1 /* $NetBSD: kern_proc.c,v 1.151 2009/04/25 15:06:31 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.151 2009/04/25 15:06:31 rmind Exp $"); 66 67 #include "opt_kstack.h" 68 #include "opt_maxuprc.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> 74 #include <sys/resourcevar.h> 75 #include <sys/buf.h> 76 #include <sys/acct.h> 77 #include <sys/wait.h> 78 #include <sys/file.h> 79 #include <ufs/ufs/quota.h> 80 #include <sys/uio.h> 81 #include <sys/pool.h> 82 #include <sys/pset.h> 83 #include <sys/mbuf.h> 84 #include <sys/ioctl.h> 85 #include <sys/tty.h> 86 #include <sys/signalvar.h> 87 #include <sys/ras.h> 88 #include <sys/sa.h> 89 #include <sys/savar.h> 90 #include <sys/filedesc.h> 91 #include "sys/syscall_stats.h" 92 #include <sys/kauth.h> 93 #include <sys/sleepq.h> 94 #include <sys/atomic.h> 95 #include <sys/kmem.h> 96 97 #include <uvm/uvm.h> 98 #include <uvm/uvm_extern.h> 99 100 /* 101 * Other process lists 102 */ 103 104 struct proclist allproc; 105 struct proclist zombproc; /* resources have been freed */ 106 107 kmutex_t *proc_lock; 108 109 /* 110 * pid to proc lookup is done by indexing the pid_table array. 111 * Since pid numbers are only allocated when an empty slot 112 * has been found, there is no need to search any lists ever. 113 * (an orphaned pgrp will lock the slot, a session will lock 114 * the pgrp with the same number.) 115 * If the table is too small it is reallocated with twice the 116 * previous size and the entries 'unzipped' into the two halves. 117 * A linked list of free entries is passed through the pt_proc 118 * field of 'free' items - set odd to be an invalid ptr. 119 */ 120 121 struct pid_table { 122 struct proc *pt_proc; 123 struct pgrp *pt_pgrp; 124 }; 125 #if 1 /* strongly typed cast - should be a noop */ 126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 127 #else 128 #define p2u(p) ((uint)p) 129 #endif 130 #define P_VALID(p) (!(p2u(p) & 1)) 131 #define P_NEXT(p) (p2u(p) >> 1) 132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 133 134 #define INITIAL_PID_TABLE_SIZE (1 << 5) 135 static struct pid_table *pid_table; 136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 137 static uint pid_alloc_lim; /* max we allocate before growing table */ 138 static uint pid_alloc_cnt; /* number of allocated pids */ 139 140 /* links through free slots - never empty! */ 141 static uint next_free_pt, last_free_pt; 142 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 143 144 /* Components of the first process -- never freed. */ 145 146 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 147 148 struct session session0 = { 149 .s_count = 1, 150 .s_sid = 0, 151 }; 152 struct pgrp pgrp0 = { 153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 154 .pg_session = &session0, 155 }; 156 filedesc_t filedesc0; 157 struct cwdinfo cwdi0 = { 158 .cwdi_cmask = CMASK, /* see cmask below */ 159 .cwdi_refcnt = 1, 160 }; 161 struct plimit limit0; 162 struct pstats pstat0; 163 struct vmspace vmspace0; 164 struct sigacts sigacts0; 165 struct turnstile turnstile0; 166 struct proc proc0 = { 167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 169 .p_nlwps = 1, 170 .p_nrlwps = 1, 171 .p_nlwpid = 1, /* must match lwp0.l_lid */ 172 .p_pgrp = &pgrp0, 173 .p_comm = "system", 174 /* 175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 176 * when they exit. init(8) can easily wait them out for us. 177 */ 178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 179 .p_stat = SACTIVE, 180 .p_nice = NZERO, 181 .p_emul = &emul_netbsd, 182 .p_cwdi = &cwdi0, 183 .p_limit = &limit0, 184 .p_fd = &filedesc0, 185 .p_vmspace = &vmspace0, 186 .p_stats = &pstat0, 187 .p_sigacts = &sigacts0, 188 }; 189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 190 #ifdef LWP0_CPU_INFO 191 .l_cpu = LWP0_CPU_INFO, 192 #endif 193 .l_proc = &proc0, 194 .l_lid = 1, 195 .l_flag = LW_INMEM | LW_SYSTEM, 196 .l_stat = LSONPROC, 197 .l_ts = &turnstile0, 198 .l_syncobj = &sched_syncobj, 199 .l_refcnt = 1, 200 .l_priority = PRI_USER + NPRI_USER - 1, 201 .l_inheritedprio = -1, 202 .l_class = SCHED_OTHER, 203 .l_psid = PS_NONE, 204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 205 .l_name = __UNCONST("swapper"), 206 }; 207 kauth_cred_t cred0; 208 209 extern struct user *proc0paddr; 210 211 int nofile = NOFILE; 212 int maxuprc = MAXUPRC; 213 int cmask = CMASK; 214 215 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 216 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 217 218 /* 219 * The process list descriptors, used during pid allocation and 220 * by sysctl. No locking on this data structure is needed since 221 * it is completely static. 