1 /* $NetBSD: kern_proc.c,v 1.99 2006/10/21 17:01:56 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1982, 1986, 1989, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.99 2006/10/21 17:01:56 pooka Exp $"); 73 74 #include "opt_kstack.h" 75 #include "opt_maxuprc.h" 76 #include "opt_multiprocessor.h" 77 #include "opt_lockdebug.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/buf.h> 85 #include <sys/acct.h> 86 #include <sys/wait.h> 87 #include <sys/file.h> 88 #include <ufs/ufs/quota.h> 89 #include <sys/uio.h> 90 #include <sys/malloc.h> 91 #include <sys/pool.h> 92 #include <sys/mbuf.h> 93 #include <sys/ioctl.h> 94 #include <sys/tty.h> 95 #include <sys/signalvar.h> 96 #include <sys/ras.h> 97 #include <sys/sa.h> 98 #include <sys/savar.h> 99 #include <sys/filedesc.h> 100 #include <sys/kauth.h> 101 102 #include <uvm/uvm.h> 103 #include <uvm/uvm_extern.h> 104 105 /* 106 * Other process lists 107 */ 108 109 struct proclist allproc; 110 struct proclist zombproc; /* resources have been freed */ 111 112 113 /* 114 * Process list locking: 115 * 116 * We have two types of locks on the proclists: read locks and write 117 * locks. Read locks can be used in interrupt context, so while we 118 * hold the write lock, we must also block clock interrupts to 119 * lock out any scheduling changes that may happen in interrupt 120 * context. 121 * 122 * The proclist lock locks the following structures: 123 * 124 * allproc 125 * zombproc 126 * pid_table 127 */ 128 struct lock proclist_lock; 129 130 /* 131 * pid to proc lookup is done by indexing the pid_table array. 132 * Since pid numbers are only allocated when an empty slot 133 * has been found, there is no need to search any lists ever. 134 * (an orphaned pgrp will lock the slot, a session will lock 135 * the pgrp with the same number.) 136 * If the table is too small it is reallocated with twice the 137 * previous size and the entries 'unzipped' into the two halves. 138 * A linked list of free entries is passed through the pt_proc 139 * field of 'free' items - set odd to be an invalid ptr. 140 */ 141 142 struct pid_table { 143 struct proc *pt_proc; 144 struct pgrp *pt_pgrp; 145 }; 146 #if 1 /* strongly typed cast - should be a noop */ 147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 148 #else 149 #define p2u(p) ((uint)p) 150 #endif 151 #define P_VALID(p) (!(p2u(p) & 1)) 152 #define P_NEXT(p) (p2u(p) >> 1) 153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 154 155 #define INITIAL_PID_TABLE_SIZE (1 << 5) 156 static struct pid_table *pid_table; 157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 158 static uint pid_alloc_lim; /* max we allocate before growing table */ 159 static uint pid_alloc_cnt; /* number of allocated pids */ 160 161 /* links through free slots - never empty! */ 162 static uint next_free_pt, last_free_pt; 163 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 164 165 /* Components of the first process -- never freed. */ 166 struct session session0; 167 struct pgrp pgrp0; 168 struct proc proc0; 169 struct lwp lwp0; 170 kauth_cred_t cred0; 171 struct filedesc0 filedesc0; 172 struct cwdinfo cwdi0; 173 struct plimit limit0; 174 struct pstats pstat0; 175 struct vmspace vmspace0; 176 struct sigacts sigacts0; 177 178 extern struct user *proc0paddr; 179 180 extern const struct emul emul_netbsd; /* defined in kern_exec.c */ 181 182 int nofile = NOFILE; 183 int maxuprc = MAXUPRC; 184 int cmask = CMASK; 185 186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl", 187 &pool_allocator_nointr); 188 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl", 189 &pool_allocator_nointr); 190 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl", 191 &pool_allocator_nointr); 192 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl", 193 &pool_allocator_nointr); 194 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl", 195 &pool_allocator_nointr); 196 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl", 197 &pool_allocator_nointr); 198 199 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 200 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 201 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 202 203 /* 204 * The process list descriptors, used during pid allocation and 205 * by sysctl. No locking on this data structure is needed since 206 * it is completely static. 