xref: /netbsd-src/sys/kern/kern_proc.c (revision bd1f9e680783606ba327ccadf6002a15ffbdf514)
1 /*	$NetBSD: kern_proc.c,v 1.155 2009/10/21 21:12:06 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.155 2009/10/21 21:12:06 rmind Exp $");
66 
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/pool.h>
82 #include <sys/pset.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/filedesc.h>
91 #include "sys/syscall_stats.h"
92 #include <sys/kauth.h>
93 #include <sys/sleepq.h>
94 #include <sys/atomic.h>
95 #include <sys/kmem.h>
96 
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_extern.h>
99 
100 /*
101  * Other process lists
102  */
103 
104 struct proclist allproc;
105 struct proclist zombproc;	/* resources have been freed */
106 
107 kmutex_t	*proc_lock;
108 
109 /*
110  * pid to proc lookup is done by indexing the pid_table array.
111  * Since pid numbers are only allocated when an empty slot
112  * has been found, there is no need to search any lists ever.
113  * (an orphaned pgrp will lock the slot, a session will lock
114  * the pgrp with the same number.)
115  * If the table is too small it is reallocated with twice the
116  * previous size and the entries 'unzipped' into the two halves.
117  * A linked list of free entries is passed through the pt_proc
118  * field of 'free' items - set odd to be an invalid ptr.
119  */
120 
121 struct pid_table {
122 	struct proc	*pt_proc;
123 	struct pgrp	*pt_pgrp;
124 };
125 #if 1	/* strongly typed cast - should be a noop */
126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
127 #else
128 #define p2u(p) ((uint)p)
129 #endif
130 #define P_VALID(p) (!(p2u(p) & 1))
131 #define P_NEXT(p) (p2u(p) >> 1)
132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
133 
134 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
135 static struct pid_table *pid_table;
136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
137 static uint pid_alloc_lim;	/* max we allocate before growing table */
138 static uint pid_alloc_cnt;	/* number of allocated pids */
139 
140 /* links through free slots - never empty! */
141 static uint next_free_pt, last_free_pt;
142 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
143 
144 /* Components of the first process -- never freed. */
145 
146 extern struct emul emul_netbsd;	/* defined in kern_exec.c */
147 
148 struct session session0 = {
149 	.s_count = 1,
150 	.s_sid = 0,
151 };
152 struct pgrp pgrp0 = {
153 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
154 	.pg_session = &session0,
155 };
156 filedesc_t filedesc0;
157 struct cwdinfo cwdi0 = {
158 	.cwdi_cmask = CMASK,		/* see cmask below */
159 	.cwdi_refcnt = 1,
160 };
161 struct plimit limit0;
162 struct pstats pstat0;
163 struct vmspace vmspace0;
164 struct sigacts sigacts0;
165 struct turnstile turnstile0;
166 struct proc proc0 = {
167 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
168 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
169 	.p_nlwps = 1,
170 	.p_nrlwps = 1,
171 	.p_nlwpid = 1,		/* must match lwp0.l_lid */
172 	.p_pgrp = &pgrp0,
173 	.p_comm = "system",
174 	/*
175 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
176 	 * when they exit.  init(8) can easily wait them out for us.
177 	 */
178 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
179 	.p_stat = SACTIVE,
180 	.p_nice = NZERO,
181 	.p_emul = &emul_netbsd,
182 	.p_cwdi = &cwdi0,
183 	.p_limit = &limit0,
184 	.p_fd = &filedesc0,
185 	.p_vmspace = &vmspace0,
186 	.p_stats = &pstat0,
187 	.p_sigacts = &sigacts0,
188 };
189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
190 #ifdef LWP0_CPU_INFO
191 	.l_cpu = LWP0_CPU_INFO,
192 #endif
193 	.l_proc = &proc0,
194 	.l_lid = 1,
195 	.l_flag = LW_SYSTEM,
196 	.l_stat = LSONPROC,
197 	.l_ts = &turnstile0,
198 	.l_syncobj = &sched_syncobj,
199 	.l_refcnt = 1,
200 	.l_priority = PRI_USER + NPRI_USER - 1,
201 	.l_inheritedprio = -1,
202 	.l_class = SCHED_OTHER,
203 	.l_psid = PS_NONE,
204 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
205 	.l_name = __UNCONST("swapper"),
206 	.l_fd = &filedesc0,
207 };
208 kauth_cred_t cred0;
209 
210 extern struct user *proc0paddr;
211 
212 int nofile = NOFILE;
213 int maxuprc = MAXUPRC;
214 int cmask = CMASK;
215 
216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
217 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
218 
219 /*
220  * The process list descriptors, used during pid allocation and
221  * by sysctl.  No locking on this data structure is needed since
222  * it is completely static.
