xref: /netbsd-src/sys/kern/kern_proc.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: kern_proc.c,v 1.94 2006/07/30 21:58:11 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.94 2006/07/30 21:58:11 ad Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_maxuprc.h"
76 #include "opt_multiprocessor.h"
77 #include "opt_lockdebug.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/acct.h>
86 #include <sys/wait.h>
87 #include <sys/file.h>
88 #include <ufs/ufs/quota.h>
89 #include <sys/uio.h>
90 #include <sys/malloc.h>
91 #include <sys/pool.h>
92 #include <sys/mbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/filedesc.h>
100 #include <sys/kauth.h>
101 
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104 
105 /*
106  * Other process lists
107  */
108 
109 struct proclist allproc;
110 struct proclist zombproc;	/* resources have been freed */
111 
112 
113 /*
114  * Process list locking:
115  *
116  * We have two types of locks on the proclists: read locks and write
117  * locks.  Read locks can be used in interrupt context, so while we
118  * hold the write lock, we must also block clock interrupts to
119  * lock out any scheduling changes that may happen in interrupt
120  * context.
121  *
122  * The proclist lock locks the following structures:
123  *
124  *	allproc
125  *	zombproc
126  *	pid_table
127  */
128 struct lock proclist_lock;
129 
130 /*
131  * pid to proc lookup is done by indexing the pid_table array.
132  * Since pid numbers are only allocated when an empty slot
133  * has been found, there is no need to search any lists ever.
134  * (an orphaned pgrp will lock the slot, a session will lock
135  * the pgrp with the same number.)
136  * If the table is too small it is reallocated with twice the
137  * previous size and the entries 'unzipped' into the two halves.
138  * A linked list of free entries is passed through the pt_proc
139  * field of 'free' items - set odd to be an invalid ptr.
140  */
141 
142 struct pid_table {
143 	struct proc	*pt_proc;
144 	struct pgrp	*pt_pgrp;
145 };
146 #if 1	/* strongly typed cast - should be a noop */
147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
148 #else
149 #define p2u(p) ((uint)p)
150 #endif
151 #define P_VALID(p) (!(p2u(p) & 1))
152 #define P_NEXT(p) (p2u(p) >> 1)
153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
154 
155 #define INITIAL_PID_TABLE_SIZE	(1 << 5)
156 static struct pid_table *pid_table;
157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
158 static uint pid_alloc_lim;	/* max we allocate before growing table */
159 static uint pid_alloc_cnt;	/* number of allocated pids */
160 
161 /* links through free slots - never empty! */
162 static uint next_free_pt, last_free_pt;
163 static pid_t pid_max = PID_MAX;		/* largest value we allocate */
164 
165 /* Components of the first process -- never freed. */
166 struct session session0;
167 struct pgrp pgrp0;
168 struct proc proc0;
169 struct lwp lwp0;
170 kauth_cred_t cred0;
171 struct filedesc0 filedesc0;
172 struct cwdinfo cwdi0;
173 struct plimit limit0;
174 struct pstats pstat0;
175 struct vmspace vmspace0;
176 struct sigacts sigacts0;
177 
178 extern struct user *proc0paddr;
179 
180 extern const struct emul emul_netbsd;	/* defined in kern_exec.c */
181 
182 int nofile = NOFILE;
183 int maxuprc = MAXUPRC;
184 int cmask = CMASK;
185 
186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
187     &pool_allocator_nointr);
188 POOL_INIT(lwp_pool, sizeof(struct lwp), 0, 0, 0, "lwppl",
189     &pool_allocator_nointr);
190 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
191     &pool_allocator_nointr);
192 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
193     &pool_allocator_nointr);
194 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
195     &pool_allocator_nointr);
196 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
197     &pool_allocator_nointr);
198 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
199     &pool_allocator_nointr);
200 POOL_INIT(ras_pool, sizeof(struct ras), 0, 0, 0, "raspl",
201     &pool_allocator_nointr);
202 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
203     &pool_allocator_nointr);
204 
205 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
206 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
207 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
208 
209 /*
210  * The process list descriptors, used during pid allocation and
211  * by sysctl.  No locking on this data structure is needed since
212  * it is completely static.
213  */
214 const struct proclist_desc proclists[] = {
215 	{ &allproc	},
216 	{ &zombproc	},
217 	{ NULL		},
218 };
219 
220 static void orphanpg(struct pgrp *);
221 static void pg_delete(pid_t);
222 
223 /*
224  * Initialize global process hashing structures.
225  */
226 void
227 procinit(void)
228 {
229 	const struct proclist_desc *pd;
230 	int i;
231 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
232 
233 	for (pd = proclists; pd->pd_list != NULL; pd++)
234 		LIST_INIT(pd->pd_list);
235 
236 	spinlockinit(&proclist_lock, "proclk", 0);
237 
238 	pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
239 			    M_PROC, M_WAITOK);
240 	/* Set free list running through table...
