1 /* $NetBSD: kern_proc.c,v 1.209 2017/11/30 18:44:16 maxv Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.209 2017/11/30 18:44:16 maxv Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_kstack.h" 69 #include "opt_maxuprc.h" 70 #include "opt_dtrace.h" 71 #include "opt_compat_netbsd32.h" 72 #endif 73 74 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \ 75 && !defined(_RUMPKERNEL) 76 #define COMPAT_NETBSD32 77 #endif 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/buf.h> 85 #include <sys/acct.h> 86 #include <sys/wait.h> 87 #include <sys/file.h> 88 #include <ufs/ufs/quota.h> 89 #include <sys/uio.h> 90 #include <sys/pool.h> 91 #include <sys/pset.h> 92 #include <sys/mbuf.h> 93 #include <sys/ioctl.h> 94 #include <sys/tty.h> 95 #include <sys/signalvar.h> 96 #include <sys/ras.h> 97 #include <sys/filedesc.h> 98 #include <sys/syscall_stats.h> 99 #include <sys/kauth.h> 100 #include <sys/sleepq.h> 101 #include <sys/atomic.h> 102 #include <sys/kmem.h> 103 #include <sys/namei.h> 104 #include <sys/dtrace_bsd.h> 105 #include <sys/sysctl.h> 106 #include <sys/exec.h> 107 #include <sys/cpu.h> 108 109 #include <uvm/uvm_extern.h> 110 #include <uvm/uvm.h> 111 112 #ifdef COMPAT_NETBSD32 113 #include <compat/netbsd32/netbsd32.h> 114 #endif 115 116 /* 117 * Process lists. 118 */ 119 120 struct proclist allproc __cacheline_aligned; 121 struct proclist zombproc __cacheline_aligned; 122 123 kmutex_t * proc_lock __cacheline_aligned; 124 125 /* 126 * pid to proc lookup is done by indexing the pid_table array. 127 * Since pid numbers are only allocated when an empty slot 128 * has been found, there is no need to search any lists ever. 129 * (an orphaned pgrp will lock the slot, a session will lock 130 * the pgrp with the same number.) 131 * If the table is too small it is reallocated with twice the 132 * previous size and the entries 'unzipped' into the two halves. 133 * A linked list of free entries is passed through the pt_proc 134 * field of 'free' items - set odd to be an invalid ptr. 135 */ 136 137 struct pid_table { 138 struct proc *pt_proc; 139 struct pgrp *pt_pgrp; 140 pid_t pt_pid; 141 }; 142 #if 1 /* strongly typed cast - should be a noop */ 143 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 144 #else 145 #define p2u(p) ((uint)p) 146 #endif 147 #define P_VALID(p) (!(p2u(p) & 1)) 148 #define P_NEXT(p) (p2u(p) >> 1) 149 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 150 151 /* 152 * Table of process IDs (PIDs). 153 */ 154 static struct pid_table *pid_table __read_mostly; 155 156 #define INITIAL_PID_TABLE_SIZE (1 << 5) 157 158 /* Table mask, threshold for growing and number of allocated PIDs. */ 159 static u_int pid_tbl_mask __read_mostly; 160 static u_int pid_alloc_lim __read_mostly; 161 static u_int pid_alloc_cnt __cacheline_aligned; 162 163 /* Next free, last free and maximum PIDs. */ 164 static u_int next_free_pt __cacheline_aligned; 165 static u_int last_free_pt __cacheline_aligned; 166 static pid_t pid_max __read_mostly; 167 168 /* Components of the first process -- never freed. */ 169 170 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 171 172 struct session session0 = { 173 .s_count = 1, 174 .s_sid = 0, 175 }; 176 struct pgrp pgrp0 = { 177 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 178 .pg_session = &session0, 179 }; 180 filedesc_t filedesc0; 181 struct cwdinfo cwdi0 = { 182 .cwdi_cmask = CMASK, 183 .cwdi_refcnt = 1, 184 }; 185 struct plimit limit0; 186 struct pstats pstat0; 187 struct vmspace vmspace0; 188 struct sigacts sigacts0; 189 struct proc proc0 = { 190 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 191 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 192 .p_nlwps = 1, 193 .p_nrlwps = 1, 194 .p_nlwpid = 1, /* must match lwp0.l_lid */ 195 .p_pgrp = &pgrp0, 196 .p_comm = "system", 197 /* 198 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 199 * when they exit. init(8) can easily wait them out for us. 200 */ 201 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 202 .p_stat = SACTIVE, 203 .p_nice = NZERO, 204 .p_emul = &emul_netbsd, 205 .p_cwdi = &cwdi0, 206 .p_limit = &limit0, 207 .p_fd = &filedesc0, 208 .p_vmspace = &vmspace0, 209 .p_stats = &pstat0, 210 .p_sigacts = &sigacts0, 211 #ifdef PROC0_MD_INITIALIZERS 212 PROC0_MD_INITIALIZERS 213 #endif 214 }; 215 kauth_cred_t cred0; 216 217 static const int nofile = NOFILE; 218 static const int maxuprc = MAXUPRC; 219 220 static int sysctl_doeproc(SYSCTLFN_PROTO); 221 static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 222 223 /* 224 * The process list descriptors, used during pid allocation and 225 * by sysctl. No locking on this data structure is needed since 226 * it is completely static. 227 */ 228 const struct proclist_desc proclists[] = { 229 { &allproc }, 230 { &zombproc }, 231 { NULL }, 232 }; 233 234 static struct pgrp * pg_remove(pid_t); 235 static void pg_delete(pid_t); 236 static void orphanpg(struct pgrp *); 237 238 static specificdata_domain_t proc_specificdata_domain; 239 240 static pool_cache_t proc_cache; 241 242 static kauth_listener_t proc_listener; 243 244 static int fill_pathname(struct lwp *, pid_t, void *, size_t *); 245 246 static int 247 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 248 void *arg0, void *arg1, void *arg2, void *arg3) 249 { 250 struct proc *p; 251 int result; 252 253 result = KAUTH_RESULT_DEFER; 254 p = arg0; 255 256 switch (action) { 257 case KAUTH_PROCESS_CANSEE: { 258 enum kauth_process_req req; 259 260 req = (enum kauth_process_req)arg1; 261 262 switch (req) { 263 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 264 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 265 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 266 result = KAUTH_RESULT_ALLOW; 267 268 break; 269 270 case KAUTH_REQ_PROCESS_CANSEE_ENV: 271 if (kauth_cred_getuid(cred) != 272 kauth_cred_getuid(p->p_cred) || 273 kauth_cred_getuid(cred) != 274 kauth_cred_getsvuid(p->p_cred)) 275 break; 276 277 result = KAUTH_RESULT_ALLOW; 278 279 break; 280 281 default: 282 break; 283 } 284 285 break; 286 } 287 288 case KAUTH_PROCESS_FORK: { 289 int lnprocs = (int)(unsigned long)arg2; 290 291 /* 292 * Don't allow a nonprivileged user to use the last few 293 * processes. The variable lnprocs is the current number of 294 * processes, maxproc is the limit. 295 */ 296 if (__predict_false((lnprocs >= maxproc - 5))) 297 break; 298 299 result = KAUTH_RESULT_ALLOW; 300 301 break; 302 } 303 304 case KAUTH_PROCESS_CORENAME: 305 case KAUTH_PROCESS_STOPFLAG: 306 if (proc_uidmatch(cred, p->p_cred) == 0) 307 result = KAUTH_RESULT_ALLOW; 308 309 break; 310 311 default: 312 break; 313 } 314 315 return result; 316 } 317 318 /* 319 * Initialize global process hashing structures. 320 */ 321 void 322 procinit(void) 323 { 324 const struct proclist_desc *pd; 325 u_int i; 326 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 327 328 for (pd = proclists; pd->pd_list != NULL; pd++) 329 LIST_INIT(pd->pd_list); 330 331 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 332 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 333 * sizeof(struct pid_table), KM_SLEEP); 334 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 335 pid_max = PID_MAX; 336 337 /* Set free list running through table... 