222 */ 223 const struct proclist_desc proclists[] = { 224 { &allproc }, 225 { &zombproc }, 226 { NULL }, 227 }; 228 229 static struct pgrp * pg_remove(pid_t); 230 static void pg_delete(pid_t); 231 static void orphanpg(struct pgrp *); 232 233 static specificdata_domain_t proc_specificdata_domain; 234 235 static pool_cache_t proc_cache; 236 237 /* 238 * Initialize global process hashing structures. 239 */ 240 void 241 procinit(void) 242 { 243 const struct proclist_desc *pd; 244 u_int i; 245 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 246 247 for (pd = proclists; pd->pd_list != NULL; pd++) 248 LIST_INIT(pd->pd_list); 249 250 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 251 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 252 * sizeof(struct pid_table), KM_SLEEP); 253 254 /* Set free list running through table... 255 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 256 for (i = 0; i <= pid_tbl_mask; i++) { 257 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 258 pid_table[i].pt_pgrp = 0; 259 } 260 /* slot 0 is just grabbed */ 261 next_free_pt = 1; 262 /* Need to fix last entry. */ 263 last_free_pt = pid_tbl_mask; 264 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 265 /* point at which we grow table - to avoid reusing pids too often */ 266 pid_alloc_lim = pid_tbl_mask - 1; 267 #undef LINK_EMPTY 268 269 proc_specificdata_domain = specificdata_domain_create(); 270 KASSERT(proc_specificdata_domain != NULL); 271 272 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 273 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 274 } 275 276 /* 277 * Initialize process 0. 278 */ 279 void 280 proc0_init(void) 281 { 282 struct proc *p; 283 struct pgrp *pg; 284 struct session *sess; 285 struct lwp *l; 286 rlim_t lim; 287 int i; 288 289 p = &proc0; 290 pg = &pgrp0; 291 sess = &session0; 292 l = &lwp0; 293 294 KASSERT(l->l_lid == p->p_nlwpid); 295 296 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 297 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 298 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 299 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 300 301 rw_init(&p->p_reflock); 302 cv_init(&p->p_waitcv, "wait"); 303 cv_init(&p->p_lwpcv, "lwpwait"); 304 305 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 306 307 pid_table[0].pt_proc = p; 308 LIST_INSERT_HEAD(&allproc, p, p_list); 309 LIST_INSERT_HEAD(&alllwp, l, l_list); 310 311 pid_table[0].pt_pgrp = pg; 312 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 313 314 #ifdef __HAVE_SYSCALL_INTERN 315 (*p->p_emul->e_syscall_intern)(p); 316 #endif 317 318 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 319 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 320 cv_init(&l->l_sigcv, "sigwait"); 321 322 /* Create credentials. */ 323 cred0 = kauth_cred_alloc(); 324 p->p_cred = cred0; 325 kauth_cred_hold(cred0); 326 l->l_cred = cred0; 327 328 /* Create the CWD info. */ 329 rw_init(&cwdi0.cwdi_lock); 330 331 /* Create the limits structures. */ 332 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 333 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 334 limit0.pl_rlimit[i].rlim_cur = 335 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 336 337 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 338 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 339 maxfiles < nofile ? maxfiles : nofile; 340 341 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 342 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 343 maxproc < maxuprc ? maxproc : maxuprc; 344 345 lim = ptoa(uvmexp.free); 346 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 347 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 348 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 349 limit0.pl_corename = defcorename; 350 limit0.pl_refcnt = 1; 351 limit0.pl_sv_limit = NULL; 352 353 /* Configure virtual memory system, set vm rlimits. */ 354 uvm_init_limits(p); 355 356 /* Initialize file descriptor table for proc0. */ 357 fd_init(&filedesc0); 358 359 /* 360 * Initialize proc0's vmspace, which uses the kernel pmap. 361 * All kernel processes (which never have user space mappings) 362 * share proc0's vmspace, and thus, the kernel pmap. 363 */ 364 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 365 trunc_page(VM_MAX_ADDRESS)); 366 367 l->l_addr = proc0paddr; /* XXX */ 368 369 /* Initialize signal state for proc0. XXX IPL_SCHED */ 370 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 371 siginit(p); 372 373 proc_initspecific(p); 374 lwp_initspecific(l); 375 376 SYSCALL_TIME_LWP_INIT(l); 377 } 378 379 /* 380 * Session reference counting. 