207 */ 208 const struct proclist_desc proclists[] = { 209 { &allproc }, 210 { &zombproc }, 211 { NULL }, 212 }; 213 214 static void orphanpg(struct pgrp *); 215 static void pg_delete(pid_t); 216 217 static specificdata_domain_t proc_specificdata_domain; 218 219 /* 220 * Initialize global process hashing structures. 221 */ 222 void 223 procinit(void) 224 { 225 const struct proclist_desc *pd; 226 int i; 227 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 228 229 for (pd = proclists; pd->pd_list != NULL; pd++) 230 LIST_INIT(pd->pd_list); 231 232 spinlockinit(&proclist_lock, "proclk", 0); 233 234 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table, 235 M_PROC, M_WAITOK); 236 /* Set free list running through table... 237 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 238 for (i = 0; i <= pid_tbl_mask; i++) { 239 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 240 pid_table[i].pt_pgrp = 0; 241 } 242 /* slot 0 is just grabbed */ 243 next_free_pt = 1; 244 /* Need to fix last entry. */ 245 last_free_pt = pid_tbl_mask; 246 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 247 /* point at which we grow table - to avoid reusing pids too often */ 248 pid_alloc_lim = pid_tbl_mask - 1; 249 #undef LINK_EMPTY 250 251 LIST_INIT(&alllwp); 252 253 uihashtbl = 254 hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash); 255 256 proc_specificdata_domain = specificdata_domain_create(); 257 KASSERT(proc_specificdata_domain != NULL); 258 } 259 260 /* 261 * Initialize process 0. 262 */ 263 void 264 proc0_init(void) 265 { 266 struct proc *p; 267 struct pgrp *pg; 268 struct session *sess; 269 struct lwp *l; 270 int s; 271 u_int i; 272 rlim_t lim; 273 274 p = &proc0; 275 pg = &pgrp0; 276 sess = &session0; 277 l = &lwp0; 278 279 simple_lock_init(&p->p_lock); 280 LIST_INIT(&p->p_lwps); 281 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 282 p->p_nlwps = 1; 283 simple_lock_init(&p->p_sigctx.ps_silock); 284 CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo); 285 286 s = proclist_lock_write(); 287 288 pid_table[0].pt_proc = p; 289 LIST_INSERT_HEAD(&allproc, p, p_list); 290 LIST_INSERT_HEAD(&alllwp, l, l_list); 291 292 p->p_pgrp = pg; 293 pid_table[0].pt_pgrp = pg; 294 LIST_INIT(&pg->pg_members); 295 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 296 297 pg->pg_session = sess; 298 sess->s_count = 1; 299 sess->s_sid = 0; 300 sess->s_leader = p; 301 302 proclist_unlock_write(s); 303 304 /* 305 * Set P_NOCLDWAIT so that kernel threads are reparented to 306 * init(8) when they exit. init(8) can easily wait them out 307 * for us. 308 */ 309 p->p_flag = P_SYSTEM | P_NOCLDWAIT; 310 p->p_stat = SACTIVE; 311 p->p_nice = NZERO; 312 p->p_emul = &emul_netbsd; 313 #ifdef __HAVE_SYSCALL_INTERN 314 (*p->p_emul->e_syscall_intern)(p); 315 #endif 316 strncpy(p->p_comm, "swapper", MAXCOMLEN); 317 318 l->l_flag = L_INMEM; 319 l->l_stat = LSONPROC; 320 p->p_nrlwps = 1; 321 322 callout_init(&l->l_tsleep_ch); 323 324 /* Create credentials. */ 325 cred0 = kauth_cred_alloc(); 326 p->p_cred = cred0; 327 lwp_update_creds(l); 328 329 /* Create the CWD info. */ 330 p->p_cwdi = &cwdi0; 331 cwdi0.cwdi_cmask = cmask; 332 cwdi0.cwdi_refcnt = 1; 333 simple_lock_init(&cwdi0.cwdi_slock); 334 335 /* Create the limits structures. */ 336 p->p_limit = &limit0; 337 simple_lock_init(&limit0.p_slock); 338 for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++) 339 limit0.pl_rlimit[i].rlim_cur = 340 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 341 342 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 343 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 344 maxfiles < nofile ? maxfiles : nofile; 345 346 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 347 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 348 maxproc < maxuprc ? maxproc : maxuprc; 349 350 lim = ptoa(uvmexp.free); 351 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 352 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 353 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 354 limit0.pl_corename = defcorename; 355 limit0.p_refcnt = 1; 356 357 /* Configure virtual memory system, set vm rlimits. */ 358 uvm_init_limits(p); 359 360 /* Initialize file descriptor table for proc0. */ 361 p->p_fd = &filedesc0.fd_fd; 362 fdinit1(&filedesc0); 363 364 /* 365 * Initialize proc0's vmspace, which uses the kernel pmap. 366 * All kernel processes (which never have user space mappings) 367 * share proc0's vmspace, and thus, the kernel pmap. 368 */ 369 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 370 trunc_page(VM_MAX_ADDRESS)); 371 p->p_vmspace = &vmspace0; 372 373 l->l_addr = proc0paddr; /* XXX */ 374 375 p->p_stats = &pstat0; 376 377 /* Initialize signal state for proc0. */ 378 p->p_sigacts = &sigacts0; 379 siginit(p); 380 381 proc_initspecific(p); 382 lwp_initspecific(l); 383 } 384 385 /* 386 * Acquire a read lock on the proclist. 