241 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
242 	for (i = 0; i <= pid_tbl_mask; i++) {
243 		pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
244 		pid_table[i].pt_pgrp = 0;
245 	}
246 	/* slot 0 is just grabbed */
247 	next_free_pt = 1;
248 	/* Need to fix last entry. */
249 	last_free_pt = pid_tbl_mask;
250 	pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
251 	/* point at which we grow table - to avoid reusing pids too often */
252 	pid_alloc_lim = pid_tbl_mask - 1;
253 #undef LINK_EMPTY
254 
255 	LIST_INIT(&alllwp);
256 
257 	uihashtbl =
258 	    hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
259 }
260 
261 /*
262  * Initialize process 0.
263  */
264 void
265 proc0_init(void)
266 {
267 	struct proc *p;
268 	struct pgrp *pg;
269 	struct session *sess;
270 	struct lwp *l;
271 	int s;
272 	u_int i;
273 	rlim_t lim;
274 
275 	p = &proc0;
276 	pg = &pgrp0;
277 	sess = &session0;
278 	l = &lwp0;
279 
280 	simple_lock_init(&p->p_lock);
281 	LIST_INIT(&p->p_lwps);
282 	LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
283 	p->p_nlwps = 1;
284 	simple_lock_init(&p->p_sigctx.ps_silock);
285 	CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
286 
287 	s = proclist_lock_write();
288 
289 	pid_table[0].pt_proc = p;
290 	LIST_INSERT_HEAD(&allproc, p, p_list);
291 	LIST_INSERT_HEAD(&alllwp, l, l_list);
292 
293 	p->p_pgrp = pg;
294 	pid_table[0].pt_pgrp = pg;
295 	LIST_INIT(&pg->pg_members);
296 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
297 
298 	pg->pg_session = sess;
299 	sess->s_count = 1;
300 	sess->s_sid = 0;
301 	sess->s_leader = p;
302 
303 	proclist_unlock_write(s);
304 
305 	/*
306 	 * Set P_NOCLDWAIT so that kernel threads are reparented to
307 	 * init(8) when they exit.  init(8) can easily wait them out
308 	 * for us.
309 	 */
310 	p->p_flag = P_SYSTEM | P_NOCLDWAIT;
311 	p->p_stat = SACTIVE;
312 	p->p_nice = NZERO;
313 	p->p_emul = &emul_netbsd;
314 #ifdef __HAVE_SYSCALL_INTERN
315 	(*p->p_emul->e_syscall_intern)(p);
316 #endif
317 	strncpy(p->p_comm, "swapper", MAXCOMLEN);
318 
319 	l->l_flag = L_INMEM;
320 	l->l_stat = LSONPROC;
321 	p->p_nrlwps = 1;
322 
323 	callout_init(&l->l_tsleep_ch);
324 
325 	/* Create credentials. */
326 	cred0 = kauth_cred_alloc();
327 	p->p_cred = cred0;
328 	lwp_update_creds(l);
329 
330 	/* Create the CWD info. */
331 	p->p_cwdi = &cwdi0;
332 	cwdi0.cwdi_cmask = cmask;
333 	cwdi0.cwdi_refcnt = 1;
334 	simple_lock_init(&cwdi0.cwdi_slock);
335 
336 	/* Create the limits structures. */
337 	p->p_limit = &limit0;
338 	simple_lock_init(&limit0.p_slock);
339 	for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
340 		limit0.pl_rlimit[i].rlim_cur =
341 		    limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
342 
343 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
344 	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
345 	    maxfiles < nofile ? maxfiles : nofile;
346 
347 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
348 	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
349 	    maxproc < maxuprc ? maxproc : maxuprc;
350 
351 	lim = ptoa(uvmexp.free);
352 	limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
353 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
354 	limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
355 	limit0.pl_corename = defcorename;
356 	limit0.p_refcnt = 1;
357 
358 	/* Configure virtual memory system, set vm rlimits. */
359 	uvm_init_limits(p);
360 
361 	/* Initialize file descriptor table for proc0. */
362 	p->p_fd = &filedesc0.fd_fd;
363 	fdinit1(&filedesc0);
364 
365 	/*
366 	 * Initialize proc0's vmspace, which uses the kernel pmap.
367 	 * All kernel processes (which never have user space mappings)
368 	 * share proc0's vmspace, and thus, the kernel pmap.
369 	 */
370 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
371 	    trunc_page(VM_MAX_ADDRESS));
372 	p->p_vmspace = &vmspace0;
373 
374 	l->l_addr = proc0paddr;				/* XXX */
375 
376 	p->p_stats = &pstat0;
377 
378 	/* Initialize signal state for proc0. */
379 	p->p_sigacts = &sigacts0;
380 	siginit(p);
381 }
382 
383 /*
384  * Acquire a read lock on the proclist.