381 */ 382 383 void 384 proc_sesshold(struct session *ss) 385 { 386 387 KASSERT(mutex_owned(proc_lock)); 388 ss->s_count++; 389 } 390 391 void 392 proc_sessrele(struct session *ss) 393 { 394 395 KASSERT(mutex_owned(proc_lock)); 396 /* 397 * We keep the pgrp with the same id as the session in order to 398 * stop a process being given the same pid. Since the pgrp holds 399 * a reference to the session, it must be a 'zombie' pgrp by now. 400 */ 401 if (--ss->s_count == 0) { 402 struct pgrp *pg; 403 404 pg = pg_remove(ss->s_sid); 405 mutex_exit(proc_lock); 406 407 kmem_free(pg, sizeof(struct pgrp)); 408 kmem_free(ss, sizeof(struct session)); 409 } else { 410 mutex_exit(proc_lock); 411 } 412 } 413 414 /* 415 * Check that the specified process group is in the session of the 416 * specified process. 417 * Treats -ve ids as process ids. 418 * Used to validate TIOCSPGRP requests. 419 */ 420 int 421 pgid_in_session(struct proc *p, pid_t pg_id) 422 { 423 struct pgrp *pgrp; 424 struct session *session; 425 int error; 426 427 mutex_enter(proc_lock); 428 if (pg_id < 0) { 429 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 430 if (p1 == NULL) 431 return EINVAL; 432 pgrp = p1->p_pgrp; 433 } else { 434 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 435 if (pgrp == NULL) 436 return EINVAL; 437 } 438 session = pgrp->pg_session; 439 if (session != p->p_pgrp->pg_session) 440 error = EPERM; 441 else 442 error = 0; 443 mutex_exit(proc_lock); 444 445 return error; 446 } 447 448 /* 449 * p_inferior: is p an inferior of q? 450 */ 451 static inline bool 452 p_inferior(struct proc *p, struct proc *q) 453 { 454 455 KASSERT(mutex_owned(proc_lock)); 456 457 for (; p != q; p = p->p_pptr) 458 if (p->p_pid == 0) 459 return false; 460 return true; 461 } 462 463 /* 464 * Locate a process by number 465 */ 466 struct proc * 467 p_find(pid_t pid, uint flags) 468 { 469 struct proc *p; 470 char stat; 471 472 if (!(flags & PFIND_LOCKED)) 473 mutex_enter(proc_lock); 474 475 p = pid_table[pid & pid_tbl_mask].pt_proc; 476 477 /* Only allow live processes to be found by pid. */ 478 /* XXXSMP p_stat */ 479 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 480 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 481 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 482 if (flags & PFIND_UNLOCK_OK) 483 mutex_exit(proc_lock); 484 return p; 485 } 486 if (flags & PFIND_UNLOCK_FAIL) 487 mutex_exit(proc_lock); 488 return NULL; 489 } 490 491 492 /* 493 * Locate a process group by number 494 */ 495 struct pgrp * 496 pg_find(pid_t pgid, uint flags) 497 { 498 struct pgrp *pg; 499 500 if (!(flags & PFIND_LOCKED)) 501 mutex_enter(proc_lock); 502 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 503 /* 504 * Can't look up a pgrp that only exists because the session 505 * hasn't died yet (traditional) 506 */ 507 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 508 if (flags & PFIND_UNLOCK_FAIL) 509 mutex_exit(proc_lock); 510 return NULL; 511 } 512 513 if (flags & PFIND_UNLOCK_OK) 514 mutex_exit(proc_lock); 515 return pg; 516 } 517 518 static void 519 expand_pid_table(void) 520 { 521 size_t pt_size, tsz; 522 struct pid_table *n_pt, *new_pt; 523 struct proc *proc; 524 struct pgrp *pgrp; 525 pid_t pid; 526 u_int i; 527 528 pt_size = pid_tbl_mask + 1; 529 tsz = pt_size * 2 * sizeof(struct pid_table); 530 new_pt = kmem_alloc(tsz, KM_SLEEP); 531 532 mutex_enter(proc_lock); 533 if (pt_size != pid_tbl_mask + 1) { 534 /* Another process beat us to it... */ 535 mutex_exit(proc_lock); 536 kmem_free(new_pt, tsz); 537 return; 538 } 539 540 /* 541 * Copy entries from old table into new one. 542 * If 'pid' is 'odd' we need to place in the upper half, 543 * even pid's to the lower half. 544 * Free items stay in the low half so we don't have to 545 * fixup the reference to them. 546 * We stuff free items on the front of the freelist 547 * because we can't write to unmodified entries. 