387 */ 388 void 389 proclist_lock_read(void) 390 { 391 int error; 392 393 error = spinlockmgr(&proclist_lock, LK_SHARED, NULL); 394 #ifdef DIAGNOSTIC 395 if (__predict_false(error != 0)) 396 panic("proclist_lock_read: failed to acquire lock"); 397 #endif 398 } 399 400 /* 401 * Release a read lock on the proclist. 402 */ 403 void 404 proclist_unlock_read(void) 405 { 406 407 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL); 408 } 409 410 /* 411 * Acquire a write lock on the proclist. 412 */ 413 int 414 proclist_lock_write(void) 415 { 416 int s, error; 417 418 s = splclock(); 419 error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL); 420 #ifdef DIAGNOSTIC 421 if (__predict_false(error != 0)) 422 panic("proclist_lock: failed to acquire lock"); 423 #endif 424 return s; 425 } 426 427 /* 428 * Release a write lock on the proclist. 429 */ 430 void 431 proclist_unlock_write(int s) 432 { 433 434 (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL); 435 splx(s); 436 } 437 438 /* 439 * Check that the specified process group is in the session of the 440 * specified process. 441 * Treats -ve ids as process ids. 442 * Used to validate TIOCSPGRP requests. 443 */ 444 int 445 pgid_in_session(struct proc *p, pid_t pg_id) 446 { 447 struct pgrp *pgrp; 448 449 if (pg_id < 0) { 450 struct proc *p1 = pfind(-pg_id); 451 if (p1 == NULL) 452 return EINVAL; 453 pgrp = p1->p_pgrp; 454 } else { 455 pgrp = pgfind(pg_id); 456 if (pgrp == NULL) 457 return EINVAL; 458 } 459 if (pgrp->pg_session != p->p_pgrp->pg_session) 460 return EPERM; 461 return 0; 462 } 463 464 /* 465 * Is p an inferior of q? 466 * 467 * Call with the proclist_lock held. 468 */ 469 int 470 inferior(struct proc *p, struct proc *q) 471 { 472 473 for (; p != q; p = p->p_pptr) 474 if (p->p_pid == 0) 475 return 0; 476 return 1; 477 } 478 479 /* 480 * Locate a process by number 481 */ 482 struct proc * 483 p_find(pid_t pid, uint flags) 484 { 485 struct proc *p; 486 char stat; 487 488 if (!(flags & PFIND_LOCKED)) 489 proclist_lock_read(); 490 p = pid_table[pid & pid_tbl_mask].pt_proc; 491 /* Only allow live processes to be found by pid. */ 492 if (P_VALID(p) && p->p_pid == pid && 493 ((stat = p->p_stat) == SACTIVE || stat == SSTOP 494 || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) { 495 if (flags & PFIND_UNLOCK_OK) 496 proclist_unlock_read(); 497 return p; 498 } 499 if (flags & PFIND_UNLOCK_FAIL) 500 proclist_unlock_read(); 501 return NULL; 502 } 503 504 505 /* 506 * Locate a process group by number 507 */ 508 struct pgrp * 509 pg_find(pid_t pgid, uint flags) 510 { 511 struct pgrp *pg; 512 513 if (!(flags & PFIND_LOCKED)) 514 proclist_lock_read(); 515 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 516 /* 517 * Can't look up a pgrp that only exists because the session 518 * hasn't died yet (traditional) 519 */ 520 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 521 if (flags & PFIND_UNLOCK_FAIL) 522 proclist_unlock_read(); 523 return NULL; 524 } 525 526 if (flags & PFIND_UNLOCK_OK) 527 proclist_unlock_read(); 528 return pg; 529 } 530 531 static void 532 expand_pid_table(void) 533 { 534 uint pt_size = pid_tbl_mask + 1; 535 struct pid_table *n_pt, *new_pt; 536 struct proc *proc; 537 struct pgrp *pgrp; 538 int i; 539 int s; 540 pid_t pid; 541 542 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK); 543 544 s = proclist_lock_write(); 545 if (pt_size != pid_tbl_mask + 1) { 546 /* Another process beat us to it... */ 547 proclist_unlock_write(s); 548 FREE(new_pt, M_PROC); 549 return; 550 } 551 552 /* 553 * Copy entries from old table into new one. 554 * If 'pid' is 'odd' we need to place in the upper half, 555 * even pid's to the lower half. 556 * Free items stay in the low half so we don't have to 557 * fixup the reference to them. 558 * We stuff free items on the front of the freelist 559 * because we can't write to unmodified entries. 