1 /* $NetBSD: kern_proc.c,v 1.148 2009/03/28 21:41:05 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.148 2009/03/28 21:41:05 rmind Exp $"); 66 67 #include "opt_kstack.h" 68 #include "opt_maxuprc.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/proc.h> 74 #include <sys/resourcevar.h> 75 #include <sys/buf.h> 76 #include <sys/acct.h> 77 #include <sys/wait.h> 78 #include <sys/file.h> 79 #include <ufs/ufs/quota.h> 80 #include <sys/uio.h> 81 #include <sys/malloc.h> 82 #include <sys/pool.h> 83 #include <sys/pset.h> 84 #include <sys/mbuf.h> 85 #include <sys/ioctl.h> 86 #include <sys/tty.h> 87 #include <sys/signalvar.h> 88 #include <sys/ras.h> 89 #include <sys/sa.h> 90 #include <sys/savar.h> 91 #include <sys/filedesc.h> 92 #include "sys/syscall_stats.h" 93 #include <sys/kauth.h> 94 #include <sys/sleepq.h> 95 #include <sys/atomic.h> 96 #include <sys/kmem.h> 97 98 #include <uvm/uvm.h> 99 #include <uvm/uvm_extern.h> 100 101 /* 102 * Other process lists 103 */ 104 105 struct proclist allproc; 106 struct proclist zombproc; /* resources have been freed */ 107 108 kmutex_t *proc_lock; 109 110 /* 111 * pid to proc lookup is done by indexing the pid_table array. 112 * Since pid numbers are only allocated when an empty slot 113 * has been found, there is no need to search any lists ever. 114 * (an orphaned pgrp will lock the slot, a session will lock 115 * the pgrp with the same number.) 116 * If the table is too small it is reallocated with twice the 117 * previous size and the entries 'unzipped' into the two halves. 118 * A linked list of free entries is passed through the pt_proc 119 * field of 'free' items - set odd to be an invalid ptr. 120 */ 121 122 struct pid_table { 123 struct proc *pt_proc; 124 struct pgrp *pt_pgrp; 125 }; 126 #if 1 /* strongly typed cast - should be a noop */ 127 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 128 #else 129 #define p2u(p) ((uint)p) 130 #endif 131 #define P_VALID(p) (!(p2u(p) & 1)) 132 #define P_NEXT(p) (p2u(p) >> 1) 133 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 134 135 #define INITIAL_PID_TABLE_SIZE (1 << 5) 136 static struct pid_table *pid_table; 137 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 138 static uint pid_alloc_lim; /* max we allocate before growing table */ 139 static uint pid_alloc_cnt; /* number of allocated pids */ 140 141 /* links through free slots - never empty! */ 142 static uint next_free_pt, last_free_pt; 143 static pid_t pid_max = PID_MAX; /* largest value we allocate */ 144 145 /* Components of the first process -- never freed. */ 146 147 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 148 149 struct session session0 = { 150 .s_count = 1, 151 .s_sid = 0, 152 }; 153 struct pgrp pgrp0 = { 154 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 155 .pg_session = &session0, 156 }; 157 filedesc_t filedesc0; 158 struct cwdinfo cwdi0 = { 159 .cwdi_cmask = CMASK, /* see cmask below */ 160 .cwdi_refcnt = 1, 161 }; 162 struct plimit limit0; 163 struct pstats pstat0; 164 struct vmspace vmspace0; 165 struct sigacts sigacts0; 166 struct turnstile turnstile0; 167 struct proc proc0 = { 168 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 169 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 170 .p_nlwps = 1, 171 .p_nrlwps = 1, 172 .p_nlwpid = 1, /* must match lwp0.l_lid */ 173 .p_pgrp = &pgrp0, 174 .p_comm = "system", 175 /* 176 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 177 * when they exit. init(8) can easily wait them out for us. 178 */ 179 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 180 .p_stat = SACTIVE, 181 .p_nice = NZERO, 182 .p_emul = &emul_netbsd, 183 .p_cwdi = &cwdi0, 184 .p_limit = &limit0, 185 .p_fd = &filedesc0, 186 .p_vmspace = &vmspace0, 187 .p_stats = &pstat0, 188 .p_sigacts = &sigacts0, 189 }; 190 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 191 #ifdef LWP0_CPU_INFO 192 .l_cpu = LWP0_CPU_INFO, 193 #endif 194 .l_proc = &proc0, 195 .l_lid = 1, 196 .l_flag = LW_INMEM | LW_SYSTEM, 197 .l_stat = LSONPROC, 198 .l_ts = &turnstile0, 199 .l_syncobj = &sched_syncobj, 200 .l_refcnt = 1, 201 .l_priority = PRI_USER + NPRI_USER - 1, 202 .l_inheritedprio = -1, 203 .l_class = SCHED_OTHER, 204 .l_psid = PS_NONE, 205 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 206 .l_name = __UNCONST("swapper"), 207 }; 208 kauth_cred_t cred0; 209 210 extern struct user *proc0paddr; 211 212 int nofile = NOFILE; 213 int maxuprc = MAXUPRC; 214 int cmask = CMASK; 215 216 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data"); 217 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 218 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 219 220 /* 221 * The process list descriptors, used during pid allocation and 222 * by sysctl. No locking on this data structure is needed since 223 * it is completely static. 