548 * Processing the table backwards maintains a semblance 549 * of issueing pid numbers that increase with time. 550 */ 551 i = pt_size - 1; 552 n_pt = new_pt + i; 553 for (; ; i--, n_pt--) { 554 proc = pid_table[i].pt_proc; 555 pgrp = pid_table[i].pt_pgrp; 556 if (!P_VALID(proc)) { 557 /* Up 'use count' so that link is valid */ 558 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 559 proc = P_FREE(pid); 560 if (pgrp) 561 pid = pgrp->pg_id; 562 } else 563 pid = proc->p_pid; 564 565 /* Save entry in appropriate half of table */ 566 n_pt[pid & pt_size].pt_proc = proc; 567 n_pt[pid & pt_size].pt_pgrp = pgrp; 568 569 /* Put other piece on start of free list */ 570 pid = (pid ^ pt_size) & ~pid_tbl_mask; 571 n_pt[pid & pt_size].pt_proc = 572 P_FREE((pid & ~pt_size) | next_free_pt); 573 n_pt[pid & pt_size].pt_pgrp = 0; 574 next_free_pt = i | (pid & pt_size); 575 if (i == 0) 576 break; 577 } 578 579 /* Save old table size and switch tables */ 580 tsz = pt_size * sizeof(struct pid_table); 581 n_pt = pid_table; 582 pid_table = new_pt; 583 pid_tbl_mask = pt_size * 2 - 1; 584 585 /* 586 * pid_max starts as PID_MAX (= 30000), once we have 16384 587 * allocated pids we need it to be larger! 588 */ 589 if (pid_tbl_mask > PID_MAX) { 590 pid_max = pid_tbl_mask * 2 + 1; 591 pid_alloc_lim |= pid_alloc_lim << 1; 592 } else 593 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 594 595 mutex_exit(proc_lock); 596 kmem_free(n_pt, tsz); 597 } 598 599 struct proc * 600 proc_alloc(void) 601 { 602 struct proc *p; 603 int nxt; 604 pid_t pid; 605 struct pid_table *pt; 606 607 p = pool_cache_get(proc_cache, PR_WAITOK); 608 p->p_stat = SIDL; /* protect against others */ 609 610 proc_initspecific(p); 611 /* allocate next free pid */ 612 613 for (;;expand_pid_table()) { 614 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 615 /* ensure pids cycle through 2000+ values */ 616 continue; 617 mutex_enter(proc_lock); 618 pt = &pid_table[next_free_pt]; 619 #ifdef DIAGNOSTIC 620 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 621 panic("proc_alloc: slot busy"); 622 #endif 623 nxt = P_NEXT(pt->pt_proc); 624 if (nxt & pid_tbl_mask) 625 break; 626 /* Table full - expand (NB last entry not used....) */ 627 mutex_exit(proc_lock); 628 } 629 630 /* pid is 'saved use count' + 'size' + entry */ 631 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 632 if ((uint)pid > (uint)pid_max) 633 pid &= pid_tbl_mask; 634 p->p_pid = pid; 635 next_free_pt = nxt & pid_tbl_mask; 636 637 /* Grab table slot */ 638 pt->pt_proc = p; 639 pid_alloc_cnt++; 640 641 mutex_exit(proc_lock); 642 643 return p; 644 } 645 646 /* 647 * Free a process id - called from proc_free (in kern_exit.c) 648 * 649 * Called with the proc_lock held. 650 */ 651 void 652 proc_free_pid(struct proc *p) 653 { 654 pid_t pid = p->p_pid; 655 struct pid_table *pt; 656 657 KASSERT(mutex_owned(proc_lock)); 658 659 pt = &pid_table[pid & pid_tbl_mask]; 660 #ifdef DIAGNOSTIC 661 if (__predict_false(pt->pt_proc != p)) 662 panic("proc_free: pid_table mismatch, pid %x, proc %p", 663 pid, p); 664 #endif 665 /* save pid use count in slot */ 666 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 667 668 if (pt->pt_pgrp == NULL) { 669 /* link last freed entry onto ours */ 670 pid &= pid_tbl_mask; 671 pt = &pid_table[last_free_pt]; 672 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 673 last_free_pt = pid; 674 pid_alloc_cnt--; 675 } 676 677 atomic_dec_uint(&nprocs); 678 } 679 680 void 681 proc_free_mem(struct proc *p) 682 { 683 684 pool_cache_put(proc_cache, p); 685 } 686 687 /* 688 * proc_enterpgrp: move p to a new or existing process group (and session). 689 * 690 * If we are creating a new pgrp, the pgid should equal 691 * the calling process' pid. 692 * If is only valid to enter a process group that is in the session 693 * of the process. 694 * Also mksess should only be set if we are creating a process group 695 * 696 * Only called from sys_setsid and sys_setpgid. 