385  */
386 void
387 proclist_lock_read(void)
388 {
389 	int error;
390 
391 	error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
392 #ifdef DIAGNOSTIC
393 	if (__predict_false(error != 0))
394 		panic("proclist_lock_read: failed to acquire lock");
395 #endif
396 }
397 
398 /*
399  * Release a read lock on the proclist.
400  */
401 void
402 proclist_unlock_read(void)
403 {
404 
405 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
406 }
407 
408 /*
409  * Acquire a write lock on the proclist.
410  */
411 int
412 proclist_lock_write(void)
413 {
414 	int s, error;
415 
416 	s = splclock();
417 	error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
418 #ifdef DIAGNOSTIC
419 	if (__predict_false(error != 0))
420 		panic("proclist_lock: failed to acquire lock");
421 #endif
422 	return s;
423 }
424 
425 /*
426  * Release a write lock on the proclist.
427  */
428 void
429 proclist_unlock_write(int s)
430 {
431 
432 	(void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
433 	splx(s);
434 }
435 
436 /*
437  * Check that the specified process group is in the session of the
438  * specified process.
439  * Treats -ve ids as process ids.
440  * Used to validate TIOCSPGRP requests.
441  */
442 int
443 pgid_in_session(struct proc *p, pid_t pg_id)
444 {
445 	struct pgrp *pgrp;
446 
447 	if (pg_id < 0) {
448 		struct proc *p1 = pfind(-pg_id);
449 		if (p1 == NULL)
450 			return EINVAL;
451 		pgrp = p1->p_pgrp;
452 	} else {
453 		pgrp = pgfind(pg_id);
454 		if (pgrp == NULL)
455 			return EINVAL;
456 	}
457 	if (pgrp->pg_session != p->p_pgrp->pg_session)
458 		return EPERM;
459 	return 0;
460 }
461 
462 /*
463  * Is p an inferior of q?
464  *
465  * Call with the proclist_lock held.
466  */
467 int
468 inferior(struct proc *p, struct proc *q)
469 {
470 
471 	for (; p != q; p = p->p_pptr)
472 		if (p->p_pid == 0)
473 			return 0;
474 	return 1;
475 }
476 
477 /*
478  * Locate a process by number
479  */
480 struct proc *
481 p_find(pid_t pid, uint flags)
482 {
483 	struct proc *p;
484 	char stat;
485 
486 	if (!(flags & PFIND_LOCKED))
487 		proclist_lock_read();
488 	p = pid_table[pid & pid_tbl_mask].pt_proc;
489 	/* Only allow live processes to be found by pid. */
490 	if (P_VALID(p) && p->p_pid == pid &&
491 	    ((stat = p->p_stat) == SACTIVE || stat == SSTOP
492 		    || (stat == SZOMB && (flags & PFIND_ZOMBIE)))) {
493 		if (flags & PFIND_UNLOCK_OK)
494 			 proclist_unlock_read();
495 		return p;
496 	}
497 	if (flags & PFIND_UNLOCK_FAIL)
498 		 proclist_unlock_read();
499 	return NULL;
500 }
501 
502 
503 /*
504  * Locate a process group by number
505  */
506 struct pgrp *
507 pg_find(pid_t pgid, uint flags)
508 {
509 	struct pgrp *pg;
510 
511 	if (!(flags & PFIND_LOCKED))
512 		proclist_lock_read();
513 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
514 	/*
515 	 * Can't look up a pgrp that only exists because the session
516 	 * hasn't died yet (traditional)
517 	 */
518 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
519 		if (flags & PFIND_UNLOCK_FAIL)
520 			 proclist_unlock_read();
521 		return NULL;
522 	}
523 
524 	if (flags & PFIND_UNLOCK_OK)
525 		proclist_unlock_read();
526 	return pg;
527 }
528 
529 static void
530 expand_pid_table(void)
531 {
532 	uint pt_size = pid_tbl_mask + 1;
533 	struct pid_table *n_pt, *new_pt;
534 	struct proc *proc;
535 	struct pgrp *pgrp;
536 	int i;
537 	int s;
538 	pid_t pid;
539 
540 	new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
541 
542 	s = proclist_lock_write();
543 	if (pt_size != pid_tbl_mask + 1) {
544 		/* Another process beat us to it... */
545 		proclist_unlock_write(s);
546 		FREE(new_pt, M_PROC);
547 		return;
548 	}
549 
550 	/*
551 	 * Copy entries from old table into new one.
552 	 * If 'pid' is 'odd' we need to place in the upper half,
553 	 * even pid's to the lower half.
554 	 * Free items stay in the low half so we don't have to
555 	 * fixup the reference to them.
