 1288 { 1289 1290 specificdata_key_delete(proc_specificdata_domain, key); 1291 } 1292 1293 /* 1294 * proc_initspecific -- 1295 * Initialize a proc's specificdata container. 1296 */ 1297 void 1298 proc_initspecific(struct proc *p) 1299 { 1300 int error; 1301 1302 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1303 KASSERT(error == 0); 1304 } 1305 1306 /* 1307 * proc_finispecific -- 1308 * Finalize a proc's specificdata container. 1309 */ 1310 void 1311 proc_finispecific(struct proc *p) 1312 { 1313 1314 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1315 } 1316 1317 /* 1318 * proc_getspecific -- 1319 * Return proc-specific data corresponding to the specified key. 1320 */ 1321 void * 1322 proc_getspecific(struct proc *p, specificdata_key_t key) 1323 { 1324 1325 return (specificdata_getspecific(proc_specificdata_domain, 1326 &p->p_specdataref, key)); 1327 } 1328 1329 /* 1330 * proc_setspecific -- 1331 * Set proc-specific data corresponding to the specified key. 1332 */ 1333 void 1334 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1335 { 1336 1337 specificdata_setspecific(proc_specificdata_domain, 1338 &p->p_specdataref, key, data); 1339 } 1340