338 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 339 for (i = 0; i <= pid_tbl_mask; i++) { 340 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 341 pid_table[i].pt_pgrp = 0; 342 pid_table[i].pt_pid = 0; 343 } 344 /* slot 0 is just grabbed */ 345 next_free_pt = 1; 346 /* Need to fix last entry. */ 347 last_free_pt = pid_tbl_mask; 348 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 349 /* point at which we grow table - to avoid reusing pids too often */ 350 pid_alloc_lim = pid_tbl_mask - 1; 351 #undef LINK_EMPTY 352 353 proc_specificdata_domain = specificdata_domain_create(); 354 KASSERT(proc_specificdata_domain != NULL); 355 356 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 357 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 358 359 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 360 proc_listener_cb, NULL); 361 } 362 363 void 364 procinit_sysctl(void) 365 { 366 static struct sysctllog *clog; 367 368 sysctl_createv(&clog, 0, NULL, NULL, 369 CTLFLAG_PERMANENT, 370 CTLTYPE_NODE, "proc", 371 SYSCTL_DESCR("System-wide process information"), 372 sysctl_doeproc, 0, NULL, 0, 373 CTL_KERN, KERN_PROC, CTL_EOL); 374 sysctl_createv(&clog, 0, NULL, NULL, 375 CTLFLAG_PERMANENT, 376 CTLTYPE_NODE, "proc2", 377 SYSCTL_DESCR("Machine-independent process information"), 378 sysctl_doeproc, 0, NULL, 0, 379 CTL_KERN, KERN_PROC2, CTL_EOL); 380 sysctl_createv(&clog, 0, NULL, NULL, 381 CTLFLAG_PERMANENT, 382 CTLTYPE_NODE, "proc_args", 383 SYSCTL_DESCR("Process argument information"), 384 sysctl_kern_proc_args, 0, NULL, 0, 385 CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 386 387 /* 388 "nodes" under these: 389 390 KERN_PROC_ALL 391 KERN_PROC_PID pid 392 KERN_PROC_PGRP pgrp 393 KERN_PROC_SESSION sess 394 KERN_PROC_TTY tty 395 KERN_PROC_UID uid 396 KERN_PROC_RUID uid 397 KERN_PROC_GID gid 398 KERN_PROC_RGID gid 399 400 all in all, probably not worth the effort... 401 */ 402 } 403 404 /* 405 * Initialize process 0. 406 */ 407 void 408 proc0_init(void) 409 { 410 struct proc *p; 411 struct pgrp *pg; 412 struct rlimit *rlim; 413 rlim_t lim; 414 int i; 415 416 p = &proc0; 417 pg = &pgrp0; 418 419 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 420 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 421 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 422 423 rw_init(&p->p_reflock); 424 cv_init(&p->p_waitcv, "wait"); 425 cv_init(&p->p_lwpcv, "lwpwait"); 426 427 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 428 429 pid_table[0].pt_proc = p; 430 LIST_INSERT_HEAD(&allproc, p, p_list); 431 432 pid_table[0].pt_pgrp = pg; 433 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 434 435 #ifdef __HAVE_SYSCALL_INTERN 436 (*p->p_emul->e_syscall_intern)(p); 437 #endif 438 439 /* Create credentials. */ 440 cred0 = kauth_cred_alloc(); 441 p->p_cred = cred0; 442 443 /* Create the CWD info. */ 444 rw_init(&cwdi0.cwdi_lock); 445 446 /* Create the limits structures. */ 447 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 448 449 rlim = limit0.pl_rlimit; 450 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 451 rlim[i].rlim_cur = RLIM_INFINITY; 452 rlim[i].rlim_max = RLIM_INFINITY; 453 } 454 455 rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 456 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 457 458 rlim[RLIMIT_NPROC].rlim_max = maxproc; 459 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 460 461 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free)); 462 rlim[RLIMIT_RSS].rlim_max = lim; 463 rlim[RLIMIT_MEMLOCK].rlim_max = lim; 464 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 465 466 rlim[RLIMIT_NTHR].rlim_max = maxlwp; 467 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc; 468 469 /* Note that default core name has zero length. */ 470 limit0.pl_corename = defcorename; 471 limit0.pl_cnlen = 0; 472 limit0.pl_refcnt = 1; 473 limit0.pl_writeable = false; 474 limit0.pl_sv_limit = NULL; 475 476 /* Configure virtual memory system, set vm rlimits. */ 477 uvm_init_limits(p); 478 479 /* Initialize file descriptor table for proc0. */ 480 fd_init(&filedesc0); 481 482 /* 483 * Initialize proc0's vmspace, which uses the kernel pmap. 484 * All kernel processes (which never have user space mappings) 485 * share proc0's vmspace, and thus, the kernel pmap. 486 */ 487 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 488 trunc_page(VM_MAXUSER_ADDRESS), 489 #ifdef __USE_TOPDOWN_VM 490 true 491 #else 492 false 493 #endif 494 ); 495 496 /* Initialize signal state for proc0. XXX IPL_SCHED */ 497 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 498 siginit(p); 499 500 proc_initspecific(p); 501 kdtrace_proc_ctor(NULL, p); 502 } 503 504 /* 505 * Session reference counting. 506 */ 507 508 void 509 proc_sesshold(struct session *ss) 510 { 511 512 KASSERT(mutex_owned(proc_lock)); 513 ss->s_count++; 514 } 515 516 void 517 proc_sessrele(struct session *ss) 518 { 519 520 KASSERT(mutex_owned(proc_lock)); 521 /* 522 * We keep the pgrp with the same id as the session in order to 523 * stop a process being given the same pid. Since the pgrp holds 524 * a reference to the session, it must be a 'zombie' pgrp by now. 525 */ 526 if (--ss->s_count == 0) { 527 struct pgrp *pg; 528 529 pg = pg_remove(ss->s_sid); 530 mutex_exit(proc_lock); 531 532 kmem_free(pg, sizeof(struct pgrp)); 533 kmem_free(ss, sizeof(struct session)); 534 } else { 535 mutex_exit(proc_lock); 536 } 537 } 538 539 /* 540 * Check that the specified process group is in the session of the 541 * specified process. 542 * Treats -ve ids as process ids. 543 * Used to validate TIOCSPGRP requests. 544 */ 545 int 546 pgid_in_session(struct proc *p, pid_t pg_id) 547 { 548 struct pgrp *pgrp; 549 struct session *session; 550 int error; 551 552 mutex_enter(proc_lock); 553 if (pg_id < 0) { 554 struct proc *p1 = proc_find(-pg_id); 555 if (p1 == NULL) { 556 error = EINVAL; 557 goto fail; 558 } 559 pgrp = p1->p_pgrp; 560 } else { 561 pgrp = pgrp_find(pg_id); 562 if (pgrp == NULL) { 563 error = EINVAL; 564 goto fail; 565 } 566 } 567 session = pgrp->pg_session; 568 error = (session != p->p_pgrp->pg_session) ? EPERM : 0; 569 fail: 570 mutex_exit(proc_lock); 571 return error; 572 } 573 574 /* 575 * p_inferior: is p an inferior of q? 576 */ 577 static inline bool 578 p_inferior(struct proc *p, struct proc *q) 579 { 580 581 KASSERT(mutex_owned(proc_lock)); 582 583 for (; p != q; p = p->p_pptr) 584 if (p->p_pid == 0) 585 return false; 586 return true; 587 } 588 589 /* 590 * proc_find: locate a process by the ID. 591 * 592 * => Must be called with proc_lock held. 593 */ 594 proc_t * 595 proc_find_raw(pid_t pid) 596 { 597 struct pid_table *pt; 598 proc_t *p; 599 600 KASSERT(mutex_owned(proc_lock)); 601 pt = &pid_table[pid & pid_tbl_mask]; 602 p = pt->pt_proc; 603 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) { 604 return NULL; 605 } 606 return p; 607 } 608 609 proc_t * 610 proc_find(pid_t pid) 611 { 612 proc_t *p; 613 614 p = proc_find_raw(pid); 615 if (__predict_false(p == NULL)) { 616 return NULL; 617 } 618 619 /* 620 * Only allow live processes to be found by PID. 621 * XXX: p_stat might change, since unlocked. 622 */ 623 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 624 return p; 625 } 626 return NULL; 627 } 628 629 /* 630 * pgrp_find: locate a process group by the ID. 631 * 632 * => Must be called with proc_lock held. 633 */ 634 struct pgrp * 635 pgrp_find(pid_t pgid) 636 { 637 struct pgrp *pg; 638 639 KASSERT(mutex_owned(proc_lock)); 640 641 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 642 643 /* 644 * Cannot look up a process group that only exists because the 645 * session has not died yet (traditional). 646 */ 647 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 648 return NULL; 649 } 650 return pg; 651 } 652 653 static void 654 expand_pid_table(void) 655 { 656 size_t pt_size, tsz; 657 struct pid_table *n_pt, *new_pt; 658 struct proc *proc; 659 struct pgrp *pgrp; 660 pid_t pid, rpid; 661 u_int i; 662 uint new_pt_mask; 663 664 pt_size = pid_tbl_mask + 1; 665 tsz = pt_size * 2 * sizeof(struct pid_table); 666 new_pt = kmem_alloc(tsz, KM_SLEEP); 667 new_pt_mask = pt_size * 2 - 1; 668 669 mutex_enter(proc_lock); 670 if (pt_size != pid_tbl_mask + 1) { 671 /* Another process beat us to it... */ 672 mutex_exit(proc_lock); 673 kmem_free(new_pt, tsz); 674 return; 675 } 676 677 /* 678 * Copy entries from old table into new one. 679 * If 'pid' is 'odd' we need to place in the upper half, 680 * even pid's to the lower half. 681 * Free items stay in the low half so we don't have to 682 * fixup the reference to them. 683 * We stuff free items on the front of the freelist 684 * because we can't write to unmodified entries. 