697 */ 698 int 699 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 700 { 701 struct pgrp *new_pgrp, *pgrp; 702 struct session *sess; 703 struct proc *p; 704 int rval; 705 pid_t pg_id = NO_PGID; 706 707 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 708 709 /* Allocate data areas we might need before doing any validity checks */ 710 mutex_enter(proc_lock); /* Because pid_table might change */ 711 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 712 mutex_exit(proc_lock); 713 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 714 mutex_enter(proc_lock); 715 } else 716 new_pgrp = NULL; 717 rval = EPERM; /* most common error (to save typing) */ 718 719 /* Check pgrp exists or can be created */ 720 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 721 if (pgrp != NULL && pgrp->pg_id != pgid) 722 goto done; 723 724 /* Can only set another process under restricted circumstances. */ 725 if (pid != curp->p_pid) { 726 /* must exist and be one of our children... */ 727 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 728 !p_inferior(p, curp)) { 729 rval = ESRCH; 730 goto done; 731 } 732 /* ... in the same session... */ 733 if (sess != NULL || p->p_session != curp->p_session) 734 goto done; 735 /* ... existing pgid must be in same session ... */ 736 if (pgrp != NULL && pgrp->pg_session != p->p_session) 737 goto done; 738 /* ... and not done an exec. */ 739 if (p->p_flag & PK_EXEC) { 740 rval = EACCES; 741 goto done; 742 } 743 } else { 744 /* ... setsid() cannot re-enter a pgrp */ 745 if (mksess && (curp->p_pgid == curp->p_pid || 746 pg_find(curp->p_pid, PFIND_LOCKED))) 747 goto done; 748 p = curp; 749 } 750 751 /* Changing the process group/session of a session 752 leader is definitely off limits. */ 753 if (SESS_LEADER(p)) { 754 if (sess == NULL && p->p_pgrp == pgrp) 755 /* unless it's a definite noop */ 756 rval = 0; 757 goto done; 758 } 759 760 /* Can only create a process group with id of process */ 761 if (pgrp == NULL && pgid != pid) 762 goto done; 763 764 /* Can only create a session if creating pgrp */ 765 if (sess != NULL && pgrp != NULL) 766 goto done; 767 768 /* Check we allocated memory for a pgrp... */ 769 if (pgrp == NULL && new_pgrp == NULL) 770 goto done; 771 772 /* Don't attach to 'zombie' pgrp */ 773 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 774 goto done; 775 776 /* Expect to succeed now */ 777 rval = 0; 778 779 if (pgrp == p->p_pgrp) 780 /* nothing to do */ 781 goto done; 782 783 /* Ok all setup, link up required structures */ 784 785 if (pgrp == NULL) { 786 pgrp = new_pgrp; 787 new_pgrp = NULL; 788 if (sess != NULL) { 789 sess->s_sid = p->p_pid; 790 sess->s_leader = p; 791 sess->s_count = 1; 792 sess->s_ttyvp = NULL; 793 sess->s_ttyp = NULL; 794 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 795 memcpy(sess->s_login, p->p_session->s_login, 796 sizeof(sess->s_login)); 797 p->p_lflag &= ~PL_CONTROLT; 798 } else { 799 sess = p->p_pgrp->pg_session; 800 proc_sesshold(sess); 801 } 802 pgrp->pg_session = sess; 803 sess = NULL; 804 805 pgrp->pg_id = pgid; 806 LIST_INIT(&pgrp->pg_members); 807 #ifdef DIAGNOSTIC 808 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 809 panic("enterpgrp: pgrp table slot in use"); 810 if (__predict_false(mksess && p != curp)) 811 panic("enterpgrp: mksession and p != curproc"); 812 #endif 813 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 814 pgrp->pg_jobc = 0; 815 } 816 817 /* 818 * Adjust eligibility of affected pgrps to participate in job control. 819 * Increment eligibility counts before decrementing, otherwise we 820 * could reach 0 spuriously during the first call. 821 */ 822 fixjobc(p, pgrp, 1); 823 fixjobc(p, p->p_pgrp, 0); 824 825 /* Interlock with ttread(). */ 826 mutex_spin_enter(&tty_lock); 827 828 /* Move process to requested group. */ 829 LIST_REMOVE(p, p_pglist); 830 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 831 /* defer delete until we've dumped the lock */ 832 pg_id = p->p_pgrp->pg_id; 833 p->p_pgrp = pgrp; 834 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 835 836 /* Done with the swap; we can release the tty mutex. */ 837 mutex_spin_exit(&tty_lock); 838 839 done: 840 if (pg_id != NO_PGID) { 841 /* Releases proc_lock. */ 842 pg_delete(pg_id); 843 } else { 844 mutex_exit(proc_lock); 845 } 846 if (sess != NULL) 847 kmem_free(sess, sizeof(*sess)); 848 if (new_pgrp != NULL) 849 kmem_free(new_pgrp, sizeof(*new_pgrp)); 850 #ifdef DEBUG_PGRP 851 if (__predict_false(rval)) 852 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 853 pid, pgid, mksess, curp->p_pid, rval); 854 #endif 855 return rval; 856 } 857 858 /* 859 * proc_leavepgrp: remove a process from its process group. 