223  */
224 const struct proclist_desc proclists[] = {
225 	{ &allproc	},
226 	{ &zombproc	},
227 	{ NULL		},
228 };
229 
230 static struct pgrp *	pg_remove(pid_t);
231 static void		pg_delete(pid_t);
232 static void		orphanpg(struct pgrp *);
233 
234 static specificdata_domain_t proc_specificdata_domain;
235 
236 static pool_cache_t proc_cache;
237 
238 static kauth_listener_t proc_listener;
239 
240 static int
241 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
242     void *arg0, void *arg1, void *arg2, void *arg3)
243 {
244 	struct proc *p;
245 	int result;
246 
247 	result = KAUTH_RESULT_DEFER;
248 	p = arg0;
249 
250 	switch (action) {
251 	case KAUTH_PROCESS_CANSEE: {
252 		enum kauth_process_req req;
253 
254 		req = (enum kauth_process_req)arg1;
255 
256 		switch (req) {
257 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
258 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
259 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
260 			result = KAUTH_RESULT_ALLOW;
261 
262 			break;
263 
264 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
265 			if (kauth_cred_getuid(cred) !=
266 			    kauth_cred_getuid(p->p_cred) ||
267 			    kauth_cred_getuid(cred) !=
268 			    kauth_cred_getsvuid(p->p_cred))
269 				break;
270 
271 			result = KAUTH_RESULT_ALLOW;
272 
273 			break;
274 
275 		default:
276 			break;
277 		}
278 
279 		break;
280 		}
281 
282 	case KAUTH_PROCESS_FORK: {
283 		int lnprocs = (int)(unsigned long)arg2;
284 
285 		/*
286 		 * Don't allow a nonprivileged user to use the last few
287 		 * processes. The variable lnprocs is the current number of
288 		 * processes, maxproc is the limit.
289 		 */
290 		if (__predict_false((lnprocs >= maxproc - 5)))
291 			break;
292 
293 		result = KAUTH_RESULT_ALLOW;
294 
295 		break;
296 		}
297 
298 	case KAUTH_PROCESS_CORENAME:
299 	case KAUTH_PROCESS_STOPFLAG:
300 		if (proc_uidmatch(cred, p->p_cred) == 0)
301 			result = KAUTH_RESULT_ALLOW;
302 
303 		break;
304 
305 	default:
306 		break;
307 	}
308 
309 	return result;
310 }
311 
312 /*
313  * Initialize global process hashing structures.
314  */
315 void
316 procinit(void)
317 {
318 	const struct proclist_desc *pd;
319 	u_int i;
320 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
321 
322 	for (pd = proclists; pd->pd_list != NULL; pd++)
323 		LIST_INIT(pd->pd_list);
324 
325 	proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
326 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
327 	    * sizeof(struct pid_table), KM_SLEEP);
328 
329 	/* Set free list running through table...
330 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
331 	for (i = 0; i <= pid_tbl_mask; i++) {
332 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
333 		pid_table[i].pt_pgrp = 0;
334 	}
335 	/* slot 0 is just grabbed */
336 	next_free_pt = 1;
337 	/* Need to fix last entry. */
338 	last_free_pt = pid_tbl_mask;
339 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
340 	/* point at which we grow table - to avoid reusing pids too often */
341 	pid_alloc_lim = pid_tbl_mask - 1;
342 #undef LINK_EMPTY
343 
344 	proc_specificdata_domain = specificdata_domain_create();
345 	KASSERT(proc_specificdata_domain != NULL);
346 
347 	proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
348 	    "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
349 
350 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
351 	    proc_listener_cb, NULL);
352 }
353 
354 /*
355  * Initialize process 0.
356  */
357 void
358 proc0_init(void)
359 {
360 	struct proc *p;
361 	struct pgrp *pg;
362 	struct session *sess;
363 	struct lwp *l;
364 	rlim_t lim;
365 	int i;
366 
367 	p = &proc0;
368 	pg = &pgrp0;
369 	sess = &session0;
370 	l = &lwp0;
371 
372 	KASSERT(l->l_lid == p->p_nlwpid);
373 
374 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
375 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
376 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
377 
378 	rw_init(&p->p_reflock);
379 	cv_init(&p->p_waitcv, "wait");
380 	cv_init(&p->p_lwpcv, "lwpwait");
381 
382 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
383 
384 	pid_table[0].pt_proc = p;
385 	LIST_INSERT_HEAD(&allproc, p, p_list);
386 	LIST_INSERT_HEAD(&alllwp, l, l_list);
387 
388 	pid_table[0].pt_pgrp = pg;
389 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
390 
391 #ifdef __HAVE_SYSCALL_INTERN
392 	(*p->p_emul->e_syscall_intern)(p);
393 #endif
394 
395 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
396 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
397 	cv_init(&l->l_sigcv, "sigwait");
398 
399 	/* Create credentials. */
400 	cred0 = kauth_cred_alloc();
401 	p->p_cred = cred0;
402 	kauth_cred_hold(cred0);
403 	l->l_cred = cred0;
404 
405 	/* Create the CWD info. */
406 	rw_init(&cwdi0.cwdi_lock);
407 
408 	/* Create the limits structures. */
409 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
410 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
411 		limit0.pl_rlimit[i].rlim_cur =
412 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
413 
414 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
415 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
416 	    maxfiles < nofile ? maxfiles : nofile;
417 
418 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
419 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
420 	    maxproc < maxuprc ? maxproc : maxuprc;
421 
422 	lim = ptoa(uvmexp.free);
423 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
424 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
425 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
426 	limit0.pl_corename = defcorename;
427 	limit0.pl_refcnt = 1;
428 	limit0.pl_sv_limit = NULL;
429 
430 	/* Configure virtual memory system, set vm rlimits. */
431 	uvm_init_limits(p);
432 
433 	/* Initialize file descriptor table for proc0. */
434 	fd_init(&filedesc0);
435 
436 	/*
437 	 * Initialize proc0's vmspace, which uses the kernel pmap.