685 * Processing the table backwards maintains a semblance 686 * of issuing pid numbers that increase with time. 687 */ 688 i = pt_size - 1; 689 n_pt = new_pt + i; 690 for (; ; i--, n_pt--) { 691 proc = pid_table[i].pt_proc; 692 pgrp = pid_table[i].pt_pgrp; 693 if (!P_VALID(proc)) { 694 /* Up 'use count' so that link is valid */ 695 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 696 rpid = 0; 697 proc = P_FREE(pid); 698 if (pgrp) 699 pid = pgrp->pg_id; 700 } else { 701 pid = pid_table[i].pt_pid; 702 rpid = pid; 703 } 704 705 /* Save entry in appropriate half of table */ 706 n_pt[pid & pt_size].pt_proc = proc; 707 n_pt[pid & pt_size].pt_pgrp = pgrp; 708 n_pt[pid & pt_size].pt_pid = rpid; 709 710 /* Put other piece on start of free list */ 711 pid = (pid ^ pt_size) & ~pid_tbl_mask; 712 n_pt[pid & pt_size].pt_proc = 713 P_FREE((pid & ~pt_size) | next_free_pt); 714 n_pt[pid & pt_size].pt_pgrp = 0; 715 n_pt[pid & pt_size].pt_pid = 0; 716 717 next_free_pt = i | (pid & pt_size); 718 if (i == 0) 719 break; 720 } 721 722 /* Save old table size and switch tables */ 723 tsz = pt_size * sizeof(struct pid_table); 724 n_pt = pid_table; 725 pid_table = new_pt; 726 pid_tbl_mask = new_pt_mask; 727 728 /* 729 * pid_max starts as PID_MAX (= 30000), once we have 16384 730 * allocated pids we need it to be larger! 731 */ 732 if (pid_tbl_mask > PID_MAX) { 733 pid_max = pid_tbl_mask * 2 + 1; 734 pid_alloc_lim |= pid_alloc_lim << 1; 735 } else 736 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 737 738 mutex_exit(proc_lock); 739 kmem_free(n_pt, tsz); 740 } 741 742 struct proc * 743 proc_alloc(void) 744 { 745 struct proc *p; 746 747 p = pool_cache_get(proc_cache, PR_WAITOK); 748 p->p_stat = SIDL; /* protect against others */ 749 proc_initspecific(p); 750 kdtrace_proc_ctor(NULL, p); 751 p->p_pid = -1; 752 proc_alloc_pid(p); 753 return p; 754 } 755 756 /* 757 * proc_alloc_pid: allocate PID and record the given proc 'p' so that 758 * proc_find_raw() can find it by the PID. 759 */ 760 761 pid_t 762 proc_alloc_pid(struct proc *p) 763 { 764 struct pid_table *pt; 765 pid_t pid; 766 int nxt; 767 768 for (;;expand_pid_table()) { 769 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 770 /* ensure pids cycle through 2000+ values */ 771 continue; 772 mutex_enter(proc_lock); 773 pt = &pid_table[next_free_pt]; 774 #ifdef DIAGNOSTIC 775 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 776 panic("proc_alloc: slot busy"); 777 #endif 778 nxt = P_NEXT(pt->pt_proc); 779 if (nxt & pid_tbl_mask) 780 break; 781 /* Table full - expand (NB last entry not used....) */ 782 mutex_exit(proc_lock); 783 } 784 785 /* pid is 'saved use count' + 'size' + entry */ 786 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 787 if ((uint)pid > (uint)pid_max) 788 pid &= pid_tbl_mask; 789 next_free_pt = nxt & pid_tbl_mask; 790 791 /* Grab table slot */ 792 pt->pt_proc = p; 793 794 KASSERT(pt->pt_pid == 0); 795 pt->pt_pid = pid; 796 if (p->p_pid == -1) { 797 p->p_pid = pid; 798 } 799 pid_alloc_cnt++; 800 mutex_exit(proc_lock); 801 802 return pid; 803 } 804 805 /* 806 * Free a process id - called from proc_free (in kern_exit.c) 807 * 808 * Called with the proc_lock held. 809 */ 810 void 811 proc_free_pid(pid_t pid) 812 { 813 struct pid_table *pt; 814 815 KASSERT(mutex_owned(proc_lock)); 816 817 pt = &pid_table[pid & pid_tbl_mask]; 818 819 /* save pid use count in slot */ 820 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 821 KASSERT(pt->pt_pid == pid); 822 pt->pt_pid = 0; 823 824 if (pt->pt_pgrp == NULL) { 825 /* link last freed entry onto ours */ 826 pid &= pid_tbl_mask; 827 pt = &pid_table[last_free_pt]; 828 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 829 pt->pt_pid = 0; 830 last_free_pt = pid; 831 pid_alloc_cnt--; 832 } 833 834 atomic_dec_uint(&nprocs); 835 } 836 837 void 838 proc_free_mem(struct proc *p) 839 { 840 841 kdtrace_proc_dtor(NULL, p); 842 pool_cache_put(proc_cache, p); 843 } 844 845 /* 846 * proc_enterpgrp: move p to a new or existing process group (and session). 847 * 848 * If we are creating a new pgrp, the pgid should equal 849 * the calling process' pid. 850 * If is only valid to enter a process group that is in the session 851 * of the process. 852 * Also mksess should only be set if we are creating a process group 853 * 854 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return. 855 */ 856 int 857 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 858 { 859 struct pgrp *new_pgrp, *pgrp; 860 struct session *sess; 861 struct proc *p; 862 int rval; 863 pid_t pg_id = NO_PGID; 864 865 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 866 867 /* Allocate data areas we might need before doing any validity checks */ 868 mutex_enter(proc_lock); /* Because pid_table might change */ 869 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 870 mutex_exit(proc_lock); 871 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 872 mutex_enter(proc_lock); 873 } else 874 new_pgrp = NULL; 875 rval = EPERM; /* most common error (to save typing) */ 876 877 /* Check pgrp exists or can be created */ 878 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 879 if (pgrp != NULL && pgrp->pg_id != pgid) 880 goto done; 881 882 /* Can only set another process under restricted circumstances. */ 883 if (pid != curp->p_pid) { 884 /* Must exist and be one of our children... */ 885 p = proc_find(pid); 886 if (p == NULL || !p_inferior(p, curp)) { 887 rval = ESRCH; 888 goto done; 889 } 890 /* ... in the same session... */ 891 if (sess != NULL || p->p_session != curp->p_session) 892 goto done; 893 /* ... existing pgid must be in same session ... */ 894 if (pgrp != NULL && pgrp->pg_session != p->p_session) 895 goto done; 896 /* ... and not done an exec. */ 897 if (p->p_flag & PK_EXEC) { 898 rval = EACCES; 899 goto done; 900 } 901 } else { 902 /* ... setsid() cannot re-enter a pgrp */ 903 if (mksess && (curp->p_pgid == curp->p_pid || 904 pgrp_find(curp->p_pid))) 905 goto done; 906 p = curp; 907 } 908 909 /* Changing the process group/session of a session 910 leader is definitely off limits. */ 911 if (SESS_LEADER(p)) { 912 if (sess == NULL && p->p_pgrp == pgrp) 913 /* unless it's a definite noop */ 914 rval = 0; 915 goto done; 916 } 917 918 /* Can only create a process group with id of process */ 919 if (pgrp == NULL && pgid != pid) 920 goto done; 921 922 /* Can only create a session if creating pgrp */ 923 if (sess != NULL && pgrp != NULL) 924 goto done; 925 926 /* Check we allocated memory for a pgrp... */ 927 if (pgrp == NULL && new_pgrp == NULL) 928 goto done; 929 930 /* Don't attach to 'zombie' pgrp */ 931 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 932 goto done; 933 934 /* Expect to succeed now */ 935 rval = 0; 936 937 if (pgrp == p->p_pgrp) 938 /* nothing to do */ 939 goto done; 940 941 /* Ok all setup, link up required structures */ 942 943 if (pgrp == NULL) { 944 pgrp = new_pgrp; 945 new_pgrp = NULL; 946 if (sess != NULL) { 947 sess->s_sid = p->p_pid; 948 sess->s_leader = p; 949 sess->s_count = 1; 950 sess->s_ttyvp = NULL; 951 sess->s_ttyp = NULL; 952 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 953 memcpy(sess->s_login, p->p_session->s_login, 954 sizeof(sess->s_login)); 955 p->p_lflag &= ~PL_CONTROLT; 956 } else { 957 sess = p->p_pgrp->pg_session; 958 proc_sesshold(sess); 959 } 960 pgrp->pg_session = sess; 961 sess = NULL; 962 963 pgrp->pg_id = pgid; 964 LIST_INIT(&pgrp->pg_members); 965 #ifdef DIAGNOSTIC 966 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 967 panic("enterpgrp: pgrp table slot in use"); 968 if (__predict_false(mksess && p != curp)) 969 panic("enterpgrp: mksession and p != curproc"); 970 #endif 971 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 972 pgrp->pg_jobc = 0; 973 } 974 975 /* 976 * Adjust eligibility of affected pgrps to participate in job control. 