860 * => must be called with the proc_lock held, which will be released; 861 */ 862 void 863 proc_leavepgrp(struct proc *p) 864 { 865 struct pgrp *pgrp; 866 867 KASSERT(mutex_owned(proc_lock)); 868 869 /* Interlock with ttread() */ 870 mutex_spin_enter(&tty_lock); 871 pgrp = p->p_pgrp; 872 LIST_REMOVE(p, p_pglist); 873 p->p_pgrp = NULL; 874 mutex_spin_exit(&tty_lock); 875 876 if (LIST_EMPTY(&pgrp->pg_members)) { 877 /* Releases proc_lock. */ 878 pg_delete(pgrp->pg_id); 879 } else { 880 mutex_exit(proc_lock); 881 } 882 } 883 884 /* 885 * pg_remove: remove a process group from the table. 886 * => must be called with the proc_lock held; 887 * => returns process group to free; 888 */ 889 static struct pgrp * 890 pg_remove(pid_t pg_id) 891 { 892 struct pgrp *pgrp; 893 struct pid_table *pt; 894 895 KASSERT(mutex_owned(proc_lock)); 896 897 pt = &pid_table[pg_id & pid_tbl_mask]; 898 pgrp = pt->pt_pgrp; 899 900 KASSERT(pgrp != NULL); 901 KASSERT(pgrp->pg_id == pg_id); 902 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 903 904 pt->pt_pgrp = NULL; 905 906 if (!P_VALID(pt->pt_proc)) { 907 /* Orphaned pgrp, put slot onto free list. */ 908 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); 909 pg_id &= pid_tbl_mask; 910 pt = &pid_table[last_free_pt]; 911 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 912 last_free_pt = pg_id; 913 pid_alloc_cnt--; 914 } 915 return pgrp; 916 } 917 918 /* 919 * pg_delete: delete and free a process group. 920 * => must be called with the proc_lock held, which will be released. 921 */ 922 static void 923 pg_delete(pid_t pg_id) 924 { 925 struct pgrp *pg; 926 struct tty *ttyp; 927 struct session *ss; 928 929 KASSERT(mutex_owned(proc_lock)); 930 931 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 932 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 933 mutex_exit(proc_lock); 934 return; 935 } 936 937 ss = pg->pg_session; 938 939 /* Remove reference (if any) from tty to this process group */ 940 mutex_spin_enter(&tty_lock); 941 ttyp = ss->s_ttyp; 942 if (ttyp != NULL && ttyp->t_pgrp == pg) { 943 ttyp->t_pgrp = NULL; 944 KASSERT(ttyp->t_session == ss); 945 } 946 mutex_spin_exit(&tty_lock); 947 948 /* 949 * The leading process group in a session is freed by proc_sessrele(), 950 * if last reference. Note: proc_sessrele() releases proc_lock. 951 */ 952 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 953 proc_sessrele(ss); 954 955 if (pg != NULL) { 956 /* Free it, if was not done by proc_sessrele(). */ 957 kmem_free(pg, sizeof(struct pgrp)); 958 } 959 } 960 961 /* 962 * Adjust pgrp jobc counters when specified process changes process group. 963 * We count the number of processes in each process group that "qualify" 964 * the group for terminal job control (those with a parent in a different 965 * process group of the same session). If that count reaches zero, the 966 * process group becomes orphaned. Check both the specified process' 967 * process group and that of its children. 968 * entering == 0 => p is leaving specified group. 969 * entering == 1 => p is entering specified group. 970 * 971 * Call with proc_lock held. 972 */ 973 void 974 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 975 { 976 struct pgrp *hispgrp; 977 struct session *mysession = pgrp->pg_session; 978 struct proc *child; 979 980 KASSERT(mutex_owned(proc_lock)); 981 982 /* 983 * Check p's parent to see whether p qualifies its own process 984 * group; if so, adjust count for p's process group. 985 */ 986 hispgrp = p->p_pptr->p_pgrp; 987 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 988 if (entering) { 989 pgrp->pg_jobc++; 990 p->p_lflag &= ~PL_ORPHANPG; 991 } else if (--pgrp->pg_jobc == 0) 992 orphanpg(pgrp); 993 } 994 995 /* 996 * Check this process' children to see whether they qualify 997 * their process groups; if so, adjust counts for children's 998 * process groups. 999 */ 1000 LIST_FOREACH(child, &p->p_children, p_sibling) { 1001 hispgrp = child->p_pgrp; 1002 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1003 !P_ZOMBIE(child)) { 1004 if (entering) { 1005 child->p_lflag &= ~PL_ORPHANPG; 1006 hispgrp->pg_jobc++; 1007 } else if (--hispgrp->pg_jobc == 0) 1008 orphanpg(hispgrp); 1009 } 1010 } 1011 } 1012 1013 /* 1014 * A process group has become orphaned; 1015 * if there are any stopped processes in the group, 1016 * hang-up all process in that group. 