556 	 * We stuff free items on the front of the freelist
557 	 * because we can't write to unmodified entries.
558 	 * Processing the table backwards maintains a semblance
559 	 * of issueing pid numbers that increase with time.
560 	 */
561 	i = pt_size - 1;
562 	n_pt = new_pt + i;
563 	for (; ; i--, n_pt--) {
564 		proc = pid_table[i].pt_proc;
565 		pgrp = pid_table[i].pt_pgrp;
566 		if (!P_VALID(proc)) {
567 			/* Up 'use count' so that link is valid */
568 			pid = (P_NEXT(proc) + pt_size) & ~pt_size;
569 			proc = P_FREE(pid);
570 			if (pgrp)
571 				pid = pgrp->pg_id;
572 		} else
573 			pid = proc->p_pid;
574 
575 		/* Save entry in appropriate half of table */
576 		n_pt[pid & pt_size].pt_proc = proc;
577 		n_pt[pid & pt_size].pt_pgrp = pgrp;
578 
579 		/* Put other piece on start of free list */
580 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
581 		n_pt[pid & pt_size].pt_proc =
582 				    P_FREE((pid & ~pt_size) | next_free_pt);
583 		n_pt[pid & pt_size].pt_pgrp = 0;
584 		next_free_pt = i | (pid & pt_size);
585 		if (i == 0)
586 			break;
587 	}
588 
589 	/* Switch tables */
590 	n_pt = pid_table;
591 	pid_table = new_pt;
592 	pid_tbl_mask = pt_size * 2 - 1;
593 
594 	/*
595 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
596 	 * allocated pids we need it to be larger!
597 	 */
598 	if (pid_tbl_mask > PID_MAX) {
599 		pid_max = pid_tbl_mask * 2 + 1;
600 		pid_alloc_lim |= pid_alloc_lim << 1;
601 	} else
602 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
603 
604 	proclist_unlock_write(s);
605 	FREE(n_pt, M_PROC);
606 }
607 
608 struct proc *
609 proc_alloc(void)
610 {
611 	struct proc *p;
612 	int s;
613 	int nxt;
614 	pid_t pid;
615 	struct pid_table *pt;
616 
617 	p = pool_get(&proc_pool, PR_WAITOK);
618 	p->p_stat = SIDL;			/* protect against others */
619 
620 	/* allocate next free pid */
621 
622 	for (;;expand_pid_table()) {
623 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
624 			/* ensure pids cycle through 2000+ values */
625 			continue;
626 		s = proclist_lock_write();
627 		pt = &pid_table[next_free_pt];
628 #ifdef DIAGNOSTIC
629 		if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
630 			panic("proc_alloc: slot busy");
631 #endif
632 		nxt = P_NEXT(pt->pt_proc);
633 		if (nxt & pid_tbl_mask)
634 			break;
635 		/* Table full - expand (NB last entry not used....) */
636 		proclist_unlock_write(s);
637 	}
638 
639 	/* pid is 'saved use count' + 'size' + entry */
640 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
641 	if ((uint)pid > (uint)pid_max)
642 		pid &= pid_tbl_mask;
643 	p->p_pid = pid;
644 	next_free_pt = nxt & pid_tbl_mask;
645 
646 	/* Grab table slot */
647 	pt->pt_proc = p;
648 	pid_alloc_cnt++;
649 
650 	proclist_unlock_write(s);
651 
652 	return p;
653 }
654 
655 /*
656  * Free last resources of a process - called from proc_free (in kern_exit.c)
657  */
658 void
659 proc_free_mem(struct proc *p)
660 {
661 	int s;
662 	pid_t pid = p->p_pid;
663 	struct pid_table *pt;
664 
665 	s = proclist_lock_write();
666 
667 	pt = &pid_table[pid & pid_tbl_mask];
668 #ifdef DIAGNOSTIC
669 	if (__predict_false(pt->pt_proc != p))
670 		panic("proc_free: pid_table mismatch, pid %x, proc %p",
671 			pid, p);
672 #endif
673 	/* save pid use count in slot */
674 	pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
675 
676 	if (pt->pt_pgrp == NULL) {
677 		/* link last freed entry onto ours */
678 		pid &= pid_tbl_mask;
679 		pt = &pid_table[last_free_pt];
680 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
681 		last_free_pt = pid;
682 		pid_alloc_cnt--;
683 	}
684 
685 	nprocs--;
686 	proclist_unlock_write(s);
687 
688 	pool_put(&proc_pool, p);
689 }
690 
691 /*
692  * Move p to a new or existing process group (and session)
693  *
694  * If we are creating a new pgrp, the pgid should equal
695  * the calling process' pid.
696  * If is only valid to enter a process group that is in the session
697  * of the process.