438 	 * All kernel processes (which never have user space mappings)
439 	 * share proc0's vmspace, and thus, the kernel pmap.
440 	 */
441 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
442 	    trunc_page(VM_MAX_ADDRESS));
443 
444 	l->l_addr = proc0paddr;				/* XXX */
445 
446 	/* Initialize signal state for proc0. XXX IPL_SCHED */
447 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
448 	siginit(p);
449 
450 	proc_initspecific(p);
451 	lwp_initspecific(l);
452 
453 	SYSCALL_TIME_LWP_INIT(l);
454 }
455 
456 /*
457  * Session reference counting.
458  */
459 
460 void
461 proc_sesshold(struct session *ss)
462 {
463 
464 	KASSERT(mutex_owned(proc_lock));
465 	ss->s_count++;
466 }
467 
468 void
469 proc_sessrele(struct session *ss)
470 {
471 
472 	KASSERT(mutex_owned(proc_lock));
473 	/*
474 	 * We keep the pgrp with the same id as the session in order to
475 	 * stop a process being given the same pid.  Since the pgrp holds
476 	 * a reference to the session, it must be a 'zombie' pgrp by now.
477 	 */
478 	if (--ss->s_count == 0) {
479 		struct pgrp *pg;
480 
481 		pg = pg_remove(ss->s_sid);
482 		mutex_exit(proc_lock);
483 
484 		kmem_free(pg, sizeof(struct pgrp));
485 		kmem_free(ss, sizeof(struct session));
486 	} else {
487 		mutex_exit(proc_lock);
488 	}
489 }
490 
491 /*
492  * Check that the specified process group is in the session of the
493  * specified process.
494  * Treats -ve ids as process ids.
495  * Used to validate TIOCSPGRP requests.
496  */
497 int
498 pgid_in_session(struct proc *p, pid_t pg_id)
499 {
500 	struct pgrp *pgrp;
501 	struct session *session;
502 	int error;
503 
504 	mutex_enter(proc_lock);
505 	if (pg_id < 0) {
506 		struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
507 		if (p1 == NULL)
508 			return EINVAL;
509 		pgrp = p1->p_pgrp;
510 	} else {
511 		pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
512 		if (pgrp == NULL)
513 			return EINVAL;
514 	}
515 	session = pgrp->pg_session;
516 	if (session != p->p_pgrp->pg_session)
517 		error = EPERM;
518 	else
519 		error = 0;
520 	mutex_exit(proc_lock);
521 
522 	return error;
523 }
524 
525 /*
526  * p_inferior: is p an inferior of q?
527  */
528 static inline bool
529 p_inferior(struct proc *p, struct proc *q)
530 {
531 
532 	KASSERT(mutex_owned(proc_lock));
533 
534 	for (; p != q; p = p->p_pptr)
535 		if (p->p_pid == 0)
536 			return false;
537 	return true;
538 }
539 
540 /*
541  * Locate a process by number
542  */
543 struct proc *
544 p_find(pid_t pid, uint flags)
545 {
546 	struct proc *p;
547 	char stat;
548 
549 	if (!(flags & PFIND_LOCKED))
550 		mutex_enter(proc_lock);
551 
552 	p = pid_table[pid & pid_tbl_mask].pt_proc;
553 
554 	/* Only allow live processes to be found by pid. */
555 	/* XXXSMP p_stat */
556 	if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
557 	    stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
558 	    (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
559 		if (flags & PFIND_UNLOCK_OK)
560 			 mutex_exit(proc_lock);
561 		return p;
562 	}
563 	if (flags & PFIND_UNLOCK_FAIL)
564 		mutex_exit(proc_lock);
565 	return NULL;
566 }
567 
568 
569 /*
570  * Locate a process group by number
571  */
572 struct pgrp *
573 pg_find(pid_t pgid, uint flags)
574 {
575 	struct pgrp *pg;
576 
577 	if (!(flags & PFIND_LOCKED))
578 		mutex_enter(proc_lock);
579 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
580 	/*
581 	 * Can't look up a pgrp that only exists because the session
582 	 * hasn't died yet (traditional)
583 	 */
584 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
585 		if (flags & PFIND_UNLOCK_FAIL)
586 			 mutex_exit(proc_lock);
587 		return NULL;
588 	}
589 
590 	if (flags & PFIND_UNLOCK_OK)
591 		mutex_exit(proc_lock);
592 	return pg;
593 }
594 
595 static void
596 expand_pid_table(void)
597 {
598 	size_t pt_size, tsz;
599 	struct pid_table *n_pt, *new_pt;
600 	struct proc *proc;
601 	struct pgrp *pgrp;
602 	pid_t pid;
603 	u_int i;
604 
605 	pt_size = pid_tbl_mask + 1;
606 	tsz = pt_size * 2 * sizeof(struct pid_table);
607 	new_pt = kmem_alloc(tsz, KM_SLEEP);
608 
609 	mutex_enter(proc_lock);
610 	if (pt_size != pid_tbl_mask + 1) {
611 		/* Another process beat us to it... */
612 		mutex_exit(proc_lock);
613 		kmem_free(new_pt, tsz);
614 		return;
615 	}
616 
617 	/*
618 	 * Copy entries from old table into new one.
619 	 * If 'pid' is 'odd' we need to place in the upper half,
620 	 * even pid's to the lower half.
621 	 * Free items stay in the low half so we don't have to
622 	 * fixup the reference to them.