977 * Increment eligibility counts before decrementing, otherwise we 978 * could reach 0 spuriously during the first call. 979 */ 980 fixjobc(p, pgrp, 1); 981 fixjobc(p, p->p_pgrp, 0); 982 983 /* Interlock with ttread(). */ 984 mutex_spin_enter(&tty_lock); 985 986 /* Move process to requested group. */ 987 LIST_REMOVE(p, p_pglist); 988 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 989 /* defer delete until we've dumped the lock */ 990 pg_id = p->p_pgrp->pg_id; 991 p->p_pgrp = pgrp; 992 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 993 994 /* Done with the swap; we can release the tty mutex. */ 995 mutex_spin_exit(&tty_lock); 996 997 done: 998 if (pg_id != NO_PGID) { 999 /* Releases proc_lock. */ 1000 pg_delete(pg_id); 1001 } else { 1002 mutex_exit(proc_lock); 1003 } 1004 if (sess != NULL) 1005 kmem_free(sess, sizeof(*sess)); 1006 if (new_pgrp != NULL) 1007 kmem_free(new_pgrp, sizeof(*new_pgrp)); 1008 #ifdef DEBUG_PGRP 1009 if (__predict_false(rval)) 1010 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 1011 pid, pgid, mksess, curp->p_pid, rval); 1012 #endif 1013 return rval; 1014 } 1015 1016 /* 1017 * proc_leavepgrp: remove a process from its process group. 1018 * => must be called with the proc_lock held, which will be released; 1019 */ 1020 void 1021 proc_leavepgrp(struct proc *p) 1022 { 1023 struct pgrp *pgrp; 1024 1025 KASSERT(mutex_owned(proc_lock)); 1026 1027 /* Interlock with ttread() */ 1028 mutex_spin_enter(&tty_lock); 1029 pgrp = p->p_pgrp; 1030 LIST_REMOVE(p, p_pglist); 1031 p->p_pgrp = NULL; 1032 mutex_spin_exit(&tty_lock); 1033 1034 if (LIST_EMPTY(&pgrp->pg_members)) { 1035 /* Releases proc_lock. */ 1036 pg_delete(pgrp->pg_id); 1037 } else { 1038 mutex_exit(proc_lock); 1039 } 1040 } 1041 1042 /* 1043 * pg_remove: remove a process group from the table. 1044 * => must be called with the proc_lock held; 1045 * => returns process group to free; 1046 */ 1047 static struct pgrp * 1048 pg_remove(pid_t pg_id) 1049 { 1050 struct pgrp *pgrp; 1051 struct pid_table *pt; 1052 1053 KASSERT(mutex_owned(proc_lock)); 1054 1055 pt = &pid_table[pg_id & pid_tbl_mask]; 1056 pgrp = pt->pt_pgrp; 1057 1058 KASSERT(pgrp != NULL); 1059 KASSERT(pgrp->pg_id == pg_id); 1060 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 1061 1062 pt->pt_pgrp = NULL; 1063 1064 if (!P_VALID(pt->pt_proc)) { 1065 /* Orphaned pgrp, put slot onto free list. */ 1066 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); 1067 pg_id &= pid_tbl_mask; 1068 pt = &pid_table[last_free_pt]; 1069 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 1070 KASSERT(pt->pt_pid == 0); 1071 last_free_pt = pg_id; 1072 pid_alloc_cnt--; 1073 } 1074 return pgrp; 1075 } 1076 1077 /* 1078 * pg_delete: delete and free a process group. 1079 * => must be called with the proc_lock held, which will be released. 1080 */ 1081 static void 1082 pg_delete(pid_t pg_id) 1083 { 1084 struct pgrp *pg; 1085 struct tty *ttyp; 1086 struct session *ss; 1087 1088 KASSERT(mutex_owned(proc_lock)); 1089 1090 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 1091 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 1092 mutex_exit(proc_lock); 1093 return; 1094 } 1095 1096 ss = pg->pg_session; 1097 1098 /* Remove reference (if any) from tty to this process group */ 1099 mutex_spin_enter(&tty_lock); 1100 ttyp = ss->s_ttyp; 1101 if (ttyp != NULL && ttyp->t_pgrp == pg) { 1102 ttyp->t_pgrp = NULL; 1103 KASSERT(ttyp->t_session == ss); 1104 } 1105 mutex_spin_exit(&tty_lock); 1106 1107 /* 1108 * The leading process group in a session is freed by proc_sessrele(), 1109 * if last reference. Note: proc_sessrele() releases proc_lock. 1110 */ 1111 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1112 proc_sessrele(ss); 1113 1114 if (pg != NULL) { 1115 /* Free it, if was not done by proc_sessrele(). */ 1116 kmem_free(pg, sizeof(struct pgrp)); 1117 } 1118 } 1119 1120 /* 1121 * Adjust pgrp jobc counters when specified process changes process group. 1122 * We count the number of processes in each process group that "qualify" 1123 * the group for terminal job control (those with a parent in a different 1124 * process group of the same session). If that count reaches zero, the 1125 * process group becomes orphaned. Check both the specified process' 1126 * process group and that of its children. 1127 * entering == 0 => p is leaving specified group. 1128 * entering == 1 => p is entering specified group. 1129 * 1130 * Call with proc_lock held. 1131 */ 1132 void 1133 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1134 { 1135 struct pgrp *hispgrp; 1136 struct session *mysession = pgrp->pg_session; 1137 struct proc *child; 1138 1139 KASSERT(mutex_owned(proc_lock)); 1140 1141 /* 1142 * Check p's parent to see whether p qualifies its own process 1143 * group; if so, adjust count for p's process group. 1144 */ 1145 hispgrp = p->p_pptr->p_pgrp; 1146 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1147 if (entering) { 1148 pgrp->pg_jobc++; 1149 p->p_lflag &= ~PL_ORPHANPG; 1150 } else if (--pgrp->pg_jobc == 0) 1151 orphanpg(pgrp); 1152 } 1153 1154 /* 1155 * Check this process' children to see whether they qualify 1156 * their process groups; if so, adjust counts for children's 1157 * process groups. 1158 */ 1159 LIST_FOREACH(child, &p->p_children, p_sibling) { 1160 hispgrp = child->p_pgrp; 1161 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1162 !P_ZOMBIE(child)) { 1163 if (entering) { 1164 child->p_lflag &= ~PL_ORPHANPG; 1165 hispgrp->pg_jobc++; 1166 } else if (--hispgrp->pg_jobc == 0) 1167 orphanpg(hispgrp); 1168 } 1169 } 1170 } 1171 1172 /* 1173 * A process group has become orphaned; 1174 * if there are any stopped processes in the group, 1175 * hang-up all process in that group. 1176 * 1177 * Call with proc_lock held. 1178 */ 1179 static void 1180 orphanpg(struct pgrp *pg) 1181 { 1182 struct proc *p; 1183 1184 KASSERT(mutex_owned(proc_lock)); 1185 1186 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1187 if (p->p_stat == SSTOP) { 1188 p->p_lflag |= PL_ORPHANPG; 1189 psignal(p, SIGHUP); 1190 psignal(p, SIGCONT); 1191 } 1192 } 1193 } 1194 1195 #ifdef DDB 1196 #include <ddb/db_output.h> 1197 void pidtbl_dump(void); 1198 void 1199 pidtbl_dump(void) 1200 { 1201 struct pid_table *pt; 1202 struct proc *p; 1203 struct pgrp *pgrp; 1204 int id; 1205 1206 db_printf("pid table %p size %x, next %x, last %x\n", 1207 pid_table, pid_tbl_mask+1, 1208 next_free_pt, last_free_pt); 1209 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1210 p = pt->pt_proc; 1211 if (!P_VALID(p) && !pt->pt_pgrp) 1212 continue; 1213 db_printf(" id %x: ", id); 1214 if (P_VALID(p)) 1215 db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1216 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1217 else 1218 db_printf("next %x use %x\n", 1219 P_NEXT(p) & pid_tbl_mask, 1220 P_NEXT(p) & ~pid_tbl_mask); 1221 if ((pgrp = pt->pt_pgrp)) { 1222 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1223 pgrp->pg_session, pgrp->pg_session->s_sid, 1224 pgrp->pg_session->s_count, 1225 pgrp->pg_session->s_login); 1226 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1227 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1228 LIST_FIRST(&pgrp->pg_members)); 1229 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1230 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1231 p->p_pid, p, p->p_pgrp, p->p_comm); 1232 } 1233 } 1234 } 1235 } 1236 #endif /* DDB */ 1237 1238 #ifdef KSTACK_CHECK_MAGIC 1239 1240 #define KSTACK_MAGIC 0xdeadbeaf 1241 1242 /* XXX should be per process basis? */ 1243 static int kstackleftmin = KSTACK_SIZE; 1244 static int kstackleftthres = KSTACK_SIZE / 8; 1245 1246 void 1247 kstack_setup_magic(const struct lwp *l) 1248 { 1249 uint32_t *ip; 1250 uint32_t const *end; 1251 1252 KASSERT(l != NULL); 1253 KASSERT(l != &lwp0); 1254 1255 /* 1256 * fill all the stack with magic number 1257 * so that later modification on it can be detected. 