698  * Also mksess should only be set if we are creating a process group
699  *
700  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
701  * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
702  */
703 int
704 enterpgrp(struct proc *p, pid_t pgid, int mksess)
705 {
706 	struct pgrp *new_pgrp, *pgrp;
707 	struct session *sess;
708 	struct proc *curp = curproc;
709 	pid_t pid = p->p_pid;
710 	int rval;
711 	int s;
712 	pid_t pg_id = NO_PGID;
713 
714 	/* Allocate data areas we might need before doing any validity checks */
715 	proclist_lock_read();		/* Because pid_table might change */
716 	if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
717 		proclist_unlock_read();
718 		new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
719 	} else {
720 		proclist_unlock_read();
721 		new_pgrp = NULL;
722 	}
723 	if (mksess)
724 		sess = pool_get(&session_pool, M_WAITOK);
725 	else
726 		sess = NULL;
727 
728 	s = proclist_lock_write();
729 	rval = EPERM;	/* most common error (to save typing) */
730 
731 	/* Check pgrp exists or can be created */
732 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
733 	if (pgrp != NULL && pgrp->pg_id != pgid)
734 		goto done;
735 
736 	/* Can only set another process under restricted circumstances. */
737 	if (p != curp) {
738 		/* must exist and be one of our children... */
739 		if (p != pid_table[pid & pid_tbl_mask].pt_proc
740 		    || !inferior(p, curp)) {
741 			rval = ESRCH;
742 			goto done;
743 		}
744 		/* ... in the same session... */
745 		if (sess != NULL || p->p_session != curp->p_session)
746 			goto done;
747 		/* ... existing pgid must be in same session ... */
748 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
749 			goto done;
750 		/* ... and not done an exec. */
751 		if (p->p_flag & P_EXEC) {
752 			rval = EACCES;
753 			goto done;
754 		}
755 	}
756 
757 	/* Changing the process group/session of a session
758 	   leader is definitely off limits. */
759 	if (SESS_LEADER(p)) {
760 		if (sess == NULL && p->p_pgrp == pgrp)
761 			/* unless it's a definite noop */
762 			rval = 0;
763 		goto done;
764 	}
765 
766 	/* Can only create a process group with id of process */
767 	if (pgrp == NULL && pgid != pid)
768 		goto done;
769 
770 	/* Can only create a session if creating pgrp */
771 	if (sess != NULL && pgrp != NULL)
772 		goto done;
773 
774 	/* Check we allocated memory for a pgrp... */
775 	if (pgrp == NULL && new_pgrp == NULL)
776 		goto done;
777 
778 	/* Don't attach to 'zombie' pgrp */
779 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
780 		goto done;
781 
782 	/* Expect to succeed now */
783 	rval = 0;
784 
785 	if (pgrp == p->p_pgrp)
786 		/* nothing to do */
787 		goto done;
788 
789 	/* Ok all setup, link up required structures */
790 	if (pgrp == NULL) {
791 		pgrp = new_pgrp;
792 		new_pgrp = 0;
793 		if (sess != NULL) {
794 			sess->s_sid = p->p_pid;
795 			sess->s_leader = p;
796 			sess->s_count = 1;
797 			sess->s_ttyvp = NULL;
798 			sess->s_ttyp = NULL;
799 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
800 			memcpy(sess->s_login, p->p_session->s_login,
801 			    sizeof(sess->s_login));
802 			p->p_flag &= ~P_CONTROLT;
803 		} else {
804 			sess = p->p_pgrp->pg_session;
805 			SESSHOLD(sess);
806 		}
807 		pgrp->pg_session = sess;
808 		sess = 0;
809 
810 		pgrp->pg_id = pgid;
811 		LIST_INIT(&pgrp->pg_members);
812 #ifdef DIAGNOSTIC
813 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
814 			panic("enterpgrp: pgrp table slot in use");
815 		if (__predict_false(mksess && p != curp))
816 			panic("enterpgrp: mksession and p != curproc");
817 #endif
818 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
819 		pgrp->pg_jobc = 0;
820 	}
821 
822 	/*
823 	 * Adjust eligibility of affected pgrps to participate in job control.
824 	 * Increment eligibility counts before decrementing, otherwise we
825 	 * could reach 0 spuriously during the first call.
826 	 */
827 	fixjobc(p, pgrp, 1);
828 	fixjobc(p, p->p_pgrp, 0);
829 
830 	/* Move process to requested group */
831 	LIST_REMOVE(p, p_pglist);
832 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
833 		/* defer delete until we've dumped the lock */
834 		pg_id = p->p_pgrp->pg_id;
835 	p->p_pgrp = pgrp;
836 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
837 
838     done:
839 	proclist_unlock_write(s);
840 	if (sess != NULL)
841 		pool_put(&session_pool, sess);
842 	if (new_pgrp != NULL)
843 		pool_put(&pgrp_pool, new_pgrp);
844 	if (pg_id != NO_PGID)
845 		pg_delete(pg_id);
846 #ifdef DEBUG_PGRP
847 	if (__predict_false(rval))
848 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
849 			pid, pgid, mksess, curp->p_pid, rval);
850 #endif
851 	return rval;
852 }
853 
854 /*
855  * Remove a process from its process group.