623 	 * We stuff free items on the front of the freelist
624 	 * because we can't write to unmodified entries.
625 	 * Processing the table backwards maintains a semblance
626 	 * of issueing pid numbers that increase with time.
627 	 */
628 	i = pt_size - 1;
629 	n_pt = new_pt + i;
630 	for (; ; i--, n_pt--) {
631 		proc = pid_table[i].pt_proc;
632 		pgrp = pid_table[i].pt_pgrp;
633 		if (!P_VALID(proc)) {
634 			/* Up 'use count' so that link is valid */
635 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
636 			proc = P_FREE(pid);
637 			if (pgrp)
638 				pid = pgrp->pg_id;
639 		} else
640 			pid = proc->p_pid;
641 
642 		/* Save entry in appropriate half of table */
643 		n_pt[pid & pt_size].pt_proc = proc;
644 		n_pt[pid & pt_size].pt_pgrp = pgrp;
645 
646 		/* Put other piece on start of free list */
647 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
648 		n_pt[pid & pt_size].pt_proc =
649 				    P_FREE((pid & ~pt_size) | next_free_pt);
650 		n_pt[pid & pt_size].pt_pgrp = 0;
651 		next_free_pt = i | (pid & pt_size);
652 		if (i == 0)
653 			break;
654 	}
655 
656 	/* Save old table size and switch tables */
657 	tsz = pt_size * sizeof(struct pid_table);
658 	n_pt = pid_table;
659 	pid_table = new_pt;
660 	pid_tbl_mask = pt_size * 2 - 1;
661 
662 	/*
663 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
664 	 * allocated pids we need it to be larger!
665 	 */
666 	if (pid_tbl_mask > PID_MAX) {
667 		pid_max = pid_tbl_mask * 2 + 1;
668 		pid_alloc_lim |= pid_alloc_lim << 1;
669 	} else
670 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
671 
672 	mutex_exit(proc_lock);
673 	kmem_free(n_pt, tsz);
674 }
675 
676 struct proc *
677 proc_alloc(void)
678 {
679 	struct proc *p;
680 	int nxt;
681 	pid_t pid;
682 	struct pid_table *pt;
683 
684 	p = pool_cache_get(proc_cache, PR_WAITOK);
685 	p->p_stat = SIDL;			/* protect against others */
686 
687 	proc_initspecific(p);
688 	/* allocate next free pid */
689 
690 	for (;;expand_pid_table()) {
691 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
692 			/* ensure pids cycle through 2000+ values */
693 			continue;
694 		mutex_enter(proc_lock);
695 		pt = &pid_table[next_free_pt];
696 #ifdef DIAGNOSTIC
697 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
698 			panic("proc_alloc: slot busy");
699 #endif
700 		nxt = P_NEXT(pt->pt_proc);
701 		if (nxt & pid_tbl_mask)
702 			break;
703 		/* Table full - expand (NB last entry not used....) */
704 		mutex_exit(proc_lock);
705 	}
706 
707 	/* pid is 'saved use count' + 'size' + entry */
708 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
709 	if ((uint)pid > (uint)pid_max)
710 		pid &= pid_tbl_mask;
711 	p->p_pid = pid;
712 	next_free_pt = nxt & pid_tbl_mask;
713 
714 	/* Grab table slot */
715 	pt->pt_proc = p;
716 	pid_alloc_cnt++;
717 
718 	mutex_exit(proc_lock);
719 
720 	return p;
721 }
722 
723 /*
724  * Free a process id - called from proc_free (in kern_exit.c)
725  *
726  * Called with the proc_lock held.
727  */
728 void
729 proc_free_pid(struct proc *p)
730 {
731 	pid_t pid = p->p_pid;
732 	struct pid_table *pt;
733 
734 	KASSERT(mutex_owned(proc_lock));
735 
736 	pt = &pid_table[pid & pid_tbl_mask];
737 #ifdef DIAGNOSTIC
738 	if (__predict_false(pt->pt_proc != p))
739 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
740 			pid, p);
741 #endif
742 	/* save pid use count in slot */
743 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
744 
745 	if (pt->pt_pgrp == NULL) {
746 		/* link last freed entry onto ours */
747 		pid &= pid_tbl_mask;
748 		pt = &pid_table[last_free_pt];
749 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
750 		last_free_pt = pid;
751 		pid_alloc_cnt--;
752 	}
753 
754 	atomic_dec_uint(&nprocs);
755 }
756 
757 void
758 proc_free_mem(struct proc *p)
759 {
760 
761 	pool_cache_put(proc_cache, p);
762 }
763 
764 /*
765  * proc_enterpgrp: move p to a new or existing process group (and session).
766  *
767  * If we are creating a new pgrp, the pgid should equal
768  * the calling process' pid.
769  * If is only valid to enter a process group that is in the session
770  * of the process.
771  * Also mksess should only be set if we are creating a process group
772  *
773  * Only called from sys_setsid and sys_setpgid.