224 */ 225 const struct proclist_desc proclists[] = { 226 { &allproc }, 227 { &zombproc }, 228 { NULL }, 229 }; 230 231 static void orphanpg(struct pgrp *); 232 static void pg_delete(pid_t); 233 234 static specificdata_domain_t proc_specificdata_domain; 235 236 static pool_cache_t proc_cache; 237 238 /* 239 * Initialize global process hashing structures. 240 */ 241 void 242 procinit(void) 243 { 244 const struct proclist_desc *pd; 245 int i; 246 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 247 248 for (pd = proclists; pd->pd_list != NULL; pd++) 249 LIST_INIT(pd->pd_list); 250 251 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 252 253 pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table, 254 M_PROC, M_WAITOK); 255 /* Set free list running through table... 256 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 257 for (i = 0; i <= pid_tbl_mask; i++) { 258 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 259 pid_table[i].pt_pgrp = 0; 260 } 261 /* slot 0 is just grabbed */ 262 next_free_pt = 1; 263 /* Need to fix last entry. */ 264 last_free_pt = pid_tbl_mask; 265 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 266 /* point at which we grow table - to avoid reusing pids too often */ 267 pid_alloc_lim = pid_tbl_mask - 1; 268 #undef LINK_EMPTY 269 270 proc_specificdata_domain = specificdata_domain_create(); 271 KASSERT(proc_specificdata_domain != NULL); 272 273 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 274 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 275 } 276 277 /* 278 * Initialize process 0. 279 */ 280 void 281 proc0_init(void) 282 { 283 struct proc *p; 284 struct pgrp *pg; 285 struct session *sess; 286 struct lwp *l; 287 rlim_t lim; 288 int i; 289 290 p = &proc0; 291 pg = &pgrp0; 292 sess = &session0; 293 l = &lwp0; 294 295 KASSERT(l->l_lid == p->p_nlwpid); 296 297 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 298 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 299 mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 300 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 301 302 rw_init(&p->p_reflock); 303 cv_init(&p->p_waitcv, "wait"); 304 cv_init(&p->p_lwpcv, "lwpwait"); 305 306 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling); 307 308 pid_table[0].pt_proc = p; 309 LIST_INSERT_HEAD(&allproc, p, p_list); 310 LIST_INSERT_HEAD(&alllwp, l, l_list); 311 312 pid_table[0].pt_pgrp = pg; 313 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 314 315 #ifdef __HAVE_SYSCALL_INTERN 316 (*p->p_emul->e_syscall_intern)(p); 317 #endif 318 319 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 320 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 321 cv_init(&l->l_sigcv, "sigwait"); 322 323 /* Create credentials. */ 324 cred0 = kauth_cred_alloc(); 325 p->p_cred = cred0; 326 kauth_cred_hold(cred0); 327 l->l_cred = cred0; 328 329 /* Create the CWD info. */ 330 rw_init(&cwdi0.cwdi_lock); 331 332 /* Create the limits structures. */ 333 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 334 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) 335 limit0.pl_rlimit[i].rlim_cur = 336 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY; 337 338 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; 339 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = 340 maxfiles < nofile ? maxfiles : nofile; 341 342 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; 343 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = 344 maxproc < maxuprc ? maxproc : maxuprc; 345 346 lim = ptoa(uvmexp.free); 347 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim; 348 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim; 349 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 350 limit0.pl_corename = defcorename; 351 limit0.pl_refcnt = 1; 352 limit0.pl_sv_limit = NULL; 353 354 /* Configure virtual