856  */
857 int
858 leavepgrp(struct proc *p)
859 {
860 	int s;
861 	struct pgrp *pgrp;
862 	pid_t pg_id;
863 
864 	s = proclist_lock_write();
865 	pgrp = p->p_pgrp;
866 	LIST_REMOVE(p, p_pglist);
867 	p->p_pgrp = NULL;
868 	pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
869 	proclist_unlock_write(s);
870 
871 	if (pg_id != NO_PGID)
872 		pg_delete(pg_id);
873 	return 0;
874 }
875 
876 static void
877 pg_free(pid_t pg_id)
878 {
879 	struct pgrp *pgrp;
880 	struct pid_table *pt;
881 	int s;
882 
883 	s = proclist_lock_write();
884 	pt = &pid_table[pg_id & pid_tbl_mask];
885 	pgrp = pt->pt_pgrp;
886 #ifdef DIAGNOSTIC
887 	if (__predict_false(!pgrp || pgrp->pg_id != pg_id
888 	    || !LIST_EMPTY(&pgrp->pg_members)))
889 		panic("pg_free: process group absent or has members");
890 #endif
891 	pt->pt_pgrp = 0;
892 
893 	if (!P_VALID(pt->pt_proc)) {
894 		/* orphaned pgrp, put slot onto free list */
895 #ifdef DIAGNOSTIC
896 		if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
897 			panic("pg_free: process slot on free list");
898 #endif
899 
900 		pg_id &= pid_tbl_mask;
901 		pt = &pid_table[last_free_pt];
902 		pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
903 		last_free_pt = pg_id;
904 		pid_alloc_cnt--;
905 	}
906 	proclist_unlock_write(s);
907 
908 	pool_put(&pgrp_pool, pgrp);
909 }
910 
911 /*
912  * delete a process group
913  */
914 static void
915 pg_delete(pid_t pg_id)
916 {
917 	struct pgrp *pgrp;
918 	struct tty *ttyp;
919 	struct session *ss;
920 	int s, is_pgrp_leader;
921 
922 	s = proclist_lock_write();
923 	pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
924 	if (pgrp == NULL || pgrp->pg_id != pg_id ||
925 	    !LIST_EMPTY(&pgrp->pg_members)) {
926 		proclist_unlock_write(s);
927 		return;
928 	}
929 
930 	ss = pgrp->pg_session;
931 
932 	/* Remove reference (if any) from tty to this process group */
933 	ttyp = ss->s_ttyp;
934 	if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
935 		ttyp->t_pgrp = NULL;
936 #ifdef DIAGNOSTIC
937 		if (ttyp->t_session != ss)
938 			panic("pg_delete: wrong session on terminal");
939 #endif
940 	}
941 
942 	/*
943 	 * The leading process group in a session is freed
944 	 * by sessdelete() if last reference.
945 	 */
946 	is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
947 	proclist_unlock_write(s);
948 	SESSRELE(ss);
949 
950 	if (is_pgrp_leader)
951 		return;
952 
953 	pg_free(pg_id);
954 }
955 
956 /*
957  * Delete session - called from SESSRELE when s_count becomes zero.
958  */
959 void
960 sessdelete(struct session *ss)
961 {
962 	/*
963 	 * We keep the pgrp with the same id as the session in
964 	 * order to stop a process being given the same pid.
965 	 * Since the pgrp holds a reference to the session, it
966 	 * must be a 'zombie' pgrp by now.
967 	 */
968 
969 	pg_free(ss->s_sid);
970 
971 	pool_put(&session_pool, ss);
972 }
973 
974 /*
975  * Adjust pgrp jobc counters when specified process changes process group.
976  * We count the number of processes in each process group that "qualify"
977  * the group for terminal job control (those with a parent in a different
978  * process group of the same session).  If that count reaches zero, the
979  * process group becomes orphaned.  Check both the specified process'
980  * process group and that of its children.
981  * entering == 0 => p is leaving specified group.
982  * entering == 1 => p is entering specified group.
983  *
984  * Call with proclist_lock held.
985  */
986 void
987 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
988 {
989 	struct pgrp *hispgrp;
990 	struct session *mysession = pgrp->pg_session;
991 	struct proc *child;
992 
993 	/*
994 	 * Check p's parent to see whether p qualifies its own process
995 	 * group; if so, adjust count for p's process group.