1258 */ 1259 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1260 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1261 for (; ip < end; ip++) { 1262 *ip = KSTACK_MAGIC; 1263 } 1264 } 1265 1266 void 1267 kstack_check_magic(const struct lwp *l) 1268 { 1269 uint32_t const *ip, *end; 1270 int stackleft; 1271 1272 KASSERT(l != NULL); 1273 1274 /* don't check proc0 */ /*XXX*/ 1275 if (l == &lwp0) 1276 return; 1277 1278 #ifdef __MACHINE_STACK_GROWS_UP 1279 /* stack grows upwards (eg. hppa) */ 1280 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1281 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1282 for (ip--; ip >= end; ip--) 1283 if (*ip != KSTACK_MAGIC) 1284 break; 1285 1286 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1287 #else /* __MACHINE_STACK_GROWS_UP */ 1288 /* stack grows downwards (eg. i386) */ 1289 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1290 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1291 for (; ip < end; ip++) 1292 if (*ip != KSTACK_MAGIC) 1293 break; 1294 1295 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1296 #endif /* __MACHINE_STACK_GROWS_UP */ 1297 1298 if (kstackleftmin > stackleft) { 1299 kstackleftmin = stackleft; 1300 if (stackleft < kstackleftthres) 1301 printf("warning: kernel stack left %d bytes" 1302 "(pid %u:lid %u)\n", stackleft, 1303 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1304 } 1305 1306 if (stackleft <= 0) { 1307 panic("magic on the top of kernel stack changed for " 1308 "pid %u, lid %u: maybe kernel stack overflow", 1309 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1310 } 1311 } 1312 #endif /* KSTACK_CHECK_MAGIC */ 1313 1314 int 1315 proclist_foreach_call(struct proclist *list, 1316 int (*callback)(struct proc *, void *arg), void *arg) 1317 { 1318 struct proc marker; 1319 struct proc *p; 1320 int ret = 0; 1321 1322 marker.p_flag = PK_MARKER; 1323 mutex_enter(proc_lock); 1324 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1325 if (p->p_flag & PK_MARKER) { 1326 p = LIST_NEXT(p, p_list); 1327 continue; 1328 } 1329 LIST_INSERT_AFTER(p, &marker, p_list); 1330 ret = (*callback)(p, arg); 1331 KASSERT(mutex_owned(proc_lock)); 1332 p = LIST_NEXT(&marker, p_list); 1333 LIST_REMOVE(&marker, p_list); 1334 } 1335 mutex_exit(proc_lock); 1336 1337 return ret; 1338 } 1339 1340 int 1341 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1342 { 1343 1344 /* XXXCDC: how should locking work here? */ 1345 1346 /* curproc exception is for coredump. */ 1347 1348 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1349 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1350 return EFAULT; 1351 } 1352 1353 uvmspace_addref(p->p_vmspace); 1354 *vm = p->p_vmspace; 1355 1356 return 0; 1357 } 1358 1359 /* 1360 * Acquire a write lock on the process credential. 1361 */ 1362 void 1363 proc_crmod_enter(void) 1364 { 1365 struct lwp *l = curlwp; 1366 struct proc *p = l->l_proc; 1367 kauth_cred_t oc; 1368 1369 /* Reset what needs to be reset in plimit. */ 1370 if (p->p_limit->pl_corename != defcorename) { 1371 lim_setcorename(p, defcorename, 0); 1372 } 1373 1374 mutex_enter(p->p_lock); 1375 1376 /* Ensure the LWP cached credentials are up to date. */ 1377 if ((oc = l->l_cred) != p->p_cred) { 1378 kauth_cred_hold(p->p_cred); 1379 l->l_cred = p->p_cred; 1380 kauth_cred_free(oc); 1381 } 1382 } 1383 1384 /* 1385 * Set in a new process credential, and drop the write lock. The credential 1386 * must have a reference already. Optionally, free a no-longer required 1387 * credential. The scheduler also needs to inspect p_cred, so we also 1388 * briefly acquire the sched state mutex. 1389 */ 1390 void 1391 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1392 { 1393 struct lwp *l = curlwp, *l2; 1394 struct proc *p = l->l_proc; 1395 kauth_cred_t oc; 1396 1397 KASSERT(mutex_owned(p->p_lock)); 1398 1399 /* Is there a new credential to set in? */ 1400 if (scred != NULL) { 1401 p->p_cred = scred; 1402 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1403 if (l2 != l) 1404 l2->l_prflag |= LPR_CRMOD; 1405 } 1406 1407 /* Ensure the LWP cached credentials are up to date. */ 1408 if ((oc = l->l_cred) != scred) { 1409 kauth_cred_hold(scred); 1410 l->l_cred = scred; 1411 } 1412 } else 1413 oc = NULL; /* XXXgcc */ 1414 1415 if (sugid) { 1416 /* 1417 * Mark process as having changed credentials, stops 1418 * tracing etc. 1419 */ 1420 p->p_flag |= PK_SUGID; 1421 } 1422 1423 mutex_exit(p->p_lock); 1424 1425 /* If there is a credential to be released, free it now. */ 1426 if (fcred != NULL) { 1427 KASSERT(scred != NULL); 1428 kauth_cred_free(fcred); 1429 if (oc != scred) 1430 kauth_cred_free(oc); 1431 } 1432 } 1433 1434 /* 1435 * proc_specific_key_create -- 1436 * Create a key for subsystem proc-specific data. 1437 */ 1438 int 1439 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1440 { 1441 1442 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1443 } 1444 1445 /* 1446 * proc_specific_key_delete -- 1447 * Delete a key for subsystem proc-specific data. 1448 */ 1449 void 1450 proc_specific_key_delete(specificdata_key_t key) 1451 { 1452 1453 specificdata_key_delete(proc_specificdata_domain, key); 1454 } 1455 1456 /* 1457 * proc_initspecific -- 1458 * Initialize a proc's specificdata container. 1459 */ 1460 void 1461 proc_initspecific(struct proc *p) 1462 { 1463 int error __diagused; 1464 1465 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1466 KASSERT(error == 0); 1467 } 1468 1469 /* 1470 * proc_finispecific -- 1471 * Finalize a proc's specificdata container. 1472 */ 1473 void 1474 proc_finispecific(struct proc *p) 1475 { 1476 1477 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1478 } 1479 1480 /* 1481 * proc_getspecific -- 1482 * Return proc-specific data corresponding to the specified key. 1483 */ 1484 void * 1485 proc_getspecific(struct proc *p, specificdata_key_t key) 1486 { 1487 1488 return (specificdata_getspecific(proc_specificdata_domain, 1489 &p->p_specdataref, key)); 1490 } 1491 1492 /* 1493 * proc_setspecific -- 1494 * Set proc-specific data corresponding to the specified key. 1495 */ 1496 void 1497 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1498 { 1499 1500 specificdata_setspecific(proc_specificdata_domain, 1501 &p->p_specdataref, key, data); 1502 } 1503 1504 int 1505 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1506 { 1507 int r = 0; 1508 1509 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1510 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1511 /* 1512 * suid proc of ours or proc not ours 1513 */ 1514 r = EPERM; 1515 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1516 /* 1517 * sgid proc has sgid back to us temporarily 1518 */ 1519 r = EPERM; 1520 } else { 1521 /* 1522 * our rgid must be in target's group list (ie, 1523 * sub-processes started by a sgid process) 1524 */ 1525 int ismember = 0; 1526 1527 if (kauth_cred_ismember_gid(cred, 1528 kauth_cred_getgid(target), &ismember) != 0 || 1529 !ismember) 1530 r = EPERM; 1531 } 1532 1533 return (r); 1534 } 1535 1536 /* 1537 * sysctl stuff 1538 */ 1539 1540 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1541 1542 static const u_int sysctl_flagmap[] = { 1543 PK_ADVLOCK, P_ADVLOCK, 1544 PK_EXEC, P_EXEC, 1545 PK_NOCLDWAIT, P_NOCLDWAIT, 1546 PK_32, P_32, 1547 PK_CLDSIGIGN, P_CLDSIGIGN, 1548 PK_SUGID, P_SUGID, 1549 0 1550 }; 1551 1552 static const u_int sysctl_sflagmap[] = { 1553 PS_NOCLDSTOP, P_NOCLDSTOP, 1554 PS_WEXIT, P_WEXIT, 1555 PS_STOPFORK, P_STOPFORK, 1556 PS_STOPEXEC, P_STOPEXEC, 1557 PS_STOPEXIT, P_STOPEXIT, 1558 0 1559 }; 1560 1561 static const u_int sysctl_slflagmap[] = { 1562 PSL_TRACED, P_TRACED, 1563 PSL_CHTRACED, P_CHTRACED, 1564 PSL_SYSCALL, P_SYSCALL, 1565 0 1566 }; 1567 1568 static const u_int sysctl_lflagmap[] = { 1569 PL_CONTROLT, P_CONTROLT, 1570 PL_PPWAIT, P_PPWAIT, 1571 0 1572 }; 1573 1574 static const u_int sysctl_stflagmap[] = { 1575 PST_PROFIL, P_PROFIL, 1576 0 1577 1578 }; 1579 1580 /* used by kern_lwp also */ 1581 const u_int sysctl_lwpflagmap[] = { 1582 LW_SINTR, L_SINTR, 1583 LW_SYSTEM, L_SYSTEM, 1584 0 