memory system, set vm rlimits. */ 355 uvm_init_limits(p); 356 357 /* Initialize file descriptor table for proc0. */ 358 fd_init(&filedesc0); 359 360 /* 361 * Initialize proc0's vmspace, which uses the kernel pmap. 362 * All kernel processes (which never have user space mappings) 363 * share proc0's vmspace, and thus, the kernel pmap. 364 */ 365 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 366 trunc_page(VM_MAX_ADDRESS)); 367 368 l->l_addr = proc0paddr; /* XXX */ 369 370 /* Initialize signal state for proc0. XXX IPL_SCHED */ 371 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 372 siginit(p); 373 374 proc_initspecific(p); 375 lwp_initspecific(l); 376 377 SYSCALL_TIME_LWP_INIT(l); 378 } 379 380 /* 381 * Check that the specified process group is in the session of the 382 * specified process. 383 * Treats -ve ids as process ids. 384 * Used to validate TIOCSPGRP requests. 385 */ 386 int 387 pgid_in_session(struct proc *p, pid_t pg_id) 388 { 389 struct pgrp *pgrp; 390 struct session *session; 391 int error; 392 393 mutex_enter(proc_lock); 394 if (pg_id < 0) { 395 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 396 if (p1 == NULL) 397 return EINVAL; 398 pgrp = p1->p_pgrp; 399 } else { 400 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL); 401 if (pgrp == NULL) 402 return EINVAL; 403 } 404 session = pgrp->pg_session; 405 if (session != p->p_pgrp->pg_session) 406 error = EPERM; 407 else 408 error = 0; 409 mutex_exit(proc_lock); 410 411 return error; 412 } 413 414 /* 415 * p_inferior: is p an inferior of q? 416 */ 417 static inline bool 418 p_inferior(struct proc *p, struct proc *q) 419 { 420 421 KASSERT(mutex_owned(proc_lock)); 422 423 for (; p != q; p = p->p_pptr) 424 if (p->p_pid == 0) 425 return false; 426 return true; 427 } 428 429 /* 430 * Locate a process by number 431 */ 432 struct proc * 433 p_find(pid_t pid, uint flags) 434 { 435 struct proc *p; 436 char stat; 437 438 if (!(flags & PFIND_LOCKED)) 439 mutex_enter(proc_lock); 440 441 p = pid_table[pid & pid_tbl_mask].pt_proc; 442 443 /* Only allow live processes to be found by pid. */ 444 /* XXXSMP p_stat */ 445 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE || 446 stat == SSTOP || ((flags & PFIND_ZOMBIE) && 447 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) { 448 if (flags & PFIND_UNLOCK_OK) 449 mutex_exit(proc_lock); 450 return p; 451 } 452 if (flags & PFIND_UNLOCK_FAIL) 453 mutex_exit(proc_lock); 454 return NULL; 455 } 456 457 458 /* 459 * Locate a process group by number 460 */ 461 struct pgrp * 462 pg_find(pid_t pgid, uint flags) 463 { 464 struct pgrp *pg; 465 466 if (!(flags & PFIND_LOCKED)) 467 mutex_enter(proc_lock); 468 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 469 /* 470 * Can't look up a pgrp that only exists because the session 471 * hasn't died yet (traditional) 472 */ 473 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 474 if (flags & PFIND_UNLOCK_FAIL) 475 mutex_exit(proc_lock); 476 return NULL; 477 } 478 479 if (flags & PFIND_UNLOCK_OK) 480 mutex_exit(proc_lock); 481 return pg; 482 } 483 484 static void 485 expand_pid_table(void) 486 { 487 uint pt_size = pid_tbl_mask + 1; 488 struct pid_table *n_pt, *new_pt; 489 struct proc *proc; 490 struct pgrp *pgrp; 491 int i; 492 pid_t pid; 493 494 new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK); 495 496 mutex_enter(proc_lock); 497 if (pt_size != pid_tbl_mask + 1) { 498 /* Another process beat us to it... */ 499 mutex_exit(proc_lock); 500 free(new_pt, M_PROC); 501 return; 502 } 503 504 /* 505 * Copy entries from old table into new one. 506 * If 'pid' is 'odd' we need to place in the upper half, 507 * even pid's to the lower half. 508 * Free items stay in the low half so we don't have to 509 * fixup the reference to them. 510 * We stuff free items on the front of the freelist 511 * because we can't write to unmodified entries. 