560 * Processing the table backwards maintains a semblance 561 * of issueing pid numbers that increase with time. 562 */ 563 i = pt_size - 1; 564 n_pt = new_pt + i; 565 for (; ; i--, n_pt--) { 566 proc = pid_table[i].pt_proc; 567 pgrp = pid_table[i].pt_pgrp; 568 if (!P_VALID(proc)) { 569 /* Up 'use count' so that link is valid */ 570 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 571 proc = P_FREE(pid); 572 if (pgrp) 573 pid = pgrp->pg_id; 574 } else 575 pid = proc->p_pid; 576 577 /* Save entry in appropriate half of table */ 578 n_pt[pid & pt_size].pt_proc = proc; 579 n_pt[pid & pt_size].pt_pgrp = pgrp; 580 581 /* Put other piece on start of free list */ 582 pid = (pid ^ pt_size) & ~pid_tbl_mask; 583 n_pt[pid & pt_size].pt_proc = 584 P_FREE((pid & ~pt_size) | next_free_pt); 585 n_pt[pid & pt_size].pt_pgrp = 0; 586 next_free_pt = i | (pid & pt_size); 587 if (i == 0) 588 break; 589 } 590 591 /* Switch tables */ 592 n_pt = pid_table; 593 pid_table = new_pt; 594 pid_tbl_mask = pt_size * 2 - 1; 595 596 /* 597 * pid_max starts as PID_MAX (= 30000), once we have 16384 598 * allocated pids we need it to be larger! 599 */ 600 if (pid_tbl_mask > PID_MAX) { 601 pid_max = pid_tbl_mask * 2 + 1; 602 pid_alloc_lim |= pid_alloc_lim << 1; 603 } else 604 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 605 606 proclist_unlock_write(s); 607 FREE(n_pt, M_PROC); 608 } 609 610 struct proc * 611 proc_alloc(void) 612 { 613 struct proc *p; 614 int s, nxt; 615 pid_t pid; 616 struct pid_table *pt; 617 618 p = pool_get(&proc_pool, PR_WAITOK); 619 p->p_stat = SIDL; /* protect against others */ 620 621 proc_initspecific(p); 622 /* allocate next free pid */ 623 624 for (;;expand_pid_table()) { 625 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 626 /* ensure pids cycle through 2000+ values */ 627 continue; 628 s = proclist_lock_write(); 629 pt = &pid_table[next_free_pt]; 630 #ifdef DIAGNOSTIC 631 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 632 panic("proc_alloc: slot busy"); 633 #endif 634 nxt = P_NEXT(pt->pt_proc); 635 if (nxt & pid_tbl_mask) 636 break; 637 /* Table full - expand (NB last entry not used....) */ 638 proclist_unlock_write(s); 639 } 640 641 /* pid is 'saved use count' + 'size' + entry */ 642 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 643 if ((uint)pid > (uint)pid_max) 644 pid &= pid_tbl_mask; 645 p->p_pid = pid; 646 next_free_pt = nxt & pid_tbl_mask; 647 648 /* Grab table slot */ 649 pt->pt_proc = p; 650 pid_alloc_cnt++; 651 652 proclist_unlock_write(s); 653 654 return p; 655 } 656 657 /* 658 * Free last resources of a process - called from proc_free (in kern_exit.c) 659 */ 660 void 661 proc_free_mem(struct proc *p) 662 { 663 int s; 664 pid_t pid = p->p_pid; 665 struct pid_table *pt; 666 667 s = proclist_lock_write(); 668 669 pt = &pid_table[pid & pid_tbl_mask]; 670 #ifdef DIAGNOSTIC 671 if (__predict_false(pt->pt_proc != p)) 672 panic("proc_free: pid_table mismatch, pid %x, proc %p", 673 pid, p); 674 #endif 675 /* save pid use count in slot */ 676 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 677 678 if (pt->pt_pgrp == NULL) { 679 /* link last freed entry onto ours */ 680 pid &= pid_tbl_mask; 681 pt = &pid_table[last_free_pt]; 682 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 683 last_free_pt = pid; 684 pid_alloc_cnt--; 685 } 686 687 nprocs--; 688 proclist_unlock_write(s); 689 690 pool_put(&proc_pool, p); 691 } 692 693 /* 694 * Move p to a new or existing process group (and session) 695 * 696 * If we are creating a new pgrp, the pgid should equal 697 * the calling process' pid. 698 * If is only valid to enter a process group that is in the session 699 * of the process. 