1585 }; 1586 1587 /* 1588 * Find the most ``active'' lwp of a process and return it for ps display 1589 * purposes 1590 */ 1591 static struct lwp * 1592 proc_active_lwp(struct proc *p) 1593 { 1594 static const int ostat[] = { 1595 0, 1596 2, /* LSIDL */ 1597 6, /* LSRUN */ 1598 5, /* LSSLEEP */ 1599 4, /* LSSTOP */ 1600 0, /* LSZOMB */ 1601 1, /* LSDEAD */ 1602 7, /* LSONPROC */ 1603 3 /* LSSUSPENDED */ 1604 }; 1605 1606 struct lwp *l, *lp = NULL; 1607 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1608 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat)); 1609 if (lp == NULL || 1610 ostat[l->l_stat] > ostat[lp->l_stat] || 1611 (ostat[l->l_stat] == ostat[lp->l_stat] && 1612 l->l_cpticks > lp->l_cpticks)) { 1613 lp = l; 1614 continue; 1615 } 1616 } 1617 return lp; 1618 } 1619 1620 static int 1621 sysctl_doeproc(SYSCTLFN_ARGS) 1622 { 1623 union { 1624 struct kinfo_proc kproc; 1625 struct kinfo_proc2 kproc2; 1626 } *kbuf; 1627 struct proc *p, *next, *marker; 1628 char *where, *dp; 1629 int type, op, arg, error; 1630 u_int elem_size, kelem_size, elem_count; 1631 size_t buflen, needed; 1632 bool match, zombie, mmmbrains; 1633 1634 if (namelen == 1 && name[0] == CTL_QUERY) 1635 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1636 1637 dp = where = oldp; 1638 buflen = where != NULL ? *oldlenp : 0; 1639 error = 0; 1640 needed = 0; 1641 type = rnode->sysctl_num; 1642 1643 if (type == KERN_PROC) { 1644 if (namelen == 0) 1645 return EINVAL; 1646 switch (op = name[0]) { 1647 case KERN_PROC_ALL: 1648 if (namelen != 1) 1649 return EINVAL; 1650 arg = 0; 1651 break; 1652 default: 1653 if (namelen != 2) 1654 return EINVAL; 1655 arg = name[1]; 1656 break; 1657 } 1658 elem_count = 0; /* Ditto */ 1659 kelem_size = elem_size = sizeof(kbuf->kproc); 1660 } else { 1661 if (namelen != 4) 1662 return EINVAL; 1663 op = name[0]; 1664 arg = name[1]; 1665 elem_size = name[2]; 1666 elem_count = name[3]; 1667 kelem_size = sizeof(kbuf->kproc2); 1668 } 1669 1670 sysctl_unlock(); 1671 1672 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP); 1673 marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 1674 marker->p_flag = PK_MARKER; 1675 1676 mutex_enter(proc_lock); 1677 mmmbrains = false; 1678 for (p = LIST_FIRST(&allproc);; p = next) { 1679 if (p == NULL) { 1680 if (!mmmbrains) { 1681 p = LIST_FIRST(&zombproc); 1682 mmmbrains = true; 1683 } 1684 if (p == NULL) 1685 break; 1686 } 1687 next = LIST_NEXT(p, p_list); 1688 if ((p->p_flag & PK_MARKER) != 0) 1689 continue; 1690 1691 /* 1692 * Skip embryonic processes. 1693 */ 1694 if (p->p_stat == SIDL) 1695 continue; 1696 1697 mutex_enter(p->p_lock); 1698 error = kauth_authorize_process(l->l_cred, 1699 KAUTH_PROCESS_CANSEE, p, 1700 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1701 if (error != 0) { 1702 mutex_exit(p->p_lock); 1703 continue; 1704 } 1705 1706 /* 1707 * TODO - make more efficient (see notes below). 1708 * do by session. 1709 */ 1710 switch (op) { 1711 case KERN_PROC_PID: 1712 /* could do this with just a lookup */ 1713 match = (p->p_pid == (pid_t)arg); 1714 break; 1715 1716 case KERN_PROC_PGRP: 1717 /* could do this by traversing pgrp */ 1718 match = (p->p_pgrp->pg_id == (pid_t)arg); 1719 break; 1720 1721 case KERN_PROC_SESSION: 1722 match = (p->p_session->s_sid == (pid_t)arg); 1723 break; 1724 1725 case KERN_PROC_TTY: 1726 match = true; 1727 if (arg == (int) KERN_PROC_TTY_REVOKE) { 1728 if ((p->p_lflag & PL_CONTROLT) == 0 || 1729 p->p_session->s_ttyp == NULL || 1730 p->p_session->s_ttyvp != NULL) { 1731 match = false; 1732 } 1733 } else if ((p->p_lflag & PL_CONTROLT) == 0 || 1734 p->p_session->s_ttyp == NULL) { 1735 if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 1736 match = false; 1737 } 1738 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 1739 match = false; 1740 } 1741 break; 1742 1743 case KERN_PROC_UID: 1744 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 1745 break; 1746 1747 case KERN_PROC_RUID: 1748 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 1749 break; 1750 1751 case KERN_PROC_GID: 1752 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 1753 break; 1754 1755 case KERN_PROC_RGID: 1756 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 1757 break; 1758 1759 case KERN_PROC_ALL: 1760 match = true; 1761 /* allow everything */ 1762 break; 1763 1764 default: 1765 error = EINVAL; 1766 mutex_exit(p->p_lock); 1767 goto cleanup; 1768 } 1769 if (!match) { 1770 mutex_exit(p->p_lock); 1771 continue; 1772 } 1773 1774 /* 1775 * Grab a hold on the process. 1776 */ 1777 if (mmmbrains) { 1778 zombie = true; 1779 } else { 1780 zombie = !rw_tryenter(&p->p_reflock, RW_READER); 1781 } 1782 if (zombie) { 1783 LIST_INSERT_AFTER(p, marker, p_list); 1784 } 1785 1786 if (buflen >= elem_size && 1787 (type == KERN_PROC || elem_count > 0)) { 1788 if (type == KERN_PROC) { 1789 kbuf->kproc.kp_proc = *p; 1790 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie); 1791 } else { 1792 fill_kproc2(p, &kbuf->kproc2, zombie); 1793 elem_count--; 1794 } 1795 mutex_exit(p->p_lock); 1796 mutex_exit(proc_lock); 1797 /* 1798 * Copy out elem_size, but not larger than kelem_size 1799 */ 1800 error = sysctl_copyout(l, kbuf, dp, 1801 min(kelem_size, elem_size)); 1802 mutex_enter(proc_lock); 1803 if (error) { 1804 goto bah; 1805 } 1806 dp += elem_size; 1807 buflen -= elem_size; 1808 } else { 1809 mutex_exit(p->p_lock); 1810 } 1811 needed += elem_size; 1812 1813 /* 1814 * Release reference to process. 1815 */ 1816 if (zombie) { 1817 next = LIST_NEXT(marker, p_list); 1818 LIST_REMOVE(marker, p_list); 1819 } else { 1820 rw_exit(&p->p_reflock); 1821 next = LIST_NEXT(p, p_list); 1822 } 1823 } 1824 mutex_exit(proc_lock); 1825 1826 if (where != NULL) { 1827 *oldlenp = dp - where; 1828 if (needed > *oldlenp) { 1829 error = ENOMEM; 1830 goto out; 1831 } 1832 } else { 1833 needed += KERN_PROCSLOP; 1834 *oldlenp = needed; 1835 } 1836 if (kbuf) 1837 kmem_free(kbuf, sizeof(*kbuf)); 1838 if (marker) 1839 kmem_free(marker, sizeof(*marker)); 1840 sysctl_relock(); 1841 return 0; 1842 bah: 1843 if (zombie) 1844 LIST_REMOVE(marker, p_list); 1845 else 1846 rw_exit(&p->p_reflock); 1847 cleanup: 1848 mutex_exit(proc_lock); 1849 out: 1850 if (kbuf) 1851 kmem_free(kbuf, sizeof(*kbuf)); 1852 if (marker) 1853 kmem_free(marker, sizeof(*marker)); 1854 sysctl_relock(); 1855 return error; 1856 } 1857 1858 int 1859 copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 1860 { 1861 1862 #ifdef COMPAT_NETBSD32 1863 if (p->p_flag & PK_32) { 1864 struct ps_strings32 arginfo32; 1865 1866 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32, 1867 sizeof(arginfo32)); 1868 if (error) 1869 return error; 1870 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr; 1871 arginfo->ps_nargvstr = arginfo32.ps_nargvstr; 1872 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr; 1873 arginfo->ps_nenvstr = arginfo32.ps_nenvstr; 1874 return 0; 1875 } 1876 #endif 1877 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 1878 } 1879 1880 static int 1881 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 1882 { 1883 void **cookie = cookie_; 1884 struct lwp *l = cookie[0]; 1885 char *dst = cookie[1]; 1886 1887 return sysctl_copyout(l, src, dst + off, len); 1888 } 1889 1890 /* 1891 * sysctl helper routine for kern.proc_args pseudo-subtree. 