996 	 */
997 	hispgrp = p->p_pptr->p_pgrp;
998 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
999 		if (entering)
1000 			pgrp->pg_jobc++;
1001 		else if (--pgrp->pg_jobc == 0)
1002 			orphanpg(pgrp);
1003 	}
1004 
1005 	/*
1006 	 * Check this process' children to see whether they qualify
1007 	 * their process groups; if so, adjust counts for children's
1008 	 * process groups.
1009 	 */
1010 	LIST_FOREACH(child, &p->p_children, p_sibling) {
1011 		hispgrp = child->p_pgrp;
1012 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1013 		    !P_ZOMBIE(child)) {
1014 			if (entering)
1015 				hispgrp->pg_jobc++;
1016 			else if (--hispgrp->pg_jobc == 0)
1017 				orphanpg(hispgrp);
1018 		}
1019 	}
1020 }
1021 
1022 /*
1023  * A process group has become orphaned;
1024  * if there are any stopped processes in the group,
1025  * hang-up all process in that group.
1026  *
1027  * Call with proclist_lock held.
1028  */
1029 static void
1030 orphanpg(struct pgrp *pg)
1031 {
1032 	struct proc *p;
1033 
1034 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1035 		if (p->p_stat == SSTOP) {
1036 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1037 				psignal(p, SIGHUP);
1038 				psignal(p, SIGCONT);
1039 			}
1040 			return;
1041 		}
1042 	}
1043 }
1044 
1045 /* mark process as suid/sgid, reset some values to defaults */
1046 void
1047 p_sugid(struct proc *p)
1048 {
1049 	struct plimit *lim;
1050 	char *cn;
1051 
1052 	p->p_flag |= P_SUGID;
1053 	/* reset what needs to be reset in plimit */
1054 	lim = p->p_limit;
1055 	if (lim->pl_corename != defcorename) {
1056 		if (lim->p_refcnt > 1 &&
1057 		    (lim->p_lflags & PL_SHAREMOD) == 0) {
1058 			p->p_limit = limcopy(lim);
1059 			limfree(lim);
1060 			lim = p->p_limit;
1061 		}
1062 		simple_lock(&lim->p_slock);
1063 		cn = lim->pl_corename;
1064 		lim->pl_corename = defcorename;
1065 		simple_unlock(&lim->p_slock);
1066 		if (cn != defcorename)
1067 			free(cn, M_TEMP);
1068 	}
1069 }
1070 
1071 #ifdef DDB
1072 #include <ddb/db_output.h>
1073 void pidtbl_dump(void);
1074 void
1075 pidtbl_dump(void)
1076 {
1077 	struct pid_table *pt;
1078 	struct proc *p;
1079 	struct pgrp *pgrp;
1080 	int id;
1081 
1082 	db_printf("pid table %p size %x, next %x, last %x\n",
1083 		pid_table, pid_tbl_mask+1,
1084 		next_free_pt, last_free_pt);
1085 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1086 		p = pt->pt_proc;
1087 		if (!P_VALID(p) && !pt->pt_pgrp)
1088 			continue;
1089 		db_printf("  id %x: ", id);
1090 		if (P_VALID(p))
1091 			db_printf("proc %p id %d (0x%x) %s\n",
1092 				p, p->p_pid, p->p_pid, p->p_comm);
1093 		else
1094 			db_printf("next %x use %x\n",
1095 				P_NEXT(p) & pid_tbl_mask,
1096 				P_NEXT(p) & ~pid_tbl_mask);
1097 		if ((pgrp = pt->pt_pgrp)) {
1098 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
1099 			    pgrp->pg_session, pgrp->pg_session->s_sid,
1100 			    pgrp->pg_session->s_count,
1101 			    pgrp->pg_session->s_login);
1102 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1103 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
1104 			    pgrp->pg_members.lh_first);
1105 			for (p = pgrp->pg_members.lh_first; p != 0;
1106 			    p = p->p_pglist.le_next) {
1107 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1108 				    p->p_pid, p, p->p_pgrp, p->p_comm);
1109 			}
1110 		}
1111 	}
1112 }
1113 #endif /* DDB */
1114 
1115 #ifdef KSTACK_CHECK_MAGIC
1116 #include <sys/user.h>
1117 
1118 #define	KSTACK_MAGIC	0xdeadbeaf
1119 
1120 /* XXX should be per process basis? */
1121 int kstackleftmin = KSTACK_SIZE;
1122 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
1123 					  less than this */
1124 
1125 void
1126 kstack_setup_magic(const struct lwp *l)
1127 {
1128 	uint32_t *ip;
1129 	uint32_t const *end;
1130 
1131 	KASSERT(l != NULL);
1132 	KASSERT(l != &lwp0);
1133 
1134 	/*
1135 	 * fill all the stack with magic number
1136 	 * so that later modification on it can be detected.