700 * Also mksess should only be set if we are creating a process group 701 * 702 * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the 703 * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid) 704 */ 705 int 706 enterpgrp(struct proc *p, pid_t pgid, int mksess) 707 { 708 struct pgrp *new_pgrp, *pgrp; 709 struct session *sess; 710 struct proc *curp = curproc; 711 pid_t pid = p->p_pid; 712 int rval; 713 int s; 714 pid_t pg_id = NO_PGID; 715 716 /* Allocate data areas we might need before doing any validity checks */ 717 proclist_lock_read(); /* Because pid_table might change */ 718 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 719 proclist_unlock_read(); 720 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK); 721 } else { 722 proclist_unlock_read(); 723 new_pgrp = NULL; 724 } 725 if (mksess) 726 sess = pool_get(&session_pool, PR_WAITOK); 727 else 728 sess = NULL; 729 730 s = proclist_lock_write(); 731 rval = EPERM; /* most common error (to save typing) */ 732 733 /* Check pgrp exists or can be created */ 734 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 735 if (pgrp != NULL && pgrp->pg_id != pgid) 736 goto done; 737 738 /* Can only set another process under restricted circumstances. */ 739 if (p != curp) { 740 /* must exist and be one of our children... */ 741 if (p != pid_table[pid & pid_tbl_mask].pt_proc 742 || !inferior(p, curp)) { 743 rval = ESRCH; 744 goto done; 745 } 746 /* ... in the same session... */ 747 if (sess != NULL || p->p_session != curp->p_session) 748 goto done; 749 /* ... existing pgid must be in same session ... */ 750 if (pgrp != NULL && pgrp->pg_session != p->p_session) 751 goto done; 752 /* ... and not done an exec. */ 753 if (p->p_flag & P_EXEC) { 754 rval = EACCES; 755 goto done; 756 } 757 } 758 759 /* Changing the process group/session of a session 760 leader is definitely off limits. */ 761 if (SESS_LEADER(p)) { 762 if (sess == NULL && p->p_pgrp == pgrp) 763 /* unless it's a definite noop */ 764 rval = 0; 765 goto done; 766 } 767 768 /* Can only create a process group with id of process */ 769 if (pgrp == NULL && pgid != pid) 770 goto done; 771 772 /* Can only create a session if creating pgrp */ 773 if (sess != NULL && pgrp != NULL) 774 goto done; 775 776 /* Check we allocated memory for a pgrp... */ 777 if (pgrp == NULL && new_pgrp == NULL) 778 goto done; 779 780 /* Don't attach to 'zombie' pgrp */ 781 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 782 goto done; 783 784 /* Expect to succeed now */ 785 rval = 0; 786 787 if (pgrp == p->p_pgrp) 788 /* nothing to do */ 789 goto done; 790 791 /* Ok all setup, link up required structures */ 792 if (pgrp == NULL) { 793 pgrp = new_pgrp; 794 new_pgrp = 0; 795 if (sess != NULL) { 796 sess->s_sid = p->p_pid; 797 sess->s_leader = p; 798 sess->s_count = 1; 799 sess->s_ttyvp = NULL; 800 sess->s_ttyp = NULL; 801 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 802 memcpy(sess->s_login, p->p_session->s_login, 803 sizeof(sess->s_login)); 804 p->p_flag &= ~P_CONTROLT; 805 } else { 806 sess = p->p_pgrp->pg_session; 807 SESSHOLD(sess); 808 } 809 pgrp->pg_session = sess; 810 sess = 0; 811 812 pgrp->pg_id = pgid; 813 LIST_INIT(&pgrp->pg_members); 814 #ifdef DIAGNOSTIC 815 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 816 panic("enterpgrp: pgrp table slot in use"); 817 if (__predict_false(mksess && p != curp)) 818 panic("enterpgrp: mksession and p != curproc"); 819 #endif 820 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 821 pgrp->pg_jobc = 0; 822 } 823 824 /* 825 * Adjust eligibility of affected pgrps to participate in job control. 826 * Increment eligibility counts before decrementing, otherwise we 827 * could reach 0 spuriously during the first call. 828 */ 829 fixjobc(p, pgrp, 1); 830 fixjobc(p, p->p_pgrp, 0); 831 832 /* Move process to requested group */ 833 LIST_REMOVE(p, p_pglist); 834 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 835 /* defer delete until we've dumped the lock */ 836 pg_id = p->p_pgrp->pg_id; 837 p->p_pgrp = pgrp; 838 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 839 840 done: 841 proclist_unlock_write(s); 842 if (sess != NULL) 843 pool_put(&session_pool, sess); 844 if (new_pgrp != NULL) 845 pool_put(&pgrp_pool, new_pgrp); 846 if (pg_id != NO_PGID) 847 pg_delete(pg_id); 848 #ifdef DEBUG_PGRP 849 if (__predict_false(rval)) 850 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 851 pid, pgid, mksess, curp->p_pid, rval); 852 #endif 853 return rval; 854 } 855 856 /* 857 * Remove a process from its process group. 