774  */
775 int
776 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
777 {
778 	struct pgrp *new_pgrp, *pgrp;
779 	struct session *sess;
780 	struct proc *p;
781 	int rval;
782 	pid_t pg_id = NO_PGID;
783 
784 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
785 
786 	/* Allocate data areas we might need before doing any validity checks */
787 	mutex_enter(proc_lock);		/* Because pid_table might change */
788 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
789 		mutex_exit(proc_lock);
790 		new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
791 		mutex_enter(proc_lock);
792 	} else
793 		new_pgrp = NULL;
794 	rval = EPERM;	/* most common error (to save typing) */
795 
796 	/* Check pgrp exists or can be created */
797 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
798 	if (pgrp != NULL && pgrp->pg_id != pgid)
799 		goto done;
800 
801 	/* Can only set another process under restricted circumstances. */
802 	if (pid != curp->p_pid) {
803 		/* must exist and be one of our children... */
804 		if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
805 		    !p_inferior(p, curp)) {
806 			rval = ESRCH;
807 			goto done;
808 		}
809 		/* ... in the same session... */
810 		if (sess != NULL || p->p_session != curp->p_session)
811 			goto done;
812 		/* ... existing pgid must be in same session ... */
813 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
814 			goto done;
815 		/* ... and not done an exec. */
816 		if (p->p_flag & PK_EXEC) {
817 			rval = EACCES;
818 			goto done;
819 		}
820 	} else {
821 		/* ... setsid() cannot re-enter a pgrp */
822 		if (mksess && (curp->p_pgid == curp->p_pid ||
823 		    pg_find(curp->p_pid, PFIND_LOCKED)))
824 			goto done;
825 		p = curp;
826 	}
827 
828 	/* Changing the process group/session of a session
829 	   leader is definitely off limits. */
830 	if (SESS_LEADER(p)) {
831 		if (sess == NULL && p->p_pgrp == pgrp)
832 			/* unless it's a definite noop */
833 			rval = 0;
834 		goto done;
835 	}
836 
837 	/* Can only create a process group with id of process */
838 	if (pgrp == NULL && pgid != pid)
839 		goto done;
840 
841 	/* Can only create a session if creating pgrp */
842 	if (sess != NULL && pgrp != NULL)
843 		goto done;
844 
845 	/* Check we allocated memory for a pgrp... */
846 	if (pgrp == NULL && new_pgrp == NULL)
847 		goto done;
848 
849 	/* Don't attach to 'zombie' pgrp */
850 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
851 		goto done;
852 
853 	/* Expect to succeed now */
854 	rval = 0;
855 
856 	if (pgrp == p->p_pgrp)
857 		/* nothing to do */
858 		goto done;
859 
860 	/* Ok all setup, link up required structures */
861 
862 	if (pgrp == NULL) {
863 		pgrp = new_pgrp;
864 		new_pgrp = NULL;
865 		if (sess != NULL) {
866 			sess->s_sid = p->p_pid;
867 			sess->s_leader = p;
868 			sess->s_count = 1;
869 			sess->s_ttyvp = NULL;
870 			sess->s_ttyp = NULL;
871 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
872 			memcpy(sess->s_login, p->p_session->s_login,
873 			    sizeof(sess->s_login));
874 			p->p_lflag &= ~PL_CONTROLT;
875 		} else {
876 			sess = p->p_pgrp->pg_session;
877 			proc_sesshold(sess);
878 		}
879 		pgrp->pg_session = sess;
880 		sess = NULL;
881 
882 		pgrp->pg_id = pgid;
883 		LIST_INIT(&pgrp->pg_members);
884 #ifdef DIAGNOSTIC
885 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
886 			panic("enterpgrp: pgrp table slot in use");
887 		if (__predict_false(mksess && p != curp))
888 			panic("enterpgrp: mksession and p != curproc");
889 #endif
890 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
891 		pgrp->pg_jobc = 0;
892 	}
893 
894 	/*
895 	 * Adjust eligibility of affected pgrps to participate in job control.
896 	 * Increment eligibility counts before decrementing, otherwise we
897 	 * could reach 0 spuriously during the first call.
898 	 */
899 	fixjobc(p, pgrp, 1);
900 	fixjobc(p, p->p_pgrp, 0);
901 
902 	/* Interlock with ttread(). */
903 	mutex_spin_enter(&tty_lock);
904 
905 	/* Move process to requested group. */
906 	LIST_REMOVE(p, p_pglist);
907 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
908 		/* defer delete until we've dumped the lock */
909 		pg_id = p->p_pgrp->pg_id;
910 	p->p_pgrp = pgrp;
911 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
912 
913 	/* Done with the swap; we can release the tty mutex. */
914 	mutex_spin_exit(&tty_lock);
915 
916     done:
917 	if (pg_id != NO_PGID) {
918 		/* Releases proc_lock. */
919 		pg_delete(pg_id);
920 	} else {
921 		mutex_exit(proc_lock);
922 	}
923 	if (sess != NULL)
924 		kmem_free(sess, sizeof(*sess));
925 	if (new_pgrp != NULL)
926 		kmem_free(new_pgrp, sizeof(*new_pgrp));
927 #ifdef DEBUG_PGRP
928 	if (__predict_false(rval))
929 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
930 			pid, pgid, mksess, curp->p_pid, rval);
931 #endif
932 	return rval;
933 }
934 
935 /*
936  * proc_leavepgrp: remove a process from its process group.
937  *  => must be called with the proc_lock held, which will be released;
938  */
939 void
940 proc_leavepgrp(struct proc *p)
941 {
942 	struct pgrp *pgrp;
943 
944 	KASSERT(mutex_owned(proc_lock));
945 
946 	/* Interlock with ttread() */
947 	mutex_spin_enter(&tty_lock);
948 	pgrp = p->p_pgrp;
949 	LIST_REMOVE(p, p_pglist);
950 	p->p_pgrp = NULL;
951 	mutex_spin_exit(&tty_lock);
952 
953 	if (LIST_EMPTY(&pgrp->pg_members)) {
954 		/* Releases proc_lock. */
955 		pg_delete(pgrp->pg_id);
956 	} else {
957 		mutex_exit(proc_lock);
958 	}
959 }
960 
961 /*
962  * pg_remove: remove a process group from the table.