1017 * 1018 * Call with proc_lock held. 1019 */ 1020 static void 1021 orphanpg(struct pgrp *pg) 1022 { 1023 struct proc *p; 1024 int doit; 1025 1026 KASSERT(mutex_owned(proc_lock)); 1027 1028 doit = 0; 1029 1030 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1031 if (p->p_stat == SSTOP) { 1032 p->p_lflag |= PL_ORPHANPG; 1033 psignal(p, SIGHUP); 1034 psignal(p, SIGCONT); 1035 } 1036 } 1037 } 1038 1039 #ifdef DDB 1040 #include <ddb/db_output.h> 1041 void pidtbl_dump(void); 1042 void 1043 pidtbl_dump(void) 1044 { 1045 struct pid_table *pt; 1046 struct proc *p; 1047 struct pgrp *pgrp; 1048 int id; 1049 1050 db_printf("pid table %p size %x, next %x, last %x\n", 1051 pid_table, pid_tbl_mask+1, 1052 next_free_pt, last_free_pt); 1053 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1054 p = pt->pt_proc; 1055 if (!P_VALID(p) && !pt->pt_pgrp) 1056 continue; 1057 db_printf(" id %x: ", id); 1058 if (P_VALID(p)) 1059 db_printf("proc %p id %d (0x%x) %s\n", 1060 p, p->p_pid, p->p_pid, p->p_comm); 1061 else 1062 db_printf("next %x use %x\n", 1063 P_NEXT(p) & pid_tbl_mask, 1064 P_NEXT(p) & ~pid_tbl_mask); 1065 if ((pgrp = pt->pt_pgrp)) { 1066 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1067 pgrp->pg_session, pgrp->pg_session->s_sid, 1068 pgrp->pg_session->s_count, 1069 pgrp->pg_session->s_login); 1070 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1071 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1072 LIST_FIRST(&pgrp->pg_members)); 1073 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1074 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1075 p->p_pid, p, p->p_pgrp, p->p_comm); 1076 } 1077 } 1078 } 1079 } 1080 #endif /* DDB */ 1081 1082 #ifdef KSTACK_CHECK_MAGIC 1083 #include <sys/user.h> 1084 1085 #define KSTACK_MAGIC 0xdeadbeaf 1086 1087 /* XXX should be per process basis? */ 1088 static int kstackleftmin = KSTACK_SIZE; 1089 static int kstackleftthres = KSTACK_SIZE / 8; 1090 1091 void 1092 kstack_setup_magic(const struct lwp *l) 1093 { 1094 uint32_t *ip; 1095 uint32_t const *end; 1096 1097 KASSERT(l != NULL); 1098 KASSERT(l != &lwp0); 1099 1100 /* 1101 * fill all the stack with magic number 1102 * so that later modification on it can be detected. 1103 */ 1104 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1105 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1106 for (; ip < end; ip++) { 1107 *ip = KSTACK_MAGIC; 1108 } 1109 } 1110 1111 void 1112 kstack_check_magic(const struct lwp *l) 1113 { 1114 uint32_t const *ip, *end; 1115 int stackleft; 1116 1117 KASSERT(l != NULL); 1118 1119 /* don't check proc0 */ /*XXX*/ 1120 if (l == &lwp0) 1121 return; 1122 1123 #ifdef __MACHINE_STACK_GROWS_UP 1124 /* stack grows upwards (eg. hppa) */ 1125 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1126 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1127 for (ip--; ip >= end; ip--) 1128 if (*ip != KSTACK_MAGIC) 1129 break; 1130 1131 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1132 #else /* __MACHINE_STACK_GROWS_UP */ 1133 /* stack grows downwards (eg. i386) */ 1134 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1135 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1136 for (; ip < end; ip++) 1137 if (*ip != KSTACK_MAGIC) 1138 break; 1139 1140 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1141 #endif /* __MACHINE_STACK_GROWS_UP */ 1142 1143 if (kstackleftmin > stackleft) { 1144 kstackleftmin = stackleft; 1145 if (stackleft < kstackleftthres) 1146 printf("warning: kernel stack left %d bytes" 1147 "(pid %u:lid %u)\n", stackleft, 1148 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1149 } 1150 1151 if (stackleft <= 0) { 1152 panic("magic on the top of kernel stack changed for " 1153 "pid %u, lid %u: maybe kernel stack overflow", 1154 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1155 } 1156 } 1157 #endif /* KSTACK_CHECK_MAGIC */ 1158 1159 int 1160 proclist_foreach_call(struct proclist *list, 1161 int (*callback)(struct proc *, void *arg), void *arg) 1162 { 1163 struct proc marker; 1164 struct proc *p; 1165 struct lwp * const l = curlwp; 1166 int ret = 0; 1167 1168 marker.p_flag = PK_MARKER; 1169 uvm_lwp_hold(l); 1170 mutex_enter(proc_lock); 1171 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1172 if (p->p_flag & PK_MARKER) { 1173 p = LIST_NEXT(p, p_list); 1174 continue; 1175 } 1176 LIST_INSERT_AFTER(p, &marker, p_list); 1177 ret = (*callback)(p, arg); 1178 KASSERT(mutex_owned(proc_lock)); 