858 */ 859 int 860 leavepgrp(struct proc *p) 861 { 862 int s; 863 struct pgrp *pgrp; 864 pid_t pg_id; 865 866 s = proclist_lock_write(); 867 pgrp = p->p_pgrp; 868 LIST_REMOVE(p, p_pglist); 869 p->p_pgrp = NULL; 870 pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID; 871 proclist_unlock_write(s); 872 873 if (pg_id != NO_PGID) 874 pg_delete(pg_id); 875 return 0; 876 } 877 878 static void 879 pg_free(pid_t pg_id) 880 { 881 struct pgrp *pgrp; 882 struct pid_table *pt; 883 int s; 884 885 s = proclist_lock_write(); 886 pt = &pid_table[pg_id & pid_tbl_mask]; 887 pgrp = pt->pt_pgrp; 888 #ifdef DIAGNOSTIC 889 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 890 || !LIST_EMPTY(&pgrp->pg_members))) 891 panic("pg_free: process group absent or has members"); 892 #endif 893 pt->pt_pgrp = 0; 894 895 if (!P_VALID(pt->pt_proc)) { 896 /* orphaned pgrp, put slot onto free list */ 897 #ifdef DIAGNOSTIC 898 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 899 panic("pg_free: process slot on free list"); 900 #endif 901 902 pg_id &= pid_tbl_mask; 903 pt = &pid_table[last_free_pt]; 904 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 905 last_free_pt = pg_id; 906 pid_alloc_cnt--; 907 } 908 proclist_unlock_write(s); 909 910 pool_put(&pgrp_pool, pgrp); 911 } 912 913 /* 914 * delete a process group 915 */ 916 static void 917 pg_delete(pid_t pg_id) 918 { 919 struct pgrp *pgrp; 920 struct tty *ttyp; 921 struct session *ss; 922 int s, is_pgrp_leader; 923 924 s = proclist_lock_write(); 925 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 926 if (pgrp == NULL || pgrp->pg_id != pg_id || 927 !LIST_EMPTY(&pgrp->pg_members)) { 928 proclist_unlock_write(s); 929 return; 930 } 931 932 ss = pgrp->pg_session; 933 934 /* Remove reference (if any) from tty to this process group */ 935 ttyp = ss->s_ttyp; 936 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 937 ttyp->t_pgrp = NULL; 938 #ifdef DIAGNOSTIC 939 if (ttyp->t_session != ss) 940 panic("pg_delete: wrong session on terminal"); 941 #endif 942 } 943 944 /* 945 * The leading process group in a session is freed 946 * by sessdelete() if last reference. 947 */ 948 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 949 proclist_unlock_write(s); 950 SESSRELE(ss); 951 952 if (is_pgrp_leader) 953 return; 954 955 pg_free(pg_id); 956 } 957 958 /* 959 * Delete session - called from SESSRELE when s_count becomes zero. 960 */ 961 void 962 sessdelete(struct session *ss) 963 { 964 /* 965 * We keep the pgrp with the same id as the session in 966 * order to stop a process being given the same pid. 967 * Since the pgrp holds a reference to the session, it 968 * must be a 'zombie' pgrp by now. 969 */ 970 971 pg_free(ss->s_sid); 972 973 pool_put(&session_pool, ss); 974 } 975 976 /* 977 * Adjust pgrp jobc counters when specified process changes process group. 978 * We count the number of processes in each process group that "qualify" 979 * the group for terminal job control (those with a parent in a different 980 * process group of the same session). If that count reaches zero, the 981 * process group becomes orphaned. Check both the specified process' 982 * process group and that of its children. 983 * entering == 0 => p is leaving specified group. 984 * entering == 1 => p is entering specified group. 985 * 986 * Call with proclist_lock held. 987 */ 988 void 989 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 990 { 991 struct pgrp *hispgrp; 992 struct session *mysession = pgrp->pg_session; 993 struct proc *child; 994 995 /* 996 * Check p's parent to see whether p qualifies its own process 997 * group; if so, adjust count for p's process group. 998 */ 999 hispgrp = p->p_pptr->p_pgrp; 1000 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1001 if (entering) 1002 pgrp->pg_jobc++; 1003 else if (--pgrp->pg_jobc == 0) 1004 orphanpg(pgrp); 1005 } 1006 1007 /* 1008 * Check this process' children to see whether they qualify 1009 * their process groups; if so, adjust counts for children's 1010 * process groups. 1011 */ 1012 LIST_FOREACH(child, &p->p_children, p_sibling) { 1013 hispgrp = child->p_pgrp; 1014 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1015 !P_ZOMBIE(child)) { 1016 if (entering) 1017 hispgrp->pg_jobc++; 1018 else if (--hispgrp->pg_jobc == 0) 1019 orphanpg(hispgrp); 1020 } 1021 } 1022 } 1023 1024 /* 1025 * A process group has become orphaned; 1026 * if there are any stopped processes in the group, 1027 * hang-up all process in that group. 