512 * Processing the table backwards maintains a semblance 513 * of issueing pid numbers that increase with time. 514 */ 515 i = pt_size - 1; 516 n_pt = new_pt + i; 517 for (; ; i--, n_pt--) { 518 proc = pid_table[i].pt_proc; 519 pgrp = pid_table[i].pt_pgrp; 520 if (!P_VALID(proc)) { 521 /* Up 'use count' so that link is valid */ 522 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 523 proc = P_FREE(pid); 524 if (pgrp) 525 pid = pgrp->pg_id; 526 } else 527 pid = proc->p_pid; 528 529 /* Save entry in appropriate half of table */ 530 n_pt[pid & pt_size].pt_proc = proc; 531 n_pt[pid & pt_size].pt_pgrp = pgrp; 532 533 /* Put other piece on start of free list */ 534 pid = (pid ^ pt_size) & ~pid_tbl_mask; 535 n_pt[pid & pt_size].pt_proc = 536 P_FREE((pid & ~pt_size) | next_free_pt); 537 n_pt[pid & pt_size].pt_pgrp = 0; 538 next_free_pt = i | (pid & pt_size); 539 if (i == 0) 540 break; 541 } 542 543 /* Switch tables */ 544 n_pt = pid_table; 545 pid_table = new_pt; 546 pid_tbl_mask = pt_size * 2 - 1; 547 548 /* 549 * pid_max starts as PID_MAX (= 30000), once we have 16384 550 * allocated pids we need it to be larger! 551 */ 552 if (pid_tbl_mask > PID_MAX) { 553 pid_max = pid_tbl_mask * 2 + 1; 554 pid_alloc_lim |= pid_alloc_lim << 1; 555 } else 556 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 557 558 mutex_exit(proc_lock); 559 free(n_pt, M_PROC); 560 } 561 562 struct proc * 563 proc_alloc(void) 564 { 565 struct proc *p; 566 int nxt; 567 pid_t pid; 568 struct pid_table *pt; 569 570 p = pool_cache_get(proc_cache, PR_WAITOK); 571 p->p_stat = SIDL; /* protect against others */ 572 573 proc_initspecific(p); 574 /* allocate next free pid */ 575 576 for (;;expand_pid_table()) { 577 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 578 /* ensure pids cycle through 2000+ values */ 579 continue; 580 mutex_enter(proc_lock); 581 pt = &pid_table[next_free_pt]; 582 #ifdef DIAGNOSTIC 583 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 584 panic("proc_alloc: slot busy"); 585 #endif 586 nxt = P_NEXT(pt->pt_proc); 587 if (nxt & pid_tbl_mask) 588 break; 589 /* Table full - expand (NB last entry not used....) */ 590 mutex_exit(proc_lock); 591 } 592 593 /* pid is 'saved use count' + 'size' + entry */ 594 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 595 if ((uint)pid > (uint)pid_max) 596 pid &= pid_tbl_mask; 597 p->p_pid = pid; 598 next_free_pt = nxt & pid_tbl_mask; 599 600 /* Grab table slot */ 601 pt->pt_proc = p; 602 pid_alloc_cnt++; 603 604 mutex_exit(proc_lock); 605 606 return p; 607 } 608 609 /* 610 * Free a process id - called from proc_free (in kern_exit.c) 611 * 612 * Called with the proc_lock held. 613 */ 614 void 615 proc_free_pid(struct proc *p) 616 { 617 pid_t pid = p->p_pid; 618 struct pid_table *pt; 619 620 KASSERT(mutex_owned(proc_lock)); 621 622 pt = &pid_table[pid & pid_tbl_mask]; 623 #ifdef DIAGNOSTIC 624 if (__predict_false(pt->pt_proc != p)) 625 panic("proc_free: pid_table mismatch, pid %x, proc %p", 626 pid, p); 627 #endif 628 /* save pid use count in slot */ 629 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 630 631 if (pt->pt_pgrp == NULL) { 632 /* link last freed entry onto ours */ 633 pid &= pid_tbl_mask; 634 pt = &pid_table[last_free_pt]; 635 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 636 last_free_pt = pid; 637 pid_alloc_cnt--; 638 } 639 640 atomic_dec_uint(&nprocs); 641 } 642 643 void 644 proc_free_mem(struct proc *p) 645 { 646 647 pool_cache_put(proc_cache, p); 648 } 649 650 /* 651 * Move p to a new or existing process group (and session) 652 * 653 * If we are creating a new pgrp, the pgid should equal 654 * the calling process' pid. 655 * If is only valid to enter a process group that is in the session 656 * of the process. 657 * Also mksess should only be set if we are creating a process group 658 * 659 * Only called from sys_setsid and sys_setpgid. 660 */ 661 int 662 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess) 663 { 664 struct pgrp *new_pgrp, *pgrp; 665 struct session *sess; 666 struct proc *p; 667 int rval; 668 pid_t pg_id = NO_PGID; 669 670 if (mksess) 671 sess = kmem_alloc(sizeof(*sess), KM_SLEEP); 672 else 673 sess = NULL; 674 675 /* Allocate data areas we might need before doing any validity checks */ 676 mutex_enter(proc_lock); /* Because pid_table might change */ 677 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 678 mutex_exit(proc_lock); 679 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 680 mutex_enter(proc_lock); 681 } else 682 new_pgrp = NULL; 683 rval = EPERM; /* most common error (to save typing) */ 684 685 /* Check pgrp exists or can be created */ 686 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 687 if (pgrp != NULL && pgrp->pg_id != pgid) 688 goto done; 689 690 /* Can only set another