963  *  => must be called with the proc_lock held;
964  *  => returns process group to free;
965  */
966 static struct pgrp *
967 pg_remove(pid_t pg_id)
968 {
969 	struct pgrp *pgrp;
970 	struct pid_table *pt;
971 
972 	KASSERT(mutex_owned(proc_lock));
973 
974 	pt = &pid_table[pg_id & pid_tbl_mask];
975 	pgrp = pt->pt_pgrp;
976 
977 	KASSERT(pgrp != NULL);
978 	KASSERT(pgrp->pg_id == pg_id);
979 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
980 
981 	pt->pt_pgrp = NULL;
982 
983 	if (!P_VALID(pt->pt_proc)) {
984 		/* Orphaned pgrp, put slot onto free list. */
985 		KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
986 		pg_id &= pid_tbl_mask;
987 		pt = &pid_table[last_free_pt];
988 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
989 		last_free_pt = pg_id;
990 		pid_alloc_cnt--;
991 	}
992 	return pgrp;
993 }
994 
995 /*
996  * pg_delete: delete and free a process group.
997  *  => must be called with the proc_lock held, which will be released.
998  */
999 static void
1000 pg_delete(pid_t pg_id)
1001 {
1002 	struct pgrp *pg;
1003 	struct tty *ttyp;
1004 	struct session *ss;
1005 
1006 	KASSERT(mutex_owned(proc_lock));
1007 
1008 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1009 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1010 		mutex_exit(proc_lock);
1011 		return;
1012 	}
1013 
1014 	ss = pg->pg_session;
1015 
1016 	/* Remove reference (if any) from tty to this process group */
1017 	mutex_spin_enter(&tty_lock);
1018 	ttyp = ss->s_ttyp;
1019 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
1020 		ttyp->t_pgrp = NULL;
1021 		KASSERT(ttyp->t_session == ss);
1022 	}
1023 	mutex_spin_exit(&tty_lock);
1024 
1025 	/*
1026 	 * The leading process group in a session is freed by proc_sessrele(),
1027 	 * if last reference.  Note: proc_sessrele() releases proc_lock.
1028 	 */
1029 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1030 	proc_sessrele(ss);
1031 
1032 	if (pg != NULL) {
1033 		/* Free it, if was not done by proc_sessrele(). */
1034 		kmem_free(pg, sizeof(struct pgrp));
1035 	}
1036 }
1037 
1038 /*
1039  * Adjust pgrp jobc counters when specified process changes process group.
1040  * We count the number of processes in each process group that "qualify"
1041  * the group for terminal job control (those with a parent in a different
1042  * process group of the same session).  If that count reaches zero, the
1043  * process group becomes orphaned.  Check both the specified process'
1044  * process group and that of its children.
1045  * entering == 0 => p is leaving specified group.
1046  * entering == 1 => p is entering specified group.
1047  *
1048  * Call with proc_lock held.
1049  */
1050 void
1051 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1052 {
1053 	struct pgrp *hispgrp;
1054 	struct session *mysession = pgrp->pg_session;
1055 	struct proc *child;
1056 
1057 	KASSERT(mutex_owned(proc_lock));
1058 
1059 	/*
1060 	 * Check p's parent to see whether p qualifies its own process
1061 	 * group; if so, adjust count for p's process group.
1062 	 */
1063 	hispgrp = p->p_pptr->p_pgrp;
1064 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1065 		if (entering) {
1066 			pgrp->pg_jobc++;
1067 			p->p_lflag &= ~PL_ORPHANPG;
1068 		} else if (--pgrp->pg_jobc == 0)
1069 			orphanpg(pgrp);
1070 	}
1071 
1072 	/*
1073 	 * Check this process' children to see whether they qualify
1074 	 * their process groups; if so, adjust counts for children's
1075 	 * process groups.
1076 	 */
1077 	LIST_FOREACH(child, &p->p_children, p_sibling) {
1078 		hispgrp = child->p_pgrp;
1079 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1080 		    !P_ZOMBIE(child)) {
1081 			if (entering) {
1082 				child->p_lflag &= ~PL_ORPHANPG;
1083 				hispgrp->pg_jobc++;
1084 			} else if (--hispgrp->pg_jobc == 0)
1085 				orphanpg(hispgrp);
1086 		}
1087 	}
1088 }
1089 
1090 /*
1091  * A process group has become orphaned;
1092  * if there are any stopped processes in the group,
1093  * hang-up all process in that group.
1094  *
1095  * Call with proc_lock held.