1028 * 1029 * Call with proclist_lock held. 1030 */ 1031 static void 1032 orphanpg(struct pgrp *pg) 1033 { 1034 struct proc *p; 1035 1036 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1037 if (p->p_stat == SSTOP) { 1038 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1039 psignal(p, SIGHUP); 1040 psignal(p, SIGCONT); 1041 } 1042 return; 1043 } 1044 } 1045 } 1046 1047 /* mark process as suid/sgid, reset some values to defaults */ 1048 void 1049 p_sugid(struct proc *p) 1050 { 1051 struct plimit *lim; 1052 char *cn; 1053 1054 p->p_flag |= P_SUGID; 1055 /* reset what needs to be reset in plimit */ 1056 lim = p->p_limit; 1057 if (lim->pl_corename != defcorename) { 1058 if (lim->p_refcnt > 1 && 1059 (lim->p_lflags & PL_SHAREMOD) == 0) { 1060 p->p_limit = limcopy(lim); 1061 limfree(lim); 1062 lim = p->p_limit; 1063 } 1064 simple_lock(&lim->p_slock); 1065 cn = lim->pl_corename; 1066 lim->pl_corename = defcorename; 1067 simple_unlock(&lim->p_slock); 1068 if (cn != defcorename) 1069 free(cn, M_TEMP); 1070 } 1071 } 1072 1073 #ifdef DDB 1074 #include <ddb/db_output.h> 1075 void pidtbl_dump(void); 1076 void 1077 pidtbl_dump(void) 1078 { 1079 struct pid_table *pt; 1080 struct proc *p; 1081 struct pgrp *pgrp; 1082 int id; 1083 1084 db_printf("pid table %p size %x, next %x, last %x\n", 1085 pid_table, pid_tbl_mask+1, 1086 next_free_pt, last_free_pt); 1087 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1088 p = pt->pt_proc; 1089 if (!P_VALID(p) && !pt->pt_pgrp) 1090 continue; 1091 db_printf(" id %x: ", id); 1092 if (P_VALID(p)) 1093 db_printf("proc %p id %d (0x%x) %s\n", 1094 p, p->p_pid, p->p_pid, p->p_comm); 1095 else 1096 db_printf("next %x use %x\n", 1097 P_NEXT(p) & pid_tbl_mask, 1098 P_NEXT(p) & ~pid_tbl_mask); 1099 if ((pgrp = pt->pt_pgrp)) { 1100 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1101 pgrp->pg_session, pgrp->pg_session->s_sid, 1102 pgrp->pg_session->s_count, 1103 pgrp->pg_session->s_login); 1104 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1105 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1106 pgrp->pg_members.lh_first); 1107 for (p = pgrp->pg_members.lh_first; p != 0; 1108 p = p->p_pglist.le_next) { 1109 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1110 p->p_pid, p, p->p_pgrp, p->p_comm); 1111 } 1112 } 1113 } 1114 } 1115 #endif /* DDB */ 1116 1117 #ifdef KSTACK_CHECK_MAGIC 1118 #include <sys/user.h> 1119 1120 #define KSTACK_MAGIC 0xdeadbeaf 1121 1122 /* XXX should be per process basis? */ 1123 int kstackleftmin = KSTACK_SIZE; 1124 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is 1125 less than this */ 1126 1127 void 1128 kstack_setup_magic(const struct lwp *l) 1129 { 1130 uint32_t *ip; 1131 uint32_t const *end; 1132 1133 KASSERT(l != NULL); 1134 KASSERT(l != &lwp0); 1135 1136 /* 1137 * fill all the stack with magic number 1138 * so that later modification on it can be detected. 1139 */ 1140 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1141 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1142 for (; ip < end; ip++) { 1143 *ip = KSTACK_MAGIC; 1144 } 1145 } 1146 1147 void 1148 kstack_check_magic(const struct lwp *l) 1149 { 1150 uint32_t const *ip, *end; 1151 int stackleft; 1152 1153 KASSERT(l != NULL); 1154 1155 /* don't check proc0 */ /*XXX*/ 1156 if (l == &lwp0) 1157 return; 1158 1159 #ifdef __MACHINE_STACK_GROWS_UP 1160 /* stack grows upwards (eg. hppa) */ 1161 ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1162 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1163 for (ip--; ip >= end; ip--) 1164 if (*ip != KSTACK_MAGIC) 1165 break; 1166 1167 stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip; 1168 #else /* __MACHINE_STACK_GROWS_UP */ 1169 /* stack grows downwards (eg. i386) */ 1170 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1171 end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1172 for (; ip < end; ip++) 1173 if (*ip != KSTACK_MAGIC) 1174 break; 1175 1176 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1177 #endif /* __MACHINE_STACK_GROWS_UP */ 1178 1179 if (kstackleftmin > stackleft) { 1180 kstackleftmin = stackleft; 1181 if (stackleft < kstackleftthres) 1182 printf("warning: kernel stack left %d bytes" 1183 "(pid %u:lid %u)\n", stackleft, 1184 