1892 */ 1893 static int 1894 sysctl_kern_proc_args(SYSCTLFN_ARGS) 1895 { 1896 struct ps_strings pss; 1897 struct proc *p; 1898 pid_t pid; 1899 int type, error; 1900 void *cookie[2]; 1901 1902 if (namelen == 1 && name[0] == CTL_QUERY) 1903 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1904 1905 if (newp != NULL || namelen != 2) 1906 return (EINVAL); 1907 pid = name[0]; 1908 type = name[1]; 1909 1910 switch (type) { 1911 case KERN_PROC_PATHNAME: 1912 sysctl_unlock(); 1913 error = fill_pathname(l, pid, oldp, oldlenp); 1914 sysctl_relock(); 1915 return error; 1916 1917 case KERN_PROC_ARGV: 1918 case KERN_PROC_NARGV: 1919 case KERN_PROC_ENV: 1920 case KERN_PROC_NENV: 1921 /* ok */ 1922 break; 1923 default: 1924 return (EINVAL); 1925 } 1926 1927 sysctl_unlock(); 1928 1929 /* check pid */ 1930 mutex_enter(proc_lock); 1931 if ((p = proc_find(pid)) == NULL) { 1932 error = EINVAL; 1933 goto out_locked; 1934 } 1935 mutex_enter(p->p_lock); 1936 1937 /* Check permission. */ 1938 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 1939 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1940 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 1941 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 1942 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1943 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 1944 else 1945 error = EINVAL; /* XXXGCC */ 1946 if (error) { 1947 mutex_exit(p->p_lock); 1948 goto out_locked; 1949 } 1950 1951 if (oldp == NULL) { 1952 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 1953 *oldlenp = sizeof (int); 1954 else 1955 *oldlenp = ARG_MAX; /* XXX XXX XXX */ 1956 error = 0; 1957 mutex_exit(p->p_lock); 1958 goto out_locked; 1959 } 1960 1961 /* 1962 * Zombies don't have a stack, so we can't read their psstrings. 1963 * System processes also don't have a user stack. 1964 */ 1965 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 1966 error = EINVAL; 1967 mutex_exit(p->p_lock); 1968 goto out_locked; 1969 } 1970 1971 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 1972 mutex_exit(p->p_lock); 1973 if (error) { 1974 goto out_locked; 1975 } 1976 mutex_exit(proc_lock); 1977 1978 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 1979 int value; 1980 if ((error = copyin_psstrings(p, &pss)) == 0) { 1981 if (type == KERN_PROC_NARGV) 1982 value = pss.ps_nargvstr; 1983 else 1984 value = pss.ps_nenvstr; 1985 error = sysctl_copyout(l, &value, oldp, sizeof(value)); 1986 *oldlenp = sizeof(value); 1987 } 1988 } else { 1989 cookie[0] = l; 1990 cookie[1] = oldp; 1991 error = copy_procargs(p, type, oldlenp, 1992 copy_procargs_sysctl_cb, cookie); 1993 } 1994 rw_exit(&p->p_reflock); 1995 sysctl_relock(); 1996 return error; 1997 1998 out_locked: 1999 mutex_exit(proc_lock); 2000 sysctl_relock(); 2001 return error; 2002 } 2003 2004 int 2005 copy_procargs(struct proc *p, int oid, size_t *limit, 2006 int (*cb)(void *, const void *, size_t, size_t), void *cookie) 2007 { 2008 struct ps_strings pss; 2009 size_t len, i, loaded, entry_len; 2010 struct uio auio; 2011 struct iovec aiov; 2012 int error, argvlen; 2013 char *arg; 2014 char **argv; 2015 vaddr_t user_argv; 2016 struct vmspace *vmspace; 2017 2018 /* 2019 * Allocate a temporary buffer to hold the argument vector and 2020 * the arguments themselve. 2021 */ 2022 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2023 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2024 2025 /* 2026 * Lock the process down in memory. 2027 */ 2028 vmspace = p->p_vmspace; 2029 uvmspace_addref(vmspace); 2030 2031 /* 2032 * Read in the ps_strings structure. 2033 */ 2034 if ((error = copyin_psstrings(p, &pss)) != 0) 2035 goto done; 2036 2037 /* 2038 * Now read the address of the argument vector. 2039 */ 2040 switch (oid) { 2041 case KERN_PROC_ARGV: 2042 user_argv = (uintptr_t)pss.ps_argvstr; 2043 argvlen = pss.ps_nargvstr; 2044 break; 2045 case KERN_PROC_ENV: 2046 user_argv = (uintptr_t)pss.ps_envstr; 2047 argvlen = pss.ps_nenvstr; 2048 break; 2049 default: 2050 error = EINVAL; 2051 goto done; 2052 } 2053 2054 if (argvlen < 0) { 2055 error = EIO; 2056 goto done; 2057 } 2058 2059 2060 /* 2061 * Now copy each string. 2062 */ 2063 len = 0; /* bytes written to user buffer */ 2064 loaded = 0; /* bytes from argv already processed */ 2065 i = 0; /* To make compiler happy */ 2066 entry_len = PROC_PTRSZ(p); 2067 2068 for (; argvlen; --argvlen) { 2069 int finished = 0; 2070 vaddr_t base; 2071 size_t xlen; 2072 int j; 2073 2074 if (loaded == 0) { 2075 size_t rem = entry_len * argvlen; 2076 loaded = MIN(rem, PAGE_SIZE); 2077 error = copyin_vmspace(vmspace, 2078 (const void *)user_argv, argv, loaded); 2079 if (error) 2080 break; 2081 user_argv += loaded; 2082 i = 0; 2083 } 2084 2085 #ifdef COMPAT_NETBSD32 2086 if (p->p_flag & PK_32) { 2087 netbsd32_charp *argv32; 2088 2089 argv32 = (netbsd32_charp *)argv; 2090 base = (vaddr_t)NETBSD32PTR64(argv32[i++]); 2091 } else 2092 #endif 2093 base = (vaddr_t)argv[i++]; 2094 loaded -= entry_len; 2095 2096 /* 2097 * The program has messed around with its arguments, 2098 * possibly deleting some, and replacing them with 2099 * NULL's. Treat this as the last argument and not 2100 * a failure. 2101 */ 2102 if (base == 0) 2103 break; 2104 2105 while (!finished) { 2106 xlen = PAGE_SIZE - (base & PAGE_MASK); 2107 2108 aiov.iov_base = arg; 2109 aiov.iov_len = PAGE_SIZE; 2110 auio.uio_iov = &aiov; 2111 auio.uio_iovcnt = 1; 2112 auio.uio_offset = base; 2113 auio.uio_resid = xlen; 2114 auio.uio_rw = UIO_READ; 2115 UIO_SETUP_SYSSPACE(&auio); 2116 error = uvm_io(&vmspace->vm_map, &auio, 0); 2117 if (error) 2118 goto done; 2119 2120 /* Look for the end of the string */ 2121 for (j = 0; j < xlen; j++) { 2122 if (arg[j] == '\0') { 2123 xlen = j + 1; 2124 finished = 1; 2125 break; 2126 } 2127 } 2128 2129 /* Check for user buffer overflow */ 2130 if (len + xlen > *limit) { 2131 finished = 1; 2132 if (len > *limit) 2133 xlen = 0; 2134 else 2135 xlen = *limit - len; 2136 } 2137 2138 /* Copyout the page */ 2139 error = (*cb)(cookie, arg, len, xlen); 2140 if (error) 2141 goto done; 2142 2143 len += xlen; 2144 base += xlen; 2145 } 2146 } 2147 *limit = len; 2148 2149 done: 2150 kmem_free(argv, PAGE_SIZE); 2151 kmem_free(arg, PAGE_SIZE); 2152 uvmspace_free(vmspace); 2153 return error; 2154 } 2155 2156 /* 2157 * Fill in an eproc structure for the specified process. 2158 */ 2159 void 2160 fill_eproc(struct proc *p, struct eproc *ep, bool zombie) 2161 { 2162 struct tty *tp; 2163 struct lwp *l; 2164 2165 KASSERT(mutex_owned(proc_lock)); 2166 KASSERT(mutex_owned(p->p_lock)); 2167 2168 memset(ep, 0, sizeof(*ep)); 2169 2170 ep->e_paddr = p; 2171 ep->e_sess = p->p_session; 2172 if (p->p_cred) { 2173 kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2174 kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2175 } 2176 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2177 struct vmspace *vm = p->p_vmspace; 2178 2179 ep->e_vm.vm_rssize = vm_resident_count(vm); 2180 ep->e_vm.vm_tsize = vm->vm_tsize; 2181 ep->e_vm.vm_dsize = vm->vm_dsize; 2182 ep->e_vm.vm_ssize = vm->vm_ssize; 2183 ep->e_vm.vm_map.size = vm->vm_map.size; 2184 2185 /* Pick the primary (first) LWP */ 2186 l = proc_active_lwp(p); 2187 KASSERT(l != NULL); 2188 lwp_lock(l); 2189 if (l->l_wchan) 2190 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2191 lwp_unlock(l); 2192 } 2193 ep->e_ppid = p->p_ppid; 2194 if (p->p_pgrp && p->p_session) { 2195 ep->e_pgid = p->p_pgrp->pg_id; 2196 ep->e_jobc = p->p_pgrp->pg_jobc; 2197 ep->e_sid = p->p_session->s_sid; 2198 if ((p->p_lflag & PL_CONTROLT) && 2199 (tp = ep->e_sess->s_ttyp)) { 2200 ep->e_tdev = tp->t_dev; 2201 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2202 ep->e_tsess = tp->t_session; 2203 } else 2204 ep->e_tdev = (uint32_t)NODEV; 2205 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; 2206 if (SESS_LEADER(p)) 2207 ep->e_flag |= EPROC_SLEADER; 2208 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME); 2209 } 2210 ep->e_xsize = ep->e_xrssize = 0; 2211 ep->e_xccount = ep->e_xswrss = 0; 2212 } 2213 2214 /* 2215 * Fill in a kinfo_proc2 structure for the specified process. 