1179 p = LIST_NEXT(&marker, p_list); 1180 LIST_REMOVE(&marker, p_list); 1181 } 1182 mutex_exit(proc_lock); 1183 uvm_lwp_rele(l); 1184 1185 return ret; 1186 } 1187 1188 int 1189 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1190 { 1191 1192 /* XXXCDC: how should locking work here? */ 1193 1194 /* curproc exception is for coredump. */ 1195 1196 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1197 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1198 return EFAULT; 1199 } 1200 1201 uvmspace_addref(p->p_vmspace); 1202 *vm = p->p_vmspace; 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * Acquire a write lock on the process credential. 1209 */ 1210 void 1211 proc_crmod_enter(void) 1212 { 1213 struct lwp *l = curlwp; 1214 struct proc *p = l->l_proc; 1215 struct plimit *lim; 1216 kauth_cred_t oc; 1217 char *cn; 1218 1219 /* Reset what needs to be reset in plimit. */ 1220 if (p->p_limit->pl_corename != defcorename) { 1221 lim_privatise(p, false); 1222 lim = p->p_limit; 1223 mutex_enter(&lim->pl_lock); 1224 cn = lim->pl_corename; 1225 lim->pl_corename = defcorename; 1226 mutex_exit(&lim->pl_lock); 1227 if (cn != defcorename) 1228 free(cn, M_TEMP); 1229 } 1230 1231 mutex_enter(p->p_lock); 1232 1233 /* Ensure the LWP cached credentials are up to date. */ 1234 if ((oc = l->l_cred) != p->p_cred) { 1235 kauth_cred_hold(p->p_cred); 1236 l->l_cred = p->p_cred; 1237 kauth_cred_free(oc); 1238 } 1239 1240 } 1241 1242 /* 1243 * Set in a new process credential, and drop the write lock. The credential 1244 * must have a reference already. Optionally, free a no-longer required 1245 * credential. The scheduler also needs to inspect p_cred, so we also 1246 * briefly acquire the sched state mutex. 1247 */ 1248 void 1249 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1250 { 1251 struct lwp *l = curlwp, *l2; 1252 struct proc *p = l->l_proc; 1253 kauth_cred_t oc; 1254 1255 KASSERT(mutex_owned(p->p_lock)); 1256 1257 /* Is there a new credential to set in? */ 1258 if (scred != NULL) { 1259 p->p_cred = scred; 1260 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1261 if (l2 != l) 1262 l2->l_prflag |= LPR_CRMOD; 1263 } 1264 1265 /* Ensure the LWP cached credentials are up to date. */ 1266 if ((oc = l->l_cred) != scred) { 1267 kauth_cred_hold(scred); 1268 l->l_cred = scred; 1269 } 1270 } else 1271 oc = NULL; /* XXXgcc */ 1272 1273 if (sugid) { 1274 /* 1275 * Mark process as having changed credentials, stops 1276 * tracing etc. 1277 */ 1278 p->p_flag |= PK_SUGID; 1279 } 1280 1281 mutex_exit(p->p_lock); 1282 1283 /* If there is a credential to be released, free it now. */ 1284 if (fcred != NULL) { 1285 KASSERT(scred != NULL); 1286 kauth_cred_free(fcred); 1287 if (oc != scred) 1288 kauth_cred_free(oc); 1289 } 1290 } 1291 1292 /* 1293 * proc_specific_key_create -- 1294 * Create a key for subsystem proc-specific data. 1295 */ 1296 int 1297 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1298 { 1299 1300 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1301 } 1302 1303 /* 1304 * proc_specific_key_delete -- 1305 * Delete a key for subsystem proc-specific data. 1306 */ 1307 void 1308 proc_specific_key_delete(specificdata_key_t key) 1309 { 1310 1311 specificdata_key_delete(proc_specificdata_domain, key); 1312 } 1313 1314 /* 1315 * proc_initspecific -- 1316 * Initialize a proc's specificdata container. 1317 */ 1318 void 1319 proc_initspecific(struct proc *p) 1320 { 1321 int error; 1322 1323 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1324 KASSERT(error == 0); 1325 } 1326 1327 /* 1328 * proc_finispecific -- 1329 * Finalize a proc's specificdata container. 1330 */ 1331 void 1332 proc_finispecific(struct proc *p) 1333 { 1334 1335 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1336 } 1337 1338 /* 1339 * proc_getspecific -- 1340 * Return proc-specific data corresponding to the specified key. 1341 */ 1342 void * 1343 proc_getspecific(struct proc *p, specificdata_key_t key) 1344 { 1345 1346 return (specificdata_getspecific(proc_specificdata_domain, 1347 &p->p_specdataref, key)); 1348 } 1349 1350 /* 1351 * proc_setspecific -- 1352 * Set proc-specific data corresponding to the specified key. 1353 */ 1354 void 1355 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1356 { 1357 1358 specificdata_setspecific(proc_specificdata_domain, 1359 &p->p_specdataref, key, data); 1360 } 1361