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1185 } 1186 1187 if (stackleft <= 0) { 1188 panic("magic on the top of kernel stack changed for " 1189 "pid %u, lid %u: maybe kernel stack overflow", 1190 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1191 } 1192 } 1193 #endif /* KSTACK_CHECK_MAGIC */ 1194 1195 /* XXX shouldn't be here */ 1196 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG) 1197 #define PROCLIST_ASSERT_LOCKED_READ() \ 1198 KASSERT(lockstatus(&proclist_lock) == LK_SHARED) 1199 #else 1200 #define PROCLIST_ASSERT_LOCKED_READ() /* nothing */ 1201 #endif 1202 1203 int 1204 proclist_foreach_call(struct proclist *list, 1205 int (*callback)(struct proc *, void *arg), void *arg) 1206 { 1207 struct proc marker; 1208 struct proc *p; 1209 struct lwp * const l = curlwp; 1210 int ret = 0; 1211 1212 marker.p_flag = P_MARKER; 1213 PHOLD(l); 1214 proclist_lock_read(); 1215 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1216 if (p->p_flag & P_MARKER) { 1217 p = LIST_NEXT(p, p_list); 1218 continue; 1219 } 1220 LIST_INSERT_AFTER(p, &marker, p_list); 1221 ret = (*callback)(p, arg); 1222 PROCLIST_ASSERT_LOCKED_READ(); 1223 p = LIST_NEXT(&marker, p_list); 1224 LIST_REMOVE(&marker, p_list); 1225 } 1226 proclist_unlock_read(); 1227 PRELE(l); 1228 1229 return ret; 1230 } 1231 1232 int 1233 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1234 { 1235 1236 /* XXXCDC: how should locking work here? */ 1237 1238 /* curproc exception is for coredump. */ 1239 1240 if ((p != curproc && (p->p_flag & P_WEXIT) != 0) || 1241 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1242 return EFAULT; 1243 } 1244 1245 uvmspace_addref(p->p_vmspace); 1246 *vm = p->p_vmspace; 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * Acquire a write lock on the process credential. 1253 */ 1254 void 1255 proc_crmod_enter(struct proc *p) 1256 { 1257 1258 /* 1259 * XXXSMP This should be a lightweight sleep lock. 'struct lock' is 1260 * too large. 1261 */ 1262 simple_lock(&p->p_lock); 1263 while ((p->p_flag & P_CRLOCK) != 0) 1264 ltsleep(&p->p_cred, PLOCK, "crlock", 0, &p->p_lock); 1265 p->p_flag |= P_CRLOCK; 1266 simple_unlock(&p->p_lock); 1267 } 1268 1269 /* 1270 * Block out readers, set in a new process credential, and drop the write 1271 * lock. The credential must have a reference already. Optionally, free a 1272 * no-longer required credential. 1273 */ 1274 void 1275 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred) 1276 { 1277 1278 KDASSERT((p->p_flag & P_CRLOCK) != 0); 1279 simple_lock(&p->p_lock); 1280 p->p_cred = scred; 1281 p->p_flag &= ~P_CRLOCK; 1282 simple_unlock(&p->p_lock); 1283 wakeup(&p->p_cred); 1284 if (fcred != NULL) 1285 kauth_cred_free(fcred); 1286 } 1287 1288 /* 1289 * proc_specific_key_create -- 1290 * Create a key for subsystem proc-specific data. 1291 */ 1292 int 1293 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1294 { 1295 1296 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1297 } 1298 1299 /* 1300 * proc_specific_key_delete -- 1301 * Delete a key for subsystem proc-specific data. 1302 */ 1303 void 1304 proc_specific_key_delete(specificdata_key_t key) 1305 { 1306 1307 specificdata_key_delete(proc_specificdata_domain, key); 1308 } 1309 1310 /* 1311 * proc_initspecific -- 1312 * Initialize a proc's specificdata container. 1313 */ 1314 void 1315 proc_initspecific(struct proc *p) 1316 { 1317 int error; 1318 1319 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1320 KASSERT(error == 0); 1321 } 1322 1323 /* 1324 * proc_finispecific -- 1325 * Finalize a proc's specificdata container. 1326 */ 1327 void 1328 proc_finispecific(struct proc *p) 1329 { 1330 1331 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1332 } 1333 1334 /* 1335 * proc_getspecific -- 1336 * Return proc-specific data corresponding to the specified key. 1337 */ 1338 void * 1339 proc_getspecific(struct proc *p, specificdata_key_t key) 1340 { 1341 1342 return (specificdata_getspecific(proc_specificdata_domain, 1343 &p->p_specdataref, key)); 1344 } 1345 1346 /* 1347 * proc_setspecific -- 1348 * Set proc-specific data corresponding to the specified key. 1349 */ 1350 void 1351 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1352 { 1353 1354 specificdata_setspecific(proc_specificdata_domain, 1355 &p->p_specdataref, key, data); 1356 } 1357