process under restricted circumstances. */ 691 if (pid != curp->p_pid) { 692 /* must exist and be one of our children... */ 693 if ((p = p_find(pid, PFIND_LOCKED)) == NULL || 694 !p_inferior(p, curp)) { 695 rval = ESRCH; 696 goto done; 697 } 698 /* ... in the same session... */ 699 if (sess != NULL || p->p_session != curp->p_session) 700 goto done; 701 /* ... existing pgid must be in same session ... */ 702 if (pgrp != NULL && pgrp->pg_session != p->p_session) 703 goto done; 704 /* ... and not done an exec. */ 705 if (p->p_flag & PK_EXEC) { 706 rval = EACCES; 707 goto done; 708 } 709 } else { 710 /* ... setsid() cannot re-enter a pgrp */ 711 if (mksess && (curp->p_pgid == curp->p_pid || 712 pg_find(curp->p_pid, PFIND_LOCKED))) 713 goto done; 714 p = curp; 715 } 716 717 /* Changing the process group/session of a session 718 leader is definitely off limits. */ 719 if (SESS_LEADER(p)) { 720 if (sess == NULL && p->p_pgrp == pgrp) 721 /* unless it's a definite noop */ 722 rval = 0; 723 goto done; 724 } 725 726 /* Can only create a process group with id of process */ 727 if (pgrp == NULL && pgid != pid) 728 goto done; 729 730 /* Can only create a session if creating pgrp */ 731 if (sess != NULL && pgrp != NULL) 732 goto done; 733 734 /* Check we allocated memory for a pgrp... */ 735 if (pgrp == NULL && new_pgrp == NULL) 736 goto done; 737 738 /* Don't attach to 'zombie' pgrp */ 739 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 740 goto done; 741 742 /* Expect to succeed now */ 743 rval = 0; 744 745 if (pgrp == p->p_pgrp) 746 /* nothing to do */ 747 goto done; 748 749 /* Ok all setup, link up required structures */ 750 751 if (pgrp == NULL) { 752 pgrp = new_pgrp; 753 new_pgrp = NULL; 754 if (sess != NULL) { 755 sess->s_sid = p->p_pid; 756 sess->s_leader = p; 757 sess->s_count = 1; 758 sess->s_ttyvp = NULL; 759 sess->s_ttyp = NULL; 760 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 761 memcpy(sess->s_login, p->p_session->s_login, 762 sizeof(sess->s_login)); 763 p->p_lflag &= ~PL_CONTROLT; 764 } else { 765 sess = p->p_pgrp->pg_session; 766 SESSHOLD(sess); 767 } 768 pgrp->pg_session = sess; 769 sess = NULL; 770 771 pgrp->pg_id = pgid; 772 LIST_INIT(&pgrp->pg_members); 773 #ifdef DIAGNOSTIC 774 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 775 panic("enterpgrp: pgrp table slot in use"); 776 if (__predict_false(mksess && p != curp)) 777 panic("enterpgrp: mksession and p != curproc"); 778 #endif 779 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 780 pgrp->pg_jobc = 0; 781 } 782 783 /* 784 * Adjust eligibility of affected pgrps to participate in job control. 785 * Increment eligibility counts before decrementing, otherwise we 786 * could reach 0 spuriously during the first call. 787 */ 788 fixjobc(p, pgrp, 1); 789 fixjobc(p, p->p_pgrp, 0); 790 791 /* Interlock with ttread(). */ 792 mutex_spin_enter(&tty_lock); 793 794 /* Move process to requested group. */ 795 LIST_REMOVE(p, p_pglist); 796 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 797 /* defer delete until we've dumped the lock */ 798 pg_id = p->p_pgrp->pg_id; 799 p->p_pgrp = pgrp; 800 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 801 802 /* Done with the swap; we can release the tty mutex. */ 803 mutex_spin_exit(&tty_lock); 804 805 done: 806 if (pg_id != NO_PGID) 807 pg_delete(pg_id); 808 mutex_exit(proc_lock); 809 if (sess != NULL) 810 kmem_free(sess, sizeof(*sess)); 811 if (new_pgrp != NULL) 812 kmem_free(new_pgrp, sizeof(*new_pgrp)); 813 #ifdef DEBUG_PGRP 814 if (__predict_false(rval)) 815 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 816 pid, pgid, mksess, curp->p_pid, rval); 817 #endif 818 return rval; 819 } 820 821 /* 822 * Remove a process from its process group. Must be called with the 823 * proc_lock held. 824 */ 825 void 826 leavepgrp(struct proc *p) 827 { 828 struct pgrp *pgrp; 829 830 KASSERT(mutex_owned(proc_lock)); 831 832 /* Interlock with ttread() */ 833 mutex_spin_enter(&tty_lock); 834 pgrp = p->p_pgrp; 835 LIST_REMOVE(p, p_pglist); 836 p->p_pgrp = NULL; 837 mutex_spin_exit(&tty_lock); 838 839 if (LIST_EMPTY(&pgrp->pg_members)) 840 pg_delete(pgrp->pg_id); 841 } 842 843 /* 844 * Free a process group. Must be called with the proc_lock held. 845 */ 846 static void 847 pg_free(pid_t pg_id) 848 { 849 struct pgrp *pgrp; 850 struct pid_table *pt; 851 852 KASSERT(mutex_owned(proc_lock)); 853 854 pt = &pid_table[pg_id & pid_tbl_mask]; 855 pgrp = pt->pt_pgrp; 856 #ifdef DIAGNOSTIC 857 if (__predict_false(!pgrp || pgrp->pg_id != pg_id 858 || !LIST_EMPTY(&pgrp->pg_members))) 859 panic("pg_free: process group absent or has members"); 860 #endif 861 pt->pt_pgrp = 0; 862 863 if (!P_VALID(pt->pt_proc)) { 864 /* orphaned pgrp, put slot onto free list */ 865 #ifdef DIAGNOSTIC 866 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask)) 867 panic("pg_free: process slot on free list"); 868 #endif 869 pg_id &= pid_tbl_mask; 870 pt = &pid_table[last_free_pt]; 871 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 872 last_free_pt = pg_id; 873 pid_alloc_cnt--; 874 } 875 kmem_free(pgrp, sizeof(*pgrp)); 876 } 877 878 /* 879 * Delete a process group. Must be called with the proc_lock held. 880 */ 881 static void 882 pg_delete(pid_t pg_id) 883 { 884 struct pgrp *pgrp; 885 struct tty *ttyp; 886 struct session *ss; 887 int is_pgrp_leader; 888 889 KASSERT(mutex_owned(proc_lock)); 890 891 pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 892 if (pgrp == NULL || pgrp->pg_id != pg_id || 893 !LIST_EMPTY(&pgrp->pg_members)) 894 return; 895 896 ss = pgrp->pg_session; 897 898 /* Remove reference (if any) from tty to this process group */ 899 mutex_spin_enter(&tty_lock); 900 ttyp = ss->s_ttyp; 901 if (ttyp != NULL && ttyp->t_pgrp == pgrp) { 902 ttyp->t_pgrp = NULL; 903 #ifdef DIAGNOSTIC 904 if (ttyp->t_session != ss) 905 panic("pg_delete: wrong session on terminal"); 906 #endif 907 } 908 mutex_spin_exit(&tty_lock); 909 910 /* 911 * The leading process group in a session is freed 912 * by sessdelete() if last reference. 913 */ 914 is_pgrp_leader = (ss->s_sid == pgrp->pg_id); 915 SESSRELE(ss); 916 917 if (is_pgrp_leader) 918 return; 919 920 pg_free(pg_id); 921 } 922 923 /* 924 * Delete session - called from SESSRELE when s_count becomes zero. 925 * Must be called with the proc_lock held. 926 */ 927 void 928 sessdelete(struct session *ss) 929 { 930 931 KASSERT(mutex_owned(proc_lock)); 932 933 /* 934 * We keep the pgrp with the same id as the session in 935 * order to stop a process being given the same pid. 936 * Since the pgrp holds a reference to the session, it 937 * must be a 'zombie' pgrp by now. 938 */ 939 pg_free(ss->s_sid); 940 kmem_free(ss, sizeof(*ss)); 941 } 942 943 /* 944 * Adjust pgrp jobc counters when specified process changes process group. 945 * We count the number of processes in each process group that "qualify" 946 * the group for terminal job control (those with a parent in a different 947 * process group of the same session). If that count reaches zero, the 948 * process group becomes orphaned. Check both the specified process' 949 * process group and that of its children. 950 * entering == 0 => p is leaving specified group. 951 * entering == 1 => p is entering specified group. 952 * 953 * Call with proc_lock held. 954 */ 955 void 956 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 957 { 958 struct pgrp *hispgrp; 959 struct session *mysession = pgrp->pg_session; 960 struct proc *child; 961 962 KASSERT(mutex_owned(proc_lock)); 963 964 /* 965 * Check p's parent to see whether p qualifies its own process 966 * group; if so, adjust count for p's process group. 967 */ 968 hispgrp = p->p_pptr->p_pgrp; 969 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 970 if (entering) { 971 pgrp->pg_jobc++; 972 p->p_lflag &= ~PL_ORPHANPG; 973 } else if (--pgrp->pg_jobc == 0) 974 orphanpg(pgrp); 975 } 976 977 /* 978 * Check this process' children to see whether they qualify 979 * their process groups; if so, adjust counts for children's 980 * process groups. 981 */ 982 LIST_FOREACH(child, &p->p_children, p_sibling) { 983 hispgrp = child->p_pgrp; 984 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 985 !P_ZOMBIE(child)) { 986 if (entering) { 987 child->p_lflag &= ~PL_ORPHANPG; 988 hispgrp->pg_jobc++; 989 } else if (--hispgrp->pg_jobc == 0) 990 orphanpg(hispgrp); 991 } 992 } 993 } 994 995 /* 996 * A process group has become orphaned; 997 * if there are any stopped processes in the group, 998 * hang-up all process in that group. 