1096  */
1097 static void
1098 orphanpg(struct pgrp *pg)
1099 {
1100 	struct proc *p;
1101 	int doit;
1102 
1103 	KASSERT(mutex_owned(proc_lock));
1104 
1105 	doit = 0;
1106 
1107 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1108 		if (p->p_stat == SSTOP) {
1109 			p->p_lflag |= PL_ORPHANPG;
1110 			psignal(p, SIGHUP);
1111 			psignal(p, SIGCONT);
1112 		}
1113 	}
1114 }
1115 
1116 #ifdef DDB
1117 #include <ddb/db_output.h>
1118 void pidtbl_dump(void);
1119 void
1120 pidtbl_dump(void)
1121 {
1122 	struct pid_table *pt;
1123 	struct proc *p;
1124 	struct pgrp *pgrp;
1125 	int id;
1126 
1127 	db_printf("pid table %p size %x, next %x, last %x\n",
1128 		pid_table, pid_tbl_mask+1,
1129 		next_free_pt, last_free_pt);
1130 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1131 		p = pt->pt_proc;
1132 		if (!P_VALID(p) && !pt->pt_pgrp)
1133 			continue;
1134 		db_printf("  id %x: ", id);
1135 		if (P_VALID(p))
1136 			db_printf("proc %p id %d (0x%x) %s\n",
1137 				p, p->p_pid, p->p_pid, p->p_comm);
1138 		else
1139 			db_printf("next %x use %x\n",
1140 				P_NEXT(p) & pid_tbl_mask,
1141 				P_NEXT(p) & ~pid_tbl_mask);
1142 		if ((pgrp = pt->pt_pgrp)) {
1143 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
1144 			    pgrp->pg_session, pgrp->pg_session->s_sid,
1145 			    pgrp->pg_session->s_count,
1146 			    pgrp->pg_session->s_login);
1147 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1148 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
1149 			    LIST_FIRST(&pgrp->pg_members));
1150 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1151 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1152 				    p->p_pid, p, p->p_pgrp, p->p_comm);
1153 			}
1154 		}
1155 	}
1156 }
1157 #endif /* DDB */
1158 
1159 #ifdef KSTACK_CHECK_MAGIC
1160 #include <sys/user.h>
1161 
1162 #define	KSTACK_MAGIC	0xdeadbeaf
1163 
1164 /* XXX should be per process basis? */
1165 static int	kstackleftmin = KSTACK_SIZE;
1166 static int	kstackleftthres = KSTACK_SIZE / 8;
1167 
1168 void
1169 kstack_setup_magic(const struct lwp *l)
1170 {
1171 	uint32_t *ip;
1172 	uint32_t const *end;
1173 
1174 	KASSERT(l != NULL);
1175 	KASSERT(l != &lwp0);
1176 
1177 	/*
1178 	 * fill all the stack with magic number
1179 	 * so that later modification on it can be detected.
1180 	 */
1181 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1182 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1183 	for (; ip < end; ip++) {
1184 		*ip = KSTACK_MAGIC;
1185 	}
1186 }
1187 
1188 void
1189 kstack_check_magic(const struct lwp *l)
1190 {
1191 	uint32_t const *ip, *end;
1192 	int stackleft;
1193 
1194 	KASSERT(l != NULL);
1195 
1196 	/* don't check proc0 */ /*XXX*/
1197 	if (l == &lwp0)
1198 		return;
1199 
1200 #ifdef __MACHINE_STACK_GROWS_UP
1201 	/* stack grows upwards (eg. hppa) */
1202 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1203 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1204 	for (ip--; ip >= end; ip--)
1205 		if (*ip != KSTACK_MAGIC)
1206 			break;
1207 
1208 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1209 #else /* __MACHINE_STACK_GROWS_UP */
1210 	/* stack grows downwards (eg. i386) */
1211 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1212 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1213 	for (; ip < end; ip++)
1214 		if (*ip != KSTACK_MAGIC)
1215 			break;
1216 
1217 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1218 #endif /* __MACHINE_STACK_GROWS_UP */
1219 
1220 	if (kstackleftmin > stackleft) {
1221 		kstackleftmin = stackleft;
1222 		if (stackleft < kstackleftthres)
1223 			printf("warning: kernel stack left %d bytes"
1224 			    "(pid %u:lid %u)\n", stackleft,
1225 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1226 	}
1227 
1228 	if (stackleft <= 0) {
1229 		panic("magic on the top of kernel stack changed for "
1230 		    "pid %u, lid %u: maybe kernel stack overflow",
1231 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1232 	}
1233 }
1234 #endif /* KSTACK_CHECK_MAGIC */
1235 
1236 int
1237 proclist_foreach_call(struct proclist *list,
1238     int (*callback)(struct proc *, void *arg), void *arg)
1239 {
1240 	struct proc marker;
1241 	struct proc *p;
1242 	int ret = 0;
1243 
1244 	marker.p_flag = PK_MARKER;
1245 	mutex_enter(proc_lock);
1246 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1247 		if (p->p_flag & PK_MARKER) {
1248 			p = LIST_NEXT(p, p_list);
1249 			continue;
1250 		}
1251 		LIST_INSERT_AFTER(p, &marker, p_list);
1252 		ret = (*callback)(p, arg);
1253 		KASSERT(mutex_owned(proc_lock));
1254 		p = LIST_NEXT(&marker, p_list);
1255 		LIST_REMOVE(&marker, p_list);
1256 	}
1257 	mutex_exit(proc_lock);
1258 
1259 	return ret;
1260 }
1261 
1262 int
1263 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1264 {
1265 
1266 	/* XXXCDC: how should locking work here? */
1267 
1268 	/* curproc exception is for coredump. */
1269 
1270 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1271 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1272 		return EFAULT;
1273 	}
1274 
1275 	uvmspace_addref(p->p_vmspace);
1276 	*vm = p->p_vmspace;
1277 
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Acquire a write lock on the process credential.