1137 	 */
1138 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1139 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1140 	for (; ip < end; ip++) {
1141 		*ip = KSTACK_MAGIC;
1142 	}
1143 }
1144 
1145 void
1146 kstack_check_magic(const struct lwp *l)
1147 {
1148 	uint32_t const *ip, *end;
1149 	int stackleft;
1150 
1151 	KASSERT(l != NULL);
1152 
1153 	/* don't check proc0 */ /*XXX*/
1154 	if (l == &lwp0)
1155 		return;
1156 
1157 #ifdef __MACHINE_STACK_GROWS_UP
1158 	/* stack grows upwards (eg. hppa) */
1159 	ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1160 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1161 	for (ip--; ip >= end; ip--)
1162 		if (*ip != KSTACK_MAGIC)
1163 			break;
1164 
1165 	stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
1166 #else /* __MACHINE_STACK_GROWS_UP */
1167 	/* stack grows downwards (eg. i386) */
1168 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1169 	end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1170 	for (; ip < end; ip++)
1171 		if (*ip != KSTACK_MAGIC)
1172 			break;
1173 
1174 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1175 #endif /* __MACHINE_STACK_GROWS_UP */
1176 
1177 	if (kstackleftmin > stackleft) {
1178 		kstackleftmin = stackleft;
1179 		if (stackleft < kstackleftthres)
1180 			printf("warning: kernel stack left %d bytes"
1181 			    "(pid %u:lid %u)\n", stackleft,
1182 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1183 	}
1184 
1185 	if (stackleft <= 0) {
1186 		panic("magic on the top of kernel stack changed for "
1187 		    "pid %u, lid %u: maybe kernel stack overflow",
1188 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1189 	}
1190 }
1191 #endif /* KSTACK_CHECK_MAGIC */
1192 
1193 /* XXX shouldn't be here */
1194 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1195 #define	PROCLIST_ASSERT_LOCKED_READ()	\
1196 	KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
1197 #else
1198 #define	PROCLIST_ASSERT_LOCKED_READ()	/* nothing */
1199 #endif
1200 
1201 int
1202 proclist_foreach_call(struct proclist *list,
1203     int (*callback)(struct proc *, void *arg), void *arg)
1204 {
1205 	struct proc marker;
1206 	struct proc *p;
1207 	struct lwp * const l = curlwp;
1208 	int ret = 0;
1209 
1210 	marker.p_flag = P_MARKER;
1211 	PHOLD(l);
1212 	proclist_lock_read();
1213 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1214 		if (p->p_flag & P_MARKER) {
1215 			p = LIST_NEXT(p, p_list);
1216 			continue;
1217 		}
1218 		LIST_INSERT_AFTER(p, &marker, p_list);
1219 		ret = (*callback)(p, arg);
1220 		PROCLIST_ASSERT_LOCKED_READ();
1221 		p = LIST_NEXT(&marker, p_list);
1222 		LIST_REMOVE(&marker, p_list);
1223 	}
1224 	proclist_unlock_read();
1225 	PRELE(l);
1226 
1227 	return ret;
1228 }
1229 
1230 int
1231 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1232 {
1233 
1234 	/* XXXCDC: how should locking work here? */
1235 
1236 	/* curproc exception is for coredump. */
1237 
1238 	if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
1239 	    (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1240 		return EFAULT;
1241 	}
1242 
1243 	uvmspace_addref(p->p_vmspace);
1244 	*vm = p->p_vmspace;
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Acquire a write lock on the process credential.
1251  */
1252 void
1253 proc_crmod_enter(struct proc *p)
1254 {
1255 
1256 	/*
1257 	 * XXXSMP This should be a lightweight sleep lock.  'struct lock' is
1258 	 * too large.
1259 	 */
1260 	simple_lock(&p->p_lock);
1261 	while ((p->p_flag & P_CRLOCK) != 0)
1262 		ltsleep(&p->p_cred, PLOCK, "crlock", 0, &p->p_lock);
1263 	p->p_flag |= P_CRLOCK;
1264 	simple_unlock(&p->p_lock);
1265 }
1266 
1267 /*
1268  * Block out readers, set in a new process credential, and drop the write
1269  * lock.  The credential must have a reference already.  Optionally, free a
1270  * no-longer required credential.
1271  */
1272 void
1273 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
1274 {
1275 
1276 	KDASSERT((p->p_flag & P_CRLOCK) != 0);
1277 	simple_lock(&p->p_lock);
1278 	p->p_cred = scred;
1279 	p->p_flag &= ~P_CRLOCK;
1280 	simple_unlock(&p->p_lock);
1281 	wakeup(&p->p_cred);
1282 	if (fcred != NULL)
1283 		kauth_cred_free(fcred);
1284 }
1285