999 * 1000 * Call with proc_lock held. 1001 */ 1002 static void 1003 orphanpg(struct pgrp *pg) 1004 { 1005 struct proc *p; 1006 int doit; 1007 1008 KASSERT(mutex_owned(proc_lock)); 1009 1010 doit = 0; 1011 1012 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1013 if (p->p_stat == SSTOP) { 1014 p->p_lflag |= PL_ORPHANPG; 1015 psignal(p, SIGHUP); 1016 psignal(p, SIGCONT); 1017 } 1018 } 1019 } 1020 1021 #ifdef DDB 1022 #include <ddb/db_output.h> 1023 void pidtbl_dump(void); 1024 void 1025 pidtbl_dump(void) 1026 { 1027 struct pid_table *pt; 1028 struct proc *p; 1029 struct pgrp *pgrp; 1030 int id; 1031 1032 db_printf("pid table %p size %x, next %x, last %x\n", 1033 pid_table, pid_tbl_mask+1, 1034 next_free_pt, last_free_pt); 1035 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1036 p = pt->pt_proc; 1037 if (!P_VALID(p) && !pt->pt_pgrp) 1038 continue; 1039 db_printf(" id %x: ", id); 1040 if (P_VALID(p)) 1041 db_printf("proc %p id %d (0x%x) %s\n", 1042 p, p->p_pid, p->p_pid, p->p_comm); 1043 else 1044 db_printf("next %x use %x\n", 1045 P_NEXT(p) & pid_tbl_mask, 1046 P_NEXT(p) & ~pid_tbl_mask); 1047 if ((pgrp = pt->pt_pgrp)) { 1048 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1049 pgrp->pg_session, pgrp->pg_session->s_sid, 1050 pgrp->pg_session->s_count, 1051 pgrp->pg_session->s_login); 1052 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1053 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1054 LIST_FIRST(&pgrp->pg_members)); 1055 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1056 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1057 p->p_pid, p, p->p_pgrp, p->p_comm); 1058 } 1059 } 1060 } 1061 } 1062 #endif /* DDB */ 1063 1064 #ifdef KSTACK_CHECK_MAGIC 1065 #include <sys/user.h> 1066 1067 #define KSTACK_MAGIC 0xdeadbeaf 1068 1069 /* XXX should be per process basis? */ 1070 int kstackleftmin = KSTACK_SIZE; 1071 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is 1072 less than this */ 1073 1074 void 1075 kstack_setup_magic(const struct lwp *l) 1076 { 1077 uint32_t *ip; 1078 uint32_t const *end; 1079 1080 KASSERT(l != NULL); 1081 KASSERT(l != &lwp0); 1082 1083 /* 1084 * fill all the stack with magic number 1085 * so that later modification on it can be detected. 1086 */ 1087 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1088 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1089 for (; ip < end; ip++) { 1090 *ip = KSTACK_MAGIC; 1091 } 1092 } 1093 1094 void 1095 kstack_check_magic(const struct lwp *l) 1096 { 1097 uint32_t const *ip, *end; 1098 int stackleft; 1099 1100 KASSERT(l != NULL); 1101 1102 /* don't check proc0 */ /*XXX*/ 1103 if (l == &lwp0) 1104 return; 1105 1106 #ifdef __MACHINE_STACK_GROWS_UP 1107 /* stack grows upwards (eg. hppa) */ 1108 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1109 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1110 for (ip--; ip >= end; ip--) 1111 if (*ip != KSTACK_MAGIC) 1112 break; 1113 1114 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1115 #else /* __MACHINE_STACK_GROWS_UP */ 1116 /* stack grows downwards (eg. i386) */ 1117 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1118 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1119 for (; ip < end; ip++) 1120 if (*ip != KSTACK_MAGIC) 1121 break; 1122 1123 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1124 #endif /* __MACHINE_STACK_GROWS_UP */ 1125 1126 if (kstackleftmin > stackleft) { 1127 kstackleftmin = stackleft; 1128 if (stackleft < kstackleftthres) 1129 printf("warning: kernel stack left %d bytes" 1130 "(pid %u:lid %u)\n", stackleft, 1131 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1132 } 1133 1134 if (stackleft <= 0) { 1135 panic("magic on the top of kernel stack changed for " 1136 "pid %u, lid %u: maybe kernel stack overflow", 1137 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1138 } 1139 } 1140 #endif /* KSTACK_CHECK_MAGIC */ 1141 1142 int 1143 proclist_foreach_call(struct proclist *list, 1144 int (*callback)(struct proc *, void *arg), void *arg) 1145 { 1146 struct proc marker; 1147 struct proc *p; 1148 struct lwp * const l = curlwp; 1149 int ret = 0; 1150 1151 marker.p_flag = PK_MARKER; 1152 uvm_lwp_hold(l); 1153 mutex_enter(proc_lock); 1154 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1155 if (p->p_flag & PK_MARKER) { 1156 p = LIST_NEXT(p, p_list); 1157 continue; 1158 } 1159 LIST_INSERT_AFTER(p, &marker, p_list); 1160 ret = (*callback)(p, arg); 1161 KASSERT(mutex_owned(proc_lock)); 1162 p = LIST_NEXT(&marker, p_list); 1163 LIST_REMOVE(&marker, p_list); 1164 } 1165 mutex_exit(proc_lock); 1166 uvm_lwp_rele(l); 1167 1168 return ret; 1169 } 1170 1171 int 1172 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1173 { 1174 1175 /* XXXCDC: how should locking work here? */ 1176 1177 /* curproc exception is for coredump. */ 1178 1179 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1180 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1181 return EFAULT; 1182 } 1183 1184 uvmspace_addref(p->p_vmspace); 1185 *vm = p->p_vmspace; 1186 1187 return 0; 1188 } 1189 1190 /* 1191 * Acquire a write lock on the process credential. 