1283  */
1284 void
1285 proc_crmod_enter(void)
1286 {
1287 	struct lwp *l = curlwp;
1288 	struct proc *p = l->l_proc;
1289 	struct plimit *lim;
1290 	kauth_cred_t oc;
1291 	char *cn;
1292 
1293 	/* Reset what needs to be reset in plimit. */
1294 	if (p->p_limit->pl_corename != defcorename) {
1295 		lim_privatise(p, false);
1296 		lim = p->p_limit;
1297 		mutex_enter(&lim->pl_lock);
1298 		cn = lim->pl_corename;
1299 		lim->pl_corename = defcorename;
1300 		mutex_exit(&lim->pl_lock);
1301 		if (cn != defcorename)
1302 			free(cn, M_TEMP);
1303 	}
1304 
1305 	mutex_enter(p->p_lock);
1306 
1307 	/* Ensure the LWP cached credentials are up to date. */
1308 	if ((oc = l->l_cred) != p->p_cred) {
1309 		kauth_cred_hold(p->p_cred);
1310 		l->l_cred = p->p_cred;
1311 		kauth_cred_free(oc);
1312 	}
1313 
1314 }
1315 
1316 /*
1317  * Set in a new process credential, and drop the write lock.  The credential
1318  * must have a reference already.  Optionally, free a no-longer required
1319  * credential.  The scheduler also needs to inspect p_cred, so we also
1320  * briefly acquire the sched state mutex.
1321  */
1322 void
1323 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1324 {
1325 	struct lwp *l = curlwp, *l2;
1326 	struct proc *p = l->l_proc;
1327 	kauth_cred_t oc;
1328 
1329 	KASSERT(mutex_owned(p->p_lock));
1330 
1331 	/* Is there a new credential to set in? */
1332 	if (scred != NULL) {
1333 		p->p_cred = scred;
1334 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1335 			if (l2 != l)
1336 				l2->l_prflag |= LPR_CRMOD;
1337 		}
1338 
1339 		/* Ensure the LWP cached credentials are up to date. */
1340 		if ((oc = l->l_cred) != scred) {
1341 			kauth_cred_hold(scred);
1342 			l->l_cred = scred;
1343 		}
1344 	} else
1345 		oc = NULL;	/* XXXgcc */
1346 
1347 	if (sugid) {
1348 		/*
1349 		 * Mark process as having changed credentials, stops
1350 		 * tracing etc.
1351 		 */
1352 		p->p_flag |= PK_SUGID;
1353 	}
1354 
1355 	mutex_exit(p->p_lock);
1356 
1357 	/* If there is a credential to be released, free it now. */
1358 	if (fcred != NULL) {
1359 		KASSERT(scred != NULL);
1360 		kauth_cred_free(fcred);
1361 		if (oc != scred)
1362 			kauth_cred_free(oc);
1363 	}
1364 }
1365 
1366 /*
1367  * proc_specific_key_create --
1368  *	Create a key for subsystem proc-specific data.
1369  */
1370 int
1371 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1372 {
1373 
1374 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1375 }
1376 
1377 /*
1378  * proc_specific_key_delete --
1379  *	Delete a key for subsystem proc-specific data.
1380  */
1381 void
1382 proc_specific_key_delete(specificdata_key_t key)
1383 {
1384 
1385 	specificdata_key_delete(proc_specificdata_domain, key);
1386 }
1387 
1388 /*
1389  * proc_initspecific --
1390  *	Initialize a proc's specificdata container.
1391  */
1392 void
1393 proc_initspecific(struct proc *p)
1394 {
1395 	int error;
1396 
1397 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1398 	KASSERT(error == 0);
1399 }
1400 
1401 /*
1402  * proc_finispecific --
1403  *	Finalize a proc's specificdata container.
1404  */
1405 void
1406 proc_finispecific(struct proc *p)
1407 {
1408 
1409 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1410 }
1411 
1412 /*
1413  * proc_getspecific --
1414  *	Return proc-specific data corresponding to the specified key.
1415  */
1416 void *
1417 proc_getspecific(struct proc *p, specificdata_key_t key)
1418 {
1419 
1420 	return (specificdata_getspecific(proc_specificdata_domain,
1421 					 &p->p_specdataref, key));
1422 }
1423 
1424 /*
1425  * proc_setspecific --
1426  *	Set proc-specific data corresponding to the specified key.
1427  */
1428 void
1429 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1430 {
1431 
1432 	specificdata_setspecific(proc_specificdata_domain,
1433 				 &p->p_specdataref, key, data);
1434 }
1435 
1436 int
1437 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1438 {
1439 	int r = 0;
1440 
1441 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1442 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1443 		/*
1444 		 * suid proc of ours or proc not ours
1445 		 */
1446 		r = EPERM;
1447 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1448 		/*
1449 		 * sgid proc has sgid back to us temporarily
1450 		 */
1451 		r = EPERM;
1452 	} else {
1453 		/*
1454 		 * our rgid must be in target's group list (ie,
1455 		 * sub-processes started by a sgid process)
1456 		 */
1457 		int ismember = 0;
1458 
1459 		if (kauth_cred_ismember_gid(cred,
1460 		    kauth_cred_getgid(target), &ismember) != 0 ||
1461 		    !ismember)
1462 			r = EPERM;
1463 	}
1464 
1465 	return (r);
1466 }
1467 
1468