2216 */ 2217 void 2218 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie) 2219 { 2220 struct tty *tp; 2221 struct lwp *l, *l2; 2222 struct timeval ut, st, rt; 2223 sigset_t ss1, ss2; 2224 struct rusage ru; 2225 struct vmspace *vm; 2226 2227 KASSERT(mutex_owned(proc_lock)); 2228 KASSERT(mutex_owned(p->p_lock)); 2229 2230 sigemptyset(&ss1); 2231 sigemptyset(&ss2); 2232 memset(ki, 0, sizeof(*ki)); 2233 2234 ki->p_paddr = PTRTOUINT64(p); 2235 ki->p_fd = PTRTOUINT64(p->p_fd); 2236 ki->p_cwdi = PTRTOUINT64(p->p_cwdi); 2237 ki->p_stats = PTRTOUINT64(p->p_stats); 2238 ki->p_limit = PTRTOUINT64(p->p_limit); 2239 ki->p_vmspace = PTRTOUINT64(p->p_vmspace); 2240 ki->p_sigacts = PTRTOUINT64(p->p_sigacts); 2241 ki->p_sess = PTRTOUINT64(p->p_session); 2242 ki->p_tsess = 0; /* may be changed if controlling tty below */ 2243 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru); 2244 ki->p_eflag = 0; 2245 ki->p_exitsig = p->p_exitsig; 2246 ki->p_flag = L_INMEM; /* Process never swapped out */ 2247 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2248 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2249 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2250 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2251 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2252 ki->p_pid = p->p_pid; 2253 ki->p_ppid = p->p_ppid; 2254 ki->p_uid = kauth_cred_geteuid(p->p_cred); 2255 ki->p_ruid = kauth_cred_getuid(p->p_cred); 2256 ki->p_gid = kauth_cred_getegid(p->p_cred); 2257 ki->p_rgid = kauth_cred_getgid(p->p_cred); 2258 ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2259 ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2260 ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2261 kauth_cred_getgroups(p->p_cred, ki->p_groups, 2262 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2263 UIO_SYSSPACE); 2264 2265 ki->p_uticks = p->p_uticks; 2266 ki->p_sticks = p->p_sticks; 2267 ki->p_iticks = p->p_iticks; 2268 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2269 ki->p_tracep = PTRTOUINT64(p->p_tracep); 2270 ki->p_traceflag = p->p_traceflag; 2271 2272 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2273 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2274 2275 ki->p_cpticks = 0; 2276 ki->p_pctcpu = p->p_pctcpu; 2277 ki->p_estcpu = 0; 2278 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2279 ki->p_realstat = p->p_stat; 2280 ki->p_nice = p->p_nice; 2281 ki->p_xstat = P_WAITSTATUS(p); 2282 ki->p_acflag = p->p_acflag; 2283 2284 strncpy(ki->p_comm, p->p_comm, 2285 min(sizeof(ki->p_comm), sizeof(p->p_comm))); 2286 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2287 2288 ki->p_nlwps = p->p_nlwps; 2289 ki->p_realflag = ki->p_flag; 2290 2291 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2292 vm = p->p_vmspace; 2293 ki->p_vm_rssize = vm_resident_count(vm); 2294 ki->p_vm_tsize = vm->vm_tsize; 2295 ki->p_vm_dsize = vm->vm_dsize; 2296 ki->p_vm_ssize = vm->vm_ssize; 2297 ki->p_vm_vsize = atop(vm->vm_map.size); 2298 /* 2299 * Since the stack is initially mapped mostly with 2300 * PROT_NONE and grown as needed, adjust the "mapped size" 2301 * to skip the unused stack portion. 2302 */ 2303 ki->p_vm_msize = 2304 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2305 2306 /* Pick the primary (first) LWP */ 2307 l = proc_active_lwp(p); 2308 KASSERT(l != NULL); 2309 lwp_lock(l); 2310 ki->p_nrlwps = p->p_nrlwps; 2311 ki->p_forw = 0; 2312 ki->p_back = 0; 2313 ki->p_addr = PTRTOUINT64(l->l_addr); 2314 ki->p_stat = l->l_stat; 2315 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2316 ki->p_swtime = l->l_swtime; 2317 ki->p_slptime = l->l_slptime; 2318 if (l->l_stat == LSONPROC) 2319 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2320 else 2321 ki->p_schedflags = 0; 2322 ki->p_priority = lwp_eprio(l); 2323 ki->p_usrpri = l->l_priority; 2324 if (l->l_wchan) 2325 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2326 ki->p_wchan = PTRTOUINT64(l->l_wchan); 2327 ki->p_cpuid = cpu_index(l->l_cpu); 2328 lwp_unlock(l); 2329 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2330 /* This is hardly correct, but... */ 2331 sigplusset(&l->l_sigpend.sp_set, &ss1); 2332 sigplusset(&l->l_sigmask, &ss2); 2333 ki->p_cpticks += l->l_cpticks; 2334 ki->p_pctcpu += l->l_pctcpu; 2335 ki->p_estcpu += l->l_estcpu; 2336 } 2337 } 2338 sigplusset(&p->p_sigpend.sp_set, &ss2); 2339 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2340 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2341 2342 if (p->p_session != NULL) { 2343 ki->p_sid = p->p_session->s_sid; 2344 ki->p__pgid = p->p_pgrp->pg_id; 2345 if (p->p_session->s_ttyvp) 2346 ki->p_eflag |= EPROC_CTTY; 2347 if (SESS_LEADER(p)) 2348 ki->p_eflag |= EPROC_SLEADER; 2349 strncpy(ki->p_login, p->p_session->s_login, 2350 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2351 ki->p_jobc = p->p_pgrp->pg_jobc; 2352 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2353 ki->p_tdev = tp->t_dev; 2354 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2355 ki->p_tsess = PTRTOUINT64(tp->t_session); 2356 } else { 2357 ki->p_tdev = (int32_t)NODEV; 2358 } 2359 } 2360 2361 if (!P_ZOMBIE(p) && !zombie) { 2362 ki->p_uvalid = 1; 2363 ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2364 ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2365 2366 calcru(p, &ut, &st, NULL, &rt); 2367 ki->p_rtime_sec = rt.tv_sec; 2368 ki->p_rtime_usec = rt.tv_usec; 2369 ki->p_uutime_sec = ut.tv_sec; 2370 ki->p_uutime_usec = ut.tv_usec; 2371 ki->p_ustime_sec = st.tv_sec; 2372 ki->p_ustime_usec = st.tv_usec; 2373 2374 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2375 ki->p_uru_nvcsw = 0; 2376 ki->p_uru_nivcsw = 0; 2377 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 2378 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw); 2379 ki->p_uru_nivcsw += l2->l_nivcsw; 2380 ruadd(&ru, &l2->l_ru); 2381 } 2382 ki->p_uru_maxrss = ru.ru_maxrss; 2383 ki->p_uru_ixrss = ru.ru_ixrss; 2384 ki->p_uru_idrss = ru.ru_idrss; 2385 ki->p_uru_isrss = ru.ru_isrss; 2386 ki->p_uru_minflt = ru.ru_minflt; 2387 ki->p_uru_majflt = ru.ru_majflt; 2388 ki->p_uru_nswap = ru.ru_nswap; 2389 ki->p_uru_inblock = ru.ru_inblock; 2390 ki->p_uru_oublock = ru.ru_oublock; 2391 ki->p_uru_msgsnd = ru.ru_msgsnd; 2392 ki->p_uru_msgrcv = ru.ru_msgrcv; 2393 ki->p_uru_nsignals = ru.ru_nsignals; 2394 2395 timeradd(&p->p_stats->p_cru.ru_utime, 2396 &p->p_stats->p_cru.ru_stime, &ut); 2397 ki->p_uctime_sec = ut.tv_sec; 2398 ki->p_uctime_usec = ut.tv_usec; 2399 } 2400 } 2401 2402 2403 int 2404 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) 2405 { 2406 int error; 2407 2408 mutex_enter(proc_lock); 2409 if (pid == -1) 2410 *p = l->l_proc; 2411 else 2412 *p = proc_find(pid); 2413 2414 if (*p == NULL) { 2415 if (pid != -1) 2416 mutex_exit(proc_lock); 2417 return ESRCH; 2418 } 2419 if (pid != -1) 2420 mutex_enter((*p)->p_lock); 2421 mutex_exit(proc_lock); 2422 2423 error = kauth_authorize_process(l->l_cred, 2424 KAUTH_PROCESS_CANSEE, *p, 2425 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 2426 if (error) { 2427 if (pid != -1) 2428 mutex_exit((*p)->p_lock); 2429 } 2430 return error; 2431 } 2432 2433 static int 2434 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2435 { 2436 int error; 2437 struct proc *p; 2438 2439 if ((error = proc_find_locked(l, &p, pid)) != 0) 2440 return error; 2441 2442 if (p->p_path == NULL) { 2443 if (pid != -1) 2444 mutex_exit(p->p_lock); 2445 return ENOENT; 2446 } 2447 2448 size_t len = strlen(p->p_path) + 1; 2449 if (oldp != NULL) { 2450 error = sysctl_copyout(l, p->p_path, oldp, *oldlenp); 2451 if (error == 0 && *oldlenp < len) 2452 error = ENOSPC; 2453 } 2454 *oldlenp = len; 2455 if (pid != -1) 2456 mutex_exit(p->p_lock); 2457 return error; 2458 } 2459 2460 int 2461 proc_getauxv(struct proc *p, void **buf, size_t *len) 2462 { 2463 struct ps_strings pss; 2464 int error; 2465 void *uauxv, *kauxv; 2466 size_t size; 2467 2468 if ((error = copyin_psstrings(p, &pss)) != 0) 2469 return error; 2470 if (pss.ps_envstr == NULL) 2471 return EIO; 2472 2473 size = p->p_execsw->es_arglen; 2474 if (size == 0) 2475 return EIO; 2476 2477 size_t ptrsz = PROC_PTRSZ(p); 2478 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz); 2479 2480 kauxv = kmem_alloc(size, KM_SLEEP); 2481 2482 error = copyin_proc(p, uauxv, kauxv, size); 2483 if (error) { 2484 kmem_free(kauxv, size); 2485 return error; 2486 } 2487 2488 *buf = kauxv; 2489 *len = size; 2490 2491 return 0; 2492 } 2493