1192 */ 1193 void 1194 proc_crmod_enter(void) 1195 { 1196 struct lwp *l = curlwp; 1197 struct proc *p = l->l_proc; 1198 struct plimit *lim; 1199 kauth_cred_t oc; 1200 char *cn; 1201 1202 /* Reset what needs to be reset in plimit. */ 1203 if (p->p_limit->pl_corename != defcorename) { 1204 lim_privatise(p, false); 1205 lim = p->p_limit; 1206 mutex_enter(&lim->pl_lock); 1207 cn = lim->pl_corename; 1208 lim->pl_corename = defcorename; 1209 mutex_exit(&lim->pl_lock); 1210 if (cn != defcorename) 1211 free(cn, M_TEMP); 1212 } 1213 1214 mutex_enter(p->p_lock); 1215 1216 /* Ensure the LWP cached credentials are up to date. */ 1217 if ((oc = l->l_cred) != p->p_cred) { 1218 kauth_cred_hold(p->p_cred); 1219 l->l_cred = p->p_cred; 1220 kauth_cred_free(oc); 1221 } 1222 1223 } 1224 1225 /* 1226 * Set in a new process credential, and drop the write lock. The credential 1227 * must have a reference already. Optionally, free a no-longer required 1228 * credential. The scheduler also needs to inspect p_cred, so we also 1229 * briefly acquire the sched state mutex. 1230 */ 1231 void 1232 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1233 { 1234 struct lwp *l = curlwp, *l2; 1235 struct proc *p = l->l_proc; 1236 kauth_cred_t oc; 1237 1238 KASSERT(mutex_owned(p->p_lock)); 1239 1240 /* Is there a new credential to set in? */ 1241 if (scred != NULL) { 1242 p->p_cred = scred; 1243 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1244 if (l2 != l) 1245 l2->l_prflag |= LPR_CRMOD; 1246 } 1247 1248 /* Ensure the LWP cached credentials are up to date. */ 1249 if ((oc = l->l_cred) != scred) { 1250 kauth_cred_hold(scred); 1251 l->l_cred = scred; 1252 } 1253 } else 1254 oc = NULL; /* XXXgcc */ 1255 1256 if (sugid) { 1257 /* 1258 * Mark process as having changed credentials, stops 1259 * tracing etc. 1260 */ 1261 p->p_flag |= PK_SUGID; 1262 } 1263 1264 mutex_exit(p->p_lock); 1265 1266 /* If there is a credential to be released, free it now. */ 1267 if (fcred != NULL) { 1268 KASSERT(scred != NULL); 1269 kauth_cred_free(fcred); 1270 if (oc != scred) 1271 kauth_cred_free(oc); 1272 } 1273 } 1274 1275 /* 1276 * proc_specific_key_create -- 1277 * Create a key for subsystem proc-specific data. 1278 */ 1279 int 1280 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1281 { 1282 1283 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1284 } 1285 1286 /* 1287 * proc_specific_key_delete -- 1288 * Delete a key for subsystem proc-specific data. 1289 */ 1290 void 1291 proc_specific_key_delete(specificdata_key_t key) 1292 { 1293 1294 specificdata_key_delete(proc_specificdata_domain, key); 1295 } 1296 1297 /* 1298 * proc_initspecific -- 1299 * Initialize a proc's specificdata container. 1300 */ 1301 void 1302 proc_initspecific(struct proc *p) 1303 { 1304 int error; 1305 1306 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1307 KASSERT(error == 0); 1308 } 1309 1310 /* 1311 * proc_finispecific -- 1312 * Finalize a proc's specificdata container. 1313 */ 1314 void 1315 proc_finispecific(struct proc *p) 1316 { 1317 1318 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1319 } 1320 1321 /* 1322 * proc_getspecific -- 1323 * Return proc-specific data corresponding to the specified key. 1324 */ 1325 void * 1326 proc_getspecific(struct proc *p, specificdata_key_t key) 1327 { 1328 1329 return (specificdata_getspecific(proc_specificdata_domain, 1330 &p->p_specdataref, key)); 1331 } 1332 1333 /* 1334 * proc_setspecific -- 1335 * Set proc-specific data corresponding to the specified key. 1336 */ 1337 void 1338 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1339 { 1340 1341 specificdata_setspecific(proc_specificdata